AP微积分BC选择题样卷二
2015年AP微积分BCfree-response-questions
f x be the particular solution to the differential equation with the initial condition f 2 (c) Let y Does f have a relative minimum, a relative maximum, or neither at x 2 ? Justify your answer.
(d) Find the values of the constants m and b for which y
3.
mx b is a solution to the differential equation.
© 2015 The College Board. Visit the College Board on the Web: .
4, so that f x
neither at x
1 . Determine whether f has a relative minimum, a relative maximum, or x 4x 2. Justify your answer.
2
(c) Find the value of k for which f has a critical point at x (d) Let k Find
2
x 2 kx
2
.
(a) Let k
3, so that f x
1 . Write an equation for the line tangent to the graph of f at the point x 3x
2
whose x-coordinate is 4. (b) Let k
AP 微积分BC选择题Section2练习
29) Find the average value of the functionover the interval [0, 4].a)b)c)d)e)30) What is the y-intercept of the line tangent to the curve y = x2 + 7 at x = 3?a)b)c)d)e)31) Which of the following function(s) is continuous and differentiable?I.II.III.a) I and III onlyb) III onlyc) I and II onlyd) I onlye) II only32) Find ma)b)c)d)e)33) The graph of the derivative of f is shown below. Which of the following must be true?a) f is concave down on [0, 4].b) f is increasing on [-2, 2].c) f has a local maximum at x = 0.d) f has a local minimum at x = -2.e) f has a point of inflection at x = 4.34) The sum of two positive integers x and y is 60. Find the value of x that minimizesa)b)c)d)e)35) A particle moves on the curvefind the speed of the particle at time t = .a) 7.1414b) 6.7082c) 7.2801d) 3.3166e) 3.000036) The function f is defined asx 6Which of the following is false?a) f has a horizontal asymptote at y = 1.b) f has a vertical asymptote at x = 6.c) f is decreasing on [3, 6].d) f has a local maximum at x = 3.e) f is concave up for x > 6.37) A particle is moving along the x-axis and its position at time t > 0 is given byWhich of the following is (are) true?I. The particle changes direction at x = 2 and x = 6.II. The particle is slowing down on [0, 2].III. The particle is speeding up on [2, 6].a) II and III onlyb) I onlyc) II onlyd) I and III onlye) I, II and III38) f(x) is a differentiable function and it is decreasing on (,). Ifthen g has a local maximum ata)b)c)d)e)39) The rate at which a bacteria population grows is proportional to the number of bacteria present. Initially, there were 1000 bacteria present and the population doubled in 5 hours. Roughly how many hours does it take for the population to reach 10000?a)b)c)d)e)40) Find the radius of convergence of the seriesa)b)c)d)e)41)for 0 < x < 3The graph of g is shown above. Which of the following must be true? I.II.III.a) II and III onlyb) II onlyc) I and III onlyd) I and II onlye) I only42) If the region bounded by y= tan-1(x), y= and the y-axis is rotated about the y-axis, the