正激有源钳位分析报告
有源钳位正激电路的分析设计
有源箝位正激变换器电路分析设计1.引言有隔离变换器的DC/DC变换器按照铁芯磁化方式,可分为双端变换器和单端变换器。
和双端变换器比较,单端变换器线路简单、无功率管共导通问题、也不存在高频变换器单向偏磁和瞬间饱和问题,但由于高频变换器工作在磁滞回线一侧,利用率低。
因此,它只适用于中小功率输出场合。
单端正激变换器是一个隔离开关变换器,隔离型变换器的一个根本特点是有一个用于隔离的高频变压器,所以可以用于高电压的场合。
由于引入了高频变压器极大的增加了变换器的种类,丰富了变换器的功能,也有效的扩大了变换器的使用范围。
单端正激变换器拓扑以其结构简单、工作可靠、成本低廉而被广泛应用于独立的离线式中小功率电源设计中。
在计算机、通讯、工业控制、仪器仪表、医疗设备等领域,这类电源具有广阔的市场需求。
当今,节能和环保已成为全球对耗能设备的基本要求。
所以,供电单元的效率和电磁兼容性自然成为开关电源的两项重要指标。
而传统的单端正激拓扑,由于其磁特性工作在第一象限,并且是硬开关工作模式,决定了该电路存在一些固有的缺陷:变压器体积大,损耗大;开关器件电压应力高,开关损耗大;dv/dt和di/dt大等。
为了克服这些缺陷,提出了有源钳位正激变换器拓扑,从根本上变了单端正激变换器的运行特性,并且能够实现零电压软开关工作模式,从而大量地减少了开关器件和变压器的功耗,降低了dv/dt和di/dt,改善了电磁兼容性。
因此,有源钳位正激变换器拓扑迅速获得了广泛的应用。
本文主要介绍Flyback 型有源箝位正激变换器的稳态工作原理与电路设计。
2. 有源箝位正激变换器电路的介绍有源箝位正激变换器由有源箝位支路和功率输出电路组成。
有源箝位支路由箝位开关和箝位电容串联组成,并联在主开关或变压器原边绕组两端。
利用箝位电容及开关管的输出电容与变压器绕组的激磁电感谐振创造主开关和箝位开关的Z VS工作条件,并在主开关关断期间,利用箝位电容的电压限制主开关两端的电压基本保持不变,从而避免了主开关过大的电压应力;另一方面,在正激变换器中采用有源箝位技术还可实现变压器铁芯的自动磁复位,并可以使激磁电流沿正负两个方向流动,使其工作在双向对称磁化状态,提高了铁芯的利用率。
有源钳位正激最大占空比
有源钳位正激最大占空比有源钳位正激最大占空比,这个词听起来挺专业的,对吧?但是别担心,我们今天就来轻松聊聊这事儿。
想象一下,你在厨房里煮饭,水开了,你得把火调小点,才能让汤煮得恰到好处。
钳位和占空比就有点像这种火候掌控。
在电源设计里,正激变换器常常被用来提高效率。
可你知道吗?如果占空比过大,电路就像锅里水开得太猛,容易溢出,搞得一团糟。
所以,掌握最大占空比就显得格外重要。
要说有源钳位,这个概念听上去有点高大上,其实就是通过某种方法来控制电压,保护电路不被过高的电压“淹死”。
就像你在夏天喝饮料,太冰了容易伤胃,适度才行。
钳位就是那种“适度”的角色,保证电压不至于失控。
想象一下,变压器就像是一个超级能干的厨师,负责把原材料变成美味的菜肴。
而钳位就是帮厨师掌握火候的小助手,确保一切顺利进行。
最大占空比就像是在电路中的“秤”,要让一切保持平衡。
说到这里,可能有人会问,究竟什么是“占空比”呢?简单来说,它就是开关在一段时间内处于“开”的时间比例。
如果你把它想象成在游乐园排队,开关“开”就是游乐设施运行的时间,“关”就是它停止的时间。
占空比高,就意味着你有更多的时间在享受刺激;占空比低,就像排队的时候,玩得时间少得可怜。
现在,我们再来深入看看这个最大占空比,通常来说,对于正激变换器,最大占空比可以影响到效率和输出电压。
如果占空比太高,电流会增加,导致发热,长此以往,电路就会像个累了的老头,慢慢“垮掉”。
所以,设计者得精打细算,把这个占空比控制在一个“黄金”范围内,确保电源稳定又高效。
在实际应用中,设计者们就像是在搭建一座摩天大楼,得考虑各种因素,比如材料的强度、风的阻力、基础的稳固等。
正激变换器的设计也是如此,需要把有源钳位和最大占空比结合起来,形成一个完美的电源方案。
太高的占空比就像是把摩天大楼建得太高,可能会引来安全隐患;而占空比太低,则可能会让你的电源“无精打采”,输出不足,达不到想要的效果。
电源的稳定性至关重要,就像你工作时需要一杯好咖啡提神醒脑。
有源钳位正激电路的分析设计
有源箝位正激变换器电路分析设计1.引言有隔离变换器的DC/DC变换器按照铁芯磁化方式,可分为双端变换器和单端变换器。
和双端变换器比较,单端变换器线路简单、无功率管共导通问题、也不存在高频变换器单向偏磁和瞬间饱和问题,但由于高频变换器工作在磁滞回线一侧,利用率低。
因此,它只适用于中小功率输出场合。
单端正激变换器是一个隔离开关变换器,隔离型变换器的一个根本特点是有一个用于隔离的高频变压器,所以可以用于高电压的场合。
由于引入了高频变压器极大的增加了变换器的种类,丰富了变换器的功能,也有效的扩大了变换器的使用范围。
单端正激变换器拓扑以其结构简单、工作可靠、成本低廉而被广泛应用于独立的离线式中小功率电源设计中。
在计算机、通讯、工业控制、仪器仪表、医疗设备等领域,这类电源具有广阔的市场需求。
当今,节能和环保已成为全球对耗能设备的基本要求。
所以,供电单元的效率和电磁兼容性自然成为开关电源的两项重要指标。
而传统的单端正激拓扑,由于其磁特性工作在第一象限,并且是硬开关工作模式,决定了该电路存在一些固有的缺陷:变压器体积大,损耗大;开关器件电压应力高,开关损耗大;dv/dt和di/dt 大等。
为了克服这些缺陷,提出了有源钳位正激变换器拓扑,从根本上变了单端正激变换器的运行特性,并且能够实现零电压软开关工作模式,从而'.'.大量地减少了开关器件和变压器的功耗,降低了dv/dt 和di/dt ,改善了电磁兼容性。
因此,有源钳位正激变换器拓扑迅速获得了广泛的应用。
本文主要介绍 Flyback 型有源箝位正激变换器的稳态工作原理与电路设计。
2. 有源箝位正激变换器电路的介绍有源箝位正激变换器由有源箝位支路和功率输出电路组成。
有源箝位支路由箝位开关和箝位电容串联组成,并联在主开关或变压器原边绕组两端。
利用箝位电容及开关管的输出电容与变压器绕组的激磁电感谐振创造主开关和箝位开关的 Z VS 工作条件,并在主开关关断期间,利用箝位电容的电压限制主开关两端的电压基本保持不变,从而避免了主开关过大的电压应力;另一方面,在正激变换器中采用有源箝位技术还可实现变压器铁芯的自动磁复位,并可以使激磁电流沿正负两个方向流动,使其工作在双向对称磁化状态,提高了铁芯的利用率。
有源钳位正激变换器的分析与设计
有源钳位正激变换器的分析与设计电气持动1999年第1期有源钳位正激变换器的分析与设计南京航空航天大学陈道炼严仰光,,——一——————一T}2Ll,摘要:丰文论述了有源钳位正融变换器的原理与设计利用有源钳位电路宴现功率变压器对称磁复位.部分磁化能量用来对功率开关寄生电蒋放电到零,宴现零电压开关.有谅钳位技术增强了正激变换器性能实验证宴了理论分析的正确性关键词:毛器量皇茎苎登堂堡瓣AnalysisandDesignofanActiveClampedForwardConverter ChenDaolianYahYangguangAbstract:Theanalysisanddesign.fanactireclampedforwardcoHverterIspresentedinthispa perByulganactiveclampedcircuit1thepowertrans,"ormerisymmetricallymagneticreseted.andapar tofmagnetizingen—ergyisusedtodischarge:heparasiticcapachan.eofthepowerwitchtozeiardertOobtainzer.vo ltageswitchAclireclampedtechra[quec-nbancestorwardC0nverteperformanceandthetheorica lanalysisisverifiedbythee~perJmentalresultKeywords~rwardCo.vett~r…voltageswitchactiveclamped1概述由于正激DC/DC变换器具有电路拓扑简单,输入输出电气隔离.