湖北省武汉市2018届中考数学模拟题(一)含答案
湖北省武汉市2018届中考数学模拟题(一)及答案
2018武汉中考数学模拟题一一、选择题 (共10小题,每小题3分,共30分)1.已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3)、B (3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度)以点B 为位似中心,在网格内画出△A 1B 1C 1,使△A 1B 1C 1与△ABC 位似,且位似比为2∶1,点C1的坐标是( ) A .(1,0) B .(1,1) C .(-3,2) D .(0,0) 2.如果分式1x x没有意义,那么x 的取值范围是( ) A .x ≠0 B .x =0 C .x ≠-1 D .x =-1 3.下列式子计算结果为2x 2的是( )A .x +xB .x ²2xC .(2x )2D .2x 6÷x 3 4.下列事件是随机事件的是( )A .从装有2个红球、2个黄球的袋中摸出3个球,至少有一个红球B .通常温度降到0℃以下,纯净的水结冰C .任意画一个三角形,其内角和是360°D .随意翻到一本书的某页,这页的页码是奇数 5.运用乘法公式计算(4+x )(x -4)的结果是( )A .x 2-16B .16-x 2C .x 2+16D .x 2-8x +16 6.364=( ) A .4B .±8C .8D .±47.如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的左视图是( )A .B .C .D .8A .13B .14C .13.5D .59.观察下列各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第5个图形中小圆点的个数为( ) A .50 B .51 C .48 D .5210.已知二次函数y =x 2-(m +1)x -5m (m 为常数),在-1≤x ≤3的范围内至少有一个x 的值使y ≥2,则m 的取值范围是( )A .m ≤0B .0≤m ≤21 C .m ≤21 D .m >21 二、填空题(共6小题,每小题3分,共18分) 11.计算:计算7-(-4)=___________ 12.计算:2121----x x x =___________ 13.在-2、-1、0、1、2这五个数中任取两数m 、n ,求二次函数y =(x -m )2+n 的顶点在坐标轴上的概率是___________14.P 为正方形ABCD 内部一点,PA =1,PD =2,PC =3,求阴影部分的面积S ABCP =______ 15.如图,将一段抛物线y =x (x -3)(0≤x ≤3)记为C 1,它与x 轴交于点O 和点A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 2,交x 轴于点A 3.若直线y =x +m 于C 1、C 2、C 3共有3个不同的交点,则m 的取值范围是___________16.如图,在平面直角坐标系第一象限有一半径为5的四分之一⊙O ,且⊙O 内有一定点A (2,1)、B 、D 为圆弧上的两个点,且∠BAD =90°,以AB 、AD 为边作矩形ABCD ,则AC 的最小值为___________ 三、解答题(共8小题,共72分,应写出文字说明、证明过程或演算步骤)17.(本题8分)解方程:⎩⎨⎧=-=+52323y x y x18.(本题8分)如图,AB ∥DE ,AC ∥DF ,点B 、E 、C 、F 在一条直线上,求证:△ABC ∽△DEF 19.(本题8分)某厂签订48000辆自行车的组装合同,这些自行车分为L 1、L 2、L 3三种型号,它们的数量比例及每天能组装各种型号自行车的数量如图所示:若每天组装同一型号自行车的数量相同,根据以上信息,完成下列问题: (1) 从上述统计图可知,此厂需组装L 1、L 2、L 3型自行车的辆数分别是,________辆,________辆,________辆(2) 若组装每辆不同型号的自行车获得的利润分别是L 1:40元/辆,L 2:80元/辆,L 3:60元/辆,且a =40,则这个厂每天可获利___________元(3) 若组装L 1型自行车160辆与组装L 3型自行车120辆花的时间相同,求a20.(本题8分)为了抓住文化艺术节的商机,某商店决定购进A 、B 两种艺术节纪念品.若购进A 种纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件,需要800元 (1) 求购进A 、B 两种纪念品每件各需多少元? (2) 若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,那么该商店至少要购进A 种纪念品多少件?21.(本题8分)如图,⊙O 是弦AB 、AC 、CD 相交点P ,弦AC 、BD 的延长线交于E ,∠APD =2m °,∠PAC =m °+15° (1) 求∠E 的度数 (2) 连AD 、BC ,若3=ADBC,求m 的值22.(本题10分)如图,反比例函数xky =与y =mx 交于A 、B 两点.设点A 、B 的坐标分别为 A (x 1,y 1)、B (x 2,y 2),S =|x 1y 1|,且ss 413=- (1) 求k 的值(2) 当m 变化时,代数式12)1()1122212+++-m y x m y x m (是否为一个固定的值?若是,求出其值;若不是,请说理由(3) 点C 在y 轴上,点D 的坐标是(-1,23).若将菱形ACOD 沿x 轴负方向平移m 个单位,在平移过程中,若双曲线与菱形的边AD 始终有交点,请直接写出m 的取值范围 23.(本题10分)如图,△ABC 中,CA =CB (1) 当点D 为AB 上一点,∠A =21∠MDN =α ① 如图1,若点M 、N 分别在AC 、BC 上,AD =BD ,问:DM 与DN 有何数量关系?证明你的结论 ② 如图2,若41=BD AD ,作∠MDN =2α,使点M 在AC 上,点N 在BC 的延长线上,完成图2,判断DM 与DN 的数量关系,并证明(2) 如图3,当点D 为AC 上的一点,∠A =∠BDN =α,CN ∥AB ,CD =2,AD =1,直接写出AB ²CN 的积24.(本题12分)如图1,直线y =mx +4与x 轴交于点A ,与y 轴交于点C ,CE ∥x 轴交∠CAO 的平分线于点E ,抛物线y =ax 2-5ax +4经过点A 、C 、E ,与x 轴交于另一点B (1) 求抛物线的解析式(2) 点P 是线段AB 上的一个动点,连CP ,作∠CPF =∠CAO ,交直线BE 于F .设线段PB 的长为x ,线段BF 的长为56y ,当P 点运动时,求y 与x 的函数关系式,并写出自变量x 的取值范围 (3) 如图2,点G 的坐标为(316,0),过A 点的直线y =kx +3k (k <0)交y 轴于点N ,与过G 点的直线kx k y 3161+-=交于点P ,C 、D 两点关于原点对称,DP 的延长线交抛物线于点M .当k 的取值发生变化时,问:tan ∠APM 的值是否发生变化?若不变,求其值,若变化,请说明理由2018武汉中考数学模拟题一答案一、选择题(共10小题,每小题3分,共30分)10.提示:设QO =QP =1,⊙O 的半径为r 则AQ =r -1,CQ =r +1 连接AP∵∠APD =∠ACD ,∠PAQ =∠CDQ ∴△APQ ∽△DCQ ∴CQPQ DQ AQ =即111+=-r DQ r ,DQ =r 2-1连接OD在Rt △DOQ 中,OD 2+OQ 2=DQ 2∴r 2+1=(r 2-1)2,解得r =3 ∴2311+=-+=r r QA QC 二、填空题(共6小题,每小题3分,共18分) 11.-9 12.013.3114. 44°15.13+16.1015.提示:过点A 作AE ⊥BC 于E 设AE =CE =1,则BE =3∵∠B =30°,∠ADB =30°+45°=75° ∴∠BAD =∠BDA∴BA =BD =2,DE =32-,CD =13- ∴13+=CDBD三、解答题(共8题,共72分) 17.解:x =2,y=1 18.解:略19.解:(1) 80;(2) 如图;(3) 13020.解:(1) 设甲种商品每件的进价为x 元,乙种商品每件的进价为y 元⎩⎨⎧=+=+2302327032y x y x ,解得⎩⎨⎧==7030y x(2) 设该商场购进甲种商品m 件,则购进乙种商品(100-m )件 m ≥4(100-m ),解得m ≥80利润w =(40-30)m +(90-70)(100-m )=-10m +2000 ∵k =-10<0∴w 随m 的增大而减小当m =80时,w 有最大值为120021.解:(1) 连接CO 交⊙O 于D 则∠CBD =90° ∵sinD =sinA =53=CD BC ∴32535==BC CD (2) 如图,过点B 作BM ⊥AC 于M ∵sinA 53= ∴353==AB BM ,AM =4 ∵AB =AC ∴M 为AC 的中点 ∴AC =8 ∴S △ABC =12设△ABC 内切圆的半径为r 则ABC S CA BC AB r ∆=++)(21,34=r 22.解:(1) ① (-2,-4) ② (1,2)(一般形式为(a ,a -3)) (2) ±1(3) 设点B 的坐标为(m ,n ) ∵点A 是点B 的“3-属派生点” ∴A (n m n m +--+33,)∵点A 在反比例函数xy 34-=(x <0)的图象上 ∴34)3)(3(=+--+n m n m ,且03<-+n m整理得23-=-+nm ,323+=m n∴B (323+m m ,) 过点B 作BH ⊥OQ 于H∵BO 2=BH 2+OH 2=m 2+(323-m )2=3)23(42+-m∴当时23=m ,BQ 有最小值 此时237323=+=m n ∴B (23723,)23.证明:(1) 连接CE∵∠CFE =∠CDE =90°,BC =CF =CD ∴Rt △CFE ≌Rt △CDE (HL ) ∴EF =DE(2) 过点A 作AM ⊥DG 于M ,过点C 作CN ⊥DG 于N ∴△AMD ≌△DNC (AAS ) ∴AM =DN ,DM =CN ∵CF =CD ∴∠FCN =∠DCN 又∠BCP =∠FCP ∴∠NCP =45°∴△CNG 为等腰直角三角形 ∴GN =CN =DM ∴GM =DN =AM∴△AGM 为等腰直角三角形 ∴AG =2AM =22DF ∴2=AGDF(3) ∵AB =10,31=AB BP ∴BP =310,AP =3102 在Rt △BCP 中,31022=+=BC PB PC ∵Rt △GAP ∽Rt △BCP ∴BPGPPC PA =即31033102GP =,32=GP在Rt △AGP 中,222=-=GP AP AG 由对角互补四边形模型可知:AG +GC =2DG ∴DG =23延长GC 至N ,使△GDN 为等腰直角三角形,证明△CDG ≌△AGD ,得∠AGD=45°。
2018武汉中考数学模拟题(五套)-精选.pdf
