量子力学经典练习题及答案解析
量子力学习题集及解答
量子力学习题集及解答目录第一章量子理论基础 (1)第二章波函数和薛定谔方程 (5)第三章力学量的算符表示 (28)第四章表象理论 (48)第五章近似方法 (60)第六章碰撞理论 (94)第七章自旋和角动量 (102)第八章多体问题 (116)第九章相对论波动方程 (128)第一章 量子理论基础1.设一电子为电势差V 所加速,最后打在靶上,若电子的动能转化为一个光子,求当这光子相应的光波波长分别为5000A (可见光),1A (x 射线)以及0.001A (γ射线)时,加速电子所需的电势差是多少?[解] 电子在电势差V 加速下,得到的能量是eV m =221υ这个能量全部转化为一个光子的能量,即λνυhc h eV m ===221 )(1024.1106.11031063.6419834A e hc V λλλ⨯=⋅⨯⨯⨯⨯==∴--(伏) 当 A 50001=λ时, 48.21=V (伏)A 12=λ时 421024.1⨯=V (伏)A 001.03=λ时 731024.1⨯=V (伏)2.利用普朗克的能量分布函数证明辐射的总能量和绝对温度的四次方成正比,并求比例系数。
[解] 普朗克公式为18/33-⋅=kT hv v e dvc hvd πνρ单位体积辐射的总能量为⎰⎰∞∞-==00/3313T hv v e dv v c h dv U κπρ令kThvy =,则 440333418T T e dy y c h k U y σπ=⎪⎪⎭⎫ ⎝⎛-=⎰∞ (★) 其中 ⎰∞-=0333418y e dyy c h k πσ (★★)(★)式表明,辐射的总能量U 和绝对温度T 的四次方成正比。
这个公式就是斯忒蕃——玻耳兹曼公式。
其中σ是比例常数,可求出如下:因为)1()1(1121 +++=-=-------y y y y y ye e e e e e ∑∞=-=1n ny edy e y e dy y n ny y ⎰∑⎰∞∞=-∞⎪⎭⎫ ⎝⎛=-013031 令 ny x =,上式成为dx e x n e dy y xn y ⎰∑⎰∞-∞=∞=-03140311 用分部积分法求后一积分,有⎰⎰⎰∞-∞∞--∞∞--+-=+-=0220332333dx xe e x dx e x e x dx e x x xx xx66660=-=+-=∞∞--∞-⎰xx x e dx e xe又因无穷级数 ∑∞==144901n nπ故⎰∞=⨯=-0443159061ππye dy y 因此,比例常数⎰∞-⨯==-=015334533341056.715818ch k e dy y c h k y ππσ尔格/厘米3·度43.求与下列各粒子相关的德布罗意波长:(1)能量为100电子伏的自由电子; (2)能量为0.1电子伏的自由中子; (3)能量为0.1电子伏,质量为1克的质点; (4)温度T =1k 时,具有动能kT E 23=(k 为玻耳兹曼常数)的氦原子。
量子力学习题及解答
量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)(有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kThc kT hc e kT hc e hcλλλλλπρ ⇒ 0115=-⋅+--kT hce kThc λλ ⇒ kThce kT hc λλ=--)1(5 如果令x=kThcλ ,则上述方程为x e x =--)1(5:这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =】如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及,eVc e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
量子力学经典题目及解答
8 a1
a2
a3
2 a1
a2
a3
第一章
补充:1.设 1 af1(x)ei(x和t) 2 bf2 (x)ei分(x别t表) 示
微观粒子的两个可能状态,求当粒子处于叠加态 1 2
时的相对几率分布。a,b为复常数, f1, f2为实函数。 解: 2 1 2 2 af1ei( xt) 2 bf2ei( xt) 2
n1
x
2
, px
h
x
n1h , 2a1
同理, py n2h / 2a2, pz n3h / 2a3 n1, n2, n3 1, 2,3
E
p2
2
1
2
(
px2
py2
pz2 )
h2
2
(
n1 2a1
)2
( n2 2a2
)2
( n3 2a3
)2
E h2 [( n1 )2 ( n2 )2 ( n3 )2 ] 2 2 [( n1 )2 ( n2 )2 ( n3 )2 ]
1
hv kT
1 c2
v T
d
c1v3dv ec2v/T 1
c1v3dv c2v /T
c1 c2
Tv2dv
----R-J公式
2.由玻尔角动量量子化条件导出氢原子能级公式 En
解: 角动量量子化条件,
es2 r2
Ln
v2
r
rnv
(向心力)
(1) (2)
r * (2) :
es2
(v2
)
(1)
(
的两组超越方程,经图解法求出束缚态的 后, k,可由(15)
得 2.8出分对子应间的的能范级德瓦E。n耳斯力所产生的势能可以近似的表示为
量子力学习题答案
量子力学习题答案1.2 在0k 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解:由德布罗意波粒二象性的关系知: E h =ν; p h /=λ由于所考虑的电子是非相对论的电子(26k e E (3eV)c (0.5110)-μ⨯),故: 2eE P /(2)=μ69h /p h E c E 1.241030.7110m 0.71n m--λ====⨯=⨯=1.3氦原子的动能是E=1.5kT ,求T=1K 时,氦原子的德布罗意波长。
解:对于氦原子而言,当K 1=T 时,其能量为 J 102.07K 1K J 10381.1232323123---⨯=⨯⋅⨯⨯==kT E 于是有m一维谐振子处于22/2()xx Ae αψ-=状态中,其中α为实常数,求:1.归一化系数;2.动能平均值。
(22x e dx /∞-α-∞=α⎰)解:1.由归一化条件可知:22*2x(x)(x)d x A e d x1A/1∞∞-α-∞-∞ψψ===α=⎰⎰取相因子为零,则归一化系数1/21/4A/=απ2.2222222222222222222*2x/2x/2222x/2x/222x/22x/22222x2x/222242x2T(x)T(x)dx A e(P/2)e dxdA e()e dx2dxdA e(xe)dx2dxA{xe(xe)dx}2A x e dx A22∞∞-α-α-∞-∞∞-α-α-∞∞-α-α-∞∞∞-α-α-∞-∞∞-α-∞=ψψ=μ=-μ=--αμ=--α--αμ=α=μμ⎰⎰⎰⎰⎰⎰=()==2222224x2224x x2222222421()xd(e)21A(){xe e dx}221AA()242∞-α-∞∞∞-α-α-∞-∞α-α=α---μαππααα--μμα⎰⎰若α,则该态为谐振子的基态,T4ω=解法二:对于求力学量在某一体系能量本征态下的平均值问题,用F-H定理是非常方便的。
量子力学习题及答案
(7)代入(6)
csin2kk22a?dcos2k2a??kccos2k2a?
k21
kdsin2k2a
1
利用(4)、(5),得
k1k2kasin2k2a?acos2k2a??acos2k2a?2kdsin2k2a
1
a[(
k1k2k?2k)sin2k2a?2cos2k2a]?0
1?a?0
?
