晶格晶胞晶粒晶界的概念
材料本征结构名词解释-概述说明以及解释
材料本征结构名词解释-概述说明以及解释1.引言1.1 概述材料本征结构是一个重要的概念,涉及到材料科学的基础性问题。
在材料科学领域,我们经常需要研究材料的结构与性能之间的关系。
材料本征结构即指的是材料在无外界作用下固有的结构,也可以称为材料的自发结构或天然结构。
通过对材料本征结构的研究,我们可以揭示材料的基本性质、力学行为、热学性质等方面的规律,从而为新材料的设计与制备提供科学依据。
在材料科学研究中,深入了解材料本征结构对于理解材料的性能、缺陷行为和相变过程至关重要。
在现代材料科学研究中,多种先进的方法与技术被用于研究材料的本征结构。
例如,X射线衍射、电子显微镜、原子力显微镜和核磁共振等方法都被广泛应用于材料结构的表征与分析。
通过这些方法,我们可以获取关于材料晶格结构、晶体缺陷、界面性质等方面的重要信息。
本文将重点讨论材料本征结构的定义和特征,以期帮助读者更好地理解材料科学中这一重要概念。
此外,我们还将讨论材料本征结构的重要性,并探讨其对材料性能和应用的影响。
通过深入研究材料本征结构,我们可以进一步推动材料科学的发展,为各个领域的材料应用提供更加可靠和可持续的解决方案。
文章结构部分的内容可以写成以下这样:"1.2 文章结构":文章本文分为三个主要部分:引言、正文和结论。
每个部分都有自己的目的和内容。
在引言部分,我们将对材料本征结构进行概述,介绍文章的结构和目的。
我们将简单介绍材料本征结构的定义和特征,并解释为什么这个主题是重要的。
引言的目的是为读者提供一个对文章主题的基本了解和背景。
正文部分将深入探讨材料本征结构的定义和特征。
在第2.1节中,我们将详细解释材料本征结构的定义,并探讨不同材料可能具有的不同类型的本征结构。
我们将通过举例说明,帮助读者更好地理解材料本征结构的概念和分类。
在第2.2节中,我们将进一步讨论材料本征结构的特征。
我们将介绍如何通过实验和表征技术来确定材料的本征结构,并讨论常见的技术和方法。
金属材料的结构与结晶
金属化合物一般具有复杂的晶体结构,熔点高, 硬而脆。 合金中的金属化合物,常能提高合金
的强度、硬度和耐磨性,降低塑性和韧性。
金属化合物是各种合金钢、硬质合金及许多非铁 金属的重要组成相。 3. 机械混合物: 纯金属、固溶体或化合物,按一 定重量比例组成的均匀物质。
例:35钢的显微组织中,黑色部分即为固溶体与
1.晶格:描述原子在晶体中排列方式的空间几何格架。 2.晶胞:反映晶格特征的最小单元。
3. 晶格参数:
晶胞棱边的长度和棱边夹角α、β、γ。
4. 三种典型的金属晶体结构 面心立方晶格、体心立方晶格、密排六方晶格。 面心立方晶格类型的金属有Cu、Al、Ni等,具有良
好的塑性; 密排六方晶格的金属有 Mg、Zn、Be等
Fe3C组成的机械混合物。
机械混合物的性质,基本上是各组成相性能的
平均值。
35 钢的显微组织
机械混合物P
将黑色部分放大,看到指纹状结构。其中白色
基体是Fe与C形成的固溶体, 含碳0.0218% 体 心立方晶格(称为铁素体F), 黑色条纹为 渗
碳体(Fe3C)。
黑色部分是F与Fe3C形成的机械混合物,称为
相邻晶体的枝晶接触时,晶体就向着未凝固的部
位生长;直到枝晶间液体全部消失,每一枝晶成
长为一个晶粒。
纯金 属结 晶过 程示 意图
三、晶粒大小对金属力学性能的影响
1.晶粒大小通常以单位截面面积上晶粒数目或平均
直径来表示。(表2-2晶粒度) 2.晶粒越细,金属的强度、塑性和韧性越好。 晶粒越细,变形量被分散到更多的晶粒内进行,各 晶粒的变形比较均匀而不致产生过分的应力集中现
空位
间隙原子
图2-7
多晶体示意图
晶体、晶粒、晶胞、晶格
百科名片晶体即是内部质点在三维空间呈周期性重复排列的固体。
目录展开晶体有三个特征(1)晶体有整齐规则的几何外形;(2)晶体有固定的熔点,在熔化过程中,温度始终保持晶体不变;(3)晶体有各向异性的特点。
固态物质有晶体与非晶态物质(无定形固体)之分,而无定形固体不具有上述特点。
晶体是内部质点在三维空间成周期性重复排列的固体,具有长程有序,并成周期性重复排列。