2018武汉中考数学模拟题一一、选择题(共10小题,每小题3分,共30分)1.25的平方根为()A .5 B .±5C .-5D .±42.如果分式1x x 无意义,那么x 的取值范围是()A .x ≠0B .x =1C .x ≠1D .x =-1 3.(-a +3)2的计算结果是()A .-a 2+9B .-a 2-6a +9C .a 2-6a +9D .a 2+6a +9 4.在不透明的布袋中,装有大小、形状完全相同的3个黑球、2个红球,从中摸一个球,摸出的是个黑球,这一事件是()A .必然事件B .随机事件C .确定事件D .不可能事件5.下列运算结果是a 6的是()A .a 3·a3B .a 3+a3C .a 6÷a3D .(-2a 2)36.将点A(1,-2)绕原点逆时针旋转90°得到点B ,则点B 的坐标为()A .(-1,-2)B .(2,1)C .(-2,-1)D .(1,2)7.由6个大小相同的小正方体组合成一个几何体,其俯视图如图所示,其中正方形中的数字表示该位置放置的小正方体的个数,则该几何体的主视图为()8.在我市开展的“好书伴我成长”读书活动中,学校随机调查了九年级50名学生读书的册数统计数据如下表所示,那么这50名学生读书册数的平均数与中位数分别为()册数0 1 2 3 4 人数3 1316 171A .2和3B .3和3C .2和2D .3和2 9.在如图的4×4的方格中,与△ABC 相似的格点三角形(顶点均在格点上)(且不包括△ABC )的个数有()A .23个B .24个C .31个D .32个10.二次函数y =mx 2-nx -2过点(1,0),且函数图象的顶点在第三象限.当m +n 为整数时,则mn 的值为()A .2321、B .431、C .24321、、D .243、二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:-7-2=__________ 12.化简:111b b b =__________ 13.在-1、0、31、1、2、3中任取两个数,两数相乘结果是无理数的概率是__________14.如图,△ABC 中,AB =AC ,∠BAC =66°,OD 垂直平分线段AB ,AO 平分∠BAC ,将∠C沿EF (点E 在BC 上,点F 在AC 上)折叠,点C 与点O 恰好重合,则∠OEC =___________15.如图,在四边形ABCD 中,AC 与BD 交于点O ,∠DAB 与∠ACB 互补,35OBOD ,AD =7,AC =6,AB =8,则BC =___________16.如图,C 是半径为4的半圆上的任意一点,AB 为直径,延长AC 至点P 使CP =2CA .当点C 从B 运动到A 时,动点P 的运动路径长为___________三、解答题(共8题,共72分)17.(本题8分)解方程:x -2(x -1)=-218.(本题8分)如图,已知点E 、C 在线段BF 上,BE =CF ,AB ∥DE ,AC ∥DF ,求证:△ABC≌△DEF19.(本题8分)某校体育组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图请根据以上不完整的统计图提供的信息,解答下列问题:(1) 该课题研究小组共抽查了__________名同学的体育测试成绩,扇形统计图中B 级所占的圆心角是__________ (2) 补全条形统计图(3) 若该校九年级共有200名同学,请估计该校九年级同学体育测试达标(测试成绩C 级以上,含C 级)均有名20.(本题8分)某校安排6名教师和300名学生春游,准备租用45座大客车和30座的小客车.若租用1辆大客车和2辆小客车共需租金960元;若租用2辆大客车和1辆小客车共需租金1080元(1) 求1辆大客车和1辆小客车的租金各为多少元?(2) 若总共租用8辆客车,总费用不超过3080元,问有几种租车方案,最省钱的方案是哪种?21.(本题8分)如图,BC 为⊙O 的直径,点A 为⊙O 上一点,点E 为△ABC 的内心,OE ⊥EC (1) 若BC =10,求DE 的长(2) 求sin ∠EBO 的值22.(本题10分)如图,直线y =2x 与函数xk y(x >0)的图象交于第一象限的点A ,且A 点的横坐标为1,过点A 作AB ⊥x 轴于点B ,C 为射线BA 上一点,作CE ⊥AB 交双曲线于点E ,延长OC 交AE 于点F (1) 则k =__________(2) 作EM ∥y 轴交直线OA 于点M ,交OC 于点G ①求证:AF =FE②比较MG 与EG 的大小,并证明你的结论23.(本题10分)如图,在△ABC 与△AFE 中,AC =2AB ,AF =2AE ,∠CAB =∠FAE =α(1) 求证:∠ACF =∠ABE(2) 若点G 在线段EF 上,点D 在线段BC 上,且31CBCD EF GF ,α=90°,EB =1,求线段GD的长(3) 将(2)中改为120°,其它条件不变,请直接写出CFGD 的值24.(本题12分)在平面直角坐标系中,抛物线C 1:y =ax 2+bx -1的最高点为点D (-1,0),将C 1左移1个单位,上移1个单位得到抛物线C 2,点P 为C 2的顶点(1) 求抛物线C 1的解析式(2) 若过点D 的直线l 与抛物线C 2只有一个交点,求直线l 的解析式(3) 直线y =x +c 与抛物线C 2交于D 、B 两点,交y 轴于点A ,连接AP ,过点B 作BC ⊥AP 于点C ,点Q 为C 2上PB 之间的一个动点,连接PQ 交BC 于点E ,连接BQ 并延长交AC 于点F ,试说明:FC ·(AC +EC)为定值2018武汉中考数学模拟题二一、选择题(共10小题,每小题3分,共30分)1.64的算术平方根是()A .8B .-8C .4D .-42.要使分式15x 有意义,则x 的取值范围是()A .x ≠1B .x >1C .x <1D .x ≠-13.下列计算结果为x 8的是()A .x 9-x B .x 2·x4C .x 2+x6D .(x 2)44.有两个事件,事件A :投一次骰子,向上的一面是3;事件B :篮球队员在罚球线上投篮一次,投中,则()A .只有事件A 是随机事件B .只有事件B 是随机事件C .事件A 和B 都是随机事件D .事件A 和B 都不是随机事件5.计算(a -3)2的结果是()A .a 2-4 B .a 2-2+4 C .a 2-4a +4D .a 2+46.如图,将△AOB 绕点O 逆时针旋转90°,得到△A ′OB ′.若点A 的坐标为(a ,b),则点A ′的坐标为()A .(a ,b)B .(-a ,b)C .(b ,-a)D .(-b ,a)7.如图是由一些小正方体组合而成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,则这个几何体主视图是()8.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时)3 3.54 4.5 人数1121A .中位数是4,平均数是 3.75B .众数是4,平均数是 3.75C .中位数是4,平均数是3.8 D .众数是2,平均数是 3.89.把所有正奇数从小到大排列,并按如下规律分组:(1) (3,5,7)、(9,11,13,15,17),(19,21,23,25,27,29,31),……,现有等式A m =(i ,j)表示正奇数m 是第i 组第j 个数(从左往右数),如A 7=(2,3),则A 89=()A .(6,7)B .(7,8)C .(7,9)D .(6,9)10.二次函数y =2x 2-2x +m (0<m <21),如果当x =a 时,y <0,那么当x =a -1时,函数值y 的取值范围为()A .y <0B .0<y <mC .m <y <m +4D .y >m二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:(-3)+8=___________12.计算:111a a a =___________ 13.不透明的袋子中有6个除了颜色不同其他都一样的球,其中有3个黑球,2个白球,1个红球.拿出两个球,颜色相同的概率是___________14.如图,E 是矩形ABCD 的对角线的交点,点F 在边AE 上,且DF =DC .若∠ADF =25°,则∠BEC =__________ 15.如图,从一张腰为60 cm ,顶角为120°的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用次剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为__________16.已知OM ⊥ON ,斜边长为4的等腰直角△ABC 的斜边AC 在射线ON 上,顶点C 与O 重合.若点A 沿NO 方向向O 运动,△ABC 的顶点C 随之沿OM 方向运动,点A 移动到点O 为止,则直角顶点B 运动的路径长是__________三、解答题(共8题,共72分)17.(本题8分)解方程:3-(5-2x)=x +218.(本题8分)已知:如图,点B 、F 、C 、E 在一条直线上,BF =CE ,AC =DF ,且AC ∥DF ,求证:∠B =∠E19.(本题8分)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司的随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:(1) 此次抽样调查的样本容量是___________(2) 补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数(3) 如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?20.(本题8分)荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1) 求桂味和糯米糍的售价分别是每千克多少元(2) 如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低21.(本题8分)如图,直径AE 平分弦CD ,交CD 于点G ,EF ∥CD ,交AD 的延长线于F ,AP ⊥AC 交CD 的延长线于点P(1) 求证:EF 是⊙O 的切线(2) 若AC =2,PD =21CD ,求tan ∠P 的值22.(本题10分)已知,直线l 1:y =-x +n 过点A(-1,3),双曲线C :xm y(x >0),过点B(1,2),动直线l 2:y =kx -2k +2(k <0)恒过定点F(1) 求直线l 1,双曲线C 的解析式,定点F 的坐标(2) 在双曲线C 上取一点P(x ,y),过P 作x 轴的平行线交直线l 1于M ,连接PF ,求证:PF=PM (3) 若动直线l 2与双曲线C 交于P 1、P 2两点,连接OF 交直线l 1于点E ,连接P 1E 、P 2E ,求证:EF平分∠P 1EP 223.(本题10分)已知△ABC 中,D 为AB 边上任意一点,DF ∥AC 交BC 于F ,AE ∥BC ,∠CDE=∠ABC =∠ACB =α(1) 如图1,当α=60°时,求证:△DCE 是等边三角形(2) 如图2,当α=45°时,求证:①2DECD ;②CE ⊥DE(3) 如图3,当α为任意锐角时,请直接写出线段CE 与DE 的数量关系(用α表示)24.(本题12分)在平面直角坐标系xOy 中,抛物线c 1:y =ax 2-4a +4(a <0)经过第一象限内的定点P (1) 直接写出点P 的坐标(2) 若a =-1,如图1,点M 的坐标为(2,0)是x 轴上的点,N 为抛物线c 1上的点,Q 为线段MN 的中点,设点N 在抛物线c 1上运动时,Q 的运动轨迹为抛物线c 2,求抛物线c 2的解析式(3) 直线y =2x +b 与抛物线c 1相交于A 、B 两点,如图2,直线PA 、PB 与x 轴分别交于D 、C 两点,当PD =PC 时,求a 的值2018武汉中考数学模拟题三一、选择题(共10小题,每小题3分,共30分)1.4的值为()A .