volume of the solid formed isa) 0.674b) 0.215c) 1.348d) 0.430e) 0.41343) f (x) is represented by the Maclaurin seriesWhat is the slope of the line normal to the graph of f at x =?a)b)c)d)e)44) What are all values of h for whichconverge?a) h > 1b) h < 1c) h > 1d) h < 1e) -1 < h < 145) The base of a solid is the region bounded bythe x-axis, andthe line x = 7Each cross-section of the solid perpendicular to the x-axis is a square, with one side on the xy-plane. Which of the following expressions represents the volume of the solid?a)b)c)d)e)29.e30.d31.c32.b33.e34.d35.c36.a37.c38.a39.d40.b41.d42.a43.c44.c45.b。
微积分(下)期终模拟试卷(二)解答
14
的敛散性; 若收敛, 判断 ∑ ( −1) ( n + 2 − n + 1 ) 的敛散性 ; 若收敛, 指 3、
n n =1
∞
出是绝对收敛还是条件收敛。 出是绝对收敛还是条件收敛 。
B
) 。
xy (A) 4 4 y −x
x2 + y2 (C) 4 4 y −x
x y (B) 4 4 y −x x2 y2 (D) 4 4 x −y
10
2
2
∂z 且可导, 若 4、 z = ln ϕ ( xy) , 其中 ϕ ( xy) > 0 且可导, 则 = ( ∂x
D
。 )
yϕ ′ ( xy ) x (A) ϕ ( xy ) yϕ ′ ( xy ) x (C) 2ϕ ( xy )
微积分( 微积分(下)期终模拟 试卷( 试卷(二) 解答
1
一、填空题(每小题2分,共20分) 填空题(每小题2 20分
设 1、 ∑ un = S ,则 lim un =
n =1 ∞
n→ ∞
0
,
∑ un+ 2 =
n =1
∞
S − u1 − u2 。
f (x) ;
d x 上连续, 若 2、 f ( x ) 在 [a , b] 上连续 , 则 ∫ a f ( x ) dx = dx
1 ) dx 原式 = 2 ∫ (e + 2 0 1+ x
1 x
= 2e
x 1 0
+ 2 arctan x 0
1
ap微积分试题_
ap微积分试题根据AP微积分试题,我们来一步一步地解答这个问题。
首先,让我们看一下试题的内容。
假设我们有一个连续函数f(x),在区间[0,2]上定义。
我们需要确定这个函数在区间上的最小值。
为了解决这个问题,我们将使用微积分的知识。
首先,我们需要找到函数f(x)的导数。
导数描述了函数在每个点的变化率。
接下来,我们将找到导数为零的点。
在这些点上,函数的斜率为零,也就是函数可能取得最大值或最小值的地方。
我们将使用求导数的方法来找到函数f(x)的导数。
假设f(x)=x^2-4x+3。
我们可以使用常规的求导公式来计算导数。
首先,我们对x的每一项求导:f'(x)=d/dx(x^2)-d/dx(4x)+d/dx(3)根据求导法则,我们得到:f'(x)=2x-4接下来,我们将导数f'(x)置为零,并解方程找到导数为零的点:2x-4=0解方程,我们得到x=2。
现在,我们找到了函数f(x)的导数为零的点,即x=2。
接下来,我们需要确定这个点是否是最小值或最大值。
为了做到这一点,我们将找到这个点的二阶导数。
我们将再次使用求导的方法,对f'(x)求导,得到f''(x)。
f''(x)=d/dx(2x-4)f''(x)=2我们发现f''(x)是一个正数,这意味着x=2是一个最小值点。
综上所述,我们得出结论:在区间[0,2]上,函数f(x)的最小值发生在x=2处。
在这个解决问题的过程中,我们运用了微积分的知识,特别是导数和二阶导数的概念。
通过计算导数和解方程,我们找到了函数f(x)的导数为零的点,并确定了它是最小值点。
这个过程展示了微积分在解决实际问题时的强大应用。
AP微积分BC模考卷2023
AP 微积分 BC 模考卷 2023一、选择题(每题1分,共5分)1. 若函数f(x)在点x=a处可导,则f'(a)表示的是()A. f(x)在x=a处的斜率B. f(x)在x=a处的函数值C. f(x)在x=a处的切线方程D. f(x)在x=a处的曲率A. lim(x→∞) f(x) = LB. lim(x→0) f(x) = LC. lim(x→a) f(x) = ∞D. lim(x→∞) f'(x) = L3. 若函数f(x) = x^3 3x在x=1处的导数为0,则()A. x=1是f(x)的极大值点B. x=1是f(x)的极小值点C. x=1是f(x)的拐点D. x=1是f(x)的驻点A. ∫(0,1) x dxB. ∫(1,∞) 1/x^2 dxC. ∫(∞,∞) e^(x^2) dxD. ∫(0,2π) sin(x) dx5. 若f(x) = e^(2x),则f''(x)是()A. 2e^(2x)B. 4e^(2x)C. e^(2x)D. 2e^x二、判断题(每题1分,共5分)6. 若函数在闭区间上连续,则该函数在该区间上一定可积。
()7. 若f'(x) > 0,则f(x)是单调递增函数。
()8. 泰勒公式可以用来近似任何可导函数。
()9. 第一类间断点处的函数一定不可导。
()10. 两个函数的导数相等,则这两个函数一定相同。
()三、填空题(每题1分,共5分)11. 函数f(x) = x^2在x=0处的导数f'(0) = ______。
12. 若f(x) = 3x^3 4x^2 + 2x,则f'(x) = ______。
13. ∫(0,π) sin(x) dx = ______。
14. 函数f(x) = e^x的n阶导数f^(n)(x) = ______。
15. 曲线y = x^3在点(1,1)处的切线方程是______。
AP考试模拟试题与答案1-微积分BC- AP Calculus-BC
(A) III only (B) I and II only
(C) II and III only (D) I and III only (E) I, II, and III
y f
a
0
x b
Figure 1T-3
7.