非晶体是内部质点在三维空间不成周期性重复排列的固体,具有近程有序,但不具有长程有序。
如玻璃。
外形为无规则形状的固体。
晶体的共性合成铋单晶1、长程有序:晶体内部原子在至少在微米级范围内的规则排列。
2、均匀性:晶体内部各个部分的宏观性质是相同的。
3、各向异性:晶体中不同的方向上具有不同的物理性质。
4、对称性:晶体的理想外形和晶体内部结构都具有特定的对称性。
5、自限性:晶体具有自发地形成封闭几何多面体的特性。
6、解理性:晶体具有沿某些确定方位的晶面劈裂的性质。
究竟什么样的物质才能算作晶体呢?首先,除液晶外,晶体一般是固体形态。
其次,组成物质的原子、分子或离子具有规律、周期性的排列,这样的物质就是晶体。
但仅从外观上,用肉眼很难区分晶体、非晶体与准晶体。
那么,如何才能快速鉴定出它们呢?一种最常用的技术是X光技术。
用X光对固体进行结构分析,你很快就会发现,晶体和非晶体、准晶体是截然不同的三类固体。
晶体结构为了描述晶体的结构,我们把构成晶体的原子当成一个点,再用假想的线段将这些代表原子的各点连接起来,就绘成了像图中所表示的格架式空间结构。
这种用来描述原子在晶体中排列的几何空间格架,称为晶格。
由于晶体中原子的排列是有规律的,可以从晶格中拿出一个完全能够表达晶格结构的最小单元,这个最小单元就叫作晶胞。
许多取向相同的晶胞组成晶粒,由取向不同的晶粒组成的物体,叫做多晶体,而单晶体内所有的晶胞取向完全一致,常见的单晶如单晶硅、单晶石英。
大家最常见到的一般是多晶体。
由于物质内部原子排列的明显差异,导致了晶体与非晶体物理化学性质的巨大差异。
机械工程材料名词解释
(1) 单晶体与多晶体:单晶体中各处晶格位向完全一致;多晶体则由许多不同位向的晶格组成的晶体。
(3) 晶格、晶胞与晶格常数:晶格用来表示晶体中原子排列形式的空间格架;晶胞是组成晶格的基本几何单元;而晶格常数则是指晶胞的三条棱边长度a、b、c。
(4) 晶界与亚晶界:晶界是相邻晶粒之间的界面;而亚晶界是指相邻亚晶粒之间的界面。
(5) 位错与位错密度:由于晶体中某处一列或若干列原子发生了有规律的错排而造成的晶格畸变区称为位错;而位错密度(ρ)是指单位体积中所包含的位错线总长度或穿过单位截面积的位错线数目,ρ=L/V。
(6) 组元、固溶体与金属化合物:组成材料的最基本、独立的物质称为组元;固溶体是指溶质原子溶入溶剂晶格中所形成的保持溶剂晶体结构的固相;而金属化合物则指合金组元间形成的晶体结构不同于其中任一组元的具有金属特性的新相。
(7) 各向异性与同素异构(晶)转变:理想晶体在不同方向上具有不同的性能称为各向异性;而同素异构(晶)转变系指伴随着外界条件的变化,物质在固态时所发生的晶体结构的转变,亦称多晶型转变。
(8)相与机械混合物:材料中具有同一聚集状态、同一化学成分、同一结构并与其他部分有界面分开的均匀组成部分称为相;而机械混合物系指合金中,两种相或两种以上的相相互均匀混合形成的混合组织,其中各个相仍然保持其各自相的结构特征,但是它们相互间仅仅发生了机械均匀的混合而已。
(1)相、相组分(相组成物)、组织与组织组分(组织组成物):合金组织中所包含的相即为相组分,相是具有同一化学成分、同一晶体结构、同一原子聚集状态并且有界面分开的均匀组成部分;组织是用肉眼或在显微镜下所观察到的材料内部的微观形貌图像,而组织组分系指合金组织中具有独特形态的各组成部分。
组织包含有相,而相是组成组织的基本组成部分。
但当同一相由于形成条件不同时,会形成不同分布特征的不同类型的组织。
一种相可构成单相组织,两种相或两种以上的相可构成复相组织。
材料科学基础名词解释
金属材料:以金属键结合为主的材料,如钢铁材料。
无机非金属材料:以离子键和共价键结合为主的材料,如陶瓷材料。
高分子材料:以共价键结合为主的材料,如塑料、橡胶。
复合材料:以界面特征结合为主的材料,如玻璃钢。
结构材料:利用它的力学性能,用于制造需承受一定载荷的设备、零部件、建筑结构等。
功能材料:利用它的特殊物理性能(电、热、光、磁等),用于制造各种电子器件、光敏元件、绝缘材料等。
高聚物:是由一种或几种简单低分子化合物经聚合而组成的分子量很大的化合物。
复合材料:是由两种或两种以上化学性质或组织结构不同的材料组合而成。
