曾谨言量子力学练习题答案
曾谨严量子力学习题解答2
1 [ϕ1 (x ) + ϕ 2 (x )] 2 1 1 ⎡ϕ1 ( x ) e − iE1t / h + ϕ 2 ( x ) e − iE2t / h ⎤ ⎡ϕ1 ( x, t ) + ϕ 2 ( x, t ) ⎤ = 则有:ϕ ( x, t ) = ⎣ ⎦ ⎦ 2⎣ 2 (2)求 x (t ) = ?
⎧ ⎛ nπ pa ⎞ ⎛ nπ pa ⎞ ⎫ a sin ⎜ − + ⎛ nπ pa ⎞ sin ⎜ ⎟ ⎟ i⎜ − ⎟ ⎪ n +1 ⎪ ⎝ 2 2h ⎠ ⎪ 2 2h ⎠ ⎪ ⎝ = π h e ⎝ 2 2h ⎠ ⎨ + ( −1) nπ pa nπ pa ⎬ 2i ⎪ ⎪ − + 2 2h 2 2h ⎭ ⎪ ⎪ ⎩
3. 《曾 P.163-5》 一维无限深势阱(如右图)中的粒子,设处于 ϕ n ( x ) 态。求其动量分布概率。当 n >> 1 时, 与经典粒子运动比较。 解:利用已知解:
⎧ 2 nπ x sin , ⎪ ϕn ( x ) = ⎨ a a ⎪0, ⎩
V ( x)
0
a
(0 < x < a) ( x < 0, x > a )
∗
5π 2 h 2 5 1 = = E1 = ( E1 + E2 ) 2ma 2 2 2
2 (4)求 H = ?
H = ∫ ϕ ∗ ( x ) H 2ϕ ( x )dx
2 −∞
+∞
=∫
+∞
−∞ a
1 1 ⎡ϕ1 ( x ) + ϕ 2 ( x ) ⎤ ⋅ H 2 ⋅ ⎡ϕ1 ( x ) + ϕ 2 ( x ) ⎤ dx ⎣ ⎦ ⎣ ⎦ 2 2
曾谨言量子力学练习题答案
曾谨言量子力学练习题答案量子力学是物理学中描述微观粒子行为的一门基础理论,它在20世纪初由普朗克、爱因斯坦、波尔、薛定谔、海森堡等科学家共同发展起来。
曾谨言教授的量子力学练习题是帮助学生深入理解量子力学概念和计算方法的重要工具。
以下是一些练习题及其答案的示例:练习题1:波函数的归一化某粒子的波函数为 \( \psi(x) = A \sin(kx) \),其中 \( A \) 和\( k \) 是常数。
求波函数的归一化常数 \( A \)。
答案:波函数的归一化条件为 \( \int |\psi(x)|^2 dx = 1 \)。
将\( \psi(x) \) 代入归一化条件中,得到:\[ \int |A \sin(kx)|^2 dx = 1 \]\[ A^2 \int \sin^2(kx) dx = 1 \]利用三角恒等式 \( \sin^2(kx) = \frac{1 - \cos(2kx)}{2} \),积分变为:\[ A^2 \int \frac{1 - \cos(2kx)}{2} dx = 1 \]\[ A^2 \left[ \frac{x}{2} - \frac{\sin(2kx)}{4k} \right] = 1 \]由于波函数在 \( x = 0 \) 到 \( x = \frac{\pi}{k} \) 之间归一化,所以:\[ A^2 \left[ \frac{\pi}{2k} - 0 \right] = 1 \]\[ A = \sqrt{\frac{2k}{\pi}} \]练习题2:薛定谔方程的解考虑一个一维无限深势阱,其势能 \( V(x) = 0 \) 当 \( 0 < x < a \),\( V(x) = \infty \) 其他情况下。
求粒子的能级。
答案:在无限深势阱中,薛定谔方程为:\[ -\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{dx^2} = E\psi(x) \]设 \( \psi(x) = \sin(kx) \),其中 \( k = \frac{n\pi}{a} \),\( n \) 为正整数。
曾谨严量子力学习题解答7
(
)
(8)
t = 0 时,体系的初始状态为
ψ (t = 0 ) = ψ 1 =
Ω ω Ω +ω ψ E+ + ψ E 2Ω 2Ω
(9) (10)
其中 Ω = ω 2 + 4γ 2 h 2 . 因此, t
≥ 0 时波函数为
Ω ω Ω +ω ψ E+ eiE+t h + ψ E e iEt 2Ω 2Ω
h
1 3 2 1 1 1 2 1 1 2 = 1 1 + 1 0 Y11β + Y10α 2 2 3 2 3 3 3
(2)
1
3 1 2 1 1 1 2 1 1 0 + 1 1 = Y10 β + Y11α 2 2 3 2 2 3 3 3 3 3 1 1 = 1 1 Y11β 2 2 2
r
r
r
r
(6)
3 1 2 3 1 2
3 r r ε r i 2 1 r r ε r i 2
2
=
2
1 2 2 2 r (ε x + ε y ) 6 2 2 2 r εz 9
=
2
1
3 2
1 r r ε r i 2
=
2
1 2 2 2 r (ε x + ε y ) 18
3 1 2
1 1 2
3 r r ε r i 2
(
)
(
)
初态: l = m = 0 , j =
i = 0 1 2
1 1 , m j = sz = 2 2 1 1 = 0 0 Y00α 2 2
(1)
终态: l = 1, j = l ±
1 3 1 3 1 = , ,mj = ± ,± . 2 2 2 2 2