2
2?
??4
??0?e?4(b?x)对于区域Ⅰ,u(x)??,粒子不可能到达此区域,故?1(x)?0
而. ????2? (u0?e)
2
0?
2
?2?①
??2? (u1?e)
3
???
2
?3?0 ②
??2?e4
???
2
?
4
?0
对于束缚态来说,有?u?e?0
∴ ????k21?2?0 k22? (u0?e)
因此k1x
??1?ae ?
3
?fe
?k
1x
由波函数的连续性,有
?1(0)??2(0),?a?d(4)
?1?(0)???2
(0),?k1a?k2c (5)??(2a)??1a
3?(2a),?k2ccos2k2a?k2dsin2k2a??k?2k2
1fe(6)
?1a
2(2a)??3(2a),?csin2k2a?dcos2k2a?fe
1???k1?1?1?2?(u0?e)?????2??k22?2?0 (2) k22?2?e?2
束缚态0<e<u0 ??
??3??k2
1?3?0 (3)?1x
1?ae
?k?be
?k1x
基本习题和答案解析量子力学
WORD格式整理量子力学习题(一)单项选择题 1. 能量为100ev 的自由电子的De Broglie 波长是 0 0 0 0 A. 1.2 A. B. 1.5 A. C. 2.1 A. D. 2.5 A. 2. 能量为0.1ev 的自由中子的De Broglie 波长是 0 0 0 0 A.1.3 A. B. 0.9 A. C. 0.5 A. D. 1.8 A. 3. 能量为0.1ev ,质量为1g 的质点的De Broglie 波长是 0A.1.4 A.B.1.9 0C.1.17 10J 2 A.D. 2.04.温度T=1k 时, 具有动能 010J 2 A. 0 A. =—k B T ( k B 2 为Boltzeman 常数)的氦原子的DeBroglie 波长是 0 A.8 A. B. 5.6 5.用 Bohr-Sommerfeld 0 A. 0 A. D. 12.6 0A. A. E n 二 n ,.B.C. 10 的量子化条件得到的一维谐振子的能量为(n 二0,1,2,…) E n = (n :);. 2 C. E n =(n 1) ? ■ .D. E n =2n •. 6.在0k 附近,钠的价电子的能量为3ev ,其 0 0A.5.2 A.B. 7.1 A.C. 8.4 De Broglie 波长是 0 A. 7. 钾的脱出功是2ev ,当波长为 最大能量为 A. 0.25 10J 8J. B. 1.25 C. 0.25 1046 J.D. 1.25 0A. D. 9.4 03500 A 的紫外线照射到钾金属表面时,光电子的 10」8J. 10J 6J. 8. 当氢原子放出一个具有频率--的光子,反冲时由于它把能量传递给原子而产生 的频率改变为 h A. . B. 2 . C.2七 2心 9. C ompton 效应证实了A.电子具有波动性.B.C.光具有粒子性.D. -2 '2走.D. PC .光具有波动性• 电子具有粒子性. 10. D avisson 和Germer 的实验证实了 A.电子具有波动性.B.光具有波动性. C.光具有粒子性.D. 电子具有粒子性. U (x )斗0,0:X7中运动,设粒子的状态由 [°°,x E0,X11.粒子在一维无限深势阱 J(x)二Csin 描写,其归一化常数C 为aA ^r 1. B. . C. .a• a■ a12.设t(x)—(x),在x-x ,dx 范围内找到粒子的几率为 22.D.13.设粒子的波函数为2A.屮(x, y, z) dxdydz.'■ (x, y,z),在x—x • dx范围内找到粒子的几率为2B.屮(x, y,z) dx.2 2C.( '- (x, y, z) dydz)dx .D. . dx dy dz'- (x, yz)14.设:Mx)和:2(x)分别表示粒子的两个可能运动状态,则它们线性迭加的态c「i(x)dd)的几率分布为2 2A.|汕1 +对2 .2 2 *B. |G屮l| +C2屮2 +C1C2屮1屮2.2 2 *C.k 屮1 +C2 屮2 +2GC2屮1屮2.2 2 * * * *D.- c^;2 +。
高等量子力学练习题及答案解析
练习28.1 证明: ()[]()t G t G -=-++00证明: 根据公式(28.4)()()()00H t t ie t t it t G '--±'±='-θ可知()()00tH ie t it G-+-=θ()()()00H t i e t i t G ---+=-θ则()[]()()000tH i tH i e t ie t i t G θθ=⎥⎦⎤⎢⎣⎡-=+-++()()()t G e t i H t i-==---00θ #28.2证明下列二式成立:()()()()⎰∞∞-±±±±--+-=-''dt 't t VG ''t t G 't t G 't t G 00()()()()⎰∞∞-±±±±--+-=-''dt 't ''t VG ''t t G 't t G 't t G 00证明:因为:()()()⎰∞+∞---±±π=-dE e E G 21't t G 't t E i()()()⎰∞+∞---±±π=-dE e E G 21't t G 't t E i00又因为:()()()()E VG E G E G E G 00±±±±+=即有()()()()()()[]()()()()()()()()()()()()()''dt t ''t VG ''t t G 't t G dE e E VG E G 21't t G dE e E VG E G 21dE e E G 21dE e E VG E G E G 21dE e E G 21't t G '00't t E i00't t E i 0't t E i 0't t E i00't t E i00--+-=π+-=π+π=+π=π=-±∞+∞-±±∞+∞---±±±∞+∞---±±∞+∞---±∞+∞---±±±∞+∞---±±⎰⎰⎰⎰⎰⎰又因为()()()()()()()E VG E G E G E VG E G E G E G 0000±±±±±±±+=+=同理可证得()()()()''dt t ''t VG ''t t G 't t G 't t G '00--+-=-±+∞∞-±±±⎰综上所述()()()()()()()()''dt t ''t VG ''t t G 't t G 't t G ''dt t ''t VG ''t t G 't t G 't t G '0'00--+-=---+-=-±∞+∞-±±±±+∞∞-±±±⎰⎰两式成立。
量子力学经典八十题(推荐版本)【含答案】
ψ
nxnynz
(x,
y,
z)
=
⎧ ⎪ ⎨ ⎪⎩0
8 abc ,
sin
nxπx a
sin
nyπ b
y
sin
nzπ c
z
, 0 < x < a,0 其余区域
<
y
<
b
,
0
<
z
<
c
n = 1, 2,3,""
9. 粒子在一维 δ 势阱
V (x) = −γ δ (x) (γ > 0)
中运动,波函数为ψ (x) ,写出ψ ′(x) 的跃变条件。
2
量子力学复习题答案(安徽大学)
( ) 解: L2 , L z 的共同本征函数是球谐函数Ylm (θ ,ϕ) 。
L2Ylm (θ ,ϕ) = l(l + 1)= 2Ylm (θ ,ϕ ) , LzYlm (θ ,ϕ ) = m=Ylm (θ ,ϕ)
15. 写出电子自旋 s z 的二本征态和本征值。
V (x)
=
−
n= 2 mx0 x
+
=2 2m
n (n −1) x2
10. 一 个 质 量 为 m 的 粒 子 在 势 V (x) 作 用 下 作 一 维 运 动 。 假 定 它 处 在 E = =2α 2 的 能 量 本 征 态 2m
ψ
(
x)
=
⎛ ⎜ ⎝
α2 π
⎞1/ ⎟
4
e−γ
2x2
⎠
2,
( a )求粒子的平均位置; ( b )求粒子的平均动量;
22. 使用定态微扰论时,对哈密顿量 H 有什么样的要求?