电压升,降范围宽,易于多路输出等优点,因此被广泛应用于中小功率电源变换场合然而,正激变换器的一个固有缺点是需要附加电路实现变压器磁复位采用磁复位绕组正激变换器--的优点是技术成熟可靠.磁化能量无损地回馈到直流电网中去.但附加的磁复位绕组使变压器结构复杂化.变压器漏感引起的关断电压尖峰需要RC缓冲电路来抑制,占空比d<0.5,功率开关承受的电压应力与输入电源电压成正比.RCD钳拉正激变换器的优点是磁复位电路简单,占空比d可以大于0.5,功率开关承受电压应力较低.但大部分磁化能量消耗在钳位电阻中,因此它一般适用于变换效率不高且价廉的电源变换场台.无损LCD缓冲网络正激变换器¨j的优点是磁化能量无损地回馈到电网中,占空比d>0.5当开关频率太于30kHz时,过大的LC谐振电流增加了功率开关的导通损耗,因而通常应用+本文为航空基础科学基金,较自进课题资助项目研究内容30在开关频率为20kHz的场合采用有源钳位支路实现正激变换器变压器磁复位,比上述3种传统的方法优越,主辅开关均可实现零电压通断,这是零电压转换ZVT—PWM技术在正激变换器中的具体应用.本文将详细论述这种变换器的工作原理和设计要点2工作原理在传统正激变换器电路拓扑基础上,增加由钳位开关Sc与钳位电容Cc串联构成的有源钳位支路,便得到了有源钳位正激变换器,如图l所示.钳位开关Sc与主功率开关S的驱动信号互补.由变压器原边绕组伏秒积平衡原理可知,图1a电路钳位电压为式中d——占空比式(1)与Flyback变换器相似,称之为单端反激式Flybaek钳位(简称Flyback钳位).圈lb电路钳位电压为电气传动1999年第1期1bJ囤1有潍钳位正敲变换器(&)F[yback钳位<b)Boost钳位1U=U.(2)』I^式(2)与Boost变换器相似,称之为升压式Boost 钳位(简称Boost钳位).这两种钳位电路工作原理基本相同,只是回馈到输人电源中的电流谐波不同.本文以Flyback钳位电路为研究对象,其研究结论同样适用于Boost钳位电路.假设输出滤波电感L和钳位电容C足够大.因此可将其分别作为电流源和电压源处理,简化电路及其原理波形如图2所示(L为变压器磁化电感).每个PWM周期可分为7个区间,每个区间等效电路如图3a~g所示7个区间的电路变化过程叙述如下.to~l:t.时刻,S开通,Dl导通,D2截止,如图3a所示.t.~t:t时刻,S关断,负载折算到原边的电流』./Ⅳ对Cs充电,如图3b所示.t2~:t£时刻.U上升到『,,Dl关断,D2开通,L上能量对Cs充电即二者谐振,使Ud上升, 如图3c所示.t~:t时刻,U上升到钳位电压U与fJT.之和,Dc开通,设开关频率,s>>1/(2n _——,/LC,),即钳位电压U基本不变,如图3d所示. t~£::t时刻,磁化电流i为零,随后i变负,钳位开关Sc导通,Sc实现了零电压ZVS开通,如图3e所示.t=~t6:ts时刻,Sc关断…I.与C开始谐振,C以负值磁化电流放电,能量回馈到电网及转移到工中.如图3f所示.t6~(c):tB时刻,U下降到.D开通.D.与D共同导通期间为i在副边续流提供了路径,t时刻S再次开通,开始另一PWM周期,如图3g所示.欲获得功率开关S的ZVS开通,可用两种方法实现一种方法是变压器铁心加气晾,降低L增大磁化电流,当Sc在t时刻关断的磁化电流大于负载折算电流/N,则这两个电流的差值将使得C在t时刻之后继续放电.或者说磁化电流除了支持输出电流之外.剩余电流将用来使C放电,即将C上电荷抽尽.这种方法消除了功率开关S的容性开通损耗,但却增加了变压器铁损.另一种方法是在副边整流二极管D.中串联一饱和电抗器,延缓D.的开通时刻,即饱和电抗器暂时将变压器和负载断开.整个磁化电流将全部用来对C放电,但高频时饱和电抗器损耗较大fh)圉2简化电路丑其原理波形(a)简化电路(b)原理渡形3lⅢ电气持动1999年第1期图3每十等效电路f),~ifb"f~fJ~(d)~f)~ffJ,~6(g)~3关键参数设计3.1功率变压器设计接通电源,经历若干PWM周期后.钳位电容自动充电到某一稳态值U=u,它可保证铁心双向对称磁化任何铁心双向不对称磁化因素都会导致£值适度的变化,从而迫使铁心双向对称磁化.设图2b中磁化电流渡形双向不对称, 即,的正向最大值太于负向最大值,则C的充电能量大于放电能量,因而十一/L十一i下降速率十一迫使.(即磁通)双向对称.有源钳位正激变换器的这一特点具有显着优点,克服了传统正激变换器变压器铁心利用率低的缺点, 进一步增强了正激变换器性能和工程应用价值, 较全桥,推挽变换器(存在单向偏磁现象)要优越得多.它同半桥变换器相似,具有抗磁不平衡能力,其根本原因是钳位电压或者说功率开关漏极电位具有浮动特陛.变压器原边绕组匝数为,'N一素等×10'(3)式中B一一铁心工作磁密S——铁心截面积t——功率开关导通时间由式(3)可知,绕组匝数是传统的复位绕组RCD正激变换器的一半,降低了铜损32占空比d设计功率开关S的电压应力为Ud,--U一一㈥32式中Ⅳ——变压器匝比变换器输出电压在相同的Ⅳ,U.下,当输^电源电压F增大时,占空比d减小,功率开关S电压应力变化不大.如图4所示.一般选取一一o75.该特点(可夫于0.5,但变化不大)使得它很适用于宽输入电源电压场合.例如,航空静止变流器输八电压U.一18~32V,选取有源钳位正激变换器作为DC/DC变换级最台适图4功翠开关电压应与占空比美系3.3钳位电容C设计钳位电容C值由钳位电压纹波3U:决定c越大.越小,功率开关S电压应力越小.但对电源电压或负载变化时的变换器状态响应速度也变慢设△:<<U,则在(1一d)丁区问内变压器磁化电流(钳位电容电流)近似按恒定斜率u./三下降,如图2b所示.由图2b可知,钳位电容电压纹波为1一Idt—I(1d)7';儿4C1()cJ式(5)中,J为t--t时磁化电流值.稳态时i即i的下降斜率为/L一J/寺(1一d)丁](6)由式(5),(6)可知,,/U为电气传动1999年第l期((=(1一d):T:/(8L(,1(7)由式c4)町知.功率开关电压应力纹渡己d,一.3U,因此虬一等=㈤按照d—d…最坏情况设计,取儿≤l0%或≤10%.3,4功率,钳位开关驱动延迟时间设计图2b原理波形示出r功率开关S与钳位开关S驱动信号延迟时间f:,合理没计r.与r:是实现有_碌钳位正激变换器的关键问题之一延迟时间过大.影响有效占空比延迟时间过小,满足不了要求S关断与S开通的时问间隔为r!≥一=2r,√L…C4(9)式(9)为l,C谐振电路的14谐振周期S关断与S开通的时间问隔为f一.<r<--t若忽略2一l,则3一l≈一t2='一.因此可得2ⅡLH<r<(i—d)71/!(10)式(9),式(10)按最坏情况(U.d—d…一U一)来调节RC延迟电路参数4实验航空静止变流器采用DC仁K二变换器和DC AC逆变器两级级联的电路拓扑结构DC/DC变换器将输入电压U.=18~32V,升高到稳定的l90VDC,仁K二AC逆变器再将190VDC逆变成115V400HzACDC/DC变换器,DC/AC逆变器各自构成闭环控制系统.考虑到输入电网电压变动范围大,且飞机交流用电负载与直流电网共地. 因而选用具有电气隔离且眭能优良的有源钳位正激变换器作为DC/DC变换级按上述理论设计的有源钳位正激变换器参数如下功率P.一100w,输A电源电压U.