有源钳位正激变换器设计ppt《释心分享》
有源钳位正激电路的分析设计
有源箝位正激变换器电路分析设计1.引言有隔离变换器的DC/DC变换器按照铁芯磁化方式,可分为双端变换器和单端变换器。
和双端变换器比较,单端变换器线路简单、无功率管共导通问题、也不存在高频变换器单向偏磁和瞬间饱和问题,但由于高频变换器工作在磁滞回线一侧,利用率低。
因此,它只适用于中小功率输出场合。
单端正激变换器是一个隔离开关变换器,隔离型变换器的一个根本特点是有一个用于隔离的高频变压器,所以可以用于高电压的场合。
由于引入了高频变压器极大的增加了变换器的种类,丰富了变换器的功能,也有效的扩大了变换器的使用范围。
单端正激变换器拓扑以其结构简单、工作可靠、成本低廉而被广泛应用于独立的离线式中小功率电源设计中。
在计算机、通讯、工业控制、仪器仪表、医疗设备等领域,这类电源具有广阔的市场需求。
当今,节能和环保已成为全球对耗能设备的基本要求。
所以,供电单元的效率和电磁兼容性自然成为开关电源的两项重要指标。
而传统的单端正激拓扑,由于其磁特性工作在第一象限,并且是硬开关工作模式,决定了该电路存在一些固有的缺陷:变压器体积大,损耗大;开关器件电压应力高,开关损耗大;dv/dt和di/dt大等。
为了克服这些缺陷,提出了有源钳位正激变换器拓扑,从根本上变了单端正激变换器的运行特性,并且能够实现零电压软开关工作模式,从而大量地减少了开关器件和变压器的功耗,降低了dv/dt和di/dt,改善了电磁兼容性。
因此,有源钳位正激变换器拓扑迅速获得了广泛的应用。
本文主要介绍Flyback 型有源箝位正激变换器的稳态工作原理与电路设计。
2. 有源箝位正激变换器电路的介绍有源箝位正激变换器由有源箝位支路和功率输出电路组成。
有源箝位支路由箝位开关和箝位电容串联组成,并联在主开关或变压器原边绕组两端。
利用箝位电容及开关管的输出电容与变压器绕组的激磁电感谐振创造主开关和箝位开关的Z VS工作条件,并在主开关关断期间,利用箝位电容的电压限制主开关两端的电压基本保持不变,从而避免了主开关过大的电压应力;另一方面,在正激变换器中采用有源箝位技术还可实现变压器铁芯的自动磁复位,并可以使激磁电流沿正负两个方向流动,使其工作在双向对称磁化状态,提高了铁芯的利用率。
《有源钳位电路》课件
动态性能分析
总结词
动态性能是指有源钳位电路在输入信 号发生变化时的响应速度和稳定性。
详细描述
动态性能分析主要关注电路的上升时 间、下降时间、延迟时间等参数。这 些参数决定了电路在信号处理中的实 时性能,对于高速信号处理和实时控 制系统具有重要意义。
可靠性分析
总结词
可靠性是有源钳位电路在实际应用中稳定性和可靠性的重要保障,它涉及到电路的寿命 、故障率等因素。
电路调试与测试的方法
静态调试
电磁兼容性测试
检查电路板的接线是否正确,各元件 的参数是否符合设计要求。通过测量 各点的电压和电流,判断电路是否正 常工作。
检查电路是否符合电磁兼容性标准, 如辐射骚扰、传导骚扰等。使用专业 的测试设备进行电磁兼容性测试。
动态测试
在给定的输入信号下,观察电路的输 出信号是否符合预期。使用示波器、 信号发生器和测量仪表等工具进行测 试。
在电力系统中的应用
总结词
有源钳位电路在电力系统中起到稳定电压、 提高供电质动会对用电设备造成影响 ,有源钳位电路能够实时监测电压值,当电 压出现波动时,迅速进行调节,保持电压稳 定,从而提高供电质量,保护用电设备。
有源钳位电路的发展趋势与
06
展望
新材料、新工艺的应用
详细描述
全波有源钳位电路主要由整流器、滤波器、电容器、开关管 和变压器组成。通过变压器的作用,全波有源钳位电路能够 将输入电压进行升压或降压,从而更好地利用输入电压,提 高电源效率。
多相有源钳位电路
总结词
多相有源钳位电路是一种具有多个相位的有源钳位电路,主要用于实现多相整流和多相电机驱动等应 用。
在新能源领域的应用前景
光伏逆变器
有源钳位电路在光伏逆变器中具有重要作用 ,可提高逆变效率,降低成本。
有源钳位正激变换器的分析与设计
有源钳位正激变换器的分析与设计电气持动1999年第1期有源钳位正激变换器的分析与设计南京航空航天大学陈道炼严仰光,,——一——————一T}2Ll,摘要:丰文论述了有源钳位正融变换器的原理与设计利用有源钳位电路宴现功率变压器对称磁复位.部分磁化能量用来对功率开关寄生电蒋放电到零,宴现零电压开关.有谅钳位技术增强了正激变换器性能实验证宴了理论分析的正确性关键词:毛器量皇茎苎登堂堡瓣AnalysisandDesignofanActiveClampedForwardConverter ChenDaolianYahYangguangAbstract:Theanalysisanddesign.fanactireclampedforwardcoHverterIspresentedinthispa perByulganactiveclampedcircuit1thepowertrans,"ormerisymmetricallymagneticreseted.andapar tofmagnetizingen—ergyisusedtodischarge:heparasiticcapachan.eofthepowerwitchtozeiardertOobtainzer.vo ltageswitchAclireclampedtechra[quec-nbancestorwardC0nverteperformanceandthetheorica lanalysisisverifiedbythee~perJmentalresultKeywords~rwardCo.vett~r…voltageswitchactiveclamped1概述由于正激DC/DC变换器具有电路拓扑简单,输入输出电气隔离.电压升,降范围宽,易于多路输出等优点,因此被广泛应用于中小功率电源变换场合然而,正激变换器的一个固有缺点是需要附加电路实现变压器磁复位采用磁复位绕组正激变换器--的优点是技术成熟可靠.磁化能量无损地回馈到直流电网中去.但附加的磁复位绕组使变压器结构复杂化.变压器漏感引起的关断电压尖峰需要RC缓冲电路来抑制,占空比d<0.5,功率开关承受的电压应力与输入电源电压成正比.RCD钳拉正激变换器的优点是磁复位电路简单,占空比d可以大于0.5,功率开关承受电压应力较低.但大部分磁化能量消耗在钳位电阻中,因此它一般适用于变换效率不高且价廉的电源变换场台.无损LCD缓冲网络正激变换器¨j的优点是磁化能量无损地回馈到电网中,占空比d>0.5当开关频率太于30kHz时,过大的LC谐振电流增加了功率开关的导通损耗,因而通常应用+本文为航空基础科学基金,较自进课题资助项目研究内容30在开关频率为20kHz的场合采用有源钳位支路实现正激变换器变压器磁复位,比上述3种传统的方法优越,主辅开关均可实现零电压通断,这是零电压转换ZVT—PWM技术在正激变换器中的具体应用.本文将详细论述这种变换器的工作原理和设计要点2工作原理在传统正激变换器电路拓扑基础上,增加由钳位开关Sc与钳位电容Cc串联构成的有源钳位支路,便得到了有源钳位正激变换器,如图l所示.钳位开关Sc与主功率开关S的驱动信号互补.由变压器原边绕组伏秒积平衡原理可知,图1a电路钳位电压为式中d——占空比式(1)与Flyback变换器相似,称之为单端反激式Flybaek钳位(简称Flyback钳位).