±2B .2C .-2D .22.要使分式31x 有意义,则x 的取值应满足()A .x ≥3B .x <3C .x ≠-3D .x ≠3 3.下列计算结果为x 6的是()A .x ·x6B .(x 2)3C .x 7-xD .x 12÷x24.袋中装有4个红球和2个黄球,这些球的形状、大小、质地完全相同.在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是不可能事件的是()A .摸出的三个球中至少有一个红球B .摸出的三个球中有两个球是黄球C .摸出的三个球都是红球D .摸出的三个球都是黄球5.计算(a -1)2正确的是()A .a 2-1B .a 2-2a +1 C .a 2-2a -1D .a 2-a +1 6.在平面直角坐标系中,将点A(x ,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A 的坐标为()A .(3,1)B .(2,-1)C .(4,1)D .(3,2)7.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图是()8.为调查某班学生每天使用零花钱的情况,童老师随机调查了30名同学,结果如下表:每天使用零花钱(单位:元)5 10 15 20 25 人数258 96则这30名同学每天使用的零花钱的众数和中位数分别是()A .20、15B .20、17.5C .20、20D .15、15 9.正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2、……按如图的方式放置,点A 1、A 2、A 3……和点C 1、C 2、C 3……分别在直线y =x +1和x 轴上,则点B 6的坐标是()A .(31,16)B .(63,32)C .(15,8)D .(31,32)10.已知关于x 的二次函数y =x 2-2x -2,当a ≤x ≤a +2时,函数有最大值1,则a 的值为()A .-1或1B .1或-3C .-1或3D .3或-3二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:2-(-4)=___________ 12.计算:1212x x x =___________13.学校为了了解九年级学生“一分钟跳绳次数”的情况,随机选取了4名女生和2名男生,则从这6名学生中选取2名同时跳绳,恰好选中一男一女的概率是___________14.如图,将矩形ABCD 沿BD 翻折,点C 落在P 点处,连接AP .若∠ABP =26°,则∠APB =___________15.已知平行四边形内有一个内角为60°,且60°的两边长分别为3、4.若有一个圆与这个平行四边形的三边相切,则这个圆的半径为___________16.如图,已知线段AB=6,C、D是AB上两点,且AC=DB=1,P是线段CD上一动点,在AB 同侧分别作等边△APE和△PBF,G为线段EF的中点,点P由点C移动到点D时,G点移动的路径长度为___________三、解答题(共8题,共72分)17.(本题8分)解方程:2x+8=6x-3(x-1)18.(本题8分)已知:如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE,求证:BE=CD19.(本题8分)某市三景区是人们节假日游玩的热点景区,某学校对九(1)班学生“五一”小长假随父母到这三个景区游玩的计划做了全面调查.调查分四个类别:A、游三个景区;B、游两个景区;C、游一个景区;D、不到这三个景区游玩.现根据调查结果绘制了不完整的条形统计图和扇形统计图,请结合图中信息解答下列问题:(1) 九(1)班共有学生______人,在扇形统计图中,表示“B类别”的扇形的圆心角的度数为______(2) 请将条形统计图补充完整(3) 若该校九年级有1000名学生,求计划“五一”小长假随父母到该景区游玩的学生多少名?20.(本题8分)运输360吨化肥,装载了6辆大卡车和3辆小汽车;运输440吨化肥,装载了8辆大卡车和2辆小汽车(1) 每辆大卡车与每辆小汽车平均各装多少吨化肥?(2) 现在用大卡车和小汽车一共10辆去装化肥,要求运输总量不低于300吨,则最少需要几辆大卡车?21.(本题8分)如图,⊙O 是△ABC 的外接圆,弧AB =弧AC ,AP 是⊙O 的切线,交BO 的延长线于点P(1) 求证:AP ∥BC (2) 若tan ∠P =43,求tan ∠PAC 的值22.(本题10分)如图,一次函数y =kx +b (k ≠0)的图象与反比例函数xm y(m ≠0)的图象交于A(-3,1)、B(1,n)两点(1) 求反比例函数和一次函数的解析式(2) 设直线AB 与y 轴交于点C ,若点P 在x 轴上,使BP =AC ,请直接写出点P 的坐标(3) 点H 为反比例函数第二象限内的一点,过点H 作y 轴的平行线交直线AB 于点G .若HG =2,求此时H 的坐标23.(本题10分)如图,射线BD 是∠MBN 的平分线,点A 、C 分别是角的两边BM 、BN 上两点,且AB =BC ,E 是线段BC 上一点,线段EC 的垂直平分线交射线BD 于点F ,连接AE 交BD 于点G ,连接AF 、EF 、FC (1) 求证:AF =EF (2) 求证:△AGF ∽△BAF(3) 若点P 是线段AG 上一点,连接BP .若∠PBG =21∠BAF ,AB =3,AF =2,求GPEG24.(本题12分)如图,抛物线y =ax 2-(2a +1)x +b 的图象经过(2,-1)和(-2,7)且与直线y=kx -2k -3相交于点P(m ,2m -7)(1) 求抛物线的解析式(2) 求直线y =kx -2k -3与抛物线y =ax 2-(2a +1)x +b 的对称轴的交点Q 的坐标(3) 在y 轴上是否存在点T ,使△PQT 的一边中线等于该边的一半?若存在,求出点T 的坐标;若不存在,请说明理由一、选择题(共10小题,每小题3分,共30分)题号12345678910答案B C B D B B A B D A第10题选A (1)0122<,即<a a a 当1222a ay a x 最大时,舍去),(31a a (2)122aa a,即12)2(2)2(22222a a a ay a a x 最大时,或无解。
武汉市2018年初中毕业生考试数学试卷及详细答案(word版)
2018年武汉市初中毕业生考试数学试卷、一、选择题(共10小题,每小题3分,共30分)1.温度由-4℃上升7℃是( )A .3℃B .-3℃C .11℃D .-11℃ 2.若分式21 x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-2B .x <-2C .x =-2D .x ≠-2 3.计算3x 2-x 2的结果是( )A .2B .2x 2C .2xD .4x 2 4.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( )A .2、40B .42、38C .40、42D .42、40 5.计算(a -2)(a +3)的结果是( ) A .a 2-6B .a 2+a -6C .a 2+6D .a 2-a +6 6.点A (2,-5)关于x 轴对称的点的坐标是( ) A .(2,5) B .(-2,5) C .(-2,-5)D .(-5,2) 7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( )A .3B .4C .5D .68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( )A .41B .21 C .43 D .65 9.将正整数1至2018按一定规律排列如下表: 12 34 5 6 7 8 9 10 1112 13 14 15 16 17 18 1920 21 22 23 24 25 26 2728 29 30 31 32 ……平移表中带阴影的方框,方框中三个数的和可能是( ) A .2019 B .2018C .2016D .2013 10.如图,在⊙O 中,点C 在优弧AB ⌒ 上,将弧BC ⌒ 沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( )A .32B .23C .235D .265二、填空题(本大题共6个小题,每小题3分,共18分)11.计算3)23(-+的结果是___________12.下表记录了某种幼树在一定条件下移植成活情况移植总数n400 1500 3500 7000 9000 14000 成活数m 325 13363203 6335 8073 12628 成活的频率(精确到0.01) 0.8130.891 0.915 0.905 0.897 0.902 由此估计这种幼树在此条件下移植成活的概率约是___________(精确到0.1)13.计算22111m m m ---的结果是___________ 14.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是___________ 15.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是22360t t y -=.在飞机着陆滑行中,最后4 s 滑行的距离是___________m16.如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE平分△ABC 的周长,则DE 的长是___________三、解答题(共8题,共72分)17.(本题8分)解方程组:⎩⎨⎧=+=+16210y x y x18.(本题8分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G ,求证:GE =GF19.(本题8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图学生读书数量统计表 学生读书数量扇形图阅读量/本学生人数 115 2a 3b 4 5(1) 直接写出m 、a 、b 的值(2) 估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本题8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A 、B 型钢板共100块,并全部加工成C 、D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板x 块(x 为整数)(1) 求A 、B 型钢板的购买方案共有多少种?(2) 出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若将C 、D 型钢板全部出售,请你设计获利最大的购买方案21.(本题8分)如图,PA 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB 、PC ,PC 交AB 于点E ,且P A =PB(1) 求证:PB 是⊙O 的切线(2) 若∠APC =3∠BPC ,求CEPE 的值22.(本题10分)已知点A (a ,m )在双曲线xy 8=上且m <0,过点A 作x 轴的垂线,垂足为B (1) 如图1,当a =-2时,P (t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C ① 若t =1,直接写出点C 的坐标② 若双曲线x y 8=经过点C ,求t 的值(2) 如图2,将图1中的双曲线x y 8=(x >0)沿y 轴折叠得到双曲线xy 8-=(x <0),将线段OA 绕点O 旋转,点A 刚好落在双曲线x y 8-=(x <0)上的点D (d ,n )处,求m 和n 的数量关系23.(本题10分)在△ABC 中,∠ABC =90°、(1) 如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN(2) 如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠P AC =552,求tanC 的值 (3) 如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =53,52 AC AD ,直接写出tan ∠CEB 的值24.(本题12分)抛物线L :y =-x 2+bx +c 经过点A (0,1),与它的对称轴直线x =1交于点B(1) 直接写出抛物线L 的解析式(2) 如图1,过定点的直线y =kx -k +4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值(3) 如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标。