一18~32V.输出电压U一190V.开关频率一100 kHz.最大占宅比d一0.75.钳位电容c=60nF,延迟时间rl取600ns,r2取470ns原理实验测得不同输出功率时变换效率如图5所示l习j有源钳位正馓耍挽器教军曲线5结论本文论述了,有源钳位正激变换器的原理与设计,得出了如下结论(1)有_碌钳位正激变换器变压器铁心工作在双向对称磁化状态,提高了铁心利用率,减小了体积与重量.占空比>0,5.进一步增强lr其性能和工程实用价值,适用于宽输A电源电压场合. (2)有源钳位正激变换器实质E是零电压转换PWM变换器,兼有谐振技术与传统PwM技术两者之优点(3)提供r钳位电容C,驱动信号延迟时间r,r:等关键电路参数与其它参数间的定量关系(4)实验证实了有源钳位正激变换器具有优良的性能.参考文献11遭密电电于技术.航空工业出社1992:213~2142陈道炼RCD钳位正激变拽器的分析研究南京航空航元大学,1997(2):231~2353洗冬珍等.LCD无垌吸收网络的应用研究电力电子技术. 1995t4)35~:184LeuCSetⅡ,.ComparisonofForwardFopologieswirhV ari …ResetSchemes,VPECSeminarproceedings1991101~1n§藕百1丽丽i(上接第21页)KrausePC.Analy~isofElectricMachlnery.NewY ork:Mc G…Hi】l,1986jKane]lakopou[osI.KokorovicPVMarinoRAnExtended DlteetSchemefoiRobustAdaptlveNonlinearComro[.Auto一tca.1991.27(2)247~2j55MarinoRAnExample.fANonlinearRegula1.r1EEE T…sAutom,Contr,l984,29(3):276~2797MarinaR—PeresadaS.Va]igiPAdaptiveInput-outputLin- earizingControl.fInductionblotorsIEEETrans.AutomContr19§3,38(2):208~2218IsidoriANon]inearControlSystemsBetlinspringerV etlag19蚺9蔡自兴等译.应用非线性控制北京:国防工业出社, 199276~77面蓓百丽F而33。
有源钳位正激电源变换器的工作原理及优势
有源钳位正激电源变换器的工作原理及优势有源箝位正激电源变换器的工作原理及优势— Bob Bell, 美国国家半导体公司电源应用工程师对设计人员来说,有源箝位正激变换器有很多优点,现在正得到广泛应用。
采用正激结构的电源变换器是高效率、大功率应用(50W 至 500 W范围)的出色选择。
虽然正激结构的普及有各种各样的原因,但设计者主要青睐的是它的简捷、性能和效率。
正激变换器来源于降压结构。
两者之间的主要区别是:正激结构变压器的输入地和输出地之间是绝缘的,另外它还有降压或升压功能。
正激结构中的变压器不会象在对称结构(如推挽、半桥和全桥)中那样,在每个开关周期内进行自复位。
正激功率变换器中使用了一些不同的复位机制,它们各有自己的优点和挑战。
对设计者而言,有源箝位正激变换器具有诸多的优点,因此现在这个拓扑被广泛应用。
图1:降压和前向拓扑结构图 1 显示了降压和正激转换器之间的相似之处。
注意两种变换功能的唯一区别是在正激变换功能中,匝数比(Ns/Np)这一名词所包含的内容。
Ns 和 Np 分别为次级匝数和初级匝数,均绕在变压器磁芯上。
图2 显示了一个变压器模型,其中包括与初级绕组并联的“励磁电感”(Lm)。
这个励磁电感可以在次级绕组开路状态下在初级端子处测量。
励磁电感中的电流与磁芯中的磁通密度成正比。
确定尺寸的某种磁芯只能支持到某个磁通密度,然后磁芯就会进入饱和。
当磁芯饱和时,电感量会急剧下降。
变压器模型中另外一个部分是与初级绕组串联的“漏感”(LL)。
漏感可以在次级绕组短路情况下在初级端子处测量。
这一名称表示杂散的初级电感,它不会耦合到次级。
图2 转换模式有源箝位电路的工作图3a 图3b图3c图 3a 到 3c 表示了有源箝位正激电源转换器的主要工作步骤。
在时刻t0 时,主功率开关(Q1)导通,在变压器初级施加一个VIN。
变压器次级绕组电压为VIN x Ns/Np。
此时的初级电流包括两个部分:来自输出电感的映射电流(IL x Ns/Np);以及在激磁电感(Lm)中上升的电流。
有源箝位正激式电路的特点及其参数设计
Science &Technology Vision科技视界0引言在烟草工业电气设备中,各种电路板和模块上的大量集成电路,需要直流5V 电源供电,通常我们用高于5V 的直流电再通过DC-DC 三端稳压模块变换(一般压差为2V)得到稳定的5V 电源。
实验室用的电源电流一般只有5A,10A,且体积偏大,不适合安装。
有源钳位正激式拓扑电路适合中小功率开关电源的设计,而且结构简单,性能好,适合在烟草工业电气设备中使用。
1有源箝位正激式电路的特点图1有源箝位正激式模型电路有源钳位正激变换器拓扑与传统的单端正激变换器拓扑基本相同,只是增加了辅助开关Qc(带反并二极管)和储能电容Cc,且略去了传统正激变换器的磁恢复电路。
开关Q1和Qc 工作在互补状态。
为了防止开关Q1和Qc 共态导通,两开关的驱动信号间留有一定的死区时间。
采用有源箝位的正激变换器的特点是:变压器是双向对称磁化的,工作在B-H 回线的第一和第三象限,变压器得到了充分利用,因此占空比可以大于0.5,而且开关管的电压应力低,适合与输入电压范围比较宽的应用场合,箝位开关管是零电压开关的,励磁能量和漏感能量全部回馈到电网。
2参数设计2.1功率变压器的设计1)工作频率的设定开关频率的提高有助于开关电源的体积减小,重量减轻。
开关频率提高又增加了开关损耗和磁芯损耗。
本方案通初步确定工作频率和最大占空比如下:工作频率f=170kHz 最大占空比=75%2)根据设计输出功率选择磁芯P O =7.5×20=150(W)考虑有20%裕量和效率,取η=80%,则150×1.2×1.25=225瓦,选择一个传递功率可达300瓦的磁芯,通过Ferroxcube 公司的磁芯手册,选材料代号为3F3的锰锌铁氧体磁芯,材料的损耗曲线如图2所示。
比损耗为100Mw/cm 3对应磁通密度摆幅为0.09T。
这里是第一次选择磁通密度摆幅。
图2比损耗与频率和峰值磁感应关系T=100℃应用面积粗略估计公式:AP=A e A w =P OK ΔBf T()4/3cm4其中:P O ———输出功率(W);ΔB ———磁通密度变化量(T);f T ———变压器工作频率(Hz);K ———0.014(正激变换器)得到AP=2720.014×0.08×170×103()4/3=1.2cm4假定选择磁芯EE32/6/20,查阅手册得到A w =130mm 2A e =130mm 2V e =5380mm 3l e =41.4mm 。
有源钳位正激式转换器
有源钳位正激式转换器
图1给出了有源钳位正激式转换器的两种主电路。
其中,Lm和LLK,分别表示变压器的等效励磁电感和漏感,电容C1和C2分别表示开关管V1和V2的结电容,D1和D2为开关管V1和V2的反并联二极管。
钳位开关管V2(小功率MOSFET)和钳位电容C串联,组成有源钳位电路,此电路有两种接法:一种是与转换器的主开关管V1并联,如图1(a)所示;另一种是并联在变压器的初级绕组两端,如图1(b)所示。
图1 有源钳位正激式转换器的两种主电
在正激式转换器中,利用有源钳位技术可以实现变压器铁心的自动磁复位,无须另加复位措施;并可以使励磁电流正、负方向流通,使铁心在磁化曲线第一象限及第三象限运行,提高了铁心的利用率。
