曾谨言量子力学练习题答案
曾谨严量子力学习题解答2

1 [ϕ1 (x ) + ϕ 2 (x )] 2 1 1 ⎡ϕ1 ( x ) e − iE1t / h + ϕ 2 ( x ) e − iE2t / h ⎤ ⎡ϕ1 ( x, t ) + ϕ 2 ( x, t ) ⎤ = 则有:ϕ ( x, t ) = ⎣ ⎦ ⎦ 2⎣ 2 (2)求 x (t ) = ?
⎧ ⎛ nπ pa ⎞ ⎛ nπ pa ⎞ ⎫ a sin ⎜ − + ⎛ nπ pa ⎞ sin ⎜ ⎟ ⎟ i⎜ − ⎟ ⎪ n +1 ⎪ ⎝ 2 2h ⎠ ⎪ 2 2h ⎠ ⎪ ⎝ = π h e ⎝ 2 2h ⎠ ⎨ + ( −1) nπ pa nπ pa ⎬ 2i ⎪ ⎪ − + 2 2h 2 2h ⎭ ⎪ ⎪ ⎩
3. 《曾 P.163-5》 一维无限深势阱(如右图)中的粒子,设处于 ϕ n ( x ) 态。求其动量分布概率。当 n >> 1 时, 与经典粒子运动比较。 解:利用已知解:
⎧ 2 nπ x sin , ⎪ ϕn ( x ) = ⎨ a a ⎪0, ⎩
V ( x)
0
a
(0 < x < a) ( x < 0, x > a )
∗
5π 2 h 2 5 1 = = E1 = ( E1 + E2 ) 2ma 2 2 2
2 (4)求 H = ?
H = ∫ ϕ ∗ ( x ) H 2ϕ ( x )dx
2 −∞
+∞
=∫
+∞
−∞ a
1 1 ⎡ϕ1 ( x ) + ϕ 2 ( x ) ⎤ ⋅ H 2 ⋅ ⎡ϕ1 ( x ) + ϕ 2 ( x ) ⎤ dx ⎣ ⎦ ⎣ ⎦ 2 2
曾谨言量子力学练习题答案

曾谨言量子力学练习题答案量子力学是物理学中描述微观粒子行为的一门基础理论,它在20世纪初由普朗克、爱因斯坦、波尔、薛定谔、海森堡等科学家共同发展起来。
曾谨言教授的量子力学练习题是帮助学生深入理解量子力学概念和计算方法的重要工具。
以下是一些练习题及其答案的示例:练习题1:波函数的归一化某粒子的波函数为 \( \psi(x) = A \sin(kx) \),其中 \( A \) 和\( k \) 是常数。
求波函数的归一化常数 \( A \)。
答案:波函数的归一化条件为 \( \int |\psi(x)|^2 dx = 1 \)。
将\( \psi(x) \) 代入归一化条件中,得到:\[ \int |A \sin(kx)|^2 dx = 1 \]\[ A^2 \int \sin^2(kx) dx = 1 \]利用三角恒等式 \( \sin^2(kx) = \frac{1 - \cos(2kx)}{2} \),积分变为:\[ A^2 \int \frac{1 - \cos(2kx)}{2} dx = 1 \]\[ A^2 \left[ \frac{x}{2} - \frac{\sin(2kx)}{4k} \right] = 1 \]由于波函数在 \( x = 0 \) 到 \( x = \frac{\pi}{k} \) 之间归一化,所以:\[ A^2 \left[ \frac{\pi}{2k} - 0 \right] = 1 \]\[ A = \sqrt{\frac{2k}{\pi}} \]练习题2:薛定谔方程的解考虑一个一维无限深势阱,其势能 \( V(x) = 0 \) 当 \( 0 < x < a \),\( V(x) = \infty \) 其他情况下。
求粒子的能级。
答案:在无限深势阱中,薛定谔方程为:\[ -\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{dx^2} = E\psi(x) \]设 \( \psi(x) = \sin(kx) \),其中 \( k = \frac{n\pi}{a} \),\( n \) 为正整数。