晶体:物质的质点(分子、原子或离子)在三维空间呈规则的周期性重复排列的物质。
空间点阵:把质点看成空间的几何点,点所形成的空间阵列。
晶格:用假想的空间直线,把这些点连接起来,所构成的三维空间格架。
晶胞:从晶格中取出具有代表性的最小几何单元。
晶格参数:描述晶胞的六个参数a、b、c、晶体中各种方位上的原子面叫晶面,表示晶面的符号叫晶面指数。
{hkl}代表原子排列完全相同,只是空间位向不同的各组晶面,称为晶面族。
晶体中各个方向上的原子列叫晶向,表示晶向的符号叫晶向指数。
<unw>代表原子排列完全相同,只是空间位向不同的各组晶向,称为晶向族所有平行或相交于某一直线的这些晶面构成一个晶带,此直线称为晶带轴。
属此晶带的晶面称为共带面。
晶胞原子数:指一个晶胞内所含的原子个数。
原子半径:指晶胞中原子密度最大方向上相邻两个原子之间距离的一半,与晶格常数有关。
配位数:指晶格中任一原子周围所具有的最近且等距的原子数。
致密度:合金:是指由两种或两种以上元素组成的具有金属特性的物质。
如:黄铜,Cu、Zn合金;碳钢,Fe、C合金。
组元:组成合金最基本的独立物质(组成合金的元素、稳定化合物)。
相:成分结构相同并以界面分开的均匀部分。
组织:在显微镜下所看到的相的分布形态。
固溶体:指溶质组元溶于溶剂晶格中,并保持溶剂组元晶格类型而形成的均匀固体。
材料科学基础---名词解释
第一部分名词解释第二章晶体学基础1、晶体结构:反映晶体中全部基元之间关联特征的整体。
晶体结构有4种结构要素,质点、行列、面网、晶胞。
晶体:原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、|各向异性。
非晶体:原子没有长程的周期排列,无固定的熔点,各向同性等。
空间点阵:指几何点在三维空间作周期性的规则排列所形成的三维阵列,是人为的对晶体结构的抽象。
晶胞:在点阵中取出一个具有代表性的基本单元(最小平行六面体)作为点,阵的组成单元,称为晶胞。
空间格子:为便于描述空间点阵的图形,可用许多平行的直线将所有阵点连接起来,于是就构成一个三维几何构架,称为空间格子。
2、晶带定律:晶带轴[uvw]与该晶带的晶面(hkl)之间存在以下关系:hu+kv+lw=0。
凡满足此关系的晶面都属于以[uvw]为晶带轴的晶带,故…该关系式也称为晶带定律。
布拉格定律:布拉格定律用公式表示为:2dsinx=nλ(d为平行原子平行平面的间距,λ为入射波长,x为入射光与晶面的夹角)。
晶面间距:两相邻平行晶面间的平行距离。
晶带轴:所有平行或相交于某一晶向直线的的晶面构成一个晶带,该直线称·为晶带轴,属此晶带的晶面称为共带面。
3、合金:两种或两种以上的金属或金属与非金属经熔炼、烧结或其他方法组合而成并具有金属特性的物质。
固溶体:是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶剂原子)所形成的均匀混合的固态溶体,它保持溶剂的晶体结构类型。
>固溶强化:由于合金元素(杂质)的加入,导致的以金属为基体的合金的强度得到加强的现象。
中间相:两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。
由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。
&置换固溶体:当溶质原子溶入溶剂中形成固溶体时,溶质原子占据溶剂点阵的阵点,或者说溶质原子置换了溶剂点阵的部分溶剂原子,这种固溶体就称为置换固溶体。
晶体晶粒晶胞晶格
晶体百科名片晶体即是内部质点在三维空间呈周期性重复排列的固体。
目录•••••••展开概述晶体有三个特征(1)晶体有整齐规则的几何外形;(2)晶体有固定的,在熔化过程中,温度始终保持晶体不变;(3)晶体有的特点。
物质有晶体与非晶态物质(无定形固体)之分,而无定形固体不具有上述特点。
晶体是内部质点在三维空间成周期性重复排列的固体,具有长程有序,并成周期性重复排列。
是内部质点在三维空间不成周期性重复排列的固体,具有近程有序,但不具有长程有序。
如玻璃。
外形为无规则形状的固体。
晶体的共性合成铋单晶1、长程有序:晶体内部原子在至少在微米级范围内的规则排列。