圈lb电路钳位电压为电气传动1999年第1期1bJ囤1有潍钳位正敲变换器(&)F[yback钳位<b)Boost钳位1U=U.(2)』I^式(2)与Boost变换器相似,称之为升压式Boost 钳位(简称Boost钳位).这两种钳位电路工作原理基本相同,只是回馈到输人电源中的电流谐波不同.本文以Flyback钳位电路为研究对象,其研究结论同样适用于Boost钳位电路.假设输出滤波电感L和钳位电容C足够大.因此可将其分别作为电流源和电压源处理,简化电路及其原理波形如图2所示(L为变压器磁化电感).每个PWM周期可分为7个区间,每个区间等效电路如图3a~g所示7个区间的电路变化过程叙述如下.to~l:t.时刻,S开通,Dl导通,D2截止,如图3a所示.t.~t:t时刻,S关断,负载折算到原边的电流』./Ⅳ对Cs充电,如图3b所示.t2~:t£时刻.U上升到『,,Dl关断,D2开通,L上能量对Cs充电即二者谐振,使Ud上升, 如图3c所示.t~:t时刻,U上升到钳位电压U与fJT.之和,Dc开通,设开关频率,s>>1/(2n _——,/LC,),即钳位电压U基本不变,如图3d所示. t~£::t时刻,磁化电流i为零,随后i变负,钳位开关Sc导通,Sc实现了零电压ZVS开通,如图3e所示.t=~t6:ts时刻,Sc关断…I.与C开始谐振,C以负值磁化电流放电,能量回馈到电网及转移到工中.如图3f所示.t6~(c):tB时刻,U下降到.D开通.D.与D共同导通期间为i在副边续流提供了路径,t时刻S再次开通,开始另一PWM周期,如图3g所示.欲获得功率开关S的ZVS开通,可用两种方法实现一种方法是变压器铁心加气晾,降低L增大磁化电流,当Sc在t时刻关断的磁化电流大于负载折算电流/N,则这两个电流的差值将使得C在t时刻之后继续放电.或者说磁化电流除了支持输出电流之外.剩余电流将用来使C放电,即将C上电荷抽尽.这种方法消除了功率开关S的容性开通损耗,但却增加了变压器铁损.另一种方法是在副边整流二极管D.中串联一饱和电抗器,延缓D.的开通时刻,即饱和电抗器暂时将变压器和负载断开.整个磁化电流将全部用来对C放电,但高频时饱和电抗器损耗较大fh)圉2简化电路丑其原理波形(a)简化电路(b)原理渡形3lⅢ电气持动1999年第1期图3每十等效电路f),~ifb"f~fJ~(d)~f)~ffJ,~6(g)~3关键参数设计3.1功率变压器设计接通电源,经历若干PWM周期后.钳位电容自动充电到某一稳态值U=u,它可保证铁心双向对称磁化任何铁心双向不对称磁化因素都会导致£值适度的变化,从而迫使铁心双向对称磁化.设图2b中磁化电流渡形双向不对称, 即,的正向最大值太于负向最大值,则C的充电能量大于放电能量,因而十一/L十一i下降速率十一迫使.(即磁通)双向对称.有源钳位正激变换器的这一特点具有显着优点,克服了传统正激变换器变压器铁心利用率低的缺点, 进一步增强了正激变换器性能和工程应用价值, 较全桥,推挽变换器(存在单向偏磁现象)要优越得多.它同半桥变换器相似,具有抗磁不平衡能力,其根本原因是钳位电压或者说功率开关漏极电位具有浮动特陛.变压器原边绕组匝数为,'N一素等×10'(3)式中B一一铁心工作磁密S——铁心截面积t——功率开关导通时间由式(3)可知,绕组匝数是传统的复位绕组RCD正激变换器的一半,降低了铜损32占空比d设计功率开关S的电压应力为Ud,--U一一㈥32式中Ⅳ——变压器匝比变换器输出电压在相同的Ⅳ,U.下,当输^电源电压F增大时,占空比d减小,功率开关S电压应力变化不大.如图4所示.一般选取一一o75.该特点(可夫于0.5,但变化不大)使得它很适用于宽输入电源电压场合.例如,航空静止变流器输八电压U.一18~32V,选取有源钳位正激变换器作为DC/DC变换级最台适图4功翠开关电压应与占空比美系3.3钳位电容C设计钳位电容C值由钳位电压纹波3U:决定c越大.越小,功率开关S电压应力越小.但对电源电压或负载变化时的变换器状态响应速度也变慢设△:<<U,则在(1一d)丁区问内变压器磁化电流(钳位电容电流)近似按恒定斜率u./三下降,如图2b所示.由图2b可知,钳位电容电压纹波为1一Idt—I(1d)7';儿4C1()cJ式(5)中,J为t--t时磁化电流值.稳态时i即i的下降斜率为/L一J/寺(1一d)丁](6)由式(5),(6)可知,,/U为电气传动1999年第l期((=(1一d):T:/(8L(,1(7)由式c4)町知.功率开关电压应力纹渡己d,一.3U,因此虬一等=㈤按照d—d…最坏情况设计,取儿≤l0%或≤10%.3,4功率,钳位开关驱动延迟时间设计图2b原理波形示出r功率开关S与钳位开关S驱动信号延迟时间f:,合理没计r.与r:是实现有_碌钳位正激变换器的关键问题之一延迟时间过大.影响有效占空比延迟时间过小,满足不了要求S关断与S开通的时问间隔为r!≥一=2r,√L…C4(9)式(9)为l,C谐振电路的14谐振周期S关断与S开通的时间问隔为f一.<r<--t若忽略2一l,则3一l≈一t2='一.因此可得2ⅡLH<r<(i—d)71/!(10)式(9),式(10)按最坏情况(U.d—d…一U一)来调节RC延迟电路参数4实验航空静止变流器采用DC仁K二变换器和DC AC逆变器两级级联的电路拓扑结构DC/DC变换器将输入电压U.=18~32V,升高到稳定的l90VDC,仁K二AC逆变器再将190VDC逆变成115V400HzACDC/DC变换器,DC/AC逆变器各自构成闭环控制系统.考虑到输入电网电压变动范围大,且飞机交流用电负载与直流电网共地. 因而选用具有电气隔离且眭能优良的有源钳位正激变换器作为DC/DC变换级按上述理论设计的有源钳位正激变换器参数如下功率P.一100w,输A电源电压U.一18~32V.输出电压U一190V.开关频率一100 kHz.最大占宅比d一0.75.钳位电容c=60nF,延迟时间rl取600ns,r2取470ns原理实验测得不同输出功率时变换效率如图5所示l习j有源钳位正馓耍挽器教军曲线5结论本文论述了,有源钳位正激变换器的原理与设计,得出了如下结论(1)有_碌钳位正激变换器变压器铁心工作在双向对称磁化状态,提高了铁心利用率,减小了体积与重量.占空比>0,5.进一步增强lr其性能和工程实用价值,适用于宽输A电源电压场合. (2)有源钳位正激变换器实质E是零电压转换PWM变换器,兼有谐振技术与传统PwM技术两者之优点(3)提供r钳位电容C,驱动信号延迟时间r,r:等关键电路参数与其它参数间的定量关系(4)实验证实了有源钳位正激变换器具有优良的性能.参考文献11遭密电电于技术.航空工业出社1992:213~2142陈道炼RCD钳位正激变拽器的分析研究南京航空航元大学,1997(2):231~2353洗冬珍等.LCD无垌吸收网络的应用研究电力电子技术. 1995t4)35~:184LeuCSetⅡ,.ComparisonofForwardFopologieswirhV ari …ResetSchemes,VPECSeminarproceedings1991101~1n§藕百1丽丽i(上接第21页)KrausePC.Analy~isofElectricMachlnery.NewY ork:Mc G…Hi】l,1986jKane]lakopou[osI.KokorovicPVMarinoRAnExtended DlteetSchemefoiRobustAdaptlveNonlinearComro[.Auto一tca.1991.27(2)247~2j55MarinoRAnExample.fANonlinearRegula1.r1EEE T…sAutom,Contr,l984,29(3):276~2797MarinaR—PeresadaS.Va]igiPAdaptiveInput-outputLin- earizingControl.fInductionblotorsIEEETrans.AutomContr19§3,38(2):208~2218IsidoriANon]inearControlSystemsBetlinspringerV etlag19蚺9蔡自兴等译.应用非线性控制北京:国防工业出社, 199276~77面蓓百丽F而33。