∞
1
=
n = 1 (2n − 1)(2n + 1)
(C) e 2
x
a
0
b
(A)
y
Figure 1T-1 A possible graph of f is (see Figure 1T-2):
(B)
y
(C)
y
a
b
x
a0
b
xa
0
bx
(D)
y
(E)
y
a0
b
x
a
0
bx
Figure 1T-2
GO ON TO THE NEXT PAGE
374 STEP 5. Build Your Test-Taking Confidence
This page intentionally left blank
AP Calculus BC Practice Exam 1 373
Section I—Part A
Number of Questions 28
Time 55 Minutes
Use of Calculator No
Directions:
ap考试模拟试题与答案1微积分bcapcalculusbc
AP Calculus BC Practice Exam 1 371
AP Calculus BC Practice Exam 1
AP微积分BC 2023年真题 附答案和评分标准 AP Calculus BC 2023 Real
AP微积分BC 2023年真题附答案和评分标准 AP Calculus BC2023 Real一、选择题1. 问题描述这个问题是关于……2. 解答过程解答过程如下: - 第一步:…… - 第二步:…… - 第三步:……3. 答案和评分标准答案为:A评分标准如下: - 如果只给出了答案,得0分。
- 如果给出了正确的解答过程,得1分。
二、填空题1. 问题描述这个问题是关于……2. 解答过程解答过程如下: - 第一步:…… - 第二步:…… - 第三步:……3. 答案和评分标准答案为:50评分标准如下: - 如果只给出了答案,得0分。
- 如果给出了正确的解答过程,得1分。
三、解答题1. 问题描述这个问题是关于……2. 解答过程解答过程如下: - 第一步:…… - 第二步:…… - 第三步:……3. 答案和评分标准答案为:解答过程如下:解答步骤1解答步骤2解答步骤3评分标准如下: - 如果只给出了答案而没有解答步骤,得0分。
- 如果给出了解答步骤但部分错误,得1分。
- 如果给出了正确的解答步骤,得2分。
四、简答题1. 问题描述这个问题是关于……2. 解答过程解答过程如下: - 第一步:…… - 第二步:…… - 第三步:……3. 答案和评分标准答案为:……评分标准如下: - 如果只给出了答案而没有解答步骤,得0分。
- 如果给出了解答步骤但部分错误,得1分。
- 如果给出了正确的解答步骤,得2分。
五、解决问题1. 问题描述这个问题是关于……2. 解答过程解答过程如下: - 第一步:…… - 第二步:…… - 第三步:……3. 答案和评分标准答案为:……评分标准如下: - 如果只给出了答案而没有解答步骤,得0分。
- 如果给出了解答步骤但部分错误,得1分。
- 如果给出了正确的解答步骤,得2分。
六、总结通过完成这道AP微积分BC 2023年真题的解答,我们学习了……总体而言,这道题目涵盖了……Markdown文本格式的输出使得我们能够清晰地呈现问题描述、解答过程、答案和评分标准,这对于学生来说非常有帮助。
2003AP微积分BC真题
2003 AP 微积分BC 真题17题.223,4102/3/24Let x t t t dy dy dt t dx dx dt t =−−+=⇒===−此时发现 导数不存在,即切线为垂直与x 轴的直线。
答案为A2t =82题气球海拔变化速率函数为32()46(08)r t t t t =−+≤≤题目问在海拔减小时 海拔的变化。
海拔减小即:32()460r t t t =−+<此时做出图像(Ti-83)从图像上看到有三个根。
在y=输入另外一条直线y=0点击graph 得接着按2nd 、trace 选择intersec(交点)出下面对话框。
让输入第一条曲线的x值,点击右导航键,移到零点附近,此时可以看到x=1.36……,按enter ,接着让选第二条曲线值,同样按enter。
Guess?(让你猜零点),按enter。
计算器自动算出x=1.36……附近的零点x=1.572。
同样的方法算出右边的零点x=3.514。
然后积分即可。
2008 AP 微积分BC 真题22题[]1111000011001100'()()()()()()()()'()()(1)(1)(0)(0)()'()()'()(1)(1)(0)(0)'()()15f xg x dx g x df x g x f x f x dg x f x g x dx g f g f f x g x dx f x g x dx g f g f f x g x dx ==−=−−⇒=−−∫∫∫∫∫∫∫= 88题()f x 单调递减大于0,所以图像只能在x 轴上方。
根据定积分几何意义求面积,有: 1221()()0f x dx f x dx =−<∫∫,所以答案CDE 都错。
2312()()0f x dx f x dx >∫∫>,所以答案A 对。
ap微积分bc 2017简答题
主题:AP微积分BC 2017简答题解析一、问题一:求曲线y=x^4-2x^3的所有拐点。
1. 答案:我们需要求出曲线的二阶导数。
根据求导法则,对y=x^4-2x^3进行求导,得到y'=4x^3-6x^2。
再对y'进行求导,得到y''=12x^2-12x。
接下来,我们需要找到拐点,即y''=0的点。
解方程12x^2-12x=0,得到x=0和x=1。
曲线的拐点为(0,0)和(1,-1)。
二、问题二:求由曲线y=x^3-3x^2+5x和直线y=4x-3所围成的图形的面积。
2. 答案:我们需要找到两条曲线的交点。
解方程x^3-3x^2+5x=4x-3,得到x^3-3x^2+x+3=0。
利用数值方法或者代数方法求得曲线的交点为x=1和x=3。
我们需要求出两条曲线之间的面积。
利用定积分,求解∫[1,3](x^3-3x^2+5x-(4x-3))dx,得到8.5。
由曲线y=x^3-3x^2+5x和直线y=4x-3所围成的图形的面积为8.5。
三、问题三:已知y=e^x,求y''+2y'+y的表达式。
3. 答案:我们需要求出y'和y''。
对y=e^x分别求一阶和二阶导数,得到y'=e^x和y''=e^x。
将y''+2y'+y的表达式带入,得到e^x+2e^x+e^x=4e^x。
所求表达式为4e^x。
四、问题四:求由两个不相交的圆x^2+y^2=4和(x-2)^2+y^2=1所围成的区域的面积。
4. 答案:我们需要找到两个圆的交点坐标。
解方程x^2+y^2=4和(x-2)^2+y^2=1,得到x=1和x=3。
我们需要求出两个圆围成的区域的面积。
利用定积分,求解∫[1,3]sqrt(4-x^2)-sqrt(1-(x-2)^2)dx,得到4.694。
所求区域的面积为4.694。
AP 微积分BC选择题Section2练习
29) Find the average value of the functionover the interval [0, 4].a)b)c)d)e)30) What is the y—intercept of the line tangent to the curve y = x2 + 7 at x = 3?a)b)c)d)e)31) Which of the following function(s) is continuous and differentiable?I。