曾谨严量子力学习题解答7

(
)
(8)
t = 0 时,体系的初始状态为
ψ (t = 0 ) = ψ 1 =
Ω ω Ω +ω ψ E+ + ψ E 2Ω 2Ω
(9) (10)
其中 Ω = ω 2 + 4γ 2 h 2 . 因此, t
≥ 0 时波函数为
Ω ω Ω +ω ψ E+ eiE+t h + ψ E e iEt 2Ω 2Ω
h
1 3 2 1 1 1 2 1 1 2 = 1 1 + 1 0 Y11β + Y10α 2 2 3 2 3 3 3
(2)
1
3 1 2 1 1 1 2 1 1 0 + 1 1 = Y10 β + Y11α 2 2 3 2 2 3 3 3 3 3 1 1 = 1 1 Y11β 2 2 2
r
r
r
r
(6)
3 1 2 3 1 2
3 r r ε r i 2 1 r r ε r i 2
2
=
2
1 2 2 2 r (ε x + ε y ) 6 2 2 2 r εz 9
=
2
1
3 2
1 r r ε r i 2
=
2
1 2 2 2 r (ε x + ε y ) 18
3 1 2
1 1 2
3 r r ε r i 2
(
)
(
)
初态: l = m = 0 , j =
i = 0 1 2
1 1 , m j = sz = 2 2 1 1 = 0 0 Y00α 2 2
(1)
终态: l = 1, j = l ±
1 3 1 3 1 = , ,mj = ± ,± . 2 2 2 2 2
曾谨严量子力学习题解答4

=
∫
dpϕ
∗
(
p
)
p2 2m
ϕ
(
p
)
(坐标表象) (动量表象)
证明: (1) 求解势能的平均值。在坐标表象中,有:
V = ψVψ
= ∫∫ dxdx′ ψ x x V (x) x′ x′ ψ = ∫∫ dxdx′ψ ∗(x)V (x)δ (x − x′)ψ (x′) = ∫ dxψ ∗(x)V (x)ψ (x)
+V
( x)⎥⎤
⎦
=
⎡ ⎢ x, ⎣
prˆ 2 ⎤
2m
⎥ ⎦
=
ih m
prˆ
∴
prˆ
=
m ih
⎡⎣ x,
Hˆ
⎤⎦
因此,
p = φn
prˆ φn
= φn
m ih
[
x,
H
]
φn
=m ih
φn
( xH − Hx)
φn
=0
证毕。
3.《曾 P.220练习1》
根据谐振子的能量表象中 x 的矩阵,用矩阵乘法求出 x2 的矩阵。
⎛ ⎜⎝
ih
∂ ∂x
⎞2 ⎟⎠
δ
(
x
−
x′)ψ
(
x′)
1 2m
=
∫
dxψ
∗
(
x
)
⎛ ⎜
⎝
−
h2 2m
∂2 ∂x2
⎞⎟ψ
⎠
(
x)
在动量表象中,有:
T=ψ Tψ
= ∫∫ dpdp′ ψ p p T p′ p′ ψ
= ∫∫ dpdp′ϕ∗ ( p)
p
p2 2m
曾量子力学练习题答案

曾量子力学练习题答案【篇一:量子力学曾谨言第八章第九章习题详解】表象中,求??x的本征态 [1]在?(解)设泡利算符?,?x,的共同本征函数组是: x1?sz? 和x2?122?sz? (1)?x的本征函数,但它们构成一个完整或者简单地记作?和?,因为这两个波函数并不是??x的本征函数可表系,所以任何自旋态都能用这两个本征函数的线性式表示(叠加原理),?示:??c1??c2?(2)?x的本征值?,则??x的本征方程式是: c1,c2待定常数,又设? ?x???? (3)?将(2)代入(3):?x?c1??c2?????c1??c2?? (4)??z表象基矢的运算法则是: ?x对?