曾谨严量子力学习题解答4
=
∫
dpϕ
∗
(
p
)
p2 2m
ϕ
(
p
)
(坐标表象) (动量表象)
证明: (1) 求解势能的平均值。在坐标表象中,有:
V = ψVψ
= ∫∫ dxdx′ ψ x x V (x) x′ x′ ψ = ∫∫ dxdx′ψ ∗(x)V (x)δ (x − x′)ψ (x′) = ∫ dxψ ∗(x)V (x)ψ (x)
+V
( x)⎥⎤
⎦
=
⎡ ⎢ x, ⎣
prˆ 2 ⎤
2m
⎥ ⎦
=
ih m
prˆ
∴
prˆ
=
m ih
⎡⎣ x,
Hˆ
⎤⎦
因此,
p = φn
prˆ φn
= φn
m ih
[
x,
H
]
φn
=m ih
φn
( xH − Hx)
φn
=0
证毕。
3.《曾 P.220练习1》
根据谐振子的能量表象中 x 的矩阵,用矩阵乘法求出 x2 的矩阵。
⎛ ⎜⎝
ih
∂ ∂x
⎞2 ⎟⎠
δ
(
x
−
x′)ψ
(
x′)
1 2m
=
∫
dxψ
∗
(
x
)
⎛ ⎜
⎝
−
h2 2m
∂2 ∂x2
⎞⎟ψ
⎠
(
x)
在动量表象中,有:
T=ψ Tψ
= ∫∫ dpdp′ ψ p p T p′ p′ ψ
= ∫∫ dpdp′ϕ∗ ( p)
p
p2 2m
曾量子力学练习题答案
曾量子力学练习题答案【篇一:量子力学曾谨言第八章第九章习题详解】表象中,求??x的本征态 [1]在?(解)设泡利算符?,?x,的共同本征函数组是: x1?sz? 和x2?122?sz? (1)?x的本征函数,但它们构成一个完整或者简单地记作?和?,因为这两个波函数并不是??x的本征函数可表系,所以任何自旋态都能用这两个本征函数的线性式表示(叠加原理),?示:??c1??c2?(2)?x的本征值?,则??x的本征方程式是: c1,c2待定常数,又设? ?x???? (3)?将(2)代入(3):?x?c1??c2?????c1??c2?? (4)??z表象基矢的运算法则是: ?x对?根据本章问题6(p.264),? ?x??? ?x??????x的本征矢(2)是归一花的,将(5)代入(4)此外又假设?: c1??c1???c1???c2?比较?,?的系数(这二者线性不相关),再加的归一化条件,有: ?c1??c2????????????(6a)?????????????(6b)?c2??c1?c2?c2?1????????????(6c)2?12前二式得??1,即??1,或???1当时??1,代入(6a)得c1?c2,再代入(6c),得:c1?12ei? c2?12ei?? 是任意的相位因子。
当时???1,代入(6a)得c1??c2代入(6c),得:c1?12ei?c2??12ei??x的本征函数:最后得?x1?ei?2ei?2(???)对应本征值1x2?(???)对应本征值-1?x??2共同表象中,采用sz作自变量时,既是坐标表以上是利用寻常的波函数表示法,但在?象,同时又是角动量表象。
可用矩阵表示算符和本征矢。
?c1??1??0??? ???? ???? ?c?(7)01?2??????x的矩阵已证明是 ??01??x?? ??10???x的矩阵式本征方程式是:因此???c1??01??c1?(8) ???????cc?01??2??2??x本征矢的矩阵形式是:其余步骤与坐标表象的方法相同,?ei??1?ei??1?x1??1? x2???1?2??2?????[2]在?z表象中,求??n的本征态,n(sin?cos?,sin?sin?,cos?)是(?,?)方向的单位矢。
量子力学曾谨言练习题答案
量子力学曾谨言练习题答案量子力学是物理学中的一门重要学科,研究微观世界的规律和现象。
在学习量子力学的过程中,练习题是不可或缺的一部分,通过解答练习题可以巩固对理论知识的理解和应用能力的提升。
曾谨言练习题是量子力学学习中常见的练习题之一,下面将给出一些曾谨言练习题的答案解析。
1. 一个自旋为1/2的粒子,其自旋在z方向上的观测值为1/2。
如果测量其自旋在x方向上的观测值,那么可能得到的结果是什么?根据量子力学的原理,自旋可以在不同方向上观测到不同的结果。
对于自旋1/2的粒子,在z方向上观测到1/2的结果,意味着其自旋在z方向上的投影为正半个单位。
而在x方向上观测自旋的结果,可能是正半个单位或负半个单位。
所以可能得到的结果是正半个单位或负半个单位。
2. 一个自旋为1的粒子,其自旋在z方向上的观测值为0。
如果测量其自旋在x 方向上的观测值,那么可能得到的结果是什么?对于自旋为1的粒子,在z方向上观测到0的结果,意味着其自旋在z方向上的投影为零。
而在x方向上观测自旋的结果,可能是正一个单位、零或负一个单位。
所以可能得到的结果是正一个单位、零或负一个单位。
3. 一个自旋为1/2的粒子,其自旋在z方向上的观测值为-1/2。
如果测量其自旋在x方向上的观测值,那么可能得到的结果是什么?对于自旋1/2的粒子,在z方向上观测到-1/2的结果,意味着其自旋在z方向上的投影为负半个单位。
而在x方向上观测自旋的结果,可能是正半个单位或负半个单位。
所以可能得到的结果是正半个单位或负半个单位。
4. 一个自旋为1的粒子,其自旋在z方向上的观测值为1。