量子力学作业及参考答案
15-1 将星球看做绝对黑体,利用维恩位移定律测量m λ便可求得T .这是测量星球表面温度的方法之一.设测得:太阳的m 55.0m μλ=,北极星的m 35.0m μλ=,天狼星的m 29.0m μλ=,试求这些星球的表面温度.解:将这些星球看成绝对黑体,则按维恩位移定律:K m 10897.2,3⋅⨯==-b b T m λ对太阳: K 103.51055.010897.236311⨯=⨯⨯==--mbT λ对北极星:K 103.81035.010897.236322⨯=⨯⨯==--mbT λ对天狼星:K 100.11029.010897.246333⨯=⨯⨯==--mbT λ15-3 从铝中移出一个电子需要4.2 eV 的能量,今有波长为2000οA 的光投射到铝表面.试问:(1)由此发射出来的光电子的最大动能是多少?(2)遏止电势差为多大?(3)铝的截止(红限)波长有多大?解:(1)已知逸出功eV 2.4=A 据光电效应公式221m mv hv =A +则光电子最大动能:A hcA h mv E m -=-==λυ2max k 21eV0.2J 1023.3106.12.41020001031063.6191910834=⨯=⨯⨯-⨯⨯⨯⨯=----m2max k 21)2(mvE eUa==∴遏止电势差 V 0.2106.11023.31919=⨯⨯=--a U(3)红限频率0υ,∴000,λυυcA h ==又∴截止波长 1983401060.12.41031063.6--⨯⨯⨯⨯⨯==Ahc λm 0.296m 1096.27μ=⨯=-15-4 在一定条件下,人眼视网膜能够对5个蓝绿光光子(m 105.0-7⨯=λ)产生光的感觉.此时视网膜上接收到光的能量为多少?如果每秒钟都能吸收5个这样的光子,则到 达眼睛的功率为多大? 解:5个兰绿光子的能量J1099.1100.51031063.65187834---⨯=⨯⨯⨯⨯⨯===λυhcn nh E功率 W 1099.118-⨯==tE15-5 设太阳照射到地球上光的强度为8 J ·s -1·m -2,如果平均波长为5000οA ,则每秒钟落到地面上1m 2的光子数量是多少?若人眼瞳孔直径为3mm ,每秒钟进入人眼的光子数是多少? 解:一个光子能量 λυhch E ==1秒钟落到2m 1地面上的光子数为21198347ms1001.21031063.6105888----⋅⨯=⨯⨯⨯⨯⨯===hcEn λ每秒进入人眼的光子数为11462192s1042.14/10314.31001.24--⨯=⨯⨯⨯⨯==dnN π15-6若一个光子的能量等于一个电子的静能,试求该光子的频率、波长、动量.解:电子的静止质量S J 1063.6,kg 1011.934310⋅⨯=⨯=--h m 当 20c m h =υ时,则Hz10236.11063.6)103(1011.92034283120⨯=⨯⨯⨯⨯==--hc m υο12A 02.0m 104271.2=⨯==-υλc122831020122sm kg 1073.21031011.9sm kg 1073.2-----⋅⋅⨯=⨯⨯⨯=====⋅⋅⨯==c m cc m c E p cpE hp 或λ15-7 光电效应和康普顿效应都包含了电子和光子的相互作用,试问这两个过程有什么不同? 答:光电效应是指金属中的电子吸收了光子的全部能量而逸出金属表面,是电子处于原子中束缚态时所发生的现象.遵守能量守恒定律.而康普顿效应则是光子与自由电子(或准自由电子)的弹性碰撞,同时遵守能量与动量守恒定律.15-8 在康普顿效应的实验中,若散射光波长是入射光波长的1.2倍,则散射光子的能量ε与反冲电子的动能k E 之比k E /ε等于多少? 解:由 2200mc h c m hv +=+υ)(00202υυυυ-=-=-=h h h cm mcE kυεh =∴5)(00=-=-=υυυυυυεh h E k已知2.10=λλ由2.10=∴=υυλυc2.11=υυ则52.0112.110==-=-υυυ15-10 已知X 光光子的能量为0.60 MeV ,在康普顿散射之后波长变化了20%,求反冲电子的能量.解:已知X 射线的初能量,MeV 6.00=ε又有00,ελλεhchc =∴=经散射后 000020.1020.0λλλλ∆λλ=+=+= 此时能量为 002.112.1ελλε===hc hc反冲电子能量 MeV 10.060.0)2.111(0=⨯-=-=εεE15-11 在康普顿散射中,入射光子的波长为0.030 οA ,反冲电子的速度为0.60c ,求散射光子的波长及散射角. 解:反冲电子的能量增量为202022020225.06.01c m cm cm cm mcE =--=-=∆由能量守恒定律,电子增加的能量等于光子损失的能量, 故有 20025.0c m hchc=-λλ散射光子波长ο121083134103400A043.0m 103.410030.0103101.925.01063.610030.01063.625.0=⨯=⨯⨯⨯⨯⨯⨯-⨯⨯⨯⨯=-=------λλλc m h h由康普顿散射公式2sin0243.022sin22200ϕϕλλλ∆⨯==-=cm h可得 2675.00243.02030.0043.02sin2=⨯-=ϕ散射角为 7162'=οϕ15-12 实验发现基态氢原子可吸收能量为12.75eV 的光子. (1)试问氢原子吸收光子后将被激发到哪个能级?(2)受激发的氢原子向低能级跃迁时,可发出哪几条谱线?请将这些跃迁画在能级图上. 解:(1)2eV 6.13eV 85.0eV 75.12eV 6.13n -=-=+-解得 4=n 或者 )111(22n Rhc E -=∆75.12)11.(1362=-=n解出 4=n题15-12图 题15-13图(2)可发出谱线赖曼系3条,巴尔末系2条,帕邢系1条,共计6条.15-13 以动能12.5eV 的电子通过碰撞使氢原子激发时,最高能激发到哪一能级?当回到基态时能产生哪些谱线?解:设氢原子全部吸收eV 5.12能量后,最高能激发到第n 个能级,则]11[6.135.12,eV 6.13],111[2221nRhc nRhc E E n -==-=-即得5.3=n ,只能取整数,∴ 最高激发到3=n ,当然也能激发到2=n 的能级.于是ο322ο222ο771221A 6563536,3653121~:23A 121634,432111~:12A1026m 10026.110097.18989,983111~:13===⎥⎦⎤⎢⎣⎡-=→===⎥⎦⎤⎢⎣⎡-=→=⨯=⨯⨯===⎥⎦⎤⎢⎣⎡-=→-R R R n R R R n RR R n λυλυλυ从从从可以发出以上三条谱线.