在主开关关断期间,钳位电路将主开关管两端的电压钳位在一定数值的水平上,并基本保持不变,从而避免了主开关管上出现过大的电压应力。
分析表明,正激式转换器主开关管两端的电压为输人电压Ui,与钳位电容C上电压UC之和。
图1(a)、(b)中,钳位电容C上的电压UC是不同的,根据计算可以分别得到
对图1(a)所示的电路
对图1(b)所示的电路
式(3-252)可以推导如下:对于图1(b)所示的电路,在一个周期Ts 内,主开关管V1,导通的时间为DUTs,变压器初级绕组承受的电压为Ui,而V1的关断时间为(1—Du)Ts,变压器初级绕组承受的电压为UC。
由伏秒平。
有源钳位正激模式分析
ISAT
RESET When Main SW During OFF Time If ILM not RESET to Initial condition, It will HIT ISAT (saturation of Xfrmer) after next few ON-OFF cycle
Main SW During ON time ILM begin RAMP UP
13
SOFT-STOP Duty cycle of OUTM is allowed to linearly decrease UNTIL SS Voltage <0.25V Key is to prevents POLARITY REVERSAL of converter output & reduces ELECTRICAL STRESSES during SHUT-DOWN when SRs are used
<50% Highest Higher
Turns ratio
Mag current Leakage energy B-H curve usage High frequency Complexity
Lower
Recycled Recycled One quadrant Fair
Xfrmer Design Complex
simpletopologyandsimplecontrolofthefamilyofforwardconvertersactiveclampoffersfunctions?resetofthecore?clampingthevoltageoftheswitch?recyclingtheleakageenergy?usingbothquadrantsofthebhcurve?zerovoltageswitchingofthetwoswitches?widerdutyratiolowcostsolutionforlowtomediumpowergoodefficiencycurvesrinthesecondarysimple7activeclampflybacksepicboostconvertersvingndvoutreturnvcvingndvoutreturnvcvingndvoutreturnvcvingndvoutreturnvcflybackpfetapproachflybacknfetapproachsepicboostsimplysmarter?isl6726inacfimplementation9keyisl6726highlightfeatures?singleendedcurrentmodecontroller20leadqsop?supportsbothnchannelandpchannelclampconfigurations?alsosupportssingleendedtopologieswithsrandtheasymmetrichalfbridgetopology?adjustableconductiondeadtimebetweenoutputs?adjustablemaximumdutycycleclampproportionaltovin80max?minimumdutycycleclampforsrapplicationswithoverride?uvinhibitinput?adjustablesoftstartsoftstop?bidirectionalsynchronization180?phaseshiftforinterleavedapplications?averageandcyclebycyclecurrentlimit?adjustablecurrentl
有源钳位
有源钳位-正反激电路分析参考样机:LAMBDA 全砖,500W ,36~75V 输入,28V/18A 输出; 电路拓扑结构:有源钳位-正反激; 测试条件:48V 输入,9A 输出; 电路模型:I VinL术语:Vin: 输入直流电压;V o: 输出电压;n: 变压器匝比; I L :变压器T1和T2的漏感;Lm1,Lm2:T1和T2的激磁电感; Im1,Im2:T1和T2的激磁电流;Ip1,Ip2:负载折算到原边的电流;Ip: 原边电流; Id1,Id2:变压器次级电流。
t4t1Vs2t2Vs1Vgs_Q2Id1t3t6Ipt5Vgs_Q1Id2电路工作原理与过程:状态1:(t1~t2) Q1导通,Q2截止。
+VinI L变压器T1原边电感储能,漏感储能,T2向负载传送能量。
Im1=Im2+Ip2=I L状态2:(t2~t3)Q1由导通变为截止,Q2仍截止。
+L-VinId1I当Q1截止瞬间,所有的直流电流通路被断开,Lk 和Lm1为了阻止电流减小的趋势而产生反向电动势。
Lm1与Lm2上的电压幅值相等(等于Vo*n ),方向相反。
Im1提供T2的激磁电流Im2以及负载电流Ip2和Ip1,并同I L 一起对C2充电。
Ic2- I L = Im1-Ip1=Im2+Ip2。
Ip1从零电流开始上升,Ip2从最大电流开始下降。
当Ip2下降到零时,Ip1=Im1-Im2,Lm2上的电压反相。
Id1VinL IC2上电压很快被充至Vc1,Q2的体二极管D4导通,C1被充电。
充电电流Ic1=Im2= I L +Im1-Ip1 (Ic1忽略),Ic1由最大充电电流开始下降,Ip1则继续上升。
状态3:(t3~t5)Q1仍截止,Q2由截止变为导通。
Id1VinQ2开通时,C1仍然还在充电,直到C1上的电压充到最高值,C1开始放电。
Ip1=Ic1-I L ,放电电流一方面给Lm2提供反相电流,同时使Ip1继续上升。
状态4:(t5~t6)Q1仍截止,Q2由导通截止变为截止。
有源钳位正激电路的分析设计
有源钳位正激电路的分析设计一、有源钳位正激电路的基本原理有源钳位正激电路主要由放大器、反馈电阻和两个二极管组成。
其基本原理是通过两个二极管将输入信号限制在一个稳定的范围内,从而防止过大的信号损坏放大器。
这种电路设计的关键在于确定适当的电阻值和二极管的工作点。
二、电路参数的计算1.反馈电阻:反馈电阻的选择主要考虑稳定性和放大倍数。
一般而言,反馈电阻越大,稳定性越好,但放大倍数也会相应下降。
可以通过实际的电路要求和实验数据来确定反馈电阻的大小。
2.二极管的工作点:二极管的工作点是指二极管的电压和电流处于稳定的状态。
通过适当选择电阻和电源电压,可以使得二极管的工作点处于合适的范围内,保证电路正常工作。
3.放大器的参数:放大器的参数可以根据实际需求进行选择,包括放大倍数、频率响应等。
这些参数的选择需要根据具体应用场景进行设计。
三、电路设计步骤1.确定电路要求:明确电路的输入和输出要求,包括输入信号幅度、频率等。
2.选择放大器:根据电路要求选择合适的放大器,考虑放大倍数、频率响应等参数。
3.确定反馈电阻:根据实验数据和实际要求确定合适的反馈电阻值,注意稳定性和放大倍数之间的平衡。
4.计算二极管的工作点:根据二极管的参数和电路要求计算合适的电阻和电源电压,使得二极管工作点处于合适的范围内。