如果测量其自旋在x方向上的观测值,那么可能得到的结果是什么?对于自旋为1的粒子,在z方向上观测到1的结果,意味着其自旋在z方向上的投影为正一个单位。
而在x方向上观测自旋的结果,可能是正一个单位、零或负一个单位。
所以可能得到的结果是正一个单位、零或负一个单位。
通过以上几个练习题的答案解析,我们可以看出在量子力学中,观测自旋的结果是具有不确定性的,不同方向上的观测结果是相互独立的。
曾谨言量子力学练习题答案
曾谨言量子力学练习题答案曾谨言量子力学练习题答案量子力学作为现代物理学的重要分支,是研究微观世界的基本理论。
在学习量子力学的过程中,练习题是不可或缺的一部分。
本文将为大家提供一些曾谨言量子力学练习题的答案,希望能对大家的学习有所帮助。
1. 考虑一个自旋1/2的粒子,其自旋矢量可以表示为:S = (h/2π) * σ其中,h为普朗克常数,σ为泡利矩阵。
对于自旋1/2的粒子,其泡利矩阵可以表示为:σx = |0 1||1 0|σy = |0 -i||i 0|σz = |1 0||0 -1|其中,i为虚数单位。
根据这些泡利矩阵,我们可以计算自旋矢量在不同方向上的期望值。
2. 对于一个自旋1/2的粒子,其自旋矢量的模长可以表示为:|S| = √(S·S)其中,S·S表示自旋矢量的内积。
根据泡利矩阵的定义,可以计算出自旋矢量在不同方向上的内积。
3. 考虑一个自旋1/2的粒子,其自旋矩阵可以表示为:J = (h/2π) * σ其中,h为普朗克常数,σ为泡利矩阵。
对于自旋1/2的粒子,其泡利矩阵可以表示为:σx = |0 1||1 0|σy = |0 -i||i 0|σz = |1 0||0 -1|根据这些泡利矩阵,我们可以计算自旋矩阵在不同方向上的期望值。
4. 对于一个自旋1/2的粒子,其自旋矩阵的模长可以表示为:|J| = √(J·J)其中,J·J表示自旋矩阵的内积。
根据泡利矩阵的定义,可以计算出自旋矩阵在不同方向上的内积。
5. 考虑一个自旋1/2的粒子,其自旋算符可以表示为:S = (h/2π) * σ其中,h为普朗克常数,σ为泡利矩阵。
对于自旋1/2的粒子,其泡利矩阵可以表示为:σx = |0 1||1 0|σy = |0 -i||i 0|σz = |1 0||0 -1|根据这些泡利矩阵,我们可以计算自旋算符在不同方向上的期望值。
6. 对于一个自旋1/2的粒子,其自旋算符的模长可以表示为:|S| = √(S·S)其中,S·S表示自旋算符的内积。
量子力学曾谨严 第1章作业答案
教材P25 ~27:1、2、3、4(1)、7 1.解:(a)证明能量平均值公式()[]()⎰⎰⎰⎰⎰⎰∞∞∞∞∞⋅ψ∇ψ-⎪⎪⎭⎫ ⎝⎛ψψ+ψ∇⋅ψ∇=⎭⎬⎫⎩⎨⎧ψψ+ψ∇⋅ψ∇-ψ∇ψ⋅∇-=⎭⎬⎫⎩⎨⎧ψψ+ψ∇ψ-=ψ⎪⎪⎭⎫ ⎝⎛+∇-ψ=sd r r m r r V r r r m r d r r V r r r r r m r d r r V r r r m r d r r V m r r d E)()(2)()()()()(2)()()()()()()(2)()()()()(2)()(2)(*2**23***23*2*2322*3粒子在势场中运动的波函数平方可积()0)()(2*2=⋅ψ∇ψ⎰⎰∞s d r r m因此)()()()()()(23**23r w r d r r V r r r m r d E⎰⎰∞∞=⎪⎪⎭⎫ ⎝⎛ψψ+ψ∇⋅ψ∇= 其中能量密度为)()()()()(2)(**2r r V r r r mr wψψ+ψ∇⋅ψ∇=(b)证明能量守恒公式S tr i t r t r i t r S r H t r r H t r S tr r V r r r V t r r t r r t r r t r r t r m tr r V r V t r t r r r t r m t w⋅-∇=∂ψ∂∂ψ∂-∂ψ∂∂ψ∂+⋅-∇=ψ∂ψ∂+ψ∂ψ∂+⋅-∇=∂ψ∂ψ+ψ∂ψ∂+⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛ψ∇∂ψ∂+ψ∇∂ψ∂-⎪⎪⎭⎫ ⎝⎛ψ∇∂ψ∂+ψ∇∂ψ∂⋅∇=∂ψ∂ψ+ψ∂ψ∂+⎭⎬⎫⎩⎨⎧∂ψ∂∇⋅ψ∇+ψ∇⋅∂ψ∂∇=∂∂)()()()()(ˆ)()(ˆ)()()()()()()()()()()()()()()(2)()()()()()()()(2*******22***2****2即0=⋅∇+∂∂S tw这表明能量守恒,其中能流密度为⎪⎪⎭⎫ ⎝⎛ψ∇∂ψ∂+ψ∇∂ψ∂-=)()()()(2**2r t r r t r mS2.解:(a)证明概率不守恒{}{}()()⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+⋅∇-∇-=+∇-∇⋅∇-=+∇-∇-=-=⎭⎬⎫⎩⎨⎧∂∂+∂∂==τττττττττψψψψψψψψψψψψψψψψψψψψψψψψψψψψρ2*3**2*3**32*3*22*3***3**3*33222222)ˆ(ˆ1)(V r dS d imV r dr d im V r dr d im H H r d i t t r d r d dtdr r d dt dS⎰⎰⎰⎰⎰ψψ+⋅∇-=ψψ+⋅-=τττ2*332*322V r dj r d V r d S d j S⎰=τρ)(3r r d dtd⎰⎰+⋅∇-ττψψ2*332V r dj r d即022*≠ψψ=⋅∇+∂∂V j tρ这表明概率不守恒。