有源钳位正激电源变换器的工作原理及优势
有源钳位正激电源变换器的工作原理及优势有源箝位正激电源变换器的工作原理及优势— Bob Bell, 美国国家半导体公司电源应用工程师对设计人员来说,有源箝位正激变换器有很多优点,现在正得到广泛应用。
采用正激结构的电源变换器是高效率、大功率应用(50W 至 500 W范围)的出色选择。
虽然正激结构的普及有各种各样的原因,但设计者主要青睐的是它的简捷、性能和效率。
正激变换器来源于降压结构。
两者之间的主要区别是:正激结构变压器的输入地和输出地之间是绝缘的,另外它还有降压或升压功能。
正激结构中的变压器不会象在对称结构(如推挽、半桥和全桥)中那样,在每个开关周期内进行自复位。
正激功率变换器中使用了一些不同的复位机制,它们各有自己的优点和挑战。
对设计者而言,有源箝位正激变换器具有诸多的优点,因此现在这个拓扑被广泛应用。
图1:降压和前向拓扑结构图 1 显示了降压和正激转换器之间的相似之处。
注意两种变换功能的唯一区别是在正激变换功能中,匝数比(Ns/Np)这一名词所包含的内容。
Ns 和 Np 分别为次级匝数和初级匝数,均绕在变压器磁芯上。
图2 显示了一个变压器模型,其中包括与初级绕组并联的“励磁电感”(Lm)。
这个励磁电感可以在次级绕组开路状态下在初级端子处测量。
励磁电感中的电流与磁芯中的磁通密度成正比。
确定尺寸的某种磁芯只能支持到某个磁通密度,然后磁芯就会进入饱和。
当磁芯饱和时,电感量会急剧下降。
变压器模型中另外一个部分是与初级绕组串联的“漏感”(LL)。
漏感可以在次级绕组短路情况下在初级端子处测量。
这一名称表示杂散的初级电感,它不会耦合到次级。
图2 转换模式有源箝位电路的工作图3a 图3b图3c图 3a 到 3c 表示了有源箝位正激电源转换器的主要工作步骤。
在时刻t0 时,主功率开关(Q1)导通,在变压器初级施加一个VIN。
变压器次级绕组电压为VIN x Ns/Np。
此时的初级电流包括两个部分:来自输出电感的映射电流(IL x Ns/Np);以及在激磁电感(Lm)中上升的电流。
有源箝位正激式电路的特点及其参数设计
Science &Technology Vision科技视界0引言在烟草工业电气设备中,各种电路板和模块上的大量集成电路,需要直流5V 电源供电,通常我们用高于5V 的直流电再通过DC-DC 三端稳压模块变换(一般压差为2V)得到稳定的5V 电源。
实验室用的电源电流一般只有5A,10A,且体积偏大,不适合安装。
有源钳位正激式拓扑电路适合中小功率开关电源的设计,而且结构简单,性能好,适合在烟草工业电气设备中使用。
1有源箝位正激式电路的特点图1有源箝位正激式模型电路有源钳位正激变换器拓扑与传统的单端正激变换器拓扑基本相同,只是增加了辅助开关Qc(带反并二极管)和储能电容Cc,且略去了传统正激变换器的磁恢复电路。
开关Q1和Qc 工作在互补状态。
为了防止开关Q1和Qc 共态导通,两开关的驱动信号间留有一定的死区时间。
采用有源箝位的正激变换器的特点是:变压器是双向对称磁化的,工作在B-H 回线的第一和第三象限,变压器得到了充分利用,因此占空比可以大于0.5,而且开关管的电压应力低,适合与输入电压范围比较宽的应用场合,箝位开关管是零电压开关的,励磁能量和漏感能量全部回馈到电网。
2参数设计2.1功率变压器的设计1)工作频率的设定开关频率的提高有助于开关电源的体积减小,重量减轻。
开关频率提高又增加了开关损耗和磁芯损耗。
本方案通初步确定工作频率和最大占空比如下:工作频率f=170kHz 最大占空比=75%2)根据设计输出功率选择磁芯P O =7.5×20=150(W)考虑有20%裕量和效率,取η=80%,则150×1.2×1.25=225瓦,选择一个传递功率可达300瓦的磁芯,通过Ferroxcube 公司的磁芯手册,选材料代号为3F3的锰锌铁氧体磁芯,材料的损耗曲线如图2所示。
比损耗为100Mw/cm 3对应磁通密度摆幅为0.09T。
这里是第一次选择磁通密度摆幅。
图2比损耗与频率和峰值磁感应关系T=100℃应用面积粗略估计公式:AP=A e A w =P OK ΔBf T()4/3cm4其中:P O ———输出功率(W);ΔB ———磁通密度变化量(T);f T ———变压器工作频率(Hz);K ———0.014(正激变换器)得到AP=2720.014×0.08×170×103()4/3=1.2cm4假定选择磁芯EE32/6/20,查阅手册得到A w =130mm 2A e =130mm 2V e =5380mm 3l e =41.4mm 。
有源钳位正激变化器的工作原理欧阳文创编
第2章有源箝位正激变换器的工作原理2.1 有源箝位正激变换器拓扑的选择单端正激变换器具有结构简单、工作可靠、成本低廉、输入输出电气隔离、易于多路输出等优点,因而被广泛应用在中小功率变换场合。
但是它有一个固有缺点:在主开关管关断期间,必须附加一个复位电路,以实现高频变压器的磁复位,防止变压器磁芯饱和[36]。
传统的磁复位技术包括采用第三个复位绕组技术、无损的LCD箝位技术以及RCD箝位技术。
这三种复位技术虽然都有一定的优点,但是同时也存在一些缺陷[37-39]。
(1)第三复位绕组技术采用第三个复位绕组技术正激变换器的优点是技术比较成熟,变压器能量能够回馈给电网。
它存在的缺点是:第三复位绕组使得变压器的设计和制作比较复杂;变压器磁芯不是双向对称磁化,因而利用率较低;原边主开关管承受的电压应力很大。
(2)RCD箝位技术采用RCD箝位技术正激变换器的优点是电路结构比较简单,成本低廉。
它存在的缺点是:在磁复位过程中,磁化能量大部分都消耗在箝位网络中,因而效率较低;磁芯不是双向对称磁化,磁芯利用率较低。
(3)LCD箝位技术采用无损的LCD箝位技术正激变换器的优点是磁场能量能够全部回馈给电网,效率较高。
它存在的缺点是:在磁复位过程中,箝位网络的谐振电流峰值较大,增加了开关管的电流应力和通态损耗,因而效率较低;磁芯不是双向对称磁化,磁芯利用率较低。