2018年武汉市初中毕业生考试数学试卷含解答
2018年武汉市初中毕业生考试数学试卷考试时间:2018年6月20日14:30~16:30 、 一、选择题(共10小题,每小题3分,共30分) 1.温度由-4℃上升7℃是( ) A .3℃B .-3℃C .11℃D .-11℃2.若分式21x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-2 B .x <-2C .x =-2D .x ≠-2 3.计算3x 2-x 2的结果是( )A .2B .2x 2C .2xD .4x 24.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40 B .42、38C .40、42D .42、40 5.计算(a -2)(a +3)的结果是( )A .a 2-6B .a 2+a -6C .a 2+6D .a 2-a +6 6.点A (2,-5)关于x 轴对称的点的坐标是( )A .(2,5)B .(-2,5)C .(-2,-5)D .(-5,2)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( )A .3B .4C .5D .68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( ) A .41B .21 C .43 D .65 9.将正整数1至2018按一定规律排列如下表:1 2 3 4 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ……平移表中带阴影的方框,方框中三个数的和可能是( )A .2019B .2018C .2016D .201310.如图,在⊙O 中,点C 在优弧AB ⌒ 上,将弧BC ⌒沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( )A .32B .23C .235D .265二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算3)23(-+的结果是___________ 12.下表记录了某种幼树在一定条件下移植成活情况移植总数n 400 1500 3500 7000 9000 14000 成活数m3251336 3203 6335 8073 12628 成活的频率(精确到0.01) 0.8130.8910.9150.9050.8970.902由此估计这种幼树在此条件下移植成活的概率约是___________(精确到0.1) 13.计算22111m m m---的结果是___________ 14.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是___________15.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是22360t t y -=.在飞机着陆滑行中,最后4 s 滑行的距离是___________m16.如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE平分△ABC 的周长,则DE 的长是___________ 三、解答题(共8题,共72分) 17.(本题8分)解方程组:⎩⎨⎧=+=+16210y x y x18.(本题8分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G ,求证:GE =GF19.(本题8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图 学生读书数量统计表 学生读书数量扇形图阅读量/本学生人数1 152 a3 b 45(1) 直接写出m 、a 、b 的值(2) 估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本题8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A 、B 型钢板共100块,并全部加工成C 、D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板x 块(x 为整数) (1) 求A 、B 型钢板的购买方案共有多少种?(2) 出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若童威将C 、D 型钢板全部出售,请你设计获利最大的购买方案21.(本题8分)如图,PA 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB 、PC ,PC 交AB 于点E ,且P A =PB (1) 求证:PB 是⊙O 的切线 (2) 若∠APC =3∠BPC ,求CEPE的值22.(本题10分)已知点A (a ,m )在双曲线xy 8=上且m <0,过点A 作x 轴的垂线,垂足为B (1) 如图1,当a =-2时,P (t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C ① 若t =1,直接写出点C 的坐标 ② 若双曲线xy 8=经过点C ,求t 的值 (2) 如图2,将图1中的双曲线x y 8=(x >0)沿y 轴折叠得到双曲线xy 8-=(x <0),将线段OA 绕点O 旋转,点A 刚好落在双曲线xy 8-=(x <0)上的点D (d ,n )处,求m 和n 的数量关系23.(本题10分)在△ABC 中,∠ABC =90°、(1) 如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN(2) 如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠P AC =552,求tanC 的值 (3) 如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =53,52AC AD ,直接写出tan ∠CEB 的值24.(本题12分)抛物线L :y =-x 2+bx +c 经过点A (0,1),与它的对称轴直线x =1交于点B (1) 直接写出抛物线L 的解析式(2) 如图1,过定点的直线y =kx -k +4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值(3) 如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标2018年武汉中考数学参考答案与解析一、选择题1 2 3 4 5 6 7 8 9 10 ADBDBACCDB提示:9.设中间的数为x ,则这三个数分别为x -1,x ,x +1∴这三个数的和为3x ,所以和是3和倍数,又2019÷3=671,673除以8的余数为1,∴2019在第1列(舍去);2016÷3=672,672除以8的余数为0,∴2016在第8列(舍去);2013÷3-671,671除以8的余数为7,∴2013在第7列,所以这三数的和是是2013, 故选答案D .10.连AC 、DC 、OD ,过C 作CE ⊥AB 于E ,过O 作OF ⊥CE 于F ,∵ BC沿BC 折叠,∴∠CDB =∠H ,∵∠H +∠A =180°,∴∠CDA +∠CDB =180°,∴∠A =∠CDA ,∴CA =CD ,∵CE ⊥AD ,∴AE =ED =1,∵5OA =,AD =2,∴OD =1,∵OD ⊥AB ,∴OFED 为正方形,∴OF =1,5OC =,∴CF =2,CE =3,∴32CB =.OHFEDCBAOFEDCBA法一图 法二图法二 第10题 作D 关于BC 的对称点E ,连AC 、CE ,∵AB =4,225AE AO ==,∴BE =2,由对称性知,∠ABC =∠CBE =45°,∴AC =CE ,延长BA 至F ,使F A =BE ,连FC ,易证△FCA ≌△BCE ,∴∠FCB =90°,∴()223222BC FB AB BE ==+=.二、填空题11.2 12.0.9 13.11m - 14.30°或150° 15.24 16.32揭示: 第15题 ()23206002y t =--+ 当t =20时,滑行到最大距离600m 时停止;当t =16时,y =576,所以最后4s 滑行24m . 第16题 延长BC 至点F ,使CF =AC ,∵DE 平分△ABC 的周长,AD =BC ,∴AC +CE =BE ,∴BE =CF +CE =EF ,∴DE ∥AF ,DE =12AF ,又∵∠ACF =120°,AC =CF ,∴33AF AC ==,∴32DE =. FEDCB AGABCDEF第16题法一答图 第16题法二答图法二 第16题 解析 作BC 的中点F ,连接DF ,过点F 作FG ⊥DE 于G ,设CE =x ,则BE =1+x ,∴BE =1+x ,∴BC =1+2x ,∴12C F x =+,∴12E F C F C E =-=,而1122DF AC ==,且∠C =60°,∴∠DFE =120°,∴∠FEG =30°,∴1124GF EF ==,∴34EG =,∴322DE EG ==. 三、解答题17、解析:原方程组的解为64x y =⎧⎨=⎩18.证明:∵BE =CF ,∴BE +EF =CF +EF ,∴BF =CE ,在△ABF 和△DCE 中AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△DCE (SASA ),∴∠DEC =∠AFB ,∴GE =GF .19.解析 (1)m =50,a =10,b =20 (2)11521032045500115050⨯+⨯+⨯+⨯⨯=(本)答:该年级全体学生在这次活动中课外阅读书箱的总量大约是1150本. 20.解析(1)设A 型钢板x 块,则B 型钢板有(100-x )块.()21001203100250x x x x +-≥⎧⎪⎨+-≥⎪⎩,解得2025x ≤≤.X =20或21或22或23或24或25,购买方案共有6种. (2)设总利润为W 元,则()()1002100120310014046000w x x x x x =+-++-=-+⎡⎤⎣⎦X =20时,max 140204600043200W =-⨯+=元. 