量子力学曾谨言练习题答案
量子力学曾谨言练习题答案量子力学是一门研究微观粒子行为的物理学分支,它与经典力学有着根本的不同。
曾谨言教授的《量子力学》教材是许多学生和学者学习量子力学的重要参考书籍。
以下是一些量子力学练习题的答案,供参考:1. 波函数的归一化条件:波函数的归一化条件是为了保证概率的守恒。
一个归一化的波函数满足以下条件:\[ \int |\psi(x)|^2 dx = 1 \]这意味着粒子在空间中任意位置出现的概率之和等于1。
2. 薛定谔方程:薛定谔方程是量子力学中描述粒子波函数随时间演化的基本方程。
对于一个非相对论性的单粒子系统,薛定谔方程可以写为:\[ i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2 \psi + V\psi \]其中,\( \hbar \) 是约化普朗克常数,\( m \) 是粒子质量,\( V \) 是势能,\( \nabla^2 \) 是拉普拉斯算子。
3. 不确定性原理:海森堡不确定性原理表明,粒子的位置和动量不能同时被精确测量。
其数学表达式为:\[ \Delta x \cdot \Delta p \geq \frac{\hbar}{2} \]这里,\( \Delta x \) 和 \( \Delta p \) 分别是位置和动量的不确定性。
4. 氢原子的能级:氢原子的能级是量子化的,并且可以用以下公式表示:\[ E_n = -\frac{13.6 \text{ eV}}{n^2} \]其中,\( n \) 是主量子数,\( E_n \) 是对应于 \( n \) 能级的能级能量。
5. 泡利不相容原理:泡利不相容原理指出,一个原子中的两个电子不能具有完全相同的四个量子数。
这意味着在同一个原子中,没有两个电子可以同时具有相同的主量子数、角量子数、磁量子数和自旋量子数。
6. 量子隧道效应:量子隧道效应是指粒子在经典力学中不可能穿越的势垒下,由于量子效应,粒子有一定的概率穿越势垒。
曾谨严量子力学习题解答3
( ) (
)
= A2 B1C2 + A3 B1C3 ( A2 B2 + A3 B3 ) C1
可见,左端与右端相等,该式成立。 证毕。
r r r r r r r A × B × C = A Bα C Aα B C ,我们仍以第一分量为例, (3) 验证 α
( A1B1 + A2 B2 + A3 B3 ) C1
r A 、B 的标积和矢积定义为
r r A B = ∑ Aα Bα ,
α
(
)
r r A× B
) = ∑ε
γ αβ
αβγ
Aα Bβ
εαβγ
为Levi-Civita符号。试验证 r r r r r r A B × C = A × B C = ∑ ε αβγ Aα Bβ Cγ
(
) ( )
r r r r r r r A × B × C = A Bα C A B Cα α r r r r r r r A × B × C = A Bα C Aα B C α
= lx , x 2 + lx , y 2 + lx , z 2 = x lx , x + lx , x x + y lx , y + lx , y y + z lx , z + lx , z z = 0 + 0 + yihz + ihzy zihy ihyz =0
1.《曾 P.180 练习3》 证明:
l , r 2 = 0 α l , p 2 = 0 α r r l , r p = 0 α
(
r r r p ≡ xpx + yp y + zpz
)
证明: (1)先以分量 lx 为例来计算: lx , r 2 = lx , x 2 + y 2 + z 2
曾量子力学练习题答案
曾量子力学练习题答案【篇一:量子力学曾谨言第八章第九章习题详解】表象中,求??x的本征态 [1]在?(解)设泡利算符?,?x,的共同本征函数组是: x1?sz? 和x2?122?sz? (1)?x的本征函数,但它们构成一个完整或者简单地记作?和?,因为这两个波函数并不是??x的本征函数可表系,所以任何自旋态都能用这两个本征函数的线性式表示(叠加原理),?示:??c1??c2?(2)?x的本征值?,则??x的本征方程式是: c1,c2待定常数,又设? ?x???? (3)?将(2)代入(3):?x?c1??c2?????c1??c2?? (4)??z表象基矢的运算法则是: ?x对?根据本章问题6(p.264),? ?x??? ?x??????x的本征矢(2)是归一花的,将(5)代入(4)此外又假设?: c1??c1???c1???c2?比较?,?的系数(这二者线性不相关),再加的归一化条件,有: ?c1??c2????????????(6a)?????????????(6b)?c2??c1?c2?c2?1????????????(6c)2?12前二式得??1,即??1,或???1当时??1,代入(6a)得c1?c2,再代入(6c),得:c1?12ei? c2?12ei?? 是任意的相位因子。