5.组装和调试电路:根据设计结果进行电路组装,并进行实际测试和调试。
根据测试结果进行必要的调整和优化。
四、电路设计实例例如,设计一个有源钳位正激电路,要求输入信号幅度为±5V,放大倍数为10倍,频率响应为10Hz~10kHz。
1.根据放大倍数的要求,选择放大器的参数。
可以选择带宽为100kHz的运放作为放大器。
2.根据反馈电阻的要求,假设我们选择反馈电阻为1kΩ,根据反馈电阻的公式计算得到反馈电流为10mA。
3.选择合适的二极管,例如硅二极管,根据二极管的伏安特性曲线和电路要求计算合适的电阻和电源电压。
假设选择电阻为10kΩ,电源电压为15V。
有源钳位正激变换器的理论分析和设计方法
有源钳位正激变换器的理论分析和设计方法刘耀平(深圳华德电子有限公司,广东深圳 518066)摘要:零电压软开关有源钳位正激变换器拓扑非常适合中小功率开关电源的设计。
增加变压器励磁电流或应用磁饱和电感均能实现零电压软开关工作模式。
基于对零电压软开关有源钳位正激变换器拓扑的理论分析,提出了一套实用的优化设计方法。
实验结果验证了理论分析和设计方法。
关键词:有源钳位;正激变换器;零电压软开关1 引言单端正激变换器拓扑以其结构简单、工作可靠、成本低廉而被广泛应用于独立的离线式中小功率电源设计中。
在计算机、通讯、工业控制、仪器仪表、医疗设备等领域,这类电源具有广阔的市场需求。
当今,节能和环保已成为全球对耗能设备的基本要求。
所以,供电单元的效率和电磁兼容性自然成为开关电源的两项重要指标。
而传统的单端正激拓扑,由于其磁特性工作在第一象限,并且是硬开关工作模式,决定了该电路存在一些固有的缺陷:变压器体积大,损耗大;开关器件电压应力高,开关损耗大;d v/d t和d i/d t 大,EMI问题难以处理。
为了克服这些缺陷,文献[1][2][3]提出了有源钳位正激变换器拓扑,从根本上改变了单端正激变换器的运行特性,并且能够实现零电压软开关工作模式,从而大量地减少了开关器件和变压器的功耗,降低了d v/d t和d i/d t,改善了电磁兼容性。
因此,有源钳位正激变换器拓扑迅速获得了广泛的应用。
然而,有源钳位正激变换器并非完美无缺,零电压软开关特性也并非总能实现。
因而,在工业应用中,对该电路进行优化设计显得尤为重要。
本文针对有源钳位正激变换器拓扑,进行了详细的理论分析,指出了该电路的局限性,并给出了一种优化设计方法。
2 正激有源钳位变换器的工作原理如图1所示,有源钳位正激变换器拓扑与传统的单端正激变换器拓扑基本相同,只是增加了辅助开关(带反并二极管)和储能电容C s,以及谐振电容C ds1、C ds2,且略去了传统正激变换器的磁恢复电路。
DC-DC正激变换器次级有源箝位电路.
DC-DC正激变换器次级有源箝位电路DC-DC正激变换器次级有源箝位电路类别:电源技术摘要提出一种新型DC-DC正激变换器次级有源箝位电路。
它一方面将储存于变压器漏感能量无损耗地转移到负载,另一方面有效降低了次级功率二极管电压应力。
本文对其一个周期内工作原理及相关理论进行分析,并给出2.8kW DC-DC变换器实验结果及波形。
关键词正激变换有源箝位漏感1 前言图1为正激变换器次级拓扑结构电路,VD1为整流二极管,VD2是续流二极管,Lf是输出滤波电感,Cf是输出滤波电容。
当初级开关管开通时,VD1导通,VD2截止,初级能量向负载转移;当初级开关管关断时,VD1关断,VD2开通,滤波电感电流通过VD2续流。
以上只是理想状态,若考虑功率二极管的反向恢复特性和变压器漏感,当VD1(或VD2)处于反向恢复期时,有一冲击电流流经变压器,并将能量储存于变压器漏感中,此能量将使二极管承受较大的反向电压冲击。
这样一方面需选用较高耐压等级的二极管,另一方面产生的EMI也较大。
此外,由于变压器存在绕线电阻,此能量会使变压器发热。
如何有效处理漏感能量呢?最常用的办法是将无源RC缓冲电路与每只功率二极管并联,如图2所示,使漏感能量都消耗在缓冲器上。
工作频率越高,缓冲器消耗的能量越多,因此,变换器频率和效率都不高。
下面将介绍一种有源箝位电路,它能将功率二极管反向电压箝位在一较低范围内,并且能量回收电路将漏感所存储的能量无损耗地转移到负载,便于实现变换器的小型化。
2 电路原理分析 DC-DC次级有源箝位电路如图3所示,L2表示变压器次级的漏感,由VD1、VD2、VD3、VD4、C1组成全桥结构箝位电路,VD1、VD2是正激变换次级主整流二极管和续流二极管。
对于这种全桥结构,加在每个主二极管上的最大反向电压就是电容C1的电压。
因此,如果能将C1电压箝在小于每个二极管的最大反向电压,二极管就可实现安全箝位了。
VT3、L3、VD5、C2组成升-降压式的能量回收电路。
有源箝位正激变换器稳态分析与小信号特性
有源箝位正激变换器稳态分析与小信号特性Steady Analysis and Small S ignal Properties of Active C lamp Forward Converters陈道炼 胡育文 严仰光(南京航空航天大学 210016)Chen Daolian Hu Y uwen Yan Yangguang (Nanjing University of Aeronautics &Astronautics 210016 China)摘要 深入分析研究了有源箝位正激变换器的稳态工作原理,获得了功率开关实现零电压ZVS 开通的方法与边界条件。
采用状态空间平均法,建立了变换器平均模型与小信号模型来预测有源箝位支路对有源箝位正激变换器小信号特性的影响,并提出了改善变换器动态特性的方法。
给出了变换器原理试验结果和变换器小信号特性PSPICE 仿真波形。
关键词:正激变换器 有源箝位 稳态分析 小信号特性Abstract The steady principle of active clamp for ward converters is deeply investigated.The method and boundary c ondition of ZVS for active clamp forward converters Äpo wer switch are given.The converter Äs av -erage model and small signal model by using the state-space averaging approach are presented,in order to predic t effects of the active clamp circuit on the small signal properties of active clamp forward c onverters.A way of improving the converter Äs dynamic properties is proposed.The sche matic test results and PSPICE simu -lation waveforms of small signal properties are given.Keywords:Forward converters Active clamp Steady analysis Small signal property航空基础科学基金,江苏省博士后科学基金资助项目。
有源钳位正激模式分析
High
Dissipated Dissipated Portion of Positive Poor
Simple to Implement
High
Recycled Recycled Both quadrant Good High Simple
Secondary side control Complex
Complex
5
Why ACF so attractive?