获利最大的方案为购买A 型20块,B 型80块.21.(1)证明:如图①,连接OB ,OP ,在△OAP 和△OBP 中,OA OBOP OP AP BP =⎧⎪=⎨⎪=⎩,∴△OAP ≌△OBP (SSS ),∴∠OBP =∠OAP ,∵P A 是⊙O 的切线,∴∠OBP =∠OAP =90°,∴PB 是⊙O 的切线.H 图②图①ECBECBOOA PAP⑵如图②,连接BC ,AB 与OP 交于点H∵∠APC =3∠BPC ,设∠BPC =x ,则∠APC =3x ,∠APB =x +3x =4x 由⑴知 ∠APO =∠BPO =2x ,∴∠OPC =∠CPB =x∵AC 是⊙O 的直径,∴∠ABC =90°∵易证OP ⊥AB ,∴∠AHO =∠ABC =90°,即OP ∥BC ∴∠OPC =∠PCB =∠CPB =x ,∴CB =BP易证△OAH ∽△CAB ,∴OH CB =OA AC =12,设OH =a ,∴CB =BP =2a 易证△HPB ∽△BPO ,∴HP BP =BP OP ,∴设HP =ya ,∴2yaa=2a a ya +解得 11172y --=(舍)或21172y -+=∵OP ∥CB ,易证△HPE ∽△BCE ,∴PE CE =HP CB =2ya a=1174-+22、解:⑴将x A =-2代入y =8x 中得:y A =82-=-4 ∴A(-2,-4),B(-2,0) ①∵t =1 ∴P(1,0),BP =1-(-2)=3 ∵将点B 绕点P 顺时针旋转90°至点C ∴x C =x P =t PC =BP =3 ∴C(1,3)②∵B(-2,0),P(t ,0)第一种情况:当B 在P 的右边时,BP =-2-t∴x C =x P =t PC 1=BP =-2-t ∴C 1(t ,t +2) 第二种情况:当B 在P 的左边时,BP =2+t∴x C =x P =t PC 2=BP =2+t ∴C 2(t ,t +2) 综上:C 的坐标为(t ,t +2)∵C 在y =8x上 ∴t(t +2)=8 解得 t =2或-4 xyxyxyD 2D 1E 1E 2P BOCPBAOCBAOA⑵作DE ⊥y 轴交y 轴于点E ,将y A =m 代入y =8x 得:x A =8m ,∴A(8m ,m) ∴AO 2=OB 2+AB 2=228m+m 2,将y D =n 代入y =8x 得:x D =8n ,∴D(-8n ,n) ∴DO 2=DE 2+OE 2=28n ⎛⎫- ⎪⎝⎭+n 2,∴228m +m 2=28n ⎛⎫- ⎪⎝⎭+n 2,228m -228n =n 2-m 2,222264()n m m n -=n 2-m 2,321CMNA BMCNBAP(64-m 2n 2)(n 2-m 2)=0①当n 2-m 2=0时,n 2=m 2,∵m <0,n >0 ∴m +n =0 ②当64-m 2n 2=0时,m 2n 2=64,∵m <0,n >0 ∴mn =-8 综合得:m +n =0,或 mn =-823、证明:⑴∵∠ABC =90° ∴∠3+∠2=180°-∠ABC =180°-90°=90° 又∵AM ⊥MN ,CN ⊥MN ∴∠M =∠N =90°,∠1+∠3=90° ∴∠1=∠2∴△ABM ∽△BCN⑵方法一:过P 点作PN ⊥AP 交AC 于N 点,过N 作NM ⊥BC 于M 点 ∵∠BAP +∠APB =90°,∠APB +∠NPC =90° ∴∠BAP =∠NPC ,△BAP ∽△MPNAP BA BP PN MP MN == 又∵25tan 5PN PAC PA ∠== 设25MN a =,25PM b =,则5BP a =,5AB b =又∵BAP BCA ∠=∠,∴NPC BCA ∠=∠,∴NP NC =,245PC PM b == 又△BAP ∽△BCA ,BA BC BP BA=,∴2BA BP BC =⋅, ()()255545b a a b =⋅+,解得:55a b =, ∴255tan 525MN a a C MC b b ∠====方法二:过点C 作CE AP ⊥的延长线交于E 点,过P 作PF AC ⊥交AC 于点F ∵90ABC CEP ∠=∠=︒,BPA EPC ∠=∠,∴BAP ECP ACB ∠=∠=∠ ∵25tan 5PAC ∠=,∴设25CE m =,则5AE m = 由勾股定理得:35AC m=,∵ACP ECP ∠=∠,∴PF PE =∴32APC CPE S AC AP S CE PE ∆∆=== ∵5AE m =,∴2PE m = ∴25tan tan 525PE ECP ACB EC ∠=∠===方法三:作AP 的垂直平分线交AB 于D 点,连DP设C BAP x ∠=∠=,PAC y ∠=,∴290x y +=︒2BDP BAP DPA x ∠=∠+∠=902DPB x y PAC ∠=︒-==∠∵25tan 5PAC ∠=,令2BD a =,5BP a = 由勾股定理得:3DP a AD == ∴5tan tan 5BP C BAP AB ∠=∠==(3)过A 作AH EB ⊥交EB 于H ,过C 作CK EB ⊥交EB 的延长线于K ∵AE AB = ∴EH HB =,易知△AHB ∽△BKC ,25EH DA HK AC == 设3CK x =,∵△AHB ∽△BKC ,∴AB HBBC CK=,∴4HB EH x == ∴5201022EH x HK x ===,∴3tan 14CK CEB EK ∠==24. 解析:(1)221y x x =-++(2)∵直线()40y kx k k =-+<,则()14y k x =-+∴直线MN 过定点P (1,4)联立2421y kx k y x x =-+⎧⎨=-++⎩, 得()2230x k x k +--+=∴2M N x x k +=-,3M N x x k ⋅=-∴BMN EBN EBM S S S ∆∆∆=-()()()1111121222N M N M EB x EB x x x =---=⨯-= ∵()()()22242438N M M N M N x x x x x x k k k -=+-=---=- ∴281k -= ∴3k =±∵0k < ∴3k =-(3)设1L 为:22y x x t =-++ ∴1m t =-且C (0,t ),D (2,t ),F (1,0),设P (0,a ) ①△PCD ∽△POF 时, ∴CD CP OF OP =, ∴21t a a -=, ∴3t a =,此时必有一点P 满足条件 ②△DCP ∽△POF 时, ∴CD CP OP OF =, ∴21t a a -=, ∴220a at -+= ∵符合条件的点P 恰有两个,∴第一种情况:220a at -+=有两个相等的实数根 0∆=,∴22t =± ∵0t > ∴22t =, ∴1221m =- 将22t =代入3t a =得:1223a =∴1P (0,223) 将22t =代入220a at -+=得:22a = ∴2P (0,2)第二种情况:220a at -+=有两个不相等的实数根,且其中一根为3t a =的解∴0∆>, 将3t a =代入220a at -+=得:22320a a -+=∴1a =± ∵0a > ∴1a =, ∴3t =, 22m =将3t =代入220a at -+=得:31a =, ∴3P (0,1); 42a =, ∴4P (0,2)综上所述: 当1221m =-时,P (0,223)或P (0,2), 当22m =时,P (0,1)或P (0,2)。
湖北省武汉市2018年中考数学试题(含答案)-推荐
2018年武汉市初中毕业生考试数学试卷考试时间:2018年6月20日14:30~16:30 、 一、选择题(共10小题,每小题3分,共30分) 1.温度由-4℃上升7℃是( ) A .3℃B .-3℃C .11℃D .-11℃2.若分式21x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-2B .x <-2C .x =-2D .x ≠-23.计算3x 2-x 2的结果是( ) A .2B .2x2C .2xD .4x 24.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40 B .42、38 C .40、42 D .42、40 5.计算(a -2)(a +3)的结果是( )A .a 2-6 B .a 2+a -6 C .a 2+6D .a 2-a +6 6.点A (2,-5)关于x 轴对称的点的坐标是( )A .(2,5)B .(-2,5)C .(-2,-5)D .(-5,2)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( )A .3B .4C .5D .68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( ) A .41B .21 C .43 D .65 9.将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是( ) A .2019B .2018C .2016D .201310.如图,在⊙O 中,点C 在优弧AB ⌒ 上,将弧BC ⌒沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( )A .32B .23C .235 D .265 二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算3)23(-+的结果是___________ 12.下表记录了某种幼树在一定条件下移植成活情况由此估计这种幼树在此条件下移植成活的概率约是___________(精确到0.1) 13.计算22111m m m---的结果是___________14.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是___________15.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是22360t t y -=.在飞机着陆滑行中,最后4 s 滑行的距离是___________m16.如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC 的周长,则DE 的长是___________ 三、解答题(共8题,共72分)17.(本题8分)解方程组:⎩⎨⎧=+=+16210y x y x18.(本题8分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G ,求证:GE =GF19.(本题8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图 学生读书数量统计表 学生读书数量扇形图(1) 直接写出m 、a 、b 的值(2) 估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本题8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A 、B 型钢板共100块,并全部加工成C 、D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板x 块(x 为整数) (1) 求A 、B 型钢板的购买方案共有多少种?(2) 出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若童威将C 、D 型钢板全部出售,请你设计获利最大的购买方案21.