当时???1,代入(6a)得c1??c2代入(6c),得:c1?12ei?c2??12ei??x的本征函数:最后得?x1?ei?2ei?2(???)对应本征值1x2?(???)对应本征值-1?x??2共同表象中,采用sz作自变量时,既是坐标表以上是利用寻常的波函数表示法,但在?象,同时又是角动量表象。
可用矩阵表示算符和本征矢。
?c1??1??0??? ???? ???? ?c?(7)01?2??????x的矩阵已证明是 ??01??x?? ??10???x的矩阵式本征方程式是:因此???c1??01??c1?(8) ???????cc?01??2??2??x本征矢的矩阵形式是:其余步骤与坐标表象的方法相同,?ei??1?ei??1?x1??1? x2???1?2??2?????[2]在?z表象中,求??n的本征态,n(sin?cos?,sin?sin?,cos?)是(?,?)方向的单位矢。
曾谨言量子力学(卷1)习题答案
目次第二章:波函数与波动方程………………1——25 第三章:一维定态问题……………………26——80 第四章:力学量用符表达…………………80——168 第五章:对称性与守衡定律………………168——199 第六章:中心力场…………………………200——272 第七章:粒子在电磁场中的运动…………273——289 第八章:自旋………………………………290——340 * * * * * 参考用书1.曾谨言编著:量子力学上册 科学。
1981 2.周世勋编:量子力学教程 人教。
19793.L .I .席夫著,李淑娴,陈崇光译:量子力学 人教。
19824.D .特哈尔编,王正清,刘弘度译:量子力学习题集 人教。
1981 5.列维奇著,李平译:量子力学教程习题集 高教。
1958 6.原岛鲜著:初等量子力学(日文) 裳华房。
19727.N.F.Mott.I.N.Sneddon:Wave Mechanics and its Applications 西联影印。
1948 8.L.Pauling.E.B.Wilson:Introduction to Quantum- Mechanics(有中译本:陈洪生译。
科学) 19519. A.S.Davydov: Quantum Mechanics Pergamon Press 1965 10. SIEGFRIED.Fluegge:Practical Quantum- Mechanics(英译本) Springer Verlag 197311. A.Messian:Quantum Mechanics V ol I.North.Holland Pubs 1961 ndau,E.Lifshitz:Quantum-Mechanics1958 量子力学常用积分公式 (1)dx e x an e x a dx e x axn ax n ax n ∫∫−−=11 )0(>n (2) )cos sin (sin 22bx b bx a ba e bxdx e axax−+=∫ (3) =∫axdx e axcos )sin cos (22bx b bx a ba e ax++ (4)ax x a ax a axdx x cos 1sin 1sin 2−=∫(5) =∫axdx x sin 2ax a xaax a x cos )2(sin 2222−+(6)ax a xax aaxdx x sin cos 1cos 2+=∫ (7) ax aa x ax a x axdx x sin )2(cos 2cos 3222−+=∫))ln(2222c ax x a ac c ax x ++++ (0>a ) (8)∫=+dx c ax 2)arcsin(222x c a ac c ax x −−++ (a<0) ∫20sin πxdx n2!!!)!1(πn n − (=n 正偶数)(9) =∫20cos πxdx n!!!)!1(n n − (=n 正奇数) 2π(0>a )(10)∫∞=0sin dx xax2π− (0<a )(11))1!+∞−=∫n n ax an dx x e (0,>=a n 正整数) (12)adx e ax π2102=∫∞− (13) 121022!)!12(2++∞−−=∫n n ax n an dx e x π(14)1122!2+∞−+=∫n ax n an dx e x (15)2sin 022adx xax π∫∞= (16)∫∞−+=222)(2sin b a abbxdx xe ax (0>a )∫∞−+−=022222)(cos b a b a bxdx xeax(0>a )第一章量子力学的诞生1.1设质量为m 的粒子在谐振子势2221)(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。
量子力学习题答案(曾谨言版)
系数 证明:
C ( p ) p * ( x , t ) ( x , t )dx
( I)
( x , t ) C ( p ) p ( x , t )dp
p ' * ( x , t ) ( x , t ) p ' * ( x , t ) C ( p) p ( x, t )dp
rn n a Z
2
(b)
r r nlm ( r , , ) d
2
0
4 1 2 2 2 nl ( r ) r dr Ylm ( , ) d 0 r
2
nl ( r ) rdr