而有源箝位正激变换器是在传统的正激式变换器的基础上,增加了由箝位电容和箝位开关管串联构成的有源箝位支路,虽然与传统的磁复位技术相比,有源箝位磁复位技术增加了一个箝位开关管,提高了变换器的成本,但是有源箝位磁复位技术有以下几个优点:(1)有源箝位正激变换器的占空比可以大于0.5,使得变压器的原副边匝比变大,从而可以有效地减少原边的导通损耗;(2)在变压器磁复位过程中,寄生元件中存储的能量可以回馈到电网,有利于变换器效率的提高;(3)变压器磁芯双向对称磁化,工作在B-H回线的第一、三象限,因而有利于提高了磁芯的利用率;(4)有源箝位正激变换器的变压器原边上的电压是是有规律的方波,能够为副边同步整流管提供有效、简单的自驱动电压信号,因而大大降低了同步整流电路的复杂度。
有源钳位DC/DC正激变换器硬件电路及参数的设计
有源钳位DC/DC正激变换器硬件电路及参数的设计摘要:开关稳压电源取代晶体管线性稳压电源已有30多年历史。
最初的开关电源一问世其电能转换效率就已经达到了60%-70%,转换效率可达到线性电源的一倍。
因此开关电源引起了人们的广泛关注。
随着社会进步,开关电源应用越来越广泛,对开关电源也提出新的要求。
开关电源要小型轻量,包括磁性元件和电容的体积重量要小。
此外要求开关电源效率要更高,性能更好,可靠性更高等。
DC-DC变换器是开关电源的主要组成部分,它是电能转换的核心,涉及到体积,转换效率等各方面的要求。
本文主要介绍有源钳位单端正激式DC/DC变换器的设计方法。
关键词:DC-DC变换器;有源钳位;设计;输入电压为28.5±5V,输出电压为12V,输出功率为50W。
一、占空比的设计当主开关管Q1开通时,变压器原方绕组所承受的电压为,Q1截止时,原方绕组承受的反向电压为钳位电容上的电压。
假设足够大,则在Q1截止期间,可以认为保持不变,则根据伏-秒积平衡可以得到:(5-1)则不难得到:(5-2)当主开关管Q1关断时,漏源电压应力为:(5-3)综合式(5-1)、(5-2)、(5-3)式可得(5-4)在相同的N、下,当输入电源电压增大时,占空比D减小。
从式(5-4)可以看出,当D变化时,开关管电压应力也随之变化。
当D=0.5左右变化时,的值变化不大,也就是说,当输入电压变化比较大时,开关管电压应力变化不大,因此有源钳位正激变换器特别适用于宽输入电源电压场合。
一般D最大可以取到0.75左右。
在设计开关电源时,应该合理选择占空比,使得当输入电压为最大和最小值,开关管的电压应力相等。
由式(4-4)可得:,(5-5)由式(5-2)可知,欲使得输入最大电压和最小电压时开关管电压应力相等,则须满足以下条件:(5-6)则可以算得=0.412,=0.588,N=1.15为了便于高频变压器的制作,取N=1,则根据式(4-4)可以得到:=0.358,=0.511二、主开关管的选择选择MOSFET的原则是:MOSFET的额定电压和电流值不小于变换器中MOSFET所承受的最大电压和最大电流,一般应该为两倍。
有源钳位正激变换器设计《释心分享》
本科毕业设计(论文)有源钳位正激变换器设计刘长智燕山大学2014年6月本科毕业设计(论文)有源钳位正激变换器设计学院:里仁学院专业:应用电子4班学生姓名:刘长智学号:101203031292指导教师:赵清林答辩日期: 2014.06.21燕山大学毕业设计(论文)任务书摘要开关电源技术经历了多年的发展,各方面都比较成熟,是现代电子设备的心脏和动力。
广义的说,凡是采用半导体功率开关器件作为开关管,通过对开关管的高频开通与关断控制,将一种电源形态转化为另一种电源形态的装置,叫做开关变换器。
以开关变换器为主要组成部分,转换时用闭环自动控制来稳定输出,并在电路中加入保护环节的电源,叫做开关电源。
如果用高频PWM DC/DC变换器作为开关电源的开关变换器时,就称为高频开关电源。
[1]许多的新技术被广泛的应用到开关电源中,使其在转换效率,功率密度,以及功率因数等方面都有了较大的性能提升。
其中,DC-DC变换器是开关电源的最主要组成部分,它是电能转化的核心部分,涉及到体积,转换效率等各个方面。
本文主要介绍了传统正激变换器与有源钳位正激变换器的工作原理,以及正激变换器磁复位的几种方法。
完成了主电路各个元件参数的设计,对电路进行了小信号模型分析,并对主电路和闭环系统进行了PSPICE仿真,并对仿真结果进行了详细的分析。
最后使用Protel绘制出了完整的电路原理图。
该变换器采用了同步整流技术,有效的减少了输出电路的开关损耗;采用软开关技术,实现了主辅开关管的零电压开通;采用德州仪器公司推出的UCC2981D芯片实现有源钳位正激变换器的设计要求。
关键词有源钳位;正激变换器;同步整流;软开关燕山大学本科生毕业设计(论文)AbstractThe switching power supply technology who has gone through years of development and all aspects are more mature is the power and heart of the modern electronic equipment. Broadly speaking, all the devices that use the semiconductor power switch device as the switch tube, through the high frequency of the switch on and off control, and make a power supply form into another form, are called a switching converter. The power supply, with the switch converter as the main part, the conversion by closed loop automatic control to stabilize the output, and add the link of power protection in the circuit, is called switching power supply. If the use of high frequency PWM DC/DC converter as the converter switching power supply, it is called the high-frequency switching power supply. Many new technologies are widely used in the switching power supply, witch of the conversion efficiency, power density, power factor, and other aspects has a larger improvement in performance. Among them, the DC-DC converter is the most important part of switch power supply, it is the core part of the electric energy conversion, which relates to the volume, the conversion efficiency, and other aspects.This paper mainly