(本题8分)如图,PA 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB 、PC ,PC 交AB 于点E ,且PA =PB(1) 求证:PB 是⊙O 的切线 (2) 若∠APC =3∠BPC ,求CEPE的值22.(本题10分)已知点A (a ,m )在双曲线xy 8=上且m <0,过点A 作x 轴的垂线,垂足为B (1) 如图1,当a =-2时,P (t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C ① 若t =1,直接写出点C 的坐标 ② 若双曲线xy 8=经过点C ,求t 的值 (2) 如图2,将图1中的双曲线x y 8=(x >0)沿y 轴折叠得到双曲线xy 8-=(x <0),将线段OA 绕点O 旋转,点A 刚好落在双曲线xy 8-=(x <0)上的点D (d ,n )处,求m 和n 的数量关系23.(本题10分)在△ABC 中,∠ABC =90°、(1) 如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN(2) 如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠PAC =552,求tanC 的值 (3) 如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =53,52AC AD ,直接写出tan ∠CEB 的值24.(本题12分)抛物线L :y =-x 2+bx +c 经过点A (0,1),与它的对称轴直线x =1交于点B(1) 直接写出抛物线L 的解析式(2) 如图1,过定点的直线y =kx -k +4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值(3) 如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标。
湖北省武汉市四校联考2018年中考数学模拟试卷(3月份,带答案)
2018年湖北省武汉市四校联考中考数学模拟试卷(3月份)一.选择题(每小题3分,共30分)1.(3分)化简的结果为()A .±5B .25C .﹣5D .52.(3分)若代数式在实数范围内有意义,则实数x 的取值范围是()A .x <3B .x >3C .x ≠3D .x=33.(3分)下列计算结果是x 5的为()A .x 10÷x 2B .x 6﹣xC .x 2•x 3D .(x 3)24.(3分)在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米) 4.504.604.654.704.754.80人数232341则这些运动员成绩的中位数、众数分别是()A .4.65、4.70B .4.65、4.75C .4.70、4.75D .4.70、4.705.(3分)计算(x +2)(x +3)的结果为()A .x 2+6B .x 2+5x +6C .x 2+5x +5D .x 2+6x +66.(3分)点P (2,﹣3)关于x 轴对称点的坐标为()A .(2,3)B .(﹣2,3)C .(﹣2,﹣3)D .(﹣3,2)7.(3分)如图所示的正方体的展开图是()A .B .C .D .8.(3分)按照一定规律排列的n 个数:1,﹣2,4,﹣8,16,﹣32,64…若最后两个数的差为﹣1536,则n为()A.9B.10C.11D.129.(3分)已知一个三角形的三边长分别是6、7、8,则其内切圆直径为()A.B.C.D.210.(3分)已知抛物线y1=(x﹣x1)(x﹣x2)交x轴于A(x1,0)B(x2,0)两点,且点A在点B的左边,直线y2=2x+t经过点A.若函数y=y1+y2的图象与x轴只有一个公共点时,则线段AB的长为()A.4B.8C.16D.无法确定二.填空题(每小题3分,共18分)11.(3分)计算﹣2+3×4的结果为12.(3分)计算:=.13.(3分)将对边平行的纸带折叠成如图所示,已知∠1=52°,则∠α=.14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,则摸出两个颜色不同小球的概率是.15.(3分)如图,等边△ABC的边长为8,D、E两点分别从顶点B、C出发,沿边BC、CA以1个单位/s、2个单位/s的速度向顶点C、A运动,DE的垂直平分线交BC边于F点,若某时刻tan∠CDE=时,则线段CF的长度为.16.(3分)在平面直角坐标系中,A(4,0),直线l:y=6与y轴交于点B,点P是直线l上点B右侧的动点,以AP为边在AP右侧作等腰Rt△APQ,∠APQ=90°,当点P的横坐标满足0≤x≤8,则点Q的运动路径长为.三、解答题(共8小题,满分72分)17.(8分)解方程:7x﹣5=3x﹣1.18.(8分)如图,点C,F,E,B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司为了掌握职工的工作成绩,随机抽取了部分职工的平时成绩(得分为整数,满分为160分)分为5组,第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)写出本次调查共抽取的职工数为(2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,求该公司1500名工作人员中,成绩评为“B”的人员大约有多少名?20.(8分)某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案.21.(8分)如图,⊙O为正方形ABCD的外接圆,E为弧BC上一点,AF⊥DE于F,连OF、OD.(1)求证:AF=EF;(2)若=,求sin∠DOF的值.22.(10分)如图,在△ABC中,AC=BC,AB⊥x轴于A,反比例函数y=(x >0)的图象经过点C,交AB于点D,已知AB=4,BC=.(1)若OA=4,求k的值.(2)连接OC,若AD=AC,求CO的长.23.(10分)如图,在四边形ABCD中,AB∥CD,∠ADC=90°,DE⊥BC于E,连AE,FE⊥AE交CD于点F.(1)求证:△AED∽△FEC;(2)若AB=2,求DF的值;(3)若AD=CD,=2,则=.24.(12分)如图,二次函数y=﹣x2+bx+c的图象与x轴交于A、B两点,与y 轴交于点C,OB=OC,点D在函数图象上,CD∥x轴且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图1,连BE,线段OC上的点F关于直线l的对称点F’恰好在线段BE 上,求点F的坐标;(3)如图2,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M、与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?若存在,求出点Q的坐标;若不存在,说明理由.2018年湖北省武汉市四校联考中考数学模拟试卷(3月份)参考答案与试题解析一.选择题(每小题3分,共30分)1.【解答】解:∵表示25的算术平方根,∴=5.故选:D.2.【解答】解:依题意得:x﹣3≠0,解得x≠3,故选:C.3.【解答】解:A、x10÷x2=x8,不符合题意;B、x6﹣x不能进一步计算,不符合题意;C、x2•x3=x5,符合题意;D、(x3)2=x6,不符合题意;故选:C.4.【解答】解:这些运动员成绩的中位数、众数分别是4.70,4.75.故选:C.5.【解答】解:(x+2)(x+3)=x2+3x+2x+6=x2+5x+6,故选:B.6.【解答】解:点P(2,﹣3)关于x轴对称点的坐标为(2,3),故选A.7.【解答】解:根据带有各种符号的面的特点及位置,可得如图所示的正方体的展开图是.故选:A.8.【解答】解:观察数列,可知:第n个数为(﹣2)n﹣1.设倒数第二个数为x,则最后一个数为﹣2x,根据题意得:x﹣(﹣2x)=﹣1536,解得:x=﹣512,∴﹣2x=1024,∴(﹣2)n﹣1=1024,∴n=11.故选:C.9.【解答】解:AB=7,BC=6,AC=8,内切圆的半径为r,切点为G、E、F,作AD⊥BC于D,设BD=x,则CD=6﹣x,在Rt△ABD中,AD2=AB2﹣BD2,在Rt△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(6﹣x)2,解得,x=,则AD==,×AD×BC=×AB×r+×AC×r+×CB×r,解得,r=,∴其内切圆直径为2,故选:D.10.【解答】解:∵线y2=2x+t经过点A(x1,0),∴2x1+t=0∴x1=﹣,A(﹣,0)∵若函数y=y1+y2的图象与x轴只有一个公共点,∴这个公共点就是点A,∴可以假设y=(x+)2=x2+tx+,∴y1=y﹣y2=x2+(t﹣2)x+﹣t.∴AB=====8.故选:B.二.填空题(每小题3分,共18分)11.【解答】解:﹣2+3×4=﹣2+12=10,故答案为:10.12.【解答】解:==x+2.故答案为x+2.13.【解答】解:∵对边平行,∴∠2=∠α,由折叠可得,∠2=∠3,∴∠α=∠3,又∵∠1=∠4=52°,∴∠α=(180°﹣52°)=64°,故答案为:62°.14.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色不同的有12种结果,∴两次取出的小球颜色不同的概率为=,故答案为:.15.【解答】解:作EH⊥BC于H,设线段DE的垂直平分线交DE于G.∵△ABC是等边三角形,∴∠C=60°,在Rt△EHC中,EC=2t,∴CH=t,EH=2t,在Rt△DEH中,∵tan∠CDE==,∴DH=4t,∵BD=t,BC=8,∴t+4t+t=8,∴t=,∴DH=,EH=,CH=,∵GF垂直平分线段DE,∴DF=EF,设DF=EF=x,在Rt△EFH中,∵EF2=EH2+FH2,∴x2=()2+(﹣x)2,解得x=,∴CF=﹣+=2.故答案为2.16.【解答】解:如图,过点P作PE⊥OA,垂足为E,过点Q作QF⊥BP,垂足为F,∵BP∥OA,PE⊥OA,∴∠EPF=∠PEO=90°.∵∠APQ=90°,∴∠EPA=∠FPQ=90°﹣∠APF.在△PEA和△PFQ中,∵,∴△PEA≌△PFQ(AAS),∴PE=PF,EA=QF,若点P的坐标为(a,6),则PF=PE=6,QF=AE=|4﹣a|.∴点Q的坐标为(a+6,10﹣a).∵无论a为何值,点Q的坐标(a+6,10﹣a)都满足一次函数解析式y=﹣x+16,∴点Q始终在直线y=﹣x+16上运动.当点P的横坐标满足0≤x≤8时,点Q的横坐标满足6≤x≤14,纵坐标满足2≤y≤10,则Q的运动路径长为=8,故答案为:8.三、解答题(共8小题,满分72分)17.【解答】解:(1)移项得7x﹣3x=5﹣1,合并同类项得4x=4,系数化为1得x=1.18.【解答】解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.19.【解答】解:(1)本次调查共抽取的职工数为20÷40%=50(人),故答案为:50;(2)1500×=420(人),答:成绩评为“B”的人员大约有420名.20.【解答】解:(1)设甲种笔记本的单价是x元,乙种笔记本的单价是y元.(1分)根据题意可得(3分)解这个方程组得(4分)答:甲种笔记本的单价是3元,乙种笔记本的单价是5元.(5分)(2)设本次购买乙种笔记本m个,则甲种笔记本(2m﹣10)个.