题15-14图15-14 处于基态的氢原子被外来单色光激发后发出巴尔末线系中只有两条谱线,试求这两 条谱线的波长及外来光的频率.解:巴尔末系是由2>n 的高能级跃迁到2=n 的能级发出的谱线.只有二条谱线说明激发后最高能级是4=n 的激发态.ο1983424ο101983423222324A4872106.1)85.04.3(1031063.6A6573m 1065731060.1)51.14.3(10331063.6e 4.326.13e 51.136.13e 85.046.13=⨯⨯-⨯⨯⨯=-==⨯=⨯⨯-⨯⨯⨯⨯=-=∴-=∴-==-=-=-=-=-=-=-----E E hc E E hcE E hc E E hch VE V E V E a mn mn βλλλλυ基态氢原子吸收一个光子υh 被激发到4=n 的能态 ∴ λυhcE E h =-=14Hz 1008.310626.6106.1)85.06.13(15341914⨯=⨯⨯⨯-=-=--hE E υ15-15 当基态氢原子被12.09eV 的光子激发后,其电子的轨道半径将增加多少倍? 解: eV 09.12]11[6.1321=-=-nE E n 26.1309.126.13n =-51.16.1309.12.1366.132=-=n , 3=n12r n r n =,92=n,19r r n =轨道半径增加到9倍.15-16德布罗意波的波函数与经典波的波函数的本质区别是什么?答:德布罗意波是概率波,波函数不表示实在的物理量在空间的波动,其振幅无实在的物理意义,2φ仅表示粒子某时刻在空间的概率密度.15-17 为使电子的德布罗意波长为1οA ,需要多大的加速电压? 解: ooA 1A 25.12==uλ 25.12=U∴ 加速电压 150=U 伏15-18 具有能量15eV 的光子,被氢原子中处于第一玻尔轨道的电子所吸收,形成一个 光电子.问此光电子远离质子时的速度为多大?它的德布罗意波长是多少?解:使处于基态的电子电离所需能量为eV 6.13,因此,该电子远离质子时的动能为eV 4.16.13152112=-=+==E E mvE k φ它的速度为31191011.9106.14.122--⨯⨯⨯⨯==mE v k -15s m 100.7⋅⨯=其德布罗意波长为:o953134A 10.4m 1004.1100.71011.91063.6=⨯=⨯⨯⨯⨯==---mvh λ15-19 光子与电子的波长都是2.0οA ,它们的动量和总能量各为多少? 解:由德布罗意关系:2mc E =,λhmv p ==波长相同它们的动量相等.1-241034s m kg 103.3100.21063.6⋅⋅⨯=⨯⨯==---λhp光子的能量eV 102.6J 109.9103103.3316824⨯=⨯=⨯⨯⨯====--pc hch λυε电子的总能量 2202)()(c m cp E +=,eV 102.63⨯=cp而 eV 100.51MeV 51.0620⨯==c m∴ cp c m >>2∴ MeV 51.0)()(202202==+=c m c m cp E15-20 已知中子的质量kg 1067.127n -⨯=m ,当中子的动能等于温度300K 的热平衡中子气体的平均动能时,其德布罗意波长为多少? 解:kg 1067.127n -⨯=m ,S J 1063.634⋅⨯=-h ,-123K J 1038.1⋅⨯=-k中子的平均动能 mpKT E k 2232==德布罗意波长 oA 456.13===mkTh phλ15-21 一个质量为m 的粒子,约束在长度为L 的一维线段上.试根据测不准关系估算这个粒子所具有的最小能量的值.解:按测不准关系,h p x x ≥∆∆,x x v m p ∆=∆,则h v x m x ≥∆∆,xm h v x ∆≥∆这粒子最小动能应满足222222min 22)(21)(21mLhxm hxm h m v m E x =∆=∆≥∆=15-22 从某激发能级向基态跃迁而产生的谱线波长为4000οA ,测得谱线宽度为10-4οA ,求该激发能级的平均寿命. 解:光子的能量 λυhch E ==由于激发能级有一定的宽度E ∆,造成谱线也有一定宽度λ∆,两者之间的关系为: λλ∆=∆2hcE由测不准关系,h t E ≥∆⋅∆,平均寿命t ∆=τ,则λλτ∆=∆=∆=c Eh t 2s 103.51010103)104000(81048210----⨯=⨯⨯⨯⨯=15-23 一波长为3000οA 的光子,假定其波长的测量精度为百万分之一,求该光子位置的测不准量.解: 光子λhp =,λλλλ∆=∆-=∆22hhp由测不准关系,光子位置的不准确量为cm 30A 103103000o962=⨯=====-λλ∆λλ∆λ∆∆p h x。
量子力学练习参考解答
量子力学练习参考解答第一章 波函数与薛定谔方程1.1,1.2,1.3题解答略。
1.4(a )设一维自由粒子的初态为一个Gauss 波包,222412)(1)0,(απαψxx p i e e x -=证明:初始时刻,0=x ,0p p =[]2)(12α=-=∆x x x[]α2)(12=-=∆p p p2 =∆⋅∆p x证:初始时刻012222===-+∞∞-+∞∞-⎰⎰dx exdx x x x απαψ2122222222απαψα===-∞+∞-∞+∞-⎰⎰dx exdx x x x()22122α=-=∆xx x)0,(x ψ的逆变换为⎰+∞∞--=dx ex p ipx/)0,(21)(ψπϕ=⎰+∞∞---dx eeeipx x x p i/2412220)(121απαπ=2220()22214(/)p p eααπ--22202()()p p p eααϕπ--=因此02)(p dp p p p ==⎰+∞∞-ϕ2222222)(0αϕ +==⎰∞+∞-p dp p p p()α22122 =-=∆p p p2 =∆⋅∆p x注:也可由以下式子计算p 和2p :2222(,0)()(,0)(,0)()(,0)dp x ix dx dxd p x x dxdx ψψψψ+∞*-∞+∞*-∞=-=-⎰⎰1.5 设一维自由粒子的初态为)0,(x ψ,证明在足够长时刻后,()[]⎪⎭⎫⎝⎛⋅⎥⎦⎤⎢⎣⎡⋅-=t mx t imx i t m t x ϕπψ2exp 4exp ,2式中()()⎰+∞∞--=dx e x k ikx0,21ψπϕ是)0,(x ψ的Fourier 变换。
提示:利用()x e e x i i δπααπα=-∞→24/lim。