0
对于园轨道(l = n-1)
2
径向概率密度
2 n 2 Zr na
2
所以
2 r [n2 ( n 1 )( n 1) ( a Z ) 2
( n n 2) ( a Z ) ]
2 2
1 2 2
n2 n3 r ( a Z ) 2 4
r r n 2 n n 1 2
2
1 2
2n 1
可见,n越大, r r 越小,量子力学的结果和Bohr 量子化“轨道”的图像越接近。
c1
2
(b) l2的可能测值
l l ( l 1)
2 1 2 2
2 2
2 , l 1 相应本征态Y11
2
l l ( l 1)
2 1
6 , l 2 相应本征态Y20
2
相应的测量概率:
l : c1 ;
平均值:
2 2 1 2
量子力学导论习题答案(曾谨言)
第十章 定态问题的常用近似方法10-1) 设非简谐振子的Hamilton 量表为'0H H H +=222220212x u dx d u H ω+-= 3'x H β=(β为实常数)用微扰论求其能量本征值(准到二级近似)和本征函数(准到一级近似)。
解:已知)0()0(0n n n E H ψψ=,()x H e N n x n n αψα2)0(22-=,()ω 21)0(+=n E n ,ωαu =()[]11121+-++=n n n n n x x ψψαψ ()()()()()[]22222112121+-++++++=n n n n n n n n n x x ψψψαψ()()()()()()()[]311333321113321221++--++++++++--=n n n n n n n n n n n n n n n x x ψψψψαψ计算一级微扰:n n n H E ψψ')1(=03==n n x ψψβ。
(也可由()⎰+∞∞-⋅==dx x x H En nn n32')1(βψ0=(奇)直接得出)计算二级微扰,只有下列四个矩阵元不为0:()()',33332122n n n n H n n n x --=--=αβψβψ',1331322n n n n H n n x --=⋅=αβψβψ ()',133111322n n n n H n n x ++=++⋅=αβψβψ ()()()',333332122n n n n H n n n x ++=+++⋅=αβψβψ计算2'knH:()()622',3821αβ--=-n n n Hnn6232',19αβn H n n =- 6232',189αβn H nn =+()()()622',38321αβ+++=+n n n Hnn又ω 3)0(3)0(=--n n E E ,ω =--)0(1)0(n n E E , ω -=-+)0(1)0(n n E E ,ω 3)0(3)0(-=-+n n E E ,∑-++=++=∴kk n knnnnnnnn E E HHEEEEE )0()0(2''')0()2()1()0(43222811303021ωβωu n n n ⋅++-⎪⎭⎫ ⎝⎛+=)0()0()0('')0()1()0(k kkn knnnnn E E H ψψψψψ∑-+=+=()()()()()()⎥⎦⎤⎢⎣⎡+++-+--+---=++--)0(3)0(1)0(1)0(33)0(321311133213122n n n n n n n n n n n n n n n ψψψψωαβψ10-2) 考虑耦合振子,'0H H H += 参 书.下册§9.2()2221222221220212x x u x x u H ++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-=ω 21'x x H λ-=(λ为实常数,刻画耦合强度) (a )求出0H 的本征值及能级简并度。
量子力学_答案_曾谨言
量子力学的诞生
⎧∞, x < 0, x > a V ( x) = ⎨ ⎩0, 0 < x < a
试用 de Broglie 的驻波条件,求粒子能量的可能取值。 解:据驻波条件,有
a = n⋅
λ
2
( n = 1, 2 , 3 , )
(1)
∴ λ = 2a / n
1 mω 2 x 2 中运动,用量子化条件求粒子能量 E 的可能取值。 2 p = 2m[ E − V ( x)]
∫ p ⋅ d x = nh,
n = 1, 2 ,
,
V ( x)
1
解:能量为 E 的粒子在谐振子势中的活动范围为
x ≤a
其中 a 由下式决定: E = V ( x) x = a = 由此得
(1)
(a)证明粒子的几率(粒子数)不守恒。 (b)证明粒子在空间体积 τ 内的几率随时间的变化为
2V d d 3 rψ *ψ = − ( ψ *∇ψ − ψ∇ψ * ) ⋅ dS + 2 ∫∫∫ ∫∫ 2im S dt τ
证: (a)式(1)取复共轭, 得
d ∫∫∫ τ
3
rψ *ψ
−i
2 ∂ * ψ =− ∇ 2ψ * + (V1 − iV2 ) ψ* ∂t 2m
0
pϕ dϕ = nh, n = 1, 2 ,
2 , pϕ 是平面转子的角动量。转子的能量 E = pϕ / 2I 。
解:平面转子的转角(角位移)记为 ϕ 。 , pϕ 是运动惯量。按量子化条件 它的角动量 pϕ = I ϕ (广义动量)
.