introduces the operational principle of the traditional forward converter and the active clamp forward converter, as well as the magnetic reset methods of the forward converter. This paper completed the design of each component parameters in the main circuit and carried on the small signal model of the circuit analysis. This paper also carried on the PSPICE simulation of the main circuit and the closed loop system and the simulation results are analyzed in detail. Finally, the circuit schematics are completed by using of the Protel.The converter with synchronous rectification technology, effectively reduce the switching losses of the output circuit; with soft switchingtechnology, realize the ZVS of the main and auxiliary switches; Using UCC2981D chip of TI company, meets the active clamp forward converter requirement of design.Keywords Active clamp, Forward converters, Synchronous rectification, ZVS目录摘要 (I)Abstract (II)第1章绪论 (1)1.1引言 (1)1.2开关电源现状 (1)1.3论文主要研究内容 (2)1.4本章小结 (3)第2章有源钳位正激变换器 (4)2.1主电路工作原理分析 (4)2.1.1 传统单端正激变换器 (4)2.1.2 正激变换器磁复位的方法 (4)2.1.3 同步整流电路的介绍 (7)2.1.4 有源钳位正激变换器的工作过程分析 (8)2.2主电路元件的参数计算 (14)2.2.1 设计要求 (14)2.2.2 功率变压器的设计 (14)2.2.3滤波电感和电容的设计 (20)2.2.4有源钳位去磁电路的设计 (24)2.2.5 自驱动同步整流电路的设计 (27)2.3本章小结 (28)第3章闭环控制系统的设计 (30)3.1小信号模型的分析 (30)3.2变换器闭环PI控制的参数设计 (33)3.2.1 系统传递函数分析 (34)3.2.2 补偿环节的设计 (36)3.3本章小结 (41)第4章变换器的开环与闭环仿真 (42)4.1变换器的开环仿真原理图及仿真波形分析 (42)4.2变换器的闭环仿真原理图及仿真波形分析 (44)4.3本章小结 (46)第5章有源钳位正激变换器硬件电路的设计 (47)5.1UCC2891D芯片功能介绍 (47)5.2UCC2891D芯片的功能配置 (52)5.3反馈隔离电路的设计 (53)5.4隔离驱动的设计 (53)5.5本章小结 (54)结论 (55)参考文献 (57)附录1 (59)附录2 (67)致谢 (80)第1章绪论1.1 引言正激变换器由于自身具有电路拓扑简单、电压升降范围宽、输入输出电气隔离、易于多电路输出等特点,因而被广泛的用于小功率电源变换器的场合。
《有源钳位电路》课件
故障排查与修复
通过实验结果分析,找出电路中可能存在的 问题,并进行修复和改进。
性能评估与优化
根据实验结果,对电路性能进行评估,针对 不足之处进行优化设计。
Part
04
有源钳位电路的改进与发展
新型元件与电路拓扑
新型元件
随着科技的进步,新型的电子元件不断涌现,如宽禁带半导体材料(如硅碳化物和氮化镓)制成的功 率器件,具有更高的开关速度和耐压能力,为有源钳位电路的性能提升提供了硬件基础。
电路拓扑
在有源钳位电路的拓扑结构方面,研究人员不断探索新的结构以优化性能。例如,采用多相交错并联 结构可以提高电路的电流处理能力和可靠性。
新型控制策略
预测控制
通过引入预测控制算法,对电路的未 来状态进行预测,提前调整控制参数 ,可以有效减小电压波动和提高稳定 性。
滑模控制
滑模控制策略能够快速响应系统参数 的变化,对非线性负载具有较好的适 应性,可以提高有源钳位电路对负载 变化的适应性。
性。
电路组成与元件
开关管
用于控制电源的通断,通常采用 高速、大功率的晶体管。
控制器
用于产生控制信号,控制开关管 的通断和占空比。
反向二极管
用于吸收开关管上的反向电压, 防止开关管过压损坏。
电阻和电容
用于控制电路的充放电时间和电 压幅度。
有源钳位电路的应用场景
开关电源
有源钳位电路广泛应用于各种类 型的开关电源中,如充电器、适 配器、LED驱动器等。
详细描述
有源钳位电路通过引入额外的控制电压源,将输出电压稳定在预设的钳位电压 值。这种特性使得有源钳位电路在电源管理、信号处理等领域具有广泛应用。
有源钳位正激变换器设计释心分享
第四部分
使用PSpice对主电路进行开环仿真研究
输出稳定时滤波电感电流的波形
14.57A 12.50A
10.00A
7.50A
2.4954ms 2.5000ms I(L1)
2.5100ms
2.5200ms
2.5300ms Time
2.5400ms
2.5500ms 2.556
输出电压和电流波形
主开关管和辅助开关管的驱动信号波形
开关模态3(T2-T3):DF续流阶段
Lo
Cc Vin
Lr
D2 Q2
Np Ns Lm
1:N
Q1 D1 Coss
QF DF Cossf
Co Vo
QR
DR
Cossr
T2时刻后,Coss电压升高于Vin Io由DR换流至DF,通过DF续流 Lm、Lr和Coss谐振 T3时刻,Coss充至Vin+Vc
开关模态4(T3-T4):Q2的零电压开通阶段
D2
D3
CR
S
当开关S闭合时,电源电压加在高频变压器原边绕组 N1上,建立起励磁磁通。只要磁心不饱和,副绕组 N2上就会感应电势
正激变换器磁复位的方法
• 多谐振复位技术 • RCD钳位技术 • 有源钳位技术 • ……
优缺点对比
优点
缺点
主开关管漏-源极电压应力达
多 谐 振 复 输入电流波形较为平滑,EMI 到 输 入 电 压 的 3—4 倍 ,
0.0380 Transfer function:
0.001216 s + 16 ----------------------------2.4e-008 s^2 + 2.4e-005 s + 1 >> num=[3.18e-4 1]; den=[2.64e-4 0]; Gc=tf(num,den); figure(2) bode(Gc); G=series(Gc,G0); figure(3) margin(G)
《正激变换器的设计》课件