证:依照平面波的时刻转变规律 ()t kx i ikxe e ω-→ , m k E 22==ω,任意时刻的波函数为()()()dk e k t x mtkkx i 2/221, -+∞∞-⎰=ϕπψ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⋅=⎰∞+∞-22/2ex p 212t mx k m t i k dk etimx ϕπ(1) 那时刻足够长后(所谓∞→t ),上式被积函数中的指数函数具有δ函数的性质,取m t 2 =α , (2)参照此题的解题提示,即得()()⎰+∞∞--⎪⎭⎫ ⎝⎛-⋅≈k d t mx k k e t m et x i timx δϕππψπ4/2221,2⎪⎭⎫⎝⎛=-t mx e e t m t imx i ϕπ2/4/2 (3) 1.6 依照粒子密度散布ρ和粒子流密度散布j的表示式, ()()()t r t r t r ,,,*ψψρ=()()()()()[]t r t r t r t r mi t r j ,,,,2,**ψψψψ∇-∇-=概念粒子的速度散布v()()()()⎥⎦⎤⎢⎣⎡∇-∇-==t r t r t r t r m i j v ,,,,2**ψψψψρ 证明:0=⨯∇v 。
量子力学初步作业(含答案解析)
量子力学初步1. 设描述微观粒子运动的波函数为(),r t ψ,则ψψ*表示______________________________________;(),r t ψ须满足的条件是_______________________________;其归一化条件是_______________________________.2. 将波函数在空间各点的振幅同时增大D 倍,则粒子在空间的分布概率将_______________________________. (填入:增大D 2倍、增大2D 倍、增大D 倍或不变)3. 粒子在一维无限深方势阱中运动(势阱宽度为a ),其波函数为()()30x x x a a πψ=<<粒子出现的概率最大的各个位置是x = ____________________.4. 在电子单缝衍射实验中,若缝宽为a =0.1 nm (1 nm = 10-9 m),电子束垂直射在单缝面上,则衍射的电子横向动量的最小不确定量y p ∆= _________N·s.(普朗克常量h =6.63×10-34 J·s)5. 波长λ= 5000 Å的光沿x 轴正向传播,若光的波长的不确定量λ∆= 10-3 Å,则利用不确定关系式x p x h ∆∆≥可得光子的x 坐标的不确定量至少为_________.6. 粒子做一维运动,其波函数为()000xAxe x x x λψ-≥=≤式中λ>0,粒子出现的概率最大的位置为x = _____________.7. 量子力学中的隧道效应是指______________________________________ 这种效应是微观粒子_______________的表现.8. 一维无限深方势阱中,已知势阱宽度为a ,应用测不准关系估计势阱中质量为m 的粒子的零点能量为____________.9. 按照普朗克能量子假说,频率为ν的谐振子的能量只能为_________;而从量子力学得出,谐振子的能量只能为___________.10. 频率为ν的一维线性谐振子的量子力学解,其能量由下式给出:______________________,其中最低的量子态能量为__________,称为“零点能”.11. 根据量子力学,粒子能透入势能大于其总能量的势垒,当势垒加宽时,贯穿系数__________;当势垒变高时,贯穿系数________. (填入:变大、变小或不变)12. 写出以下算符表达式:ˆx p=__________;ˆH =__________;ˆyL =__________. 13. ˆx与ˆx p 的对易关系[]ˆˆ,x x p 等于__________. 14. 试求出一维无限深方势阱中粒子运动的波函数()()sin 1,2,3,n n xx A n a πψ==的归一化形式. 式中a 为势阱宽度.15. 利用不确定关系式x x p h ∆∆≥,估算在直径为d = 10-14 m 的核的质子最小动能的数量级.(质子的质量m =1.67×10-27 kg , 普朗克常量h =6.63×10-34 J·s )16. 已知粒子处于宽度为a 的一维无限深方势阱中运动的波函数为(),1,2,3,n n x x n a πψ==试计算n =1时,在x 1=a /4 → x 2=3a /4 区间找到粒子的概率.17. 一维无限深方势阱中的粒子,其波函数在边界处为零,这种定态物质波相当于两段固定的弦中的驻波,因而势阱的宽度a 必须等于德布罗意波半波长的整数倍。
(完整版)量子力学期末考试题及解答
一、 波函数及薛定谔方程1.推导概率(粒子数)守恒的微分表达式;()(),,w r t J r t o t∂+∇•=∂解答:由波函数的概率波解释可知,当(),r t ψ已经归一化时,坐标的取值概率密度为()()()()2,,,,w r t r t r t r t ψψψ*== (1) 将上式的两端分别对时间t 求偏微商,得到()()()()(),,,,,w r t r t r t r t r t t t tψψψψ**∂∂∂=+∂∂∂ (2) 若位势为实数,即()()V r V r *=,则薛定谔方程及其复共轭方程可以分别改写如下形式()()()()2,,,2r t ih ir t V r r t t m h ψψψ∂=∇-∂ (3)()()()()2,,,2r t ih ir t V r r t t m hψψψ***∂=-∇+∂ (4) 将上述两式代入(2)式,得到()()()()()22,,,,,2r t ih r t r t r t r t t mψψψψψ**∂⎡⎤=∇-∇⎣⎦∂ ()()()(),,,,2ihr t r t r t r t mψψψψ**⎡⎤=∇•∇-∇⎣⎦ (5) 若令()()()()(),,,,,2ih J r t r t r t r t r t mψψψψ**⎡⎤=∇-∇⎣⎦ (6) 有()(),,0w r t J r t t∂+∇•=∂ (7) 此即概率(粒子数)守恒的微分表达式。
2.若线性谐振子处于第一激发态()2211exp 2x C x α⎛⎫ψ=- ⎪⎝⎭求其坐标取值概率密度最大的位置,其中实常数0α>。