(6分)根据题意可得m+(2m﹣10)≥80,解这个不等式得m≥30,3(2m﹣10)+5m≤320(8分)解这个不等式得m≤31.(9分)因为m为正整数,所以m的值为:30或31故本次购进甲笔记本50个、乙笔记本30个;或购进甲笔记本52个、乙笔记本31个.(10分)21.【解答】证明:(1)如图,过B作BG⊥AF于G,连接BE、OB,∵AF⊥DE,∴∠AGB=∠AFD=90°,∴∠BAF+∠ABG=90°,∵四边形ABCD是正方形,∴BD为⊙O的直径,AD=AB,∠BAD=90°,∴∠DAF+∠BAF=90°,∠BED=90°,∴∠ABG=∠DAF,∴△ABG≌△DAF,∴BG=AF,∵∠BED=∠BGF=∠AFE=90°,∴四边形GBEF是矩形,∴EF=BG,∴AF=EF;(2)作OH⊥BE于H,连接AO,GO.∵OH⊥BE,∴BH=HE,∴OH垂直平分线段BE,∵四边形GBEF是矩形,∴BE=GF,BE∥GF,∴OH垂直平分线段FG,∴OG=OF,∵∠AOD=∠AFD=90°,∴A、D、F、O四点共圆,∴∠DOF=∠DAF,∠OFG=∠ADO=45°,∴△FOG是等腰直角三角形,∴FG=OF,∵EF=BG=AF=2OF,∴AF=2FG,AG=FG=DF,设DF=a,则AF=2a,AD=a,∴sin∠DOF=sin∠DAF==.22.【解答】解:(1)作CE⊥AB,垂足为E,∵AC=BC,AB=4,∴AE=BE=2.在Rt△BCE中,BC=,BE=2,∴CE=,∵OA=4,∴C点的坐标为:(,2),∵点C在y=(x>0)的图象上,∴k=11;(2)设A点的坐标为(m,0),∵BD=BC=,∴AD=,∴D,C两点的坐标分别为:(m,),(m+,2).∵点C,D都在y=(x>0)的图象上,∴m=2(m+),∴m=6,∴C点的坐标为:(,2),作CF⊥x轴,垂足为F,∴OF=,CF=2,在Rt△OFC中,OC2=OF2+CF2,∴OC==.23.【解答】解:(1)∵DE⊥BC,EF⊥AE,∴∠BED=∠CED=90°,∵∠2+∠3=90°,∠2+∠CEF=90°,∴∠CEF=∠3,∵∠AEF=∠ADF=90°∴∠6+∠4=180°,∵∠5+∠6=180°,∴∠5=∠4,∴△ADE∽△FEC.(2)∵∠1+∠3=90°,∠2+∠3=90°,∴∠1=∠2,∵AB∥CD,∠ADC=90°,∴∠BAD+∠ADC=180°,∴∠BAD=90°,∵∠BED+∠BAD=180°,∴四边形ABCD四点共圆,∵∠AEF+∠ADF=180°,∴四边形AEFD四点共圆,∴A、B、E、F、D五点共圆,∵∠1=∠2,∴DF=AB=2.(3)作CN⊥AB交AB的延长线于N,过点E作EG⊥AN垂足为G交CD于H,延长DE交CN于M.∵==2,AB=FD,∴EG=2EH,∵GB∥CH,∴△EGB∽△EHC,∴==2,设EC=a,AB=x,CD=y,则EB=2a,∵∠NCD=∠ADC=∠DAN=90°,∴四边形ADCN是矩形,∵AD=DC∴四边形ADCN是正方形,∴AN=CN=CD=y,NB=y﹣x,∵∠NCB+∠CMD=90°,∠CMD+∠MDC=90°∴∠NCB=∠MDC,∵CN=CD,∴△CNB≌△DCM,∴CM=BN=y﹣x,DM=BC=3a,∵∠MCD=∠MEC,∠CME=∠CMD,∴△MCE∽△MDC,∴=,∴=,∴y2﹣xy=3a2①∵CM2+CD2=MD2,∴(y﹣x)2+y2=9a2②由①②消去a得x2+xy﹣y2=0∴x=y,(或x=y舍弃)∴=,∴=.故答案为:.24.【解答】解:(1)∵CD∥x轴,CD=2,∴抛物线对称轴为x=1.∴﹣=1,b=2.∵OB=OC,C(0,c),∴B点的坐标为(﹣c,0),∴0=﹣c2+2c+c,解得c=3或c=0(舍去),∴c=3;(2)设点F的坐标为(0,m).∵对称轴为直线x=1,∴点F关于直线l的对称点F的坐标为(2,m).由(1)可知抛物线解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴E(1,4),∵直线BE经过点B(3,0),E(1,4),∴利用待定系数法可得直线BE的表达式为y=﹣2x+6.∵点F在BE上,∴m=﹣2×2+6=2,即点F的坐标为(0,2);(3)存在点Q满足题意.设点P坐标为(n,0),则PA=n+1,PB=PM=3﹣n,PN=﹣n2+2n+3.作QR⊥PN,垂足为R,=S△APM,∵S△PQN∴(n+1)(3﹣n)=(﹣n2+2n+3)•QR,∴QR=1.①点Q在直线PN的左侧时,Q点的坐标为(n﹣1,﹣n2+4n),R点的坐标为(n,﹣n2+4n),N点的坐标为(n,﹣n2+2n+3).∴在Rt△QRN中,NQ2=1+(2n﹣3)2,∴n=时,NQ取最小值1.此时Q点的坐标为(,);②点Q在直线PN的右侧时,Q点的坐标为(n+1,n2﹣4).同理,NQ2=1+(2n﹣1)2,∴n=时,NQ取最小值1.此时Q点的坐标为(,).综上可知存在满足题意的点Q,其坐标为(,)或(,).。
2018武汉中考数学试卷及答案(Word精校版)
第1页 / 共10页2018年武汉市初中毕业生考试数学试卷一、选择题(共10小题,每小题3分,共30分) 1.温度由-4℃上升7℃是( ) A .3℃ B .-3℃ C .11℃ D .-11℃2.若分式21x 在实数范围内有意义,则实数x 的取值范围是( )A .x >-2B .x <-2C .x =-2D .x ≠-2 3.计算3x 2-x 2的结果是( )A .2B .2x 2C .2xD .4x 24.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40 B .42、38 C .40、42 D .42、405.计算(a -2)(a +3)的结果是( ) A .a 2-6 B .a 2+a -6 C .a 2+6 D .a 2-a +66.点A (2,-5)关于x 轴对称的点的坐标是( ) A .(2,5) B .(-2,5) C .(-2,-5) D .(-5,2)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( ) A .3 B .4 C .5 D .68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( )A .41B .21C .43D .659.将正整数1至2018按一定规律排列如下表:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2425 26 27 28 29 30 31 32……平移表中带阴影的方框,方框中三个数的和可能是( ) A .2019 B .2018 C .2016 D .201310.如图,在⊙O 中,点C 在优弧AB ⌒ 上,将弧BC ⌒ 沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( )A .32B .23C .235D .265第2页 / 共10页二、填空题(本大题共6个小题,每小题3分,共18分)11.计算3)23(-+的结果是___________12.下表记录了某种幼树在一定条件下移植成活情况移植总数n400 1500 3500 7000 9000 14000 成活数m325 1336 3203 6335 8073 12628 成活的频率(精确到0.01) 0.813 0.891 0.915 0.905 0.897 0.902由此估计这种幼树在此条件下移植成活的概率约是___________(精确到0.1)13.计算22111m m m ---的结果是___________14.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是___________15.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是22360t t y -=.在飞机着陆滑行中,最后4 s 滑行的距离是___________m16.如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC 的周长,则DE 的长是___________三、解答题(共8题,共72分) 17.(本题8分)解方程组:⎩⎨⎧=+=+16210y x y x18.(本题8分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G ,求证:GE =GF第3页 / 共10页19.(本题8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图学生读书数量统计表阅读量/本学生人数1 152 a3 b 45学生读书数量扇形图(1) 直接写出m 、a 、b 的值(2) 估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本题8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A 、B 型钢板共100块,并全部加工成C 、D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板x 块(x 为整数) (1)求A 、B 型钢板的购买方案共有多少种?(2) 出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若童威将C 、D 型钢板全部出售,请你设计获利最大的购买方案21.(本题8分)如图,P A 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB 、PC ,PC 交AB 于点E ,第4页 / 共10页且P A =PB(1) 求证:PB 是⊙O 的切线(2) 若∠APC =3∠BPC ,求CEPE的值22.(本题10分)已知点A (a ,m )在双曲线xy 8=上且m <0,过点A 作x 轴的垂线,垂足为B (1) 如图1,当a =-2时,P (t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C ① 若t =1,直接写出点C 的坐标② 若双曲线xy 8=经过点C ,求t 的值(2) 如图2,将图1中的双曲线x y 8=(x >0)沿y 轴折叠得到双曲线xy 8-=(x <0),将线段OA 绕点O 旋转,点A 刚好落在双曲线xy 8-=(x <0)上的点D (d ,n )处,求m 和n 的数量关系第5页 / 共10页23.(本题10分)在△ABC 中,∠ABC =90°、(1) 如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN(2) 如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠P AC =552,求tan C 的值 (3) 如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =53,52AC AD ,直接写出tan ∠CEB 的值24.(本题12分)抛物线L:y=-x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B(1)直接写出抛物线L的解析式(2)如图1,过定点的直线y=kx-k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD 与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标第6页 / 共10页第7页 / 共10页2018年武汉中考数学参考答案与解析一、选择题1 2 3 4 5 6 7 8 9 10 ADBDBACCDB10.