∫
∴
因而平面转子的能量
量子力学导论习题答案(曾谨言)
第八章 自旋8.1) 在z σ表象中,求x σ的本征态。
解:在z σ表象中,x σ的矩阵表示为:x σ⎪⎪⎭⎫⎝⎛=0110 设x σ的本征矢(在z σ表象中)为⎪⎪⎭⎫⎝⎛b a ,则有⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛b a b a λ0110 可得a b λ=及b a λ= 1,12±==∴λλ 。
,1=λ 则;b a = ,1-=λ 则b a -=利用归一化条件,可求出x σ的两个本征态为,1=λ;1121⎪⎪⎭⎫ ⎝⎛ ,1-=λ ⎪⎪⎭⎫ ⎝⎛-1121 。
8.2) 在z σ表象中,求⋅的本征态,()ϕϕθϕθcos ,sin sin ,cos sin n是()ϕθ,方向的单位矢. 解:在z δ表象中,δ的矩阵表示为x σ⎪⎪⎭⎫⎝⎛=0110, y σ⎪⎪⎭⎫ ⎝⎛-=00i i , z σ⎪⎪⎭⎫⎝⎛-=1001 (1) 因此, z z y y x x n n n n n σσσσ++=⋅=⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-+-=-θθθθϕϕcos sin sin cos i i z y x y x ze e n inn in n n (2)设n σ的本征函数表示为Φ⎪⎪⎭⎫⎝⎛=b a ,本征值为λ,则本征方程为()0=-φλσn ,即 0cos sin sin cos =⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----b a e e i i λθθθλθϕϕ (3) 由(3)式的系数行列式0=,可解得1±=λ。
对于1=λ,代回(3)式,可得x y x y x x i i n in n in n n e e b a --=++==-=--112sin 2cos cos 1sin ϕϕθθθθ 归一化本征函数用()ϕθ,表示,通常取为()⎪⎪⎭⎫ ⎝⎛=ϕθθϕθφi e 2sin 2cos ,1或⎪⎪⎪⎭⎫⎝⎛-222sin 2cos ϕϕθθi i ee (4)后者形式上更加对称,它和前者相差因子2ϕi e-,并无实质差别。
量子力学导论习题答案曾谨言
第九章 力学量本征值问题的代数解法9—1) 在8.2节式(21)中给出了自旋(21)与轨迹角动量(l )耦合成总角动量j 的波函数j ljm φ,这相当于21,21===s j l j 的耦合。
试由8.2节中式(21)写出表9.1(a )中的CG 系数jm m m j 21121解:8.2节式(21a )(21b ):()21),0( 21+=≠-=m ml l j jjljm φ⎪⎪⎭⎫ ⎝⎛-+++=+11121lm lm Y m l Y m l l ()⎪⎪⎪⎭⎫⎝⎛-++---+=+=21,2121,212121,21j j m j j m j j Y m j Y m j j m j m l j (21a ) ()21-=j ljljm φ⎪⎪⎭⎫⎝⎛++---=+11121lm lm Y m l Y m l l ()⎪⎪⎪⎭⎫⎝⎛+++--+++-++=≠-=21,2121,211122121),0( 21j j m j j m j j Y m j Y m j j m j m l l j (21b )()21++j l此二式中的l 相当于CG 系数中的1j ,而212==s j ,21,~,,~21±=m m m m j 。
因此,(21a )式可重写为jm ∑=222112211m jm m j m j m j m j212121212121212111111111--+=m j jm m j m j jm m j ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛++-⎪⎪⎭⎫ ⎝⎛++++=+=212112212121122111211111211121121),21(m j j m j m j j m j j l j a (21a ’) 对照CG 系数表,可知:当21121+=+=j j j j ,212=m 时 ,21111112212121⎪⎪⎭⎫ ⎝⎛++=+j m j jm m j 而212-=m 时,21111112212121⎪⎪⎭⎫ ⎝⎛+-=-+j m j jm m j 对于21211-=-=j l j 的(21b )式,有21111111221,212121⎪⎪⎭⎫ ⎝⎛+--=-+j m j m j m j21111111221,212121⎪⎪⎭⎫ ⎝⎛++=--+j m j m j m j9-2)设两个全同粒子角动量21j j j ==,耦合成总角动量J ,JMj2ψ()()21212121jm jm m m JM m j jm ψψ∑=(1)利用CG 系数的对称性,证明()JMjJj JM j p 22212ψψ--=由此证明,无论是Bose 子或Fermi 子,J 都必须取偶数证:由式(1),JM j p 212ψ()()12212121jm jm m m JM jm jm ψψ∑=把21m m ↔, ()()12122112jm jm m m JM jm jm ψψ∑=利用CG 系数的对称性 ()()()21212112212jm jm m m Jj JM m j m j ψψ∑--=()JMjJj 22ψ--= (2)对于Fermi 子,=j 半奇数,=j 2奇数,但要求ψψ-=12p , 即要求()12-=--Jj ,所以J 必须为偶数。