解答:欲求取值概率必须先将波函数归一化,由波函数的归一化条件可知()()222221exp 1x dx Cx x dx ψα∞∞-∞-∞=-=⎰⎰(1)利用积分公示())2221121!!exp 2n n n n x x dx αα∞++--=⎰ (2) 可以得到归一化常数为C = (3)坐标的取值概率密度为 ()()()322221exp w x x x x ψα==- (4)由坐标概率密度取极值的条件())()3232222exp 0d w x x x x dx αα=--= (5) 知()w x 有五个极值点,它们分别是 10,,x α=±±∞(6)为了确定极大值,需要计算()w x 的二阶导数()()()232222322226222exp d w x x x x x x dx αααα⎤=----⎦)()32244222104exp x x x ααα=-+- (7)于是有()23200x d w x dx ==> 取极小值 (8)()220x d w x dx =±∞= 取极小值 (9)()23120x d w x dx α=±=< 取极大值 (10)最后得到坐标概率密度的最大值为2111w x x ψαα⎛⎫⎛⎫=±==±= ⎪ ⎪⎝⎭⎝⎭(11)3.半壁无限高势垒的位势为()()()()000x v x x a v x a ∞<⎧⎪=≤≤⎨⎪>⎩求粒子能量E 在00E v <<范围内的解。
大学物理量子力学习题答案解析
一、简答题(1——8题,每题5分,共40分)1. 用球坐标表示,粒子波函数表为()ϕθψ,,r 。
写出粒子在),(ϕθ方向的立体角Ωd 中且半径在a r <<0范围内被测到的几率。
解:()⎰Ω=adrr r d P 022,,ϕθψ。
2. 写出三维无限深势阱⎩⎨⎧∞<<<<<<=其余区域,0,0,0,0),,(cz b y a x z y x V中粒子的能级和波函数。
解:能量本征值和本征波函数为⎪⎪⎭⎫ ⎝⎛=++222222222c n b n a n mE z yx n n n zy x π ,,3,2,1,00,0,0,sin sin sin 8),,(=⎪⎩⎪⎨⎧<<<<<<=n c z b y a x czn b y n a x n abc z y x z y x n n n z y x 其余区域πππψ3. 量子力学中,一个力学量Q 守恒的条件是什么?用式子表示。
解:有两个条件:0],[,0==∂∂H Q t Q。
4.)(z L L ,2 的共同本征函数是什么?相应的本征值又分别是什么?解:()zL L,2的共同本征函数是球谐函数),(ϕθlmY。
),(),(,),()1(),(22ϕθϕθϕθϕθlm lm z lm lm Y m Y L Y l l Y L =+=。
5. 量子力学中,体系的任意态)(x ψ可用一组力学量完全集的共同本征态)(x n ψ展开:∑=nn n x c x )()(ψψ,写出展开式系数n c 的表达式。
解: ()dxx x x x c n n n ⎰==)()()(,)(*ψψψψ。
6. 一个电子运动的旋量波函数为()()()⎪⎪⎭⎫ ⎝⎛-=2,2,,r r s r z ψψψ,写出表示电子自旋向上、位置在r处的几率密度表达式,以及表示电子自旋向下的几率的表达式。
解:电子自旋向上(2 =z s )、位置在r 处的几率密度为()22/, r ψ;电子自旋向下(2 -=z s )的几率为()232/,⎰-r r d ψ。
高等量子力学练习题及答案解析三
3.1幺正算符也有本征矢量。
证明幺正算符的本征值都是绝对值是1的复数;幺正算符的两个本征矢量,若所属本征值不同亦必正交。
证明: 设算符U为幺正算符,ψ为其任意本征矢量,u 为对应的本征值。
即ψψu U =则ψψψψψψψψu u U U U U *+===因0≠ψψ,所以1=*u u 即 1=u即证得幺正算符的本征值都是绝对值是1的复数。
设算符U 为幺正算符的两个本征值为1u 、2u ,对应的矢量分别为1ψ、2ψ,且21u u ≠。
则111ψψu U = 11111ψψu U =- 222ψψu U = 22211ψψu U =- 因为幺正算符1-+=U U则有21212121ψψψψψψu u U U *+==2121211ψψψψu u UU *+== 所以01212121=⎪⎪⎭⎫ ⎝⎛-**ψψu u u u 因为012121≠-**u u u u ,故021=ψψ,即 1ψ和2ψ正交。
即证得幺正算符的两个本征矢量,若所属本征值不同亦必正交。
3.2 投影于某一子空间的投影算符P ,既然是厄米算符,它的本征值是什么?有无简并?本证子空间是什么?解:投影于某一子空间的投影算符∑==mi iP 1,设全空间是n 维的,且n m <。
则本征值方程ψλψψ==∑=mi i iP 1⑴其中λ为本征值,ψ为相应的本征态。
则ψλψλψ22==P P ⑵ 由幺正算符等幂性P P =2得ψψP P =2 ⑶ 由⑴、⑵和⑶式得λλ=2,所以1=λ或0=λ。
即求得投影算符的本征值是1或0。
当1=λ时,本征失量是i ,其中m i ,2,1=。
所以是简并的,本征子空间S 是由这m 个基矢构成的矢量空间。
当0=λ时,本征矢量是与i 正交的矢量。
所以也是简并的,本征子空间是S 空间的补空间。
#练习3.3 证明若算符的本征值谱中有零本征值,则这个算符肯定没有逆。
证明:假设算符A 有逆,则在值域中取一任意|φ>,则定义域有|ψ>存在即ψφφ-==AA 1已知A的全部本征值和相应的本征矢量:i i i a A ψφ= i=1,2,3…,∴()ψψφ--==A a AA算符A 存在零本征值,即00=⇒=φa a∴对于任意本征矢量()ψφa A -≠与()ψφ-=A a 矛盾∴假设不成立,即算符的本征值谱中有零本征值,这个算符肯定没有逆。
量子力学试题
量子力学试题(一)及答案 一. (20分)质量为m 的粒子,在一维无限深势阱中 中运动,若0=t 时,粒子处于状态上,其中,()x n ϕ为粒子能量的第n 个本征态。
(1) 求0=t 时能量的可测值与相应的取值几率;(2) 求0>t 时的波函数()t x ,ψ及能量的可测值与相应的取值几率 解:非对称一维无限深势阱中粒子的本征解为 (1) 首先,将()0,x ψ归一化。
由可知,归一化常数为于是,归一化后的波函数为 能量的取值几率为能量取其它值的几率皆为零。
(2) 因为哈密顿算符不显含时间,故0>t 时的波函数为(3) 由于哈密顿量是守恒量,所以0>t 时的取值几率与0=t 时相同。
二. (20分)质量为m 的粒子在一维势阱中运动()00>V ,若已知该粒子在此势阱中有一个能量2V E -=的状态,试确定此势阱的宽度a 。
解:对于02<-=V E 的情况,三个区域中的波函数分别为 其中,在a x =处,利用波函数及其一阶导数连续的条件 得到 于是有此即能量满足的超越方程。