总结词
正激变换器的特点是电路简单、可靠性高、成本低等,广泛 应用于开关电源、适配器、充电器等领域。
详细描述
正激变换器具有电路简单、可靠性高、成本低等优点,因此 在开关电源、适配器、充电器等领域得到广泛应用。它能够 实现输入和输出电压的隔离和变压,同时具有较高的效率和 较低的损耗。
02 正激变换器的设计步骤
通过对电路参数和元件的优化选择, 可以进一步提高正激变换器的效率。
损耗
正激变换器的损耗主要包括开关损耗 、磁性元件损耗和导通损耗。这些损 耗应尽可能降低,以提高整体效率。
温升分析
温度
正激变换器在工作过程中会产生热量,导致温升 。过高的温度会影响变换器的性能和可靠性。
散热
为了控制温升,需要采取有效的散热措施,如自 然散热、强制风冷或液冷等。
选择合适的磁芯和绕组
磁芯材料
01
选择合适的磁芯材料,如铁氧体、硅钢等,以满足工作频率和
磁通密度的要求。
磁芯形状
02
根据实际需求选择合适的磁芯形状,如E型、EE型、罐型等。
绕组线径和匝数
03
根据输入输出电压和电流的大小,计算绕组的匝数和线径,以
确保变压器的电气性能。
计算变压器匝数和线径
匝数计算
根据输入输出电压和磁芯的磁通密度 ,计算绕组的匝数。
、安全认证的要求等方面的内容。
THANKS FOR WATCHING
感谢您的观看
电路组成
总结词
正激变换器的电路组成包括输入滤波器、开关管、变压器、输出整流器和输出 滤波器等部分。
详细描述
正激变换器的电路组成包括输入滤波器用于抑制电磁干扰,开关管用于控制能 量传输,变压器用于实现电压隔离和变压,输出整流器用于将交流电压转换为 直流电压,以及输出滤波器用于平滑输出电压。
有源箝位正激变化器主电路设计
第3章 有源箝位正激变化器主电路设计3.1 变换器的主要技术指标本课题采用了上一章提出的有源箝位正激变换器拓扑,其主要技术指标如下:输入电压:36V-72V ;输出电压:3.3V ;输出电流:0-30A ;开关频率:250KHz ;整机效率:>90%;最大温升:40o C ;冷却方式:自然通风;最大占空比:60%;输出纹波系数(48in U V =):1%。
3.2 主电路的主要元器件参数设计和选择3.2.1 输出滤波电感的设计输出滤波电感L o 上的最大纹波电流波形如图3-1所示:I I ∆图3-1 最大纹波电流波Fig. 3-1 Ripple current waveform of output Inductor对于输出滤波电感L o 的值,可根据电磁感应定律求解:()o o MIN o SW 1V L D I f =-∆ (3-1)式中:o V 为输出电压值; o I ∆为满载输出电流波动,在此取o 3I A ∆=;SW f 为电感工作频率;MIN D 为最小占空比。
由式(3-1)可以得到所需要的滤波电感值为: ()o 33.310.3 2.05μH 325010L =-=⨯⨯ (3-2)增大输出滤波电感的电感量,可以减小纹波电流,但是系统的瞬态响应速度会变慢;反之减小电感量,系统的瞬态响应变快,但纹波电流增大,因而给滤波电容增加了负担,器件的损耗也会增加。
综合考虑以上因素,在本设计中取:o =2μH L 。
将o =2μH L 代入式(3-1),可以得到o I ∆为: ()()o o MIN 63o SW 3.3110.3 4.62A 21025010V I D L f -∆=-=-=⨯⨯⨯ (3-3)3.2.2 输出滤波电容的设计输出滤波电容的选择要基于许多实用要求,例如纹波要求、耐压、耐流及等效串联电阻等。
在本设计中,为了满足输出纹波电压小于稳定输出电压的1%即33mV 的要求,最小输出滤波电容的值可以根据式(3-4)得出:()o o MIN 36SW o 4.6270μF 88250103310I C f V -∆===∆⨯⨯⨯⨯ (3-4)由式(3-4)计算出来的值只能满足输出电压纹波的要求,最终选择值的选择还要根据系统对瞬态响应的要求和参照输出滤波电容的等效串联电阻ESR R 。
DC-DC正激变换器次级有源箝位电路.
DC-DC正激变换器次级有源箝位电路DC-DC正激变换器次级有源箝位电路类别:电源技术摘要提出一种新型DC-DC正激变换器次级有源箝位电路。
它一方面将储存于变压器漏感能量无损耗地转移到负载,另一方面有效降低了次级功率二极管电压应力。
本文对其一个周期内工作原理及相关理论进行分析,并给出2.8kW DC-DC变换器实验结果及波形。
关键词正激变换有源箝位漏感1 前言图1为正激变换器次级拓扑结构电路,VD1为整流二极管,VD2是续流二极管,Lf是输出滤波电感,Cf是输出滤波电容。
当初级开关管开通时,VD1导通,VD2截止,初级能量向负载转移;当初级开关管关断时,VD1关断,VD2开通,滤波电感电流通过VD2续流。
以上只是理想状态,若考虑功率二极管的反向恢复特性和变压器漏感,当VD1(或VD2)处于反向恢复期时,有一冲击电流流经变压器,并将能量储存于变压器漏感中,此能量将使二极管承受较大的反向电压冲击。
这样一方面需选用较高耐压等级的二极管,另一方面产生的EMI也较大。
此外,由于变压器存在绕线电阻,此能量会使变压器发热。
如何有效处理漏感能量呢?最常用的办法是将无源RC缓冲电路与每只功率二极管并联,如图2所示,使漏感能量都消耗在缓冲器上。
工作频率越高,缓冲器消耗的能量越多,因此,变换器频率和效率都不高。
下面将介绍一种有源箝位电路,它能将功率二极管反向电压箝位在一较低范围内,并且能量回收电路将漏感所存储的能量无损耗地转移到负载,便于实现变换器的小型化。
2 电路原理分析 DC-DC次级有源箝位电路如图3所示,L2表示变压器次级的漏感,由VD1、VD2、VD3、VD4、C1组成全桥结构箝位电路,VD1、VD2是正激变换次级主整流二极管和续流二极管。
对于这种全桥结构,加在每个主二极管上的最大反向电压就是电容C1的电压。
因此,如果能将C1电压箝在小于每个二极管的最大反向电压,二极管就可实现安全箝位了。
VT3、L3、VD5、C2组成升-降压式的能量回收电路。
有源钳位正激电路的分析设计
有源箝位正激变换器电路分析设计1.引言有隔离变换器的DC/DC变换器按照铁芯磁化方式,可分为双端变换器和单端变换器。
和双端变换器比拟,单端变换器线路简单、无功率管共导通问题、也不存在高频变换器单向偏磁和瞬间饱和问题,但由于高频变换器工作在磁滞回线一侧,利用率低。
因此,它只适用于中小功率输出场合。
单端正激变换器是一个隔离开关变换器,隔离型变换器的一个根本特点是有一个用于隔离的高频变压器,所以可以用于高电压的场合。
由于引入了高频变压器极大的增加了变换器的种类,丰富了变换器的功能,也有效的扩大了变换器的使用围。
单端正激变换器拓扑以其构造简单、工作可靠、本钱低廉而被广泛应用于独立的离线式中小功率电源设计中。
在计算机、通讯、工业控制、仪器仪表、医疗设备等领域,这类电源具有广阔的市场需求。
当今,节能和环保已成为全球对耗能设备的根本要求。
所以,供电单元的效率和电磁兼容性自然成为开关电源的两项重要指标。
而传统的单端正激拓扑,由于其磁特性工作在第一象限,并且是硬开关工作模式,决定了该电路存在一些固有的缺陷:变压器体积大,损耗大;开关器件电压应力高,开关损耗大;dv/dt和di/dt大等。