量子力学导论习题答案(曾谨言)
第十一章 量子跃迁11—1)荷电q 的离子在平衡位置附近作小振动(简谐振动)。
受到光照射而发生跃迁。
设照射光的能量密度为()ωρ,波长较长。
求:(a )跃迁选择定则;(b )设离子原来处于基态,求每秒跃迁到第一激发态的几率。
11—2)氢原子处于基态。
收到脉冲电场的作用()()t t δεε0=。
使用微扰论计算它跃迁到各激发态的几率以及仍然处于基态的几率(取0ε沿z 轴方向来计算)。
解:令()()()∑-=nt iE nn n er t C t rψψ, (6)初始条件(5)亦即 ()10n n C δ=- (5) 用式(6)代入式(4),但微扰项ψ'H 中ψ取初值1ψ(这是微扰论的实质性要点!)即得()t z e H e dtdC i nt iE n nn δψεψψ101'==∑-以*n ψ左乘上式两端并全空间积分,得()tiE n nn e t z e dtdC i -=δε10再对τ积分,由00>→=-t t ,即得()10n n z i e t Cε=()1≠n (7) 因此0>t 时(即脉冲电场作用后)电子已跃迁到n ψ态的几率为[可直接代入 P291式(23)、P321式(15)而得下式]()21202n n n z e t C P ⎪⎭⎫⎝⎛== ε (8) 根据选择定则()0,1=∆=∆m l ,终态量子数必须是()()10n nlm =即电子只能跃迁到各np 态()1=l ,而且磁量子数0=m 。
跃迁到各激发态的几率总和为⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=∑∑∑n n nn nnz z e z e P 211212021'20'εε (9) 其中 01111==ψψz z (z 为奇宇称)∑∑=nn n n n z z z 1121ψψψψ212112131a r z ===ψψψψ (10)a 为Bohr 半径,代入式(9)即得20'⎪⎭⎫ ⎝⎛=∑ a e P nnε (11) 电场作用后电子仍留在基态的几率为20'11⎪⎭⎫⎝⎛-=-∑ a e P nn ε (12)11—3)考虑一个二能级体系,Hamilton 量0H 表为(能量表象)⎪⎪⎭⎫⎝⎛=21000E E H , 21E E < , 设0=t 时刻体系处于基态,后受微扰'H 作用,⎪⎪⎭⎫ ⎝⎛=βγγα'H , 求t 时刻体系处于激发态的几率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
曾谨言量子力学练习题答案
曾谨言量子力学练习题答案
量子力学是现代物理学的重要分支之一,其研究对象是微观粒子的行为规律。
曾谨言是一位著名的物理学家,他在量子力学领域有着杰出的贡献。
在学习量子力学的过程中,我们常常会遇到一些练习题,以下是曾谨言量子力学练习题的答案。
1. 问题:在双缝干涉实验中,光子通过两个狭缝后,在屏幕上形成干涉条纹。
如果将其中一个狭缝完全堵住,干涉条纹会发生什么变化?
答案:当一个狭缝被堵住时,干涉条纹会消失,屏幕上只会出现一个单缝的衍射图样。
这是因为双缝干涉实验中,光子通过两个狭缝后会形成波的叠加,产生干涉现象。
而当一个狭缝被堵住时,只有一个光子通过,无法产生干涉。
2. 问题:在量子力学中,什么是波函数?
答案:波函数是量子力学中描述微观粒子状态的数学函数。
它可以用来计算粒子在空间中的位置、动量等物理量的概率分布。
波函数的平方模的积分表示了粒子在某一位置的概率密度。
3. 问题:什么是量子纠缠?
答案:量子纠缠是量子力学中一种特殊的现象,当两个或多个粒子发生相互作用后,它们的状态将无法被单独描述,而是成为一个整体系统的状态。
即使这些粒子之间距离很远,它们的状态仍然是相互关联的。
这种关联关系在量子通信和量子计算中有着重要的应用。
4. 问题:什么是量子隧穿?
答案:量子隧穿是指微观粒子在经典力学中无法通过的势垒或势阱,在量子力
学中却有一定概率穿越的现象。
这是由于量子力学中粒子的波粒二象性,粒子
具有波动性质,可以在势垒或势阱的两侧存在一定的概率分布。
5. 问题:什么是量子比特?
答案:量子比特,简称量子位或qubit,是量子计算中的基本单位。
与经典计算中的比特不同,量子比特可以同时处于多个状态的叠加态,这种叠加态可以通
过量子门操作进行处理和控制,从而实现量子计算的优势。
以上是曾谨言量子力学练习题的答案。
量子力学作为一门复杂而又精密的学科,需要我们通过理论和练习来加深对其原理和应用的理解。
希望这些答案能够帮
助大家更好地掌握量子力学的知识,并在学习和研究中取得更进一步的突破。