当021V E -=时,由于故40ππ-=n a mV, ,3,2,1=n最后,得到势阱的宽度三.(20分)设厄米特算符Hˆ的本征矢为n ,{n 构成正交归一完备系,定义一个算符(1) 计算对易子()[]n m U H,ˆ,ˆ; (2) 证明()()()p m U q p U n m U nq ,ˆ,ˆ,ˆδ=+;(3) 计算迹(){}n m U,ˆTr ; (4) 若算符A ˆ的矩阵元为nm mn A A ϕˆ=,证明 解:(1)对于任意一个态矢ψ,有 故(2)()()()p m U q p U n m U nq q p n m ,ˆ,ˆ,ˆδϕϕϕϕ== (3)算符的迹为(4)算符 而四. (20分)自旋为21、固有磁矩为s γμ=(其中γ为实常数)的粒子,处 于均匀外磁场k 0 B B =中,设0=t 时,粒子处于2=x s 的状态,(1) 求出0>t 时的波函数;(2) 求出0>t 时x sˆ与z s ˆ的可测值及相应的取值几率。
量子力学考试题讲解及答案
量子力学考试题讲解及答案一、单项选择题(每题2分,共10分)1. 量子力学中,波函数的平方代表的是:A. 粒子的位置B. 粒子的动量C. 粒子出现的概率密度D. 粒子的能量答案:C2. 根据海森堡不确定性原理,下列说法正确的是:A. 粒子的位置和动量可以同时精确测量B. 粒子的位置和动量不能同时精确测量C. 粒子的能量和时间可以同时精确测量D. 粒子的能量和时间不能同时精确测量答案:B3. 薛定谔方程是用来描述:A. 经典力学系统B. 热力学系统C. 量子力学系统D. 电磁学系统答案:C4. 量子力学中的波粒二象性是指:A. 粒子有时表现为波动性,有时表现为粒子性B. 粒子总是同时具有波动性和粒子性C. 粒子只具有波动性D. 粒子只具有粒子性答案:B5. 量子力学中,哪个假设是关于测量的?A. 叠加原理B. 波函数坍缩C. 泡利不相容原理D. 量子纠缠答案:B二、填空题(每题2分,共10分)1. 量子力学中的波函数通常用希腊字母________表示。
答案:Ψ2. 量子力学中的德布罗意波长公式为λ = ________。
答案:h/p3. 在量子力学中,一个粒子的总能量可以表示为E = ________ + V。
答案:K.E.4. 费米子遵循的统计规律是________统计。
答案:费米-狄拉克5. 量子力学中的测不准原理是由海森堡提出的,其数学表述为ΔxΔp ≥ ________。
答案:h/4π三、简答题(每题5分,共20分)1. 简述量子力学中的波函数坍缩概念。
答案:波函数坍缩是指在量子力学中,当一个量子系统的状态被测量时,系统的波函数会从多个可能的状态中“选择”一个确定的状态,这个过程称为波函数坍缩。
2. 解释量子力学中的叠加原理。
答案:叠加原理是指在量子力学中,一个量子系统可以同时处于多个状态的叠加,即系统的波函数可以是多个不同状态波函数的线性组合。
3. 描述量子力学中的泡利不相容原理。
答案:泡利不相容原理指出,两个相同的费米子(如电子)不能处于同一个量子态,即它们不能具有相同的一组量子数。
高等量子力学练习题及答案解析二十三
练习23.1利用恒等式()()()m n m n y x y x y x ++=++及Taylor 展开,证明:⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛∑∞=t m n r t m r n r 0 对整数n 和m 都成立;式中⎪⎪⎭⎫⎝⎛r n 定义为()()()!121r r n n n n r n ----=⎪⎪⎭⎫ ⎝⎛ 证明: 因为()()()()()()()∑∑∞=∞=-+-+--+---=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛00!121!121r r r t t r m m m m r r n n n n r t m r n()()()rt mr n r C C t r m r t m r n r n -∞==-+--=∑0!!!!!! ()()()()()t m n C t m n t m n t r m n m n m n t m n +=-++=+-+-++=⎪⎪⎭⎫ ⎝⎛+!!!!11对 ()()()m n m n y x y x y x ++=++进行Taylor 得∑∑∑+=''''-+''''+=''-''=-=mn k k m n k k m n mk k m k k mnk kn kknyx C yx C yx C 00(这里k k k '+='') 则∑∑∑+='+''+=''==mn k k k mn mk k mnk k nCCC 0所以 tm n r t m r n C C C +-=即⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛∑∞=t m n r t m r n 0r 此题得证。
练习23.2 利用上题,证明当s m n c b a ,,,,,为正整数,且m n s c a b a +<>>,,时有()()()()()()()()()()∑∑∞=∞=+---=-+++-+------=0r 0r !r !r s m !r s !r n 1!s m n !s !m !n !m n !r !r a c b !r c a !r b a !c a !b a !c !b !a证明: ⑴因为()()()()()∑∞=+-+------0r !r !r a c b !r c a !r b a !c a !b a ()()()[]()()()()()()!c !b !a !b !c a !c !c a !a !b !c a C !b !c a C C !b !c a !r c a r c a -b b !r !r b a !b !b a 0r c-a arc a b0r r b -a 0r =--=-=-=--------=∑∑∑∞=--∞=∞=!!所以 ()()()()()∑∞=+-+------=0!!!!!!!!!r r r a c b r c a r b a c a b a c b a 此题得证 ⑵()()()∑∞=+---0r !r !r s m !r s !r n 1()()()[]()()!m !n 1!s m n !s !m n !m !n 1C !m !n 1C C !m !n 1r s m !r s !m !r !r n !n s mn rs mr r n 0r +++===----=+-∞=∞=∑∑所以()()()()()∑∞=+---=-++0r !r !r s m !r s !r n 1!s m n !s !m !n !m n此题得证。