2、均匀性:晶体内部各个部分的宏观性质是相同的。
3、各向异性:晶体中不同的方向上具有不同的。
4、对称性:晶体的理想外形和晶体内部结构都具有特定的对称性。
5、:晶体具有自发地形成封闭几何多面体的特性。
6、:晶体具有沿某些确定方位的晶面劈裂的性质。
7、最小内能:成型晶体内能最小。
8、晶面角守恒:属于同种晶体的两个对应晶面之间的夹角恒定不变。
晶体组成组成晶体的结构微粒(、、)在空间有规则地排列在一定的点上,这些有一定的几何形状,叫做晶格。
排有结构粒子的那些点叫做晶格的结点。
、、食盐的晶体模型,实际上是它们的晶格模型。
晶体按其结构粒子和作用力的不同可分为四类:离子晶体、原子晶体、分子晶体和金属晶体。
固体可分为晶体、非晶体和三大类。
具有整齐规则的几何外形、固定熔点和各向异性的固态物质,是物质存在的一种基本形式。
固态物质是否为晶体,一般可由予以鉴定。
晶体内部结构中的质点(原子、离子、分子)有规则地在呈周期性重复排列,组成一定形式的晶格,外形上表现为一定形状的几何多面体。
组成某种几何多面体的平面称为,由于生长的条件不同,晶体在外形上可能有些歪斜,但同种间夹角(晶面角)是一定的,称为晶面角不变原理。
晶体按其内部结构可分为七大晶系和14种晶格类型。
晶体都有一定的对称性,有32种对称元素系,对应的对称动作群称做晶体系点群。
材料科学基础名词解释
资料科学基础名词解说第一章固体构造1、晶体 :原子按必定方式在三维空间内周期性地规则重复摆列,有固定熔点、各向异性。
非晶体 :原子没有长程的周期摆列,无固定的熔点,各向同性等。
2、中间相 :两组元 A 和 B 构成合金时,除了形成以 A 为基或以 B 为基的固溶体外,还可能形成晶体构造与 A,B 两组元均不同样的新相。
因为它们在二元相图上的地点老是位于中间,故往常把这些相当为中间相。
3、晶体点阵:由实质原子、离子、分子或各样原子公司,按必定几何规律的详细摆列方式称为晶体构造或晶体点阵。
4、配位数 :晶体构造中任一原子四周近来邻且等距离的原子数。
5、晶格:描绘晶体中原子摆列规律的空间格架称之为晶格。
6、晶胞 :在点阵中拿出一个拥有代表性的基本单元(最小平行六面体)作为点阵的构成单元,称为晶胞。
7、空间点阵:由四周环境同样的阵点在空间摆列的三维排阵成为空间点阵。
8、晶向:在晶格中,穿过两个以节点的任向来线,都代表晶体中一个原子列在空间的位向,称为晶向。
9、晶面:由节点构成的任一平面都代表晶体的原子平面,称为晶面。
10、晶向指数(晶面指数):为了确立晶面、晶向在晶体中的相对取向、就需要一种符号,这种符号称为晶面指数和晶向指数。
国际上通用的是密勒指数。
一个晶向指数其实不是代表一个晶向,二十代表一组相互平行、位向同样的晶向。
11、晶向族:原子摆列同样但空间位向不一样的全部晶向称为晶向族,以<uvw> 表示。
12、晶面间距:相邻两个平行晶面之间的垂直距离。
低指数晶面的面间距较大,而高指数晶面的面间距较小。
晶面间距越大,则该晶面上原子摆列越密切,该原子密度越大。
13、配位数:每个原子四周近来邻且等距离的原子数量,称为配位数。
14、多晶型性:有些金属固态在不一样温度或不一样压力范围内拥有不一样的晶体构这种性质造,称为晶体的多晶型性。
15、多晶型性转变:拥有多晶型性的金属在温度或压力变化时,由一种构造转变成另一种结构的过程称为多晶型性转变,也称为同素异构转变。
晶胞晶体晶格晶界晶粒的关系
晶胞晶体晶格晶界晶粒的关系1. 认识基础概念让我们先来聊聊这些科学名词——晶胞、晶体、晶格、晶界、晶粒。
别担心,听起来复杂,其实很简单。
想象你在拼乐高,每一个小块儿代表的就是这些概念中的一个部分。
1.1 晶胞:小小的基础单位晶胞,顾名思义,就是晶体的基本单位。
它是一个小小的立方体或其它几何形状的结构,像乐高的一个小块儿一样。
它包含了构成整个晶体的基本元素或分子。
这些晶胞像砖块一样一个个堆砌起来,组成了更大的晶体结构。
简单点说,晶胞就像你搭建乐高时的一个基础单元。
1.2 晶体:结构的整体当你把许多个晶胞按照一定的规律排列起来,就形成了一个晶体。
晶体就像是一个完整的乐高模型,它的每一部分都是由这些晶胞拼接而成的。