II.III。
a) I and III onlyb) III onlyc) I and II onlyd) I onlye) II only32) Find ma)b)c)d)e)33) The graph of the derivative of f is shown below。
Which of the following must be true?a) f is concave down on [0, 4]。
b) f is increasing on [—2, 2]。
c) f has a local maximum at x = 0.d)f has a local minimum at x = —2.e)f has a point of inflection at x = 4.34) The sum of two positive integers x and y is 60。
Find the value of x that minimizesa)b)c)d)e)35) A particle moves on the curvefind the speed of the particle at time t = .a) 7。
1414b) 6.7082c) 7。
2801d) 3。
3166e) 3.000036) The function f is defined asx 6Which of the following is false?a) f has a horizontal asymptote at y = 1。
ap微积分bc考试原题
AP微积分BC考试原题及答案一、选择题1.下列函数中,在区间(0, +∞)上是减函数的是( ) A. y = x^2 B. y = 1/x C. y =x^3 D. y = 2/x 答案:D2.若f(x) = ∫ (x^2 + 2x - 5) dx,则f'(x) = ( ) A. x^2 + 2x - 5 B. x^2 + 2x - 4 C.x^2 + 2x - 3 D. x^2 + 2x - 6 答案:D3.已知f(x) = sin x + cos x,则f'(x) = ( ) A. -cos x - sin x B. cos x - sin x C. sinx + cos x D. cos x + sin x 答案:B二、填空题4.若f(x) = (x - 1)/(x^2 + 1),则f'(x) = _______.答案:f'(x) = \frac{x^2 +1}{(x^2 + 1)^2}5.设f(x) = x^3 + 4x^2 + x,则f'(x) = _______.答案:f'(x) = 3x^2 + 8x + 1三、解答题6.求函数f(x) = (sin x + cos x)^5 的导数.答案:f'(x) = (5\sin{x} \cdot (\sin{x}+ \cos{x})^4 \cdot (\cos{x} - \sin{x}) - 5\cos{x} \cdot (\sin{x} + \cos{x})^4 \cdot (\sin{x} - \cos{x})) / (\sin{x} + \cos{x})^2$7.求函数f(x) = x^3 - 3x^2 在区间(-∞, a) 上的最小值.答案:f'(x) = 3x^2- 6x = 3x(x - 2),令,令f'(x) > 0,解得,解得x < 0或或0 < x < 2,因此,函数,因此,函数f(x)在在( - \infty,0)上单调递增,在上单调递增,在(0,2)上单调递减,在上单调递减,在(2, + \infty)上单调递增,又上单调递增,又f(0) = 0,f( - 1) = 4,f(1) = -2,f(4) = 16,故当,故当a < 0时,函数时,函数f(x)在区间在区间( - \infty,a)上的最小值为上的最小值为0;当;当0 \leqslant a < 1时,函数时,函数f(x)在区间在区间( - \infty,a)上的最小值为上的最小值为f(a);当;当a > 1时,函数时,函数f(x)在区间在区间( - \infty,a)上的最小值为上的最小值为- 2$.。
AP微积分2002真题B
AP ® Calculus BC2002 Free-Response QuestionsThese materials were produced by Educational Testing Service ® (ETS ®), which develops and administers the examinations of the Advanced Placement Program for the College Board. The College Board and Educational Testing Service (ETS) are dedicated to the principle of equal opportunity, and theirprograms, services, and employment policies are guided by that principle.The College Board is a national nonprofit membership association dedicated to preparing, inspiring, and connecting students to college and opportunity. Founded in 1900, the association is composed of more than 4,200 schools, colleges, universities, and other educational organizations. Each year, the College Board serves over three million students and their parents, 22,000 high schools, and 3,500 colleges, through major programs and services in college admission, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT ®, thePSAT/NMSQT ®, and the Advanced Placement Program ® (AP ®). The College Board is committed to the principles of equity andexcellence, and that commitment is embodied in all of its programs, services, activities, and concerns.Copyright © 2002 by College Entrance Examination Board. All rights reserved. College Board, Advanced Placement Program, AP, SAT, and the acorn logo are registered trademarks of the College Entrance Examination Board. APIEL is a trademark owned by the College Entrance Examination Board. PSAT/NMSQT is aregistered trademark jointly owned by the College Entrance Examination Board and the National Merit Scholarship Corporation.Educational Testing Service and ETS are registered trademarks of Educational Testing Service.The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must be sought from the Advanced Placement Program ®. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here. This permission does not apply to any third-partycopyrights contained herein.满分网——AP真题 CALCULUS BC SECTION II, Part ATime—45 minutes Number of problems—3A graphing calculator is required for some problems or parts of problems.1. Let f and g be the functions given by f x e x 05= and g x x 05=ln .(a) Find the area of the region enclosed by the graphs of f and g between x =12and x =1. (b) Find the volume of the solid generated when the region enclosed by the graphs of f and g between x =12and x =1 is revolved about the line y =4.(c) Let h be the function given by h x f x g x 050505=-. Find the absolute minimum value of h x () on theclosed interval 121 x , and find the absolute maximum value of h x () on the closed interval 121 x .Show the analysis that leads to your answers.2. The rate at which people enter an amusement park on a given day is modeled by the function E defined byE t t t ()=-+1560024160238.The rate at which people leave the same amusement park on the same day is modeled by the function Ldefined byL t tt ()=-+989038370238.Both E t 05 and L t 05are measured in people per hour and time t is measured in hours after midnight. Thesefunctions are valid for 923 t , the hours during which the park is open. At time t =9, there are no people in the park.(a) How many people have entered the park by 5:00 P .M . (t =17)? Round your answer to the nearest wholenumber. (b) The price of admission to the park is $15 until 5:00 P .M . (t =17). After 5:00 P .M ., the price of admission tothe park is $11. How many dollars are collected from admissions to the park on the given day? Round your answer to the nearest whole number. (c) Let H t E x L x dx t ()=()-()I 059for 923 t . The value of H 17() to the nearest whole number is 3725.Find the value of ()H 17, and explain the meaning of H 17() and ()H 17 in the context of the amusement park.(d) At what time t , for 923 t , does the model predict that the number of people in the park is a maximum?3. The figure above shows the path traveled by a roller coaster car over the time interval 018 t seconds. Theposition of the car at time t seconds can be modeled parametrically byx t t ty t t t ()=+()=-()-()104201sin cos ,where x and y are measured in meters. The derivatives of these functions are given by()=+ ()=-()+-x t ty t t t t 104201cos sin cos .(a) Find the slope of the path at time t =2. Show the computations that lead to your answer.(b) Find the acceleration vector of the car at the time when the car’s horizontal position is x =140. (c) Find the time t at which the car is at its maximum height, and find the speed, in m/sec, of the car at thistime. (d) For 018<<t , there are two times at which the car is at ground level y =005. Find these two times andwrite an expression that gives the average speed, in m/sec, of the car between these two times. Do not evaluate the expression.END OF PART A OF SECTION IICALCULUS BC SECTION II, Part BTime—45 minutes Number of problems—3No calculator is allowed for these problems.4. The graph of the function f shown above consists of two line segments. Let g be the function given byg x f t dt x0505=I.