根据本章问题6(p.264),? ?x??? ?x??????x的本征矢(2)是归一花的,将(5)代入(4)此外又假设?: c1??c1???c1???c2?比较?,?的系数(这二者线性不相关),再加的归一化条件,有: ?c1??c2????????????(6a)?????????????(6b)?c2??c1?c2?c2?1????????????(6c)2?12前二式得??1,即??1,或???1当时??1,代入(6a)得c1?c2,再代入(6c),得:c1?12ei? c2?12ei?? 是任意的相位因子。
当时???1,代入(6a)得c1??c2代入(6c),得:c1?12ei?c2??12ei??x的本征函数:最后得?x1?ei?2ei?2(???)对应本征值1x2?(???)对应本征值-1?x??2共同表象中,采用sz作自变量时,既是坐标表以上是利用寻常的波函数表示法,但在?象,同时又是角动量表象。
可用矩阵表示算符和本征矢。
?c1??1??0??? ???? ???? ?c?(7)01?2??????x的矩阵已证明是 ??01??x?? ??10???x的矩阵式本征方程式是:因此???c1??01??c1?(8) ???????cc?01??2??2??x本征矢的矩阵形式是:其余步骤与坐标表象的方法相同,?ei??1?ei??1?x1??1? x2???1?2??2?????[2]在?z表象中,求??n的本征态,n(sin?cos?,sin?sin?,cos?)是(?,?)方向的单位矢。
量子力学曾谨言练习题答案

量子力学曾谨言练习题答案量子力学是物理学中的一门重要学科,研究微观世界的规律和现象。
在学习量子力学的过程中,练习题是不可或缺的一部分,通过解答练习题可以巩固对理论知识的理解和应用能力的提升。
曾谨言练习题是量子力学学习中常见的练习题之一,下面将给出一些曾谨言练习题的答案解析。
1. 一个自旋为1/2的粒子,其自旋在z方向上的观测值为1/2。
如果测量其自旋在x方向上的观测值,那么可能得到的结果是什么?根据量子力学的原理,自旋可以在不同方向上观测到不同的结果。
对于自旋1/2的粒子,在z方向上观测到1/2的结果,意味着其自旋在z方向上的投影为正半个单位。
而在x方向上观测自旋的结果,可能是正半个单位或负半个单位。
所以可能得到的结果是正半个单位或负半个单位。
2. 一个自旋为1的粒子,其自旋在z方向上的观测值为0。
如果测量其自旋在x 方向上的观测值,那么可能得到的结果是什么?对于自旋为1的粒子,在z方向上观测到0的结果,意味着其自旋在z方向上的投影为零。
而在x方向上观测自旋的结果,可能是正一个单位、零或负一个单位。
所以可能得到的结果是正一个单位、零或负一个单位。
3. 一个自旋为1/2的粒子,其自旋在z方向上的观测值为-1/2。
如果测量其自旋在x方向上的观测值,那么可能得到的结果是什么?对于自旋1/2的粒子,在z方向上观测到-1/2的结果,意味着其自旋在z方向上的投影为负半个单位。
而在x方向上观测自旋的结果,可能是正半个单位或负半个单位。
所以可能得到的结果是正半个单位或负半个单位。
4. 一个自旋为1的粒子,其自旋在z方向上的观测值为1。
如果测量其自旋在x方向上的观测值,那么可能得到的结果是什么?对于自旋为1的粒子,在z方向上观测到1的结果,意味着其自旋在z方向上的投影为正一个单位。
而在x方向上观测自旋的结果,可能是正一个单位、零或负一个单位。
所以可能得到的结果是正一个单位、零或负一个单位。
通过以上几个练习题的答案解析,我们可以看出在量子力学中,观测自旋的结果是具有不确定性的,不同方向上的观测结果是相互独立的。