晶体的美妙之处在于它们的排列是有规律的,这种规律叫做晶格。
2. 晶格与晶体结构2.1 晶格:有序的排列晶格其实就是一种规则的排列方式,像棋盘上的格子一样。
每个晶胞都在一个特定的位置上,按照一定的规律排列,这样就形成了晶格。
不同的晶体有不同的晶格结构,比如立方体、六角形等。
就像不同的乐高模型可能有不同的形状和结构。
2.2 晶体的多样性由于晶格的不同,晶体有很多种类。
例如,钻石和石墨都是由碳元素构成的,但它们的晶格结构不同,所以它们的性质也大相径庭。
钻石的晶格非常紧密,所以它非常坚硬,而石墨的晶格则比较松散,导致它滑腻且易于剥离。
3. 晶界与晶粒:结构的细节3.1 晶界:界限的存在晶界就是不同晶粒之间的“隔阂”。
就像两个不同的乐高模型接触的地方一样,晶界是晶体中不同区域之间的界限。
晶界的存在可能会影响晶体的性质,比如它们可能会影响晶体的强度和韧性。
想象一下,如果你在搭建乐高时,接缝处拼接得不太好,那么整个模型的稳定性也会受到影响。
3.2 晶粒:大块的集合体晶粒是指晶体中的一个个小区域,每个区域都是由无数个晶胞组成的。
不同的晶粒有不同的晶体取向,就像不同的乐高模型部件可能朝向不同的方向。
晶粒的大小和分布会影响材料的整体性质,比如金属的强度和韧性。
材料科学基础 名词解释
1、化学键:组成物质整体的质点(原子、分子或离子)间的相互作用力叫做化学键。
共价键:有些同类原子,例如周期表IV A、V A、VIA族中大多数元素或电负性相差不大的原子相互接近时,原子之间不产生电子的转移,此时借共用电子对所产生的力结合,形成共价键。
离子键:当两种电负性相差大的原子相互靠近时,其中电负性小的原子失去电子,成为正离子,电负性大的原子获得电子成为负离子,两种离子靠静电引力结合在一起形成离子键。
范德瓦尔键(分子键):分子的一部分往往带正电荷,而另一部分往往带负电荷,一个分子的正电荷部位和另一分子的负电荷部位间,以微弱静电力相吸引,使之结合在一起,称为范德瓦尔键,也叫分子键。
金属键:由金属正离子和自由电子之间互相作用而结合称为金属键。
2、晶体:物质的质点(分子、原子或离子)在三维空间作有规律的周期性重复排列所形成的物质叫晶体。
单晶体:由一个晶粒组成的晶体。
准晶:原子在晶体内部是长程有序的具有准周期性的具有五次对称轴的介于晶体与非晶体之间的一类晶体,叫做准晶。
玻璃体:液体冷却时,尚未转变为晶体就凝固了,它实质是一种过冷的液体结构,称为玻璃体。
非晶态金属(金属玻璃):在特殊的冷却条件下金属可能不经过结晶过程而凝固成保留液体短程有序结构的非晶态金属。
非晶态金属又称作金属玻璃。
微晶合金:晶粒尺寸达微米(μm)的超细晶粒合金材料,称为微晶合金。
纳晶合金:晶粒尺寸达纳米(nm)的超细晶粒合金材料,称为纳晶合金。
3、空间点阵(点阵):代表原子(分子或离子)中心的点的空间排列,称为空间点阵,简称点阵。
阵点:代表原子(分子或离子)中心的点。
晶格:将阵点用一系列平行直线连接起来,构成一空间格架叫晶格。
晶胞:点阵中能保持点阵特征的最基本单元叫晶胞。
晶体结构:是指晶体中实际质点(原子、分子或离子)的具体排列情况,它们能组成各种类型,因此实际存在的晶体结构是无限多的。
4、晶向:晶体中某些原子在空间排列的方向叫晶向。
工程材料名词解释
工程材料名词解释1.片状珠光体:渗碳体为片状的珠光体2.球状珠光体:在铁素体上分布着颗粒状渗碳体组织3.渗碳:是指将钢件置于渗碳介质中加热并保温目的:是提高钢件表层的含碳量。
4.氮化:在一定温度下,使活性氮原子渗入工件表面的化学热处理工艺称为渗氮。
目的:是提高零件表面的硬度、耐磨性、耐蚀性及疲劳强度。
5.过冷奥氏体:冷却到A1线以下而又尚未转变的奥氏体6.残余奥氏体:马氏体转变不能完全进行到底,冷却到MS线以下转变停止时仍未能转变的奥氏体。
7.钢的化学热处理:钢放在一定的化学介质中,使其表面与介质相互作用,吸收其中某些化学元素的原子(或离子)并通过加热,使该原子自表面向内部扩散的过程称钢的化学热处理8.淬透性:在规定条件下,钢在淬火冷却时获得马氏体组织深度的能力。
9.淬硬性:钢在理想的淬火条件下,获得马氏体后所能达到的最高硬度。