Simple topology and simple control of the family of forward converters Active clamp offers functions
• Reset of the core • Clamping the voltage of the switch • Recycling the leakage energy
RETURN
VC
+
Flyback
N-FET approach
GND GND
RETURN
BOOST
7
ISL6726 in ACF Implementation
SIMPLY SMARTER™
Key ISL6726 Highlight Features
• Single-ended current mode controller – 20 lead QSOP • Supports both n-channel and p-channel clamp configurations • Also supports single-ended topologies with SR and the asymmetric half-bridge topology • Adjustable conduction dead-time between outputs • Adjustable maximum duty cycle clamp proportional to VIN (80% max) • Minimum duty cycle clamp for SR applications (with override) • UV/Inhibit input • Adjustable Soft-Start/Soft-Stop • Bi-directional synchronization, 180º phase shift for interleaved applications • Average and cycle-by-cycle current limit • Adjustable current limit set-point • 3A GATE drive OUTM / 2A GATE drive OUTAC • Slope compensation • Oscillator with accurate frequency, duty cycle, and dead-time control •9 On/Off Enable control w/low power SLEEP mode
基于有源箝位软开关正激拓扑的射频电源设计分析
基于有源箝位软开关正激拓扑的射频电源设计分析摘要:随着科技的发展和社会的进步,推动着电气化的进一步发展,水平不断地提高,电子设备得到了充分地发展,各种各样的电子设备在市场上出现。
电子产品的多样化发展,人们在生活生产中对于电源的要求也越来越高,且由于电子设备的不断小型化发展,因此当前对于高效、小型化、轻量化的电源的需求不断增加,本文主要针对基于有源箝位软开关正激拓扑的射频电源设计进行分析,不断提高电源开关的效率。
关键词:有源箝位软开关正激拓扑射频电源设计分析前言:电力电子技术的发展是人类进步的重要体现,是科技水平进步的重要标志,在当前科技时代电力电子产品的发展始终在科技发展中扮演着重要的角色,而电源的设计及应用在电力电子产品的能量供给中处于核心地位,因此基于有源箝位软开关正激拓扑的射频电源设计有着不可替代的作用。
射频电源广泛应用于通讯、能源自动控制等相关领域之中,射频电源是进行微波信号控制的重要部件,是射频微波系统地控制核心,对电子设备的自动控制系统的可靠性有着重要的作用。
随着对电子设备的小型化的追求,高频化,软开关技术是电源的小型化设计的主要技术方式,因此基于有源箝位软开关正激拓扑的射频电源设计是当下电力电子开发研究的重点关注问题之一。
一、有源箝位软开关正激拓扑的工作原理(一)工作原理电源为电子产品提供能量,其产生的作用是不可替代的,在电源开关的设计上不仅仅需要其保证自己工作的完成,还需要对成本进行降低,正激变换方式的结构比较简单,成本也会比较低,制作起来较其他方式而言比较简单并且可靠程度比较高,这使的有源箝位软开关正激拓扑的应用范围比较广。
有源箝位软开关正激拓扑与传统的相比较,主要是增加了箝位开关和箝位电容,能够有效地降低开关的电容差,同时使得变压器复位,从而避免了磁芯饱和的现象[1],通过利用同步整流的方法以及自驱动的方式,将设计变得更加简单、可靠。
图1 有源箝位软开关正激拓扑等效电路(二)有源箝位软开关正激拓扑有源箝位正激拓扑与传统的单端正激拓扑基本上是相同的,只是增加了而辅助开关、储能电容以及谐振电容,略去了传统正激拓扑中磁恢复电路。
有源钳位正激变换器的功率损耗分析
有源钳位正激变换器的功率损耗分析当前,市场对高功率密度、低压/大电流DC-DC模块电源的需求与日俱增。
由此推动了其相关技术的研究与发展。
在适合低压/大电流应用的DC-DC变换器拓扑中,常用的有基本的BUCK或同步整流BUCK拓扑。
但是由于BUCK变换器的占空比D很小,如果要求输出电压低于1V,而一般的分布式电源系统(DPS)的母线电压为12V 或48V,这样占空比将小于10%,表明有效的功率转换只发生在整个工作周期的10%时间内,其余90%时间里负载靠输出大电容提供能量,使得变换器的效率降低。
采用反激变换器或正激变换器拓扑,可以增大占空比,提高效率。
但反激变换器,在其反馈环路分析中,带有气隙的变压器电感会在右半平面有个零点,这就使得连续模式(CCM)下的闭环补偿十分困难。
另外,由于二次侧没有输出低通滤波器,所以需要一个较大的电容。
与反激变换器相比较,正激变换器输出侧虽然多一个电感,但这降低了对输出电容的要求,其构成的LC滤波器非常适合输出大电流,可以有效的抑制输出电压纹波,所以正激变换器成为低压大电流功率变换器的首选拓扑。
然而,正激变换器的一个固有缺点是功率开关管截止期间变压器必须磁复位。
为了在较高频率下获得较高效率,采用有源钳位复位方法。
与传统的复位方法比较,有源钳位复位电路提供了变压器的磁通复位路径,因而不需要复位绕组或是有能量损耗的RCD复位电路。
不仅使变压器结构简化,而且提高了变换器的效率。
如何提高效率是我们一直努力的目标,本文将在已选的拓扑上,通过分析变换器的功率损耗,得出在一定的磁链的关系下,选择一个最优的励磁电感,可以使变换器的损耗最小,从而进一步提高效率。
2.工作原理图1有源钳位正激变换器拓扑fig1.active-clamp forward converter为方便分析,二次侧的二极管看成是理想的,仅考虑有源开关S1的体二极管,其他寄生参数忽略。
图1为正激变换器的有源钳位拓扑,图中变压器等效为励磁电感,漏感和匝数比为n=N1/N2的理想变压器。
有源钳位