曾谨言量子力学练习题答案

曾谨言量子力学练习题答案曾谨言量子力学练习题答案量子力学作为现代物理学的重要分支,是研究微观世界的基本理论。
在学习量子力学的过程中,练习题是不可或缺的一部分。
本文将为大家提供一些曾谨言量子力学练习题的答案,希望能对大家的学习有所帮助。
1. 考虑一个自旋1/2的粒子,其自旋矢量可以表示为:S = (h/2π) * σ其中,h为普朗克常数,σ为泡利矩阵。
对于自旋1/2的粒子,其泡利矩阵可以表示为:σx = |0 1||1 0|σy = |0 -i||i 0|σz = |1 0||0 -1|其中,i为虚数单位。
根据这些泡利矩阵,我们可以计算自旋矢量在不同方向上的期望值。
2. 对于一个自旋1/2的粒子,其自旋矢量的模长可以表示为:|S| = √(S·S)其中,S·S表示自旋矢量的内积。
根据泡利矩阵的定义,可以计算出自旋矢量在不同方向上的内积。
3. 考虑一个自旋1/2的粒子,其自旋矩阵可以表示为:J = (h/2π) * σ其中,h为普朗克常数,σ为泡利矩阵。
对于自旋1/2的粒子,其泡利矩阵可以表示为:σx = |0 1||1 0|σy = |0 -i||i 0|σz = |1 0||0 -1|根据这些泡利矩阵,我们可以计算自旋矩阵在不同方向上的期望值。
4. 对于一个自旋1/2的粒子,其自旋矩阵的模长可以表示为:|J| = √(J·J)其中,J·J表示自旋矩阵的内积。
根据泡利矩阵的定义,可以计算出自旋矩阵在不同方向上的内积。
5. 考虑一个自旋1/2的粒子,其自旋算符可以表示为:S = (h/2π) * σ其中,h为普朗克常数,σ为泡利矩阵。
对于自旋1/2的粒子,其泡利矩阵可以表示为:σx = |0 1||1 0|σy = |0 -i||i 0|σz = |1 0||0 -1|根据这些泡利矩阵,我们可以计算自旋算符在不同方向上的期望值。
6. 对于一个自旋1/2的粒子,其自旋算符的模长可以表示为:|S| = √(S·S)其中,S·S表示自旋算符的内积。
量子力学曾谨严 第1章作业答案

教材P25 ~27:1、2、3、4(1)、7 1.解:(a)证明能量平均值公式()[]()⎰⎰⎰⎰⎰⎰∞∞∞∞∞⋅ψ∇ψ-⎪⎪⎭⎫ ⎝⎛ψψ+ψ∇⋅ψ∇=⎭⎬⎫⎩⎨⎧ψψ+ψ∇⋅ψ∇-ψ∇ψ⋅∇-=⎭⎬⎫⎩⎨⎧ψψ+ψ∇ψ-=ψ⎪⎪⎭⎫ ⎝⎛+∇-ψ=sd r r m r r V r r r m r d r r V r r r r r m r d r r V r r r m r d r r V m r r d E)()(2)()()()()(2)()()()()()()(2)()()()()(2)()(2)(*2**23***23*2*2322*3粒子在势场中运动的波函数平方可积()0)()(2*2=⋅ψ∇ψ⎰⎰∞s d r r m因此)()()()()()(23**23r w r d r r V r r r m r d E⎰⎰∞∞=⎪⎪⎭⎫ ⎝⎛ψψ+ψ∇⋅ψ∇= 其中能量密度为)()()()()(2)(**2r r V r r r mr wψψ+ψ∇⋅ψ∇=(b)证明能量守恒公式S tr i t r t r i t r S r H t r r H t r S tr r V r r r V t r r t r r t r r t r r t r m tr r V r V t r t r r r t r m t w⋅-∇=∂ψ∂∂ψ∂-∂ψ∂∂ψ∂+⋅-∇=ψ∂ψ∂+ψ∂ψ∂+⋅-∇=∂ψ∂ψ+ψ∂ψ∂+⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛ψ∇∂ψ∂+ψ∇∂ψ∂-⎪⎪⎭⎫ ⎝⎛ψ∇∂ψ∂+ψ∇∂ψ∂⋅∇=∂ψ∂ψ+ψ∂ψ∂+⎭⎬⎫⎩⎨⎧∂ψ∂∇⋅ψ∇+ψ∇⋅∂ψ∂∇=∂∂)()()()()(ˆ)()(ˆ)()()()()()()()()()()()()()()(2)()()()()()()()(2*******22***2****2即0=⋅∇+∂∂S tw这表明能量守恒,其中能流密度为⎪⎪⎭⎫ ⎝⎛ψ∇∂ψ∂+ψ∇∂ψ∂-=)()()()(2**2r t r r t r mS2.解:(a)证明概率不守恒{}{}()()⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+⋅∇-∇-=+∇-∇⋅∇-=+∇-∇-=-=⎭⎬⎫⎩⎨⎧∂∂+∂∂==τττττττττψψψψψψψψψψψψψψψψψψψψψψψψψψψψρ2*3**2*3**32*3*22*3***3**3*33222222)ˆ(ˆ1)(V r dS d imV r dr d im V r dr d im H H r d i t t r d r d dtdr r d dt dS⎰⎰⎰⎰⎰ψψ+⋅∇-=ψψ+⋅-=τττ2*332*322V r dj r d V r d S d j S⎰=τρ)(3r r d dtd⎰⎰+⋅∇-ττψψ2*332V r dj r d即022*≠ψψ=⋅∇+∂∂V j tρ这表明概率不守恒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
曾谨言量子力学练习题答案
曾谨言量子力学练习题答案
量子力学是现代物理学的重要分支之一,其研究对象是微观粒子的行为规律。
曾谨言是一位著名的物理学家,他在量子力学领域有着杰出的贡献。
在学习量子力学的过程中,我们常常会遇到一些练习题,以下是曾谨言量子力学练习题的答案。
1. 问题:在双缝干涉实验中,光子通过两个狭缝后,在屏幕上形成干涉条纹。
如果将其中一个狭缝完全堵住,干涉条纹会发生什么变化?
答案:当一个狭缝被堵住时,干涉条纹会消失,屏幕上只会出现一个单缝的衍射图样。
这是因为双缝干涉实验中,光子通过两个狭缝后会形成波的叠加,产生干涉现象。
而当一个狭缝被堵住时,只有一个光子通过,无法产生干涉。
2. 问题:在量子力学中,什么是波函数?
答案:波函数是量子力学中描述微观粒子状态的数学函数。
它可以用来计算粒子在空间中的位置、动量等物理量的概率分布。
波函数的平方模的积分表示了粒子在某一位置的概率密度。
3. 问题:什么是量子纠缠?
答案:量子纠缠是量子力学中一种特殊的现象,当两个或多个粒子发生相互作用后,它们的状态将无法被单独描述,而是成为一个整体系统的状态。
即使这些粒子之间距离很远,它们的状态仍然是相互关联的。
这种关联关系在量子通信和量子计算中有着重要的应用。
4. 问题:什么是量子隧穿?
答案:量子隧穿是指微观粒子在经典力学中无法通过的势垒或势阱,在量子力
学中却有一定概率穿越的现象。
这是由于量子力学中粒子的波粒二象性,粒子
具有波动性质,可以在势垒或势阱的两侧存在一定的概率分布。
5. 问题:什么是量子比特?
答案:量子比特,简称量子位或qubit,是量子计算中的基本单位。
与经典计算中的比特不同,量子比特可以同时处于多个状态的叠加态,这种叠加态可以通
过量子门操作进行处理和控制,从而实现量子计算的优势。
以上是曾谨言量子力学练习题的答案。
量子力学作为一门复杂而又精密的学科,需要我们通过理论和练习来加深对其原理和应用的理解。
希望这些答案能够帮
助大家更好地掌握量子力学的知识,并在学习和研究中取得更进一步的突破。