10.奥氏体稳定化:奥氏体的稳定化是指奥氏体的内部结构在外界因素作用下发生某种变化而使奥氏体向马氏体的转变呈迟滞现象。
11.片状马氏体:铁基合金中的一种典型的马氏体组织,常见于淬火高,中碳钢及高Ni的Fe-Ni合金中,其空间形态呈凸透镜片状,也称为透镜片状马氏体。
12.板条马氏体:低碳钢,中碳钢。
马氏体时效钢和不锈钢等合金中形成的一种典型的马氏体组织,其光学显微组织是有成群的板条组成故称为板条马氏体13.正火:将钢材或钢件加热到Ac3(或Accm)以上适当温度,保温适当时间后在空气中冷却,得到珠光体类组织的热处理工艺;14.正火目的:改善钢的切削加工性能;细化晶粒,消除热加工缺陷;消除过共析钢的网状碳化物,便于球化退火;提高普通结构零件的机械性能。
15.退火:将组织偏离平衡状态的金属或合金加热到适当的温度,保持一定的时间,然后缓慢冷却以达到接近平衡状态组织的热处理工艺。
工艺有:扩散退火、完全退火、不完全退火、球化退火、再结晶退火和消除应力退火。
16.退火目的:均匀钢的化学成分及组织;细化晶粒;调整硬度,改善钢的成形及切削加工性能;消除内应力和加工硬化;为淬火做好组织准备3淬火目的:大幅度提高钢的强度与硬度。
晶格与晶胞的名词解释
晶格与晶胞的名词解释1.引言1.1 概述晶格和晶胞是材料科学中非常重要的概念,用于描述晶体的结构和性质。
晶格是指晶体内部原子、离子或分子排列成有序、重复的结构。
晶胞则是晶格的最小重复单元,它可以完整地再现整个晶格的结构。
在材料科学领域,研究晶格和晶胞的性质是为了理解和解释材料的结构、性能和行为。
晶格的特征决定了晶体的物理、化学和电子性质,包括导电性、热导性、光学性质等。
晶胞的结构决定了晶体的晶体学性质,如晶胞的形状、尺寸和对称性。
通过对晶格和晶胞的研究,科学家能够更好地理解材料的内部结构,并预测和设计新材料的性能。
例如,在固态物理和材料科学中,晶格常常用于描述金属、半导体、陶瓷和晶体材料的结构和性能。
同时,晶格和晶胞的概念也广泛应用于其他领域,如光学、凝聚态物理和无机化学等。
本文将详细介绍晶格和晶胞的定义、特征以及它们之间的关系。
通过深入理解这些概念,我们可以更好地理解材料的微观结构与宏观性质之间的关联,为材料科学和工程领域的研究和应用提供指导。
希望本文可以帮助读者对晶格和晶胞的概念有一个清晰而全面的了解,并对材料世界有更深入的认识。
1.2文章结构文章结构部分的内容可以如下编写:1.2 文章结构本文将按照以下结构进行论述晶格与晶胞的名词解释。
首先,在引言部分,我们将简要概述晶格和晶胞的概念以及它们在材料科学中的重要性。
同时,我们将介绍本文的目的和意义,以便读者能够更好地理解本文所要传达的内容。
接下来,在正文部分,我们将详细解释晶格的定义和特征。
我们会介绍晶格是指由晶体内的原子、离子或分子排列所形成的规则三维结构。
同时,我们还会探讨晶格的一些重要特性,如晶胞的常见形状、晶体的晶型和晶系分类等。
然后,我们将进一步讨论晶胞的定义和构成。
晶胞是指在晶格中所选取的最小重复单元,它由原子、离子或分子构成。
我们将介绍晶胞的几何形状和晶格常量等关键概念,并解释晶胞在描述晶体结构中的重要性。
在结论部分,我们将对晶格和晶胞的理解与应用进行深入讨论。
金属学与热处理专题复习 (考研复习)专题一 名词解释
专题一名词解释第一章1.金属键:处于聚集状态的金属原子,全部或大部分将他们的价电子贡献出来,为其整个原子集体所公有,称之为电子气或电子云。
这些价电子或自由电子已不在只围绕自己的原子核转动,而是与所有的价电子一起在所有的原子核周围按量子力学的规律运动着,贡献出价电子的原子则变为正离子,沉浸在电子云中,他们依靠运动与其间的公有化的自由电子的静电作用而结合起来,这种结合方式叫金属键。
没有饱和性和方向性。
2.熔点:晶体向非结晶状态的液体转变的临界温度。
3。
晶体结构:晶体中原子在三维空间有规律的周期性的具体排列方式。
4.阵点:将构成晶体的原子抽象为纯粹的几何点,称之为阵点。
5.空间点阵:阵点有规律的周期性重复排列所形成的三维空间阵列称之为6.晶格:认为的将阵点用直线连接起来形成空间格子,称之为晶格。
他的实质是空间点阵。
7.晶胞:能够完全反应晶格特性的最小几何单元称之为晶胞。