有源钳位-正反激电路分析参考样机:LAMBDA 全砖,500W ,36~75V 输入,28V/18A 输出; 电路拓扑结构:有源钳位-正反激; 测试条件:48V 输入,9A 输出; 电路模型:I VinL术语:Vin: 输入直流电压;V o: 输出电压;n: 变压器匝比; I L :变压器T1和T2的漏感;Lm1,Lm2:T1和T2的激磁电感; Im1,Im2:T1和T2的激磁电流;Ip1,Ip2:负载折算到原边的电流;Ip: 原边电流; Id1,Id2:变压器次级电流。
t4t1Vs2t2Vs1Vgs_Q2Id1t3t6Ipt5Vgs_Q1Id2电路工作原理与过程:状态1:(t1~t2) Q1导通,Q2截止。
+VinI L变压器T1原边电感储能,漏感储能,T2向负载传送能量。
Im1=Im2+Ip2=I L状态2:(t2~t3)Q1由导通变为截止,Q2仍截止。
+L-VinId1I当Q1截止瞬间,所有的直流电流通路被断开,Lk 和Lm1为了阻止电流减小的趋势而产生反向电动势。
Lm1与Lm2上的电压幅值相等(等于Vo*n ),方向相反。
Im1提供T2的激磁电流Im2以及负载电流Ip2和Ip1,并同I L 一起对C2充电。
Ic2- I L = Im1-Ip1=Im2+Ip2。
Ip1从零电流开始上升,Ip2从最大电流开始下降。
当Ip2下降到零时,Ip1=Im1-Im2,Lm2上的电压反相。
Id1VinL IC2上电压很快被充至Vc1,Q2的体二极管D4导通,C1被充电。
充电电流Ic1=Im2= I L +Im1-Ip1 (Ic1忽略),Ic1由最大充电电流开始下降,Ip1则继续上升。
状态3:(t3~t5)Q1仍截止,Q2由截止变为导通。
Id1VinQ2开通时,C1仍然还在充电,直到C1上的电压充到最高值,C1开始放电。
Ip1=Ic1-I L ,放电电流一方面给Lm2提供反相电流,同时使Ip1继续上升。
状态4:(t5~t6)Q1仍截止,Q2由导通截止变为截止。
有源钳位正激
1
浙江大学硕士学位论文
摘要
本论文针对目前应用范围广泛的 Brick DC/DC 这种小功率电源市场,分析了其中常用的 DC/DC 拓扑结构,并针对性的集中分析了一种有代表性的应用拓扑——有源箝位正激 (Active Clamp Forward)DC/DC 变换电路。该拓扑的复位电压可以自动调节,可以提供大 于 50%的占空比,因而非常适合 Brick DC/DC 的宽范围要求。同时变压器上是完整的方波, 可以给同步整流提供简单有效的自驱动方案。
输入emi功率器件保护驱无源集成模块输出滤波及emi控制单元输入系统标准接口输出标准可扩标准电力电子模块有源集成模块图12电力电子标准模块框图第二节brickdcdc变流器的典型拓扑的初步比较以下是在brickdcdc变流器中常用的几种拓扑结构有源箝位型正激变流器有源箝位型正激变流器37如图13所示原边有一个主开关和一个辅助开关sa但是sa需要高边驱动或是使用p沟道mosfet
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有源钳位正激变换器的理论分析和设计方法2009年07月14日 17:48 深圳华德电子有限公司作者:刘耀平用户评论(0)关键字:有源钳位正激变换器的理论分析和设计方法摘要:零电压软开关有源钳位正激变换器拓扑非常适合中小功率开关电源的设计。
增加变压器励磁电流或应用磁饱和电感均能实现零电压软开关工作模式。
基于对零电压软开关有源钳位正激变换器拓扑的理论分析,提出了一套实用的优化设计方法。
实验结果验证了理论分析和设计方法。
关键词:有源钳位;正激变换器;零电压软开关1 引言单端正激变换器拓扑以其结构简单、工作可靠、成本低廉而被广泛应用于独立的离线式中小功率电源设计中。
在计算机、通讯、工业控制、仪器仪表、医疗设备等领域,这类电源具有广阔的市场需求。
当今,节能和环保已成为全球对耗能设备的基本要求。
所以,供电单元的效率和电磁兼容性自然成为开关电源的两项重要指标。
而传统的单端正激拓扑,由于其磁特性工作在第一象限,并且是硬开关工作模式,决定了该电路存在一些固有的缺陷:变压器体积大,损耗大;开关器件电压应力高,开关损耗大;d v/d t和d i/d t大,EMI问题难以处理。
为了克服这些缺陷,文献[1][2][3]提出了有源钳位正激变换器拓扑,从根本上改变了单端正激变换器的运行特性,并且能够实现零电压软开关工作模式,从而大量地减少了开关器件和变压器的功耗,降低了d v/d t 和d i/d t,改善了电磁兼容性。
因此,有源钳位正激变换器拓扑迅速获得了广泛的应用。
然而,有源钳位正激变换器并非完美无缺,零电压软开关特性也并非总能实现。
因而,在工业应用中,对该电路进行优化设计显得尤为重要。
本文针对有源钳位正激变换器拓扑,进行了详细的理论分析,指出了该电路的局限性,并给出了一种优化设计方法。
2 正激有源钳位变换器的工作原理如图1所示,有源钳位正激变换器拓扑与传统的单端正激变换器拓(带反并二极管)和储能电容C s,以扑基本相同,只是增加了辅助开关Sa及谐振电容C ds1、C ds2,且略去了传统正激变换器的磁恢复电路。
磁饱和电感L s用来实现零电压软开关,硬开关模式用短路线替代。
开关S和S a工作在互补状态。
为了防止开关S和S共态导通,两开关的驱动信号间留有一a定的死区时间。
下面就其硬开关工作模式和零电压软开关工作模式分别进行讨论。
为了方便分析,假设:图1 采用磁饱和电感的有源钳位正激软开关变换器1)储能电容C s之容量足够大以至于其上的电压V cs可视为常数;2)输出滤波电感L o足够大以至于其中的电流纹波可忽略不计;3)变压器可等效成一个励磁电感L m和一个匝比为n的理想变压器并联,并且初次级漏感可忽略不计;4)所有半导体器件为理想器件。
2.1 有源钳位正激变换器硬开关工作模式硬开关的有源钳位正激变换器工作状态可分为6个工作区间,关键工作波形如图2(a)所示。
[t0~t1]期间主开关S导通,辅助开关S a断开。
变压器初级线圈受到输入电压V in的作用,励磁电流线性增加,次级整流管导通并向负载输出功率。
t1时刻,主开关S断开。
[t1~t2]期间负载折算到变压器初级的电流I o*和励磁电流i m给电容C ds1充电和C ds2放电,电压V ds1迅速上升。
t2时刻,V ds1上升到V in,变压器输出电压为零,负载电流从整流管D3转移到续流管D4。
[t2~t3]期间只有励磁电流i m通过L m、C ds1、C ds2继续谐振,并在t3时刻V ds1达到(V in+V cs)。
辅助开关S a的反并二极管D2导通,励磁电流给电容C s充电并线性减小,此时,可驱动辅助开关S a。
[t3~t4]期间变压器初级线圈受到反向电压V cs的作用,励磁电流由正变负。
t4时刻,S a断开。