(a) Find g -()1, -()g 1, and -()g 1.(b) For what values of x in the open interval -22,05is g increasing? Explain your reasoning.(c) For what values of x in the open interval -22,05 is the graph of g concave down? Explain your reasoning.(d) On the axes provided, sketch the graph of g 2,(Note: The axes are provided in the pink test booklet only.)5. Consider the differential equationdydxy x =-24. (a) The slope field for the given differential equation is provided. Sketch the solution curve that passes throughthe point 01,05 and sketch the solution curve that passes through the point 01,.-05(Note: Use the slope field provided in the pink test booklet.)(b) Let f be the function that satisfies the given differential equation with the initial condition f 01()=.Use Euler’s method, starting at x =0 with a step size of 0.1, to approximate f 02..05Show the work that leads to your answer.(c) Find the value of b for which y x b =+2 is a solution to the given differential equation. Justify youranswer. (d) Let g be the function that satisfies the given differential equation with the initial condition g 00()=.Does the graph of g have a local extremum at the point 00,?05If so, is the point a local maximum or a local minimum? Justify your answer.6. The Maclaurin series for the function f is given byf x x n x x x x x n n n n ()=()+=+++++()+++=+Ê212428316421102341L Lon its interval of convergence.(a) Find the interval of convergence of the Maclaurin series for f . Justify your answer. (b) Find the first four terms and the general term for the Maclaurin series for ()f x . (c) Use the Maclaurin series you found in part (b) to find the value of -f 13.END OF EXAMINATION。
AP微积分_calculus_BC真题答案-048
0
3
1 1 3 f '(t )dt 1 1 2 2 2 2 2
f (3) f (0)
3 9 2 2
4 1 f (4) f (0) f '(t )dt (8 2 2 ) 8 2 0 2 f (4) f (0) 8 2 5 2
2003 AP calculus BC EXAM 答案
1-5 ECADC 6-10 CCBAC 11-15 DEAEB 16-20 CACDD 21-25 BEBDD 26-28 DED 76-80 EACDA 81-85 AAECA 86-90 CCCDB 91-92 BC
Free-response
dx is not positive because x(t ) is decreasing along the arc BD as t increase. dt
(b)
t t 1 dx =0; cos( ) 0 or sin( )0 dt 6 2
t
6
2
or
t 1
2
; t 3 for both.
QUESTION1 Point of intersection e 3 x x at (T, S) =(0.238734, 0.488604)
(a) Area =
1
T
( x e 3 x )dx 0.442 or 0.443
1
(b) Volume = ((1 e 3 x )2 (1 x )2 )dx 1.423 or 1.424
4.52 2.52 5.147 or 5.148
9
(d) x(9) x (0)
AP考试模拟试题与答案1-微积分BC- AP Calculus-BC
6. The graph of the function f is shown in Figure 1T-3. Which of the following statements is/are true?
I. f (0) = 0
II. f has an absolute maximum value on [a , b]
Use the answer sheet provided on the previous page. All questions are given equal weight. Points are not deducted for incorrect answers and no points are given to unanswered questions. Unless otherwise indicated, the domain of a function f is the set of all real numbers. The use of a calculator is not permitted in this part of the exam.