高等量子力学练习题及答案解析二十七
27.1练习 27.2 (1)根据(27.9)式,证明完全性关系:1==⎰⎰p p d p k k k(2) 在θϕp 表象和θϕk 表象中,有p k k p p θθϕ==证明当时有: p p k k '='3证:(1) 由(27.9)式可知在位置x 表象中,有:px i ep xπ21=,p r ek x kx i2121==π,p k 21=,p k =显然有: p k21= , p d k d =∴p pd p k k d k2121⎰⎰=p p d p⎰= (完全性) 1= 得证。
(2)由题意可知在θϕp 表象和θϕk 表象中,有:p k 23=, p k '='23∴p p p p k k'='='32323 得证# 27.3练习 27.4 由(27.34)式推出(27.35)式。
解:(27.34)式:i i i p i k V k i H E i H E i+±-=±-±)()(εψε两边除以εi H E i ±-得:i i i p k V i H E k iεψ±-+=±1,得证。
#练习 27.5 由(27.30)式证明散射态矢量的正交归一性:)(k k k k P P -'='=±±'δψψ解:已知:算符εi H E V i ±-=0,k V V P=±ψ。
∴±±±-+=P i p V i H E k iψεψ01k V i H E k iε±-+=01k V i H E i )11(0ε±-+= 显然得:k V i H E i P '-+=+±')11(0εψ=±±'PP ψψk V i H E i '-++)11(0εk V i H E i )11(0ε±-+ k k V i H E V i H E i '±-+-+=+)11)(11(00εε k k V V i H E i H E i H E i H E i i i i'±-±+--+-=+)1)(1(0000εεεε( 1=+V V)k k H E H E i i'+-++-=])()1([220220εε( 1>>iE)k k'=# 27.6 27.7练习 27.8 讨论(27.30)式中±i P ψ的时间反演态,证明:i iP P T -±=ψψ0证明:已知:k V V P=±ψ,p k23=则得:±±±-+=P i p V i H E k iψεψ01k V i H E k iε±-+=01i i i P V i H E Pε±-+=02323等价∝)(i P F(F 为函数) i i P TP T-=-010 ,∴ )()(*iiP F P F T-=显然得:)(0232300i i i P P V i H E P T T iεψ±-+=±iP i i i P V i H E P -=--+-=ψε0233 即:i iP P T -±=ψψ0 得证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.设氢原子处于基态030,1),,(0a e a r a r -=
πϕθψ为Bohr 半径,求电子径向概率密
度最大的位置(最概然半径)。
解 22)()(r r R r w nl nl ⋅= 230
10021)(r e a r w a r ⋅=-π ⎭
⎬⎫⎩⎨⎧+⋅-=--0202221203010a r a r re r e a a dr dw π 01120300
2=⎭
⎬⎫⎩⎨⎧+-=-r a re a a r π 由此得
0=r , ∞→r , 0a r =
2. 验证ϕθϕθψ33sin )(),,(i e r f r =是2ˆL 和z
L ˆ的共同本征函数,并指出相应的本征值。
( ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂∂-=22222sin 1)(sin sin 1ˆϕθθθθ
θ L )
解 ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂∂-=22222sin 1)(sin sin 1ˆϕθθθθ
θ L 将2ˆL
作用于所给函数上,得 ϕθϕθθθθθ332222
sin )(sin 1)(sin sin 1i e r f ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂∂- ⎥⎦
⎤⎢⎣⎡-∂∂-=ϕϕθθθθθθ332332sin )(sin 9cos sin )(sin 3i i e r f e r f ⎥⎦
⎤⎢⎣⎡---=ϕϕθθθθθθ33222232sin )(sin 9)sin cos sin 3()(sin 3i i e r f e r f []
ϕϕθθθ332232sin )(3sin )1(cos )(9i i e r f e r f +⋅--=
ϕϕθθ332332sin )(3sin )(9i i e r f e r f +=
ϕθ332sin )(12i e r f =
上式满足本征方程ψψ22ˆL L =,可见θϕθψ3sin )(),,(r f r =ϕ3i e 是2ˆL
的本征函数,本征值为212 。
又ϕ
∂∂=i L z ˆ,将z L ˆ作用于所给函数上,得 ϕϕθθϕ33333sin )(sin )(i i ie r f i
e r
f i ⋅=∂∂ ϕθ33sin )(3i e r f ⋅=
可见满足本征方程ψψz L L =2ˆ,故ϕθϕθψ33sin )(),,(i e r f r =是z
L ˆ的本征函数,本征值为 3。
3. 如果1ˆL 和2ˆL 是线性算符,证明它们的和1
ˆL +2ˆL 及解
解根据线性算符的定义
22112211ˆˆ)(ˆψψψψL C L C C C L +=+
设1
ˆL 、2ˆL 是线性算符,则 ))(ˆˆ(2
21121ψψC C L L ++ )(ˆ)(ˆ2
211222111ψψψψC C L C C L +++= (分配律) )ˆˆˆˆ222121212111ψψψψL C L C L C L C +++= (定义) 2
2121211)ˆˆ()ˆˆ(ψψL L C L L C +++= (分配律) 显然,1ˆL +2ˆL 满足线性算符的定义,故1
ˆL +2ˆL 是线性算符。
)](ˆ[ˆ)(ˆˆ221121221121ψψψψC C L L C C L L +=+ (结合律)
)ˆˆ(ˆ2221211ψψL C L C L += (定义)
22121211ˆˆˆˆψψL L C L L C += (定义)
显然,1ˆL 2ˆL 满足线性算符的定义,故1
ˆL 2ˆL 是线性算符。
积1
ˆL 2ˆL 也是线性算符。