[t4~t5]期间电容C ds1、C ds2与L m发生谐振,并在t5时刻电压V ds1下降到V in,变压器磁芯完成磁恢复。
[t5~t0′]期间次级整流管导通,变压器次级绕组短路,给励磁电流提供了通道。
在此期间,V ds1维持在V in,励磁电流保持在-I m(max)。
t0′时刻,主开关S被驱动导通,下一个开关周期开始。
很明显,有源钳位正激变换器的变压器磁芯工作在一、三象限,变换器工作占空比可超过50%。
由于电容C ds1、C ds2的存在,开关S和S a均能能实现零电压导通。
但主开关管S工作在硬开关自然零电压关断,而且Sa状态。
(a)硬开关工作波形(b)增加励磁电流实现软开关的工作波形(c)采用磁饱和电感实现软开关的工作波形图2 各种开关电路的工作波形2.2 有源钳位正激变换器零电压软开关模式从上面的分析可明显地看出,当变压器励磁电感L m减小,励磁电流足够大时,[t5~t0′]期间励磁电流除了能提供负载电流外,剩余部分可用来帮助电容C ds2、C ds1充放电。
电压V ds1有可能谐振到零,从而实现主功率开可为负的励磁电流续流。
关键工作波形关管S的零电压软开通。
二极管D1如图2(b)所示,具体的软开关条件将在下一节中详细讨论。
很显然,软开关的代价是变压器励磁电流和开关管导通电流峰值大幅增加,开关管及变压器电流应力和通态损耗明显加大。
2.3 应用磁饱合电感器实现零电压软开关为了克服上述零电压软开关工作时电流应力过大的缺点。
可以在变压器次级整流二极管上串联一个磁饱和电感L s,如图1所示。
当电压V ds1下降到V in时,[t5~t0′]期间磁饱和电感L s瞬时阻断整流二极管,使得变压器励磁电流不必负担负载电流,而可完全用来给电容C ds2、C ds1充放电。
这样,不必大量减小变压器励磁电感,较小的励磁电流就可以保证电压V ds1谐振到零,实现主功率开关管的零电压软开通。
关键工作波形如图2(c)所示。
3 静态分析和优化设计方法3.1 储能电容电压及开关管承受的电压应力根据磁芯伏?秒平衡原则,可得式(1)V(1-D)T s=V in DT s(1)cs因为V o=所以V=(2)cs式中:V in为输入直流电压;V为输出电压;oD为主开关导通占空比;T为开关周期;sn为变压器匝比。
承受的最大电压应力均为V DS:因此,主开关S和辅助开关SaV==(3)DS上式说明,当变压器匝比愈小时,对于一定的输入电压和输出电压的变换器,开关管电压应力V DS愈小。
所以,有源钳位正激变换器一个显著优点是可以降低开关管电压应力,从而可选用额定电压较低、通态电阻较小的功率开关管。
另外,当变压器变比n确定后,开关管电压应力仅与占空比有关,如图3所示。
显然,当占空比为0.5时,开关管承受最小的电压应力。
当输入电压变化时,如果将占空比设计运行在以0.5为中心的对称范围内,则可使开关管承受的电压应力基本保持恒定。
图3 开关管电压应力与占空比的关系曲线3.2 增加励磁电流实现零电压软开关工作条件从开关S断开到电压V ds1谐振至零的过程,即工作区间[t4~t5]和a[t5~t0′]。
要实现主开关S零电压软开通,其导通驱动延迟时间必须大于以上两区间之和。
[t4~t5]期间等效电路如图4所示。
相应的电路微分方程是:V=L m C ds+V ds1(4)in=(5)(6)=V图4 [t4~t5]期间的等效电路微分方程的解为:V=cos(ωt+φ)+V in(7)ds1i=-sin(ωt+φ)(8)m式中:0≤t≤t5-t4。
I=(9)mpφ=arctan(10)C=C ds1+C ds2(11)dsω=(12)t时刻,即当5t=t-t4=t a=(13)5V=V inds1i=-I m(max)=-m设K=ωT s=(14)I=I mp=(15)m(max)[t5~t0′]期间等效电路如图5所示。
相应的电路微分方程是:V=L m C ds+V ds1(16)in=(I o*-I m(max))(17)=V(18)图5 [t5~t0′]期间的等效电路微分方程的解为:V=sinωt+V in(19)ds1i=-(I m(max)-I o*)cosωt-I o*(20)m式中:0≤t≤t0′-t5;*=为变换器输出电流折算到变压器原边的值,并且忽略了输出Io电感的电流纹波。
显而易见,主开关零电压开通的必要条件是:(I m(max)-I o*)≥C dsωV in(21)实际上,上述条件即是,变压器励磁电感储存的电流除支持负载电流外,剩余能量能使电容C ds1上电压谐振到零。
V ds1从V in谐振到零所需时间t为:bt=arcsin(22)b所以,主开关管零电压导通所需总的导通延迟时间t d为:t≥t a+t b=(23)d实际上,谐振频率ω远大于开关频率f s,即K远大于1,故式(23)可简化为:t≥?(24)d3.3 应用磁饱和电感实现软开关工作的条件断开后,由于磁饱和电感Ls瞬间相当于开路,因此当辅助开关Sa变压器励磁电流可完全用来对C ds2和C ds1充放电。
[t4~t5]、[t5~t0′]期间,等效电路同图4。
显然,令式(21)和(24)中I o*或I o为零,即可得到主开关管零电压导通的能量条件和时间条件,I m(max)≥C dsωV in,即:K≥?(25)t≥?(26)d死区延迟时间,意味着PWM变换器有效占空比的损失。
为了尽量减小有效占空比的损失,则K必须加大。
另一方面,变换器开关频率f s愈高,则为保持相同的有效占空比,K至少应保持不变,即谐振频率ω应与开关频率f s成比例增加。
图6给出了软开关所需要的死区时间t d和最大励磁电流I m(max)与K的关系曲线。
从图中明显看出,采用加大励磁电流的方法实现零电压软开关和采用磁饱和电感器比较,要求的K较大,因而有较大的励磁电流损耗;另外,从式(15)看出,开关频率愈高,电流峰值也愈高,变压器的铜耗和开关管的导通损耗也愈大。
因此,软开关有源钳位正激变换器工作频率不宜太高。
图6 软开关所需延迟时间t d和最大励磁电流I m(max)与系数K的关系曲线3.4 优化设计方法对一给定技术指标的DC/DC变换器,其具体参数为:输入电压范围V~V in(max),输出电压V o,输出功率P o,开关频率f s。
设计步骤如下:in(min)1)根据输出功率P o、开关频率f s选定变压器磁芯材料,得到相应的磁芯截面积A e,饱和磁密B s,窗口面积A w等。
设定最大交变磁密ΔB。
2)确定最大电压应力V DS及降额系数K1。
3)据式(27)、(28)求出变压器匝比n和最大、最小占空比D max、D,及正常占空比D norm。
minV=≤K1V DS(27)dsV=≤K1V DS(28)ds4)求出变压器初次级匝数N1,N2。
N=(29)1N=(30)25)求出开关管电压应力V ds,选定主开关S和辅助开关S a的额定电压及确定谐振电容C ds1和C ds2。