GO ON TO THE NEXT PAGE
(C) e 2
x
a
0
b
(A)
y
Figure 1T-1 A possible graph of f is (see Figure 1T-2):
(B)
y
(C)
y
a
b
x
a0
b
xa
0
bx
(D)
y
(E)
y
a0
b
x
a
0
bx
Figure 1T-2
微积分II真题含答案
微积分II真题含答案微积分II真题含答案一、填空题(每题3分,共30分)1、函数的定义域是____________.2、设,则________________.3、广义积分的敛散性为_____________.4、____________.5、若.6、微分方程的通解是____.7、级数的敛散性为.8、已知边际收益R/(某)=3某2+1000,R(0)=0,则总收益函数R(某)=____________.9、交换的积分次序=.10、微分方程的阶数为_____阶.二、单选题(每题3分,共15分)1、下列级数收敛的是()A,B,C,D,2、,微分方程的通解为()A,B,C,D,3、设D为:,二重积分=()A,B,C,D,04、若A,B,C,D,5、=()A,0B,1C,2D,三、计算下列各题(本题共4小题,每小题8分,共32分)1.已知2.求,其中D是由,某=1和某轴围成的区域。
3.已知z=f(某,y)由方程确定,求4.判定级数的敛散性.四、应用题(本题共2小题,每小题9分,共18分): 1.求由和某轴围成的图形的面积及该图形绕某轴旋转所得旋转体的体积。
2.已知某表示劳动力,y表示资本,某生产商的生产函数为,劳动力的单位成本为200元,,每单位资本的成本为400元,总预算为100000元,问生产商应如何确定某和y,使产量达到最大?。
五、证明题(5分)一、填空题(每小题3分,共30分)1,2,3,发散4,05,6,y=c某7,收敛8,R(某)=某3+1000某9,10,2二、单选题(每小题3分,共15分)1,B2,B3,C4,C5,D三、计算题(每小题8分,共32分)1、解:令2、3、整理方程得:4、先用比值判别法判别的敛散性,(2分)收敛,所以绝对收敛。
(交错法不行就用比较法)(8分)四、应用题(每小题9分,共18分)1、解:2、解:约束条件为200某+400y-100000=0(2分)构造拉格朗日函数,(4分),求一阶偏导数,(6分)得唯一解为:,(8分)根据实际意义,唯一的驻点就是最大值点,该厂获得最大产量时的某为40,y为230.(9分)五、证明题(5分)证明:设对等式两边积分,得:(2分)(4分)解得:题设结论得证。
ap微积分bc选择题样卷一
A P微积分B C选择题样卷一(总11页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除AP Calculus Practice ExamBCVersion - Section I - Part ACalculators ARE NOT Permitted On This Portion Of The Exam28Questions - 55 Minutes1) GivenFind dy/dx.a)b)c)d)e)2) Give the volume of the solid generated by revolving the region bounded by the graph of y = ln(x), the x-axis, the lines x = 1 and x = e, about the y-axis.a)b)c)d)e)3) The graph of the derivative of f is shown below.Find the area bounded between the graph of f and the x-axis over the interval [-2,1], given that f(0) = 1.a)b)c)d)e) 4) Determine dy/dt, given thatanda)b)c)d)e) 5) The functionis invertible. Give the slope of the normal line to the graph of f -1 at x = 3.a)b)c)d)e) 6) Determinea)b)c)d)e)7) Give the polar representation for the circle of radius 2 centered at ( 0 , 2 ).a)b)c)d)e) 8) Determinea)b)c)d)e) 9) Determinea)b)c)d)e) 10) Give the radius of convergence for the seriesa)b)c)d)e) 11) Determinea)b)c)d)e)12) The position of a particle moving along the x-axis at time t is given byAt which of the following values of t will the particle change directionI) t = 1/8II) t = 1/6III) t = 1IV) t = 2a) I, II and IIIb) I and IIc) I, III and IVd) II, III and IVe) III and IV13) Determinea)b)c)d)e)14) Determine the y-intercept of the tangent line to the curveat x = 4.a)b)c)d)e)15) The function f is graphed below.Give the number of values of c that satisfy the conclusion of the Mean Value Theorem for derivatives on the interval [2,5].a)b)c)d)e) 16) Give the average value of the functionon the interval [1,3].a)b)c)d)e)17) A rectangle has both a changing height and a changing width, but the height and width change so that the area of the rectangle is always 20 square feet. Give the rate of change of the width (inft/sec) when the height is 5 feet, if the height is decreasing atthat moment at the rate of 1/2 ft/sec.a)b)c)d)e)18) The graph of the derivative of f is shown below.Give the number of values of x in the interval [-3,3] where the graph of f has inflection.a)b)c)d)e)19) A rectangle has its base on the x-axis and its vertices on the positive portion of the parabolaWhat is the maximum possible area of this rectangle?a)b)c)d)e)20) Computea)b)c)d)e) 21) Determinea)b)c)d)e) 22) Determinea)b)c)d)e) 23) Give