8晶格常数、轴间夹角:晶胞的棱边长度一般称为晶格常数,晶胞的棱间夹角称为轴间夹角。
9.配位数:是指晶体结构中与任一原子最近邻、等距离的原子数目。
10.晶面、晶向:在晶体中,由一系列原子所组成的平面称之为晶面。
任意两原子之间连线所指的方向叫晶向。
11.晶粒:组成固态金属的结晶颗粒叫晶粒12.多晶体:有二颗以上晶粒所组成的晶体称为多晶体。
13.伪等向性:由于多晶体中的晶粒位向是任意的,晶粒的各向异性被互相抵消,因此在一般情况下整个晶粒不显示各向异性,称之为伪等向性。
14:多晶型:具有两种或几种晶体结构。
15:多晶型转变或同素异构转变:金属内部有一种晶体结构向另一种晶体结构的转变称之为多晶型转变或同素异构转变。
16晶体缺陷:一些原子偏离规则排列的不完整性区域。
17:空位:在某一温度下的某一瞬间,总有一些原子具有足够高的能量,以克服周围原子对他的约束,脱离开原来的平衡位置迁移到别处,于是在原来的位置上出现了空结点,这就是空位。
18.晶格畸变:19:间隙原子:处于晶格间隙中的原子叫20:置换原子:占据在原来基体原子上的异类原子21:位错:在晶体中某处有一列或若干列原子发生了有规律的错排现象,使长度达几百至几万个原子间距,宽约几个原子间距范围内的原子离开其平衡位置,发生了有规律的错动。
金属学与热处理重要名词解释
金属学与热处理重要名词解释绪论1、材料:是人类用来制造各种有用物件的物质。
2、工程材料:是指具有一定性能,在特定条件下能够承担某种功能、被用来制取零件和元件的材料。
3、金属材料:是指具有正的电阻温度系数及金属特性的一类物质。
包含金属和合金。
4、金属:是指由单一元素构成的、具有正的电阻温度系数及金属特性的一类物质。
5、合金:是指有两种或两种以上的金属或金属与非金属构成的、具有正的电阻温度系数及金属特性的一类物质。
6、无机非金属材料:又称硅酸盐材料、陶瓷材料,所谓无机非金属材料是指用天然硅酸盐(粘土、长石、石英等)或人工合成化合物(氮化物、氧化物、碳化物、硅化物、硼化物、氟化物)为原料,经粉碎、配置、成形和高温烧结而成的硅酸盐材料。
7、高分子材料:是指以高分子化合物为主要组分的材料,又被称为高聚物。
8、复合材料:是指由两种或两种以上不同性质的材料,通过不同的工艺方法人工合成的、各组分间有明显界面、且性能优于各组成材料的多相材料。
9、结构材料:是以强度、刚度、塑性、韧性、硬度、疲劳强度、耐磨性等力学性能为性能指标,用来制造承受载荷、传递动力的零件和构件的材料。
10、功能材料:是以声、光、电、磁、热等物理性能为指标,用来制造具有特殊性能的元件材料。
第一章金属的性能1、金属的使用性能:是指金属材料制成零件或构件后为保证正常工作及一定使用寿命应具备的性能,包括金属的力学性能、物理和化学性能。
2、金属的工艺性能:是指金属在加工成零件或构件的过程中金属应具备的适应加工的性能,包括冶炼性能、铸造性能、压力加工性能、切削加工性能、焊接性能及热处理工艺性能。
3、金属的力学性能:是指金属在外加载荷作用时所表现出来的性能,包括强度、硬度、塑性、韧性及疲劳强度等。
4、弹性变形:外力去除后立即可以恢复的变形。
其实质是在外力作用下晶格发生的歪扭与伸长。
5、塑性变形:外力去除后不能恢复的变形6、弹性极限:在弹性变形的范围内,金属材料所能承受的最大应力。
金属学及热处理习题参考答案(1-9章)
第一章金属及合金的晶体结构一、名词解释:1.晶体:原子(分子、离子或原子集团)在三维空间做有规则的周期性重复排列的物质。
2.非晶体:指原子呈不规则排列的固态物质。
3.晶格:一个能反映原子排列规律的空间格架。
4.晶胞:构成晶格的最基本单元。
5.单晶体:只有一个晶粒组成的晶体。
6.多晶体:由许多取向不同,形状和大小甚至成分不同的单晶体(晶粒)通过晶界结合在一起的聚合体。
7.晶界:晶粒和晶粒之间的界面。
8.合金:是以一种金属为基础,加入其他金属或非金属,经过熔合而获得的具有金属特性的材料。
9.组元:组成合金最基本的、独立的物质称为组元。
10.相:金属中具有同一化学成分、同一晶格形式并以界面分开的各个均匀组成部分称为相。
11.组织:用肉眼观察到或借助于放大镜、显微镜观察到的相的形态及分布的图象统称为组织。