为了克制这些缺陷,提出了有源钳位正激变换器拓扑,从根本上变了单端正激变换器的运行特性,并且能够实现零电压软开关工作模式,从而大量地减少了开关器件和变压器的功耗,降低了dv/dt和di/dt,改善了电磁兼容性。
因此,有源钳位正激变换器拓扑迅速获得了广泛的应用。
本文主要介绍Flyback型有源箝位正激变换器的稳态工作原理与电路设计。
2. 有源箝位正激变换器电路的介绍有源箝位正激变换器由有源箝位支路和功率输出电路组成。
有源箝位支路由箝位开关和箝位电容串联组成,并联在主开关或变压器原边绕组两端。
利用箝位电容及开关管的输出电容与变压器绕组的激磁电感谐振创造主开关和箝位开关的Z VS工作条件,并在主开关关断期间,利用箝位电容的电压限制主开关两端的电压根本保持不变,从而防止了主开关过大的电压应力;另一方面,在正激变换器中采用有源箝位技术还可实现变压器铁芯的自动磁复位,并可以使激磁电流沿正负两个方向流动,使其工作在双向对称磁化状态,提高了铁芯的利用率。
单输出有源钳位正激DC_DC变换器设计
(15)
图4
同步整流驱动原理
取整 20 匝。
压的变化而变化[3],当输入电压变化范围很大时, 自驱动同步整流基本不能工作。另外一种办法是 采用变压器辅助绕组来获取一路驱动电压,但此 驱动电压在关断时为负值,且较大。对于关断
4 初级开关管软开关的实现
初级的损耗很大一部分是来自主开关管开通 时的开关损耗, 如果将其开通前的源漏极电压 Uds 降低则可大大提升效率。 将 Uds 完全降低到 0 才导 ,将 Uds 降低到较 通 Q1 则是真正的软开关(ZVS) 小 的 值 再 让 导 通 则 是 VVS ( Valley Voltage 。这里利用 LC 谐振原理来实现 ZVS。 Switch) 图 3 中的 L 是变压器的初级电感,为励磁电 感和漏感之和。 电容 C 为初级开关管的输出电容, 其值可以从 MOSFET 数据手册上获得。谐振是发 生在主管和钳位管均关断的死区时间内,理想的 死区时间应该设置为谐振周期的一半,此时电容 上的电压为零,主开关管可以实现零电压导通, 。 即(ZVS) 本文实现的软开关是 VVS,将变压器初级的 电压谐振至 0,Uds 电压则由原来的钳位电压降为 输入电压。
,其
(6)
。于 中 Ton 为每个周期 U 加在线圈上的时间(s)
因此这两种钳位方式主开关管所承受的压降 是相同的。有源钳位的每个 PWM 周期可分为 7 个区间 , 本文以下钳位为例对有源钳位在高效性 方面进行探讨。
[4]
(11) 取 19 匝,根据变压器初、次级匝比可得到次级的 匝数为 18.095 匝,取 18 匝。
(9)
DU in = (1 − D)U cl
上的电压:
(4)
其中 Po 为输出功率;ΔB 为磁通密度变化量 (T) , 在磁芯损耗特性曲线中查到磁损耗 200mW/cm3 取
有源钳位正激 计算
有源钳位正激计算有源钳位正激是一种常见的电路配置,它在电子学和通信领域中被广泛应用。
有源钳位正激的设计原理是利用有源元件(如晶体管)来实现信号的放大和激励,以达到对输入信号的调整和控制的目的。
本文将从原理、应用和优缺点等方面介绍有源钳位正激的相关知识。
一、有源钳位正激的原理有源钳位正激是一种常用的放大电路配置,其原理基于负反馈的概念。
负反馈是通过将放大器的输出信号与输入信号进行比较,并将差异信号反馈到放大器的输入端,以减小放大器的非线性、失真和噪声等问题。
有源钳位正激利用了负反馈的原理,通过控制有源元件(如晶体管)的工作点,使其处于合适的工作状态,进而实现对输入信号的放大和调整。
有源钳位正激的基本原理是利用有源元件的放大特性,将输入信号放大到合适的幅度,并通过反馈电路将输出信号与输入信号进行比较,从而调整有源元件的工作状态。
具体而言,有源钳位正激电路一般由输入电阻、有源元件、负载电阻和反馈电路等部分组成。
其中,有源元件(如晶体管)根据输入信号的变化进行放大,并将放大后的信号输出到负载电阻上。
同时,反馈电路将负载电阻上的输出信号与输入信号进行比较,并通过调整有源元件的工作状态来实现对输入信号的调整和控制。
二、有源钳位正激的应用有源钳位正激在实际应用中有着广泛的用途。
首先,它可以用于放大电路中,将输入信号放大到合适的幅度,以满足后续电路或设备的要求。
其次,有源钳位正激还可以用于信号调整和控制,例如在音频设备中,可以通过有源钳位正激电路来调整音频信号的音量和频率等参数,以实现音频的放大和调整。
此外,有源钳位正激还可以用于通信系统中,例如在调制解调器中,可以通过有源钳位正激电路来调整调制信号的幅度和频率等参数,以实现数据的传输和接收。
三、有源钳位正激的优缺点有源钳位正激作为一种常见的电路配置,具有一些优点和缺点。
首先,有源钳位正激具有较好的线性度和稳定性,可以有效地减小非线性失真和噪声等问题,提高信号的质量和可靠性。
用有源钳位正激转换器闭环(上)
源钳位电路中施加适当的阻尼,则可以扩展交越。如
参考文献[5]所示,在瞬态条件下,必须仔细研究这种
决策对主 MOSFET 漏源峰值电压的影响。图 4 显示
相同的传递函数,现在被 Q2 的 2.5-Ω rDS (on)所抑制: 幅值和相位响应非常接近经典正激转换器的幅值和
图 3 控制 - 输出传递函数显示一个谐振陷波,强调出现双零点的相位
在某个点,控制器将指示 Q2 开通,迫使电流离 开包括 Cclp 在内的网格,自然地流过输入源 Vin 和漏 极集总电容:漏极节点开始下降,直到一个新的开关 周期,从而降低了导通损耗。
如图 2 所示,在 MOSFET 转换之间插入了一个 死区时间,从而提供了产生漏源谐振周期的时间,该 周期现在涉及 Clump 的 Lmag,以达到一个谷点。在某些 运行条件下(较小的输出电流),漏波触地会导致零 导通损耗。
姨 ω0M =
1-D0 Lmag Cclp
姨 QM =
Lmag
1-D0
Cclp ron2 蓸 1-D0 蔀 +D0 ron1
M0 =
Vclamp 蓸 1-D0 蔀 2
(3)
在这些 表达 式中,rL 和 rC 分别 表示输 出电 感 (Lout)和电容(Cout)等效串联电阻(ESR),ron1 表示主开 关晶体管 rDS ,r (on) on2 表示有源钳位晶体管 rDS (on),N 表 示变压器匝比,D0 表示静态占空比。
的控制 - 输出传输函数。换句话说,如果您想用正弦
波来激励控制输入,这里指的是脉宽调制器
(PWM),那如何通过功率级来传输信息,并在输出
中产生响应呢?将响应与激励联系起来的数学关系
就是我们需要的传递函数 H。
优选详细经典的正激变换器工作原理Ppt
Vout
七. 元 滤波电感Lf的设计
Q E. 根据电流大小确定气隙长度lg
F Imax N
Um
Rm
( lg
0kl Ae
lFe
Fe Ae
)
正激变换器
由kirchhoff 磁压定律: Um F 得
Imax N
( lg
0kl Ae
lFe
Fe Ae
)
(32)
L
lFe )
Fe
(34)
正激变换器
29
第29页,共45页。
NR
Vin
NP NS D1 Lf
Vout
七. 元器件的选择
UP
US D2 Cf
5. 变压器的设计
Q A.选定磁芯材料和型式---
根据工作频率,磁化形式,传输功率,线圈绕组的绕制等要求 ,以及磁芯的磁化曲线,供货情况等来确定磁芯材料.