the exact value ofa)b)c)d)e) 24) Determinea)b)c)d)e) 25) Give the derivative ofa)b)c)d)e)26) Give the first 3 nonzero terms in the Taylor series expansion about x = 0 for the functiona)b)c)d)e) 27) Determinea)b)c)d)e)28) Which of the following series converge(s)a) B onlyb) A, B and Cc) B and Cd) A and Be) A and C1) d) 2) e) 3) b) 4) b) 5) e) 6) a) 7) c) 8) c) 9) b) 10) d) 11) c) 12) c) 13) c) 14) e) 15) a) 16) d) 17) a) 18) b) 19) a) 20) d) 21) b) 22) b) 23) a) 24) c) 25) d) 26) b) 27) b) 28) c)11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AP Calculus Practice Exam BC Version - Section I - Part B
Calculators ARE Permitted On This Portion Of The Exam
17 Questions - 50 Minutes
1) The limit of the sequence
as n approaches is -3. What is the value of c?
a)
b)
c)
d)
e)
2) If
and y = 3 when x = -2, then what is y?
a)
b)
c)
d)
e)
3) The graph of the derivative of f is given below.
Which of the following is FALSE about the function f?
a) f is increasing on [1,4].
b) f is concave down on [1,5/2].
c) f is concave down on [-3,0).
d) f is not differentiable at 0.
e) The funciton is constant on (-,-3].
4) Determine
a)
b)
c)
d)
e)
5) Give the area that lies below the x-axis and is contained within the region bounded by the polar curve
a)
b)
c)
d)
e)
6) Give the error that occurs when the area between the curve
and the x-axis over the interval [0,1] is approximated by the trapezoid rule with n = 4.
a)
b)
c)
d)
e)
7) Let
Determine f(2/3).
a)
b)
c)
d)
e)
8) Give the length of the curve determined by
for t from 0 to 2.
a)
b)
c)
d)
e)
9) Particles A and B leave the origin at the same time and move along the y-axis. Their positions are determined by the functions
for t between 0 and 8. What is the velocity of particle B when particle A stops for the first time?
a)
b)
c)
d)
e)
10) The base of a solid is the region in the xy plane enclosed by the curves
over the interval [0,/4]. Cross sections of the solid perpendicular to
the x-axis are squares. Determine the volume of the solid.
a)
b)
c)
d)
e)
11) Give the minimum value of the function
for x > 0.
a)
b)
c)
d)
e)
12) Select the TRUE statement associated with the function
a) The graph of the function passes through the origin.
b) The function does not have a horizontal asymptote.
c) The function has a vertical asymptote at x = 0.
d) The graph of the function is symmetric about the x-axis.
e) The graph is always concave up.
13) The function g is the derivative of
What is the derivative of the inverse of g at x = 3?
a)
b)
c)
d)
e)
14) The half-life of radium-226 is 1625 years. What percentage of a given amount of the radium will remain after 1000 years?
a) 65.34%
b) 65.20%
c) 65.25%
d) 65.35%
e) 65.30%
15) The function f satisfies the equation
Evaluate f(/3).
a)
b)
c)
d)
e)
16) A rectangular box with square base and top is to be made to contain 2160 cubic feet. The material for the base costs 30 cents per square foot, the material for the top costs 50 cents per square foot, and the material for the sides costs 20 cents per square foot. Give the length of one side of the base (in feet) so that the cost is minimized.
a)
b)
c)
d)
e)
17) Which expression represents the volume of the solid generated when the region between the curves
over the interval [0,2] is rotated around the x-axis?
a)
b)
c)
d)
e)
1) d)
2) e)
3) b)
4) b)
5) e)
6) a)
7) c)
8) c)
9) b)
10) d)
11) c)
12) c)
13) c)
14) e)
15) a)
16) d)
17) a)。