12.固溶体:合金组元通过溶解形成成分和性能均匀的、结构上与组元之一相同的固相。
二、填空题:1.晶体与非晶体的根本区别在于原子(分子、离子或原子集团)是否在三维空间做有规则的周期性重复排列。
2.常见金属的晶体结构有体心立方晶格、面心立方晶格、密排六方晶格三种。
3.实际金属的晶体缺陷有点缺陷、线缺陷、面缺陷、体缺陷。
4.根据溶质原子在溶剂晶格中占据的位置不同,固溶体可分为置换固溶体和间隙固溶体两种。
5.置换固溶体按照溶解度不同,又分为无限固溶体和有限固溶体。
6.合金相的种类繁多,根据相的晶体结构特点可将其分为固溶体和金属化合物两种。
7.同非金属相比,金属的主要特征是良好的导电性、导热性,良好的塑性,不透明,有光泽,正的电阻温度系数。
8.金属晶体中最主要的面缺陷是晶界和亚晶界。
9.位错两种基本类型是刃型位错和螺型位错,多余半原子面是刃型位错所特有的。
10.在立方晶系中,{120}晶面族包括(120)、(120)、(102)、(102)、(210)、(210)、(201)、(201)、(012)、(012)、(021)、(021)、等晶面。
材料科学基础名词解释
阵点:点阵中的各个点,称为阵点。
晶胞:晶胞 能完整反映晶体内部原子或离子在三维空间分布之化学-结构特征的平行六面体单元。
晶向指数、晶面指数:为了便于确定和区别晶体中不同方位的晶向和晶面,国际上通用密勒(Miller)指数来统一标定晶
向指数与晶面指数。
晶向族:原子排列情况相同在空间位向不同(即不平行)的晶向统称为晶向族。
不对称倾斜晶界:如果倾斜晶界的界面绕x轴转了一角度φ,则此时两晶粒之间的位向差仍为θ角,但此时晶界的界面对于两个晶粒是 倾斜晶界不对称的,故称不对称倾斜晶界(unsymmetrical tilt boundary)。
扭转晶界:扭转晶界(twist boundary)是小角度晶界的一种类型。它可看成是两部分晶体绕某一轴在一个共同的晶面上相对扭转一个θ角所构成的,扭转轴垂直于这一共同的晶面。该晶界的结构可看成是由互相交叉的螺型位错所组成 。
柯肯达尔效应(kirkendall effect):原来是指两种扩散速率不同的金属在扩散过程中会形成缺陷,现已成为中空纳米颗粒的一种制备方法。可以作为固态物质中一种扩散现象的描述。
表面扩散:是指原子、离子、分子以及原子团在固体表面沿表面方向的运动。当固体表面存在化学势梯度场,扩散物质的浓度变化或样品表面的形貌变化时,就会发生表面扩散。
粘流态:当温度高于粘流化温度Tf并继续升高时,高聚物得到的能量足够使整个分子链都可以自由运动,从而成为能流动的粘液,其粘度比液态低分子化物的粘度要大得多,所以称为粘流态。
弹性形变:弹性形变是指固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体又恢复原状谓之“弹性形变”。
弹性模量:材料在弹性变形阶段内,正应力和对应的正应变的比值。
晶面族:立方晶系中,由于原子的排列具有高度的对称性,往往存在有许多原子排列完全相同但在空间位向不同(即不平行)的晶面,这些晶面总称为晶面族。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶格晶胞晶粒晶界的概念
晶格是指结晶体内的原子、离子或分子按照一定规律有序排列的空间结构。
晶格是一种周期性的空间结构,由于原子或离子之间的相互作用力和排布的规则导致晶格具有类似于周期函数的性质。
晶胞是指晶体中最基本、最小的重复结构单位,它由若干晶格点和晶格相交的一组截面(通常称为晶面)所围成。
通常情况下,晶胞是正多面体,每个晶胞具有完全相同的组成和形状。
晶格由若干相互平移的晶胞组成,每个晶胞都能够描绘整个晶体的结构。
晶粒是由同一种或不同种的晶体单元构成的微观颗粒,它们在固体中以一定方式排列。
一个晶粒内部的各向同性的晶格常被描述为单一晶体,但一个晶体内可能含有许多晶粒。
晶界是晶粒之间的界面或界面区域,它是由于在实际晶体生长、加工或变形过程中,晶体内部出现了一定的差异而产生的。
晶界上的晶格有序性并不像单个晶格那样,因为它们由不同的晶粒组成,并且在这些晶粒的交界处,其晶格和周期性结构向相互交接。