B.确定磁芯型材的大小---Ae,AW,lm 由电流密度参数法,有
U DRR
NR NP
Vin(max)
(21)
DR所流过的最大电流为
I DR
iMR(max)
NP NR
iMP
NP NR
Vin DTs LP
(22)
正激变换器
19
第19页,共45页。
NR
Vin
Iout Vout
NP NS D1 Lf
Vout
七. 元器件的选择
UP Q
US D2 Cf
3.滤波电容Cf C所承受的电压为
3.变压器磁芯单边磁化;
4.开关管峰值电流较低;
5.变压器是个纯粹的变压器; 6.变压器铁芯不必加气隙; 但在有的 铁芯中为了减少Br,需加很小的气 隙.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有源钳位正激变换器的等效模式
Lo
Cc Vin
Np Ns Lm
N:1
Lm
Co Vo
Vin
采用一个周期内平均化的方法来 给功率级电路建立一个线性模型
Lo Co Vo
可以求出控制对输出的传递函数为 谐振点频率为
系统结构框图
iload(s) 负载电流
Vref(s)
参考输入
Vg(s)
线路输入
Zout(s) Gvg(s)
QR
DR Cossr
Co Vo
T6时刻,QF关断 负载电流由DF换流至DR
主开关管的选取
在有源钳位去磁电路中,无论是硬开关模式,还是 软开关模式,变压器的激磁电感在一个开关周期内 始终遵循伏•秒平衡关系,在忽略漏感影响的情况下, 伏•秒平衡的关系式为,
由于此文设计的主电路采用钳位电容与高频变压器 的原边绕组并联的形式,在复位周期内有,
D2
D3
CR
S
当开关S闭合时,电源电压加在高频变压器原边绕组 N1上,建立起励磁磁通。只要磁心不饱和,副绕组 N2上就会感应电势
正激变换器磁复位的方法
• 多谐振复位技术 • RCD钳位技术 • 有源钳位技术 • ……
优缺点对比
优点
缺点
主开关管漏-源极电压应力达
多 谐 振 复 输入电流波形较为平滑,EMI 到 输 入 电 压 的 3—4 倍 ,
开关模态3(T2-T3):DF续流阶段
Lo
Cc Vin
Lr
D2 Q2
Np Ns Lm
1:N
Q1 D1 Coss
QF DF Cossf
Co Vo
QR
DR
Cossr
T2时刻后,Coss电压升高于Vin Io由DR换流至DF,通过DF续流 Lm、Lr和Coss谐振 T3时刻,Coss充至Vin+Vc
开关模态4(T3-T4):Q2的零电压开通阶段
V M 2V
G (s) Ve(s)
偏差信号 c
Vc(s)
1
VM
d(s)
占空比
Gvd(s)
+
脉宽调制器
功率变换器
H=0.4 反馈 H(s)
输出电压
Vo(s)
可以得到系统的开环传递函数为 当Gc(s)=1时
1.39 0
20
40
60
80
100
120
140
Vin
又因为额定电流一般为实际电流的1.5-2倍,因此, 充分考虑欲量可求得开关管所承受的最大电流值为,
因此选用IR公司的IRF740作为开关管,其规格为: 最大反向电压400V,最大导通电流10A,导通电阻为 0.550Ω。
第三部分
小信号模型的分析
技术
压开通,励磁能量和漏感能 需要隔离驱动
量回馈到电网
自激式同步整流电路
Lo
Ns 1:N
QF QR
DR Cossr
Cossf DF
Co Vo
第二部分
自激式有源钳位正激变换器
Cc
Vin
Lr
Np Ns D2
Lm
1ห้องสมุดไป่ตู้N Q2
QF QR
DR Cossr
Lo
Cossf DF
Co Vo
Q1
Coss
D1
开关模态1(T0-T1):向负边传输能量阶段
位技术
(电磁干扰)性能好
MOSFET的导通损耗大大增加,
给器件选择带来了困难
RCD 钳 位 技 术
电路设计简单,成本低,在 对变换效率要求不是很高的 场合具有较高的使用价值
大部分能量消耗在钳位电阻 上,降低了效率,带来了散 热设计的问题
变压器可以双向对称磁化,
有 源 钳 位 磁芯利用率高,钳位管零电 电路复杂性增加,主开关管
• 三是对主电路进行了小信号模型分析,对系统 传递函数进行了分析,完成了补偿环节PI调节器 的设计;
• 四是完成了变换器的开环与闭环仿真;
• 五是对电路的硬件进行了设计; • 六是用Protel绘制出了电路原理图; • 七是完成了一篇外文翻译工作。
第一部分
单端正激变换器
L N1 N2
D1 N3 Vi
Np Ns Lm
1:N
Lo
QF DF Cossf
QR
DR Cossr
Co Vo
Q1
T4时刻,Im将为零
D1
Coss T4之后,在Vc作用下变压器反向磁化 T4之后,Im反向,Io通过QF续流
开关模态6(T5-T6):Im和Coss再次谐振阶段
Cc Vin
Lr
D2 Q2
Np Ns Lm
1:N
Q1 Coss
Lr
Cc Vin
D2 Q2
Np Ns Lm
1:N
Q1 D1 Coss
Lo QF
DF Cossf QR
DR Cossr
Co Vo
开关模态2(T1-T2):Coss充电阶段 Lo
Cc Vin
Lr
D2 Q2
Np Ns Lm
1:N
Q1 D1 Coss
QF DF Cossf
Co Vo
QR
DR
Cossr
Im和负载电流Io给Coss充电 T2时刻,Q1漏源极电压升至 Vin QR驱动电压降为零,关断 Io在DR上流通
D1
Lo
QF DF Cossf
Co Vo
QR
DR Cossr
T5时刻,Q2关断 Im不能突变,给Coss放电 Q1漏源极电压降为Vin,部分实现 了软开关
开关模态7(T6-T7):开关管的续流二极管换流 阶段
Lo
Lr
Cc Vin
D2 Q2
Np Ns Lm
1:N
Q1 D1 Coss
QF DF Cossf
燕山大学 本科毕业设计(论文)报告
课题名称:有源钳位正激变换器设计 学院(系): 里仁学院电气工程系
专业:应用电子专业 班级:10-4班
学生姓名:刘长智 指导教师:赵清林
本次毕业设计完成了以下几个方面的内容
• 一是分析了正激变换器的工作原理以及正激变 换器磁复位的方法;
• 二是分析了有源钳位正激变换器的工作原理并 且完成了主电路元件的参数计算;
根据对电路工作过程的分析可知,在开关管断开期 间,变压器原边绕组的电压极性会反向,因此,主 开关管承受的电压力为输入电压和变压器原边绕组 上的电压之和,
可以清楚的看出VDS的最大值为,
通过对电1.45路工作过程的分析,流过主开关管的电流
由两部分1组.44 成,一部分是变压器激磁电流的值,另一 部分是副1边.43 电流折射到原边的值。由于计算激磁电流 时需要用IDS 1到.42 激磁电感值,而激磁电感值得大小不容易 通过计算1求.41 出,需要通过测量的方法来测出具体的数 值,因此采1.4 用如下公式计算最大漏极电流为,
Cc Vin
Lr
D2 Q2
Np Ns Lm
1:N
Lo QF
DF Cossf QR
DR Cossr
Co Vo
Q1
T3后D2导通,Im通过D2给Cc充电
D1 Coss
QF导通,Io通过QF续流 T3-T4某一时刻,Q2零电压开通
开关模态5(T4-T5):变压器磁心反向磁化阶段
Cc Vin
Lr
D2 Q2