连AC 、DC 、OD过C 作CE ⊥AB 于E ,过O 作OF ⊥CE 于F ∵弧BC 沿BC 折叠,∴∠CDB =∠H∵∠H +∠A =180°,∠CDA +∠CDB =180°∴∠A =∠CDA ,∴CA =CD ,∵CE ⊥AD ,∴AE =ED =1, ∵5OA =,AD =2,∴OD =1∵OD ⊥AB , ∴OFED 为正方形,∴OF =1,5OC =∴CF =2,CE =3,∴32CB =二、填空题11.2 12.0.9 13.11m - 14. 30o 或150o 15.24 16. 3216. 延长BC 至点F ,使CF =AC∵DE 平分△ABC 周长,AD =BD ,∴AC +CE =BE∴BE =CF +CE =EF ∴DE AF ∥,12DE AF =又∵∠ACF =120°,AC =CF ∴33AF AC == ∴32DE =三、解答题17.解析:原方程组的解为⎩⎨⎧==46y x .18.证明:∵BE =CF ,∴BE +EF =CF +EF ,∴BF =CE 在ABF ∆和DCE ∆中 ⎪⎩⎪⎨⎧=∠=∠=CE BF C B DC AB , ∴)(≌SAS DCE ABF ∆∆,∴AFB DEC ∠=∠,∴GF GE =.19.解析:(1)50=m ,10=a ,20=b . (2)11505005054203102151=⨯⨯+⨯+⨯+⨯(本)答:该年级全体学生在这次活动中课外阅读书籍的总量大约是1150本.20.解析:(1)设A 型钢板x 块,则B 型钢板有(x -100)块 ⎩⎨⎧≥-+≥-+25010031201002)(x x x x ,解得2520≤≤x 20=x 或21或22或23或24或25,购买方案共有6种. (2)设总利润为W 元第8页 / 共10页[]46000140)100(3120)1002(100+-=-++-+=x x x x x W . 20=x 时,432004600020140max =+⨯-=W 元获利最大的方案为:购买A 型20块,B 型80块.21. (1)证明:如图①,连接OB OP ,,在OAP V 和OBP V 中 OA OB OP OP AP BP =⎧⎪=⎨⎪=⎩∴OAP V ≌OBP V (SSS ),∴OBP OAP ∠=∠∵PA 是O e 的切线,∴90OBP OAP ∠=∠=︒,∴PB 是O e 的切线图① 图②(2)如图②,连接BC AB ,与OP 交于点H∵3APC BPC ∠=∠,设BPC x ∠=,则3APC x ∠=,34APB x x x ∠=+=由(1)知422xAPO BPO x ∠=∠==,∴OPC CPB x ∠=∠=∵AC 是O e 的直径,∴90ABC ∠=︒∵易证OP AB ⊥,∴90AHO ABC ∠=∠=︒,即OP BC P ∴OPC PCB CPB x ∠=∠=∠=,∴CB BP =易证OAH V ∽CAB V ,∴12OH OA CB AC ==,设OH a =,∴2CB BP a ==易证HPB V ∽BPO V ,∴HP BPBP OP =,∴设HP ya =,∴22ya a a a ya =+ 解得:()11172y --=(舍)或()21172y -+=∵OP CB P ,易证H PE V ∽BCE V ,∴11724PE HP ya CE CB a -+===22.解(1)将2A x =-代入8y x=中得:842A y ==-- ∴A (-2,-4) B (-2,0)①∵t =1 ∴P (1,0) BP =1-(-2)=3∵将点B 绕点P 顺时针旋转90°至点C ∴C P x x t == 3P C B P== ∴C (1,3) ②∵B (-2,0),P (t ,0)第一种情况:当B 在P 的右边时,2BP t =-- ∴C P x x t == PC 1=BP =2t -- ∴C 1(t ,t +2) 第二种情况:当B 在P 的左边时,2BP t =+ ∴C P x x t == PC 2=BP =2+t ∴C 2(t ,t +2)EPOACBH EPOC AB第9页 / 共10页综上:C 的坐标为(t ,t +2)∵C 在8y x=上 ∴(2)8t t += 解得:2t =或-4(2)作DE y ⊥轴交y 轴于点E ,将A y m =带入8y x =得:8A x m =,∴A (8m,m )∴2222228AO OB AB m m=+=+,将D y n =带入8y x =-得:8D x n =-,∴D (8n -,n )∴222228()DO DE OE n n =+=-+,∵OA =OD ∴22OA OD =∴2222288m n m n ⎛⎫+=-+ ⎪⎝⎭,22222288n m m n -=-, 22222264()n m n m m n-=-,()222264()0m n n m --= ①当220n m -=时,22n m =,0,0m n <>0m n ∴+=②当22640m n -=时,2264m n ∴=,0,0m n <>,8mn ∴=- 综合得:0m n +=或8mn =-23.证明:(1)∵∠ABC =90°∴∠3+∠2=180°-∠ABC =180°-90°=90°又∵AM ⊥MN ,CN ⊥MN∴∠M =∠N =90°,∠1+∠3=90° ∴∠1=∠2∴△ABM ∽△BCN (2)过P 点作PN ⊥AP 交AC 于N 点,过N 作NM ⊥BC 于M 点 ∵∠BAP +∠APB =90° ∠APB +∠NPC =90° ∴∠BAP =∠NPC △BAP ∽△MPN AP BA BP PN MP MN ==又∵tan ∠P AC =PN PA=255 设MN =25a ,PM =25b ,则BP =5a ,AB =5b又∵∠BAP =∠BCA ,∴∠NPC =∠BCA ,∴NP =NC ,PC =2PM =45b又△BAP ∽△BCA ,BA BC BP BA= ,∴2BA =BP BC ⋅ , 2(5)5(545)b a a b =⋅+ ,解得:55a b =,∴tan ∠C =255525MN a a =MC b b == yxC 1AOBP y xC 2AOBPyxE 2E 1D 2D 1AOB321CBM NA MNP B CA第10页 / 共10页(3)过A 作AH ⊥EB 交EB 于H ,过C 作CK ⊥EB 交EB 的延长线于K∵AE =AB ∴EH =HB ,易知△AHB ∽△BKC ,25EH DA =HK AC =设CK =3x ,∵△AHB ∽△BKC ,∴AB HBBC CK=,∴HB =EH =4x ∴HK =52EH =202x =10x ,∴tan ∠CEB 314CK =EK =24. 解析:(1)221y x x =-++(2)∵直线4(0)y kx k k =-+<,则(1)4y k x =-+, ∴直线MN 过定点E (1,4)联立2421y kx k y x x =-+⎧⎨=-++⎩, 得2(2)30x k x k +--+=∴2M N x x k +=-,3M N x x k ⋅=- ∴=BMN EBN EBM S S S -△△△ =11(1)(1)22N M EB x EB x ---=12()12N M x x ⨯-=∵2()4N M M N M N x x x x x x -=+-=2(2)4(3)k k ---=28k -∴28k -=1 ∴3k =± ∵0k < ∴3k =-(3)设1L 为:22y x x t =-++ ∴m =t -1且()0,t C ,()2,t D ,()1,0F ,设(0,)P a①PCD POF △∽△时, ∴CD CP OF OP =,∴21t aa -=, ∴3t a =,此时必有一点P 满足条件 ②DCP POF △∽△时,∴CD CP OP OF =,∴21t aa -=,∴220a at -+= ∵符合条件的点P 恰有两个,∴第一种情况:220a at -+=有两个相等的实数根△=0 ,∴22t =± ∵ 0t > ∴22t =, ∴1221m =- 将22t =带入3t a =得: 1223a =∴122(0,)3P 将22t =带入220a at -+=得:22a = ∴2(0,2)P第二种情况:220a at -+=有两个不相等的实数根,且其中一根为3t a =的解 ∴0>△, 将3t a =代入220a at -+=得:22320a a -+= ∴1a =± ∵0a > ∴1a =, ∴3t = ,22m =将3t =代入220a at -+=得:31a = ,∴3(0,1)P ; 42a = ,∴4(0,2)P 综上所述:当1221m =-时,22(0,)3P 或 (0,2)P , 当22m =时,(0,1)P 或 (0,2)P4x3x4x 6x5a2aDAC BHEKxy A NOB EM。
武汉市东西湖区2018年中考模拟考试数学试卷含答案.docx
此文档为 word 格式,可以任意修改编辑武汉市东西湖区2018 年中考模拟考试数学试卷含答案中考数学模拟试卷考: 2018年 5 月 22 日 14:30~16:30一、(共10 小,每小 3 分,共30 分)1.武地区某日最高气温21℃,最低 12 ℃,最高气温比最低气温高()A . 33℃B. 22℃C. 11℃D. 9℃1在数范内有意,数x 的取范是()2.若代数式x1A . x>- 1B. x=- 1C. x≠ 0D. x≠- 1 3.算x2-2x2的果()A .- 1224 B.- x C. x D. x4.下表了一名运在同一条件下的射成,名射运射一次,射中的概率是()射次数1001502005008001000“射中 9以上” 的次数8896136345546701“射中 9以上” 的率0.880.640.680.690.680.70A . 0.6B. 0.8C. 0.7D. 0.95.算(x+1)(x-2)的果是()A . x2- 2B. x2+ 2C. x2- x+ 2D. x2- x- 26.点A(2,-3)关于 x 称的点的坐是()A . (2 , 3)B. (- 2,- 3)C. (2 ,- 3)D. (3,- 2)7.如,下列中不是左正六棱柱的三的是()A B C D8.某20名工人日加工零件数如下表所示日加工零件数45678人数26543些工人日加工零件数的众数、中位数、平均数分是()A . 5、 6、 5B. 5、 5、 6C. 6、 5、6D. 5、 6、 69.察下列一形中点的个数,其中第 1 个中共有4 个点,第 2 个中共有10 个点,第 3个中共有19 个点,⋯⋯,按此律第 5 个中共有点的个数是()A . 31B. 4610.如,△ABC内接于⊙O,AD是△ ABC C. 51BC 上的高,D. 66D 垂足.若BD = 1, AD = 3, BC=7,⊙ O 的半径是()A .2 5B. 2 10C.5 2D. 3 10 5522二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)11.计算:3 3 2 3 的结果是___________12.计算x 11的结果是 ___________ x x13.同时掷两枚质地均匀的正方体骰子,其六个面上分别刻有1、 2、 3、 4、 5、 6 六个数字,则两枚骰子向上一面的数字相同的概率是___________14.如图,在平行四边形ABCD 中,点 E 为 BC 中点,且 AB= AE.若 AE 平分∠ DAB ,∠ EAC =25°,则∠ AED 的度数为 ___________15.已知,四边形ABCD中,BC=CD,∠BCD=60°,AB⊥AD,AC=4,则四边形ABCD 面积的最小值是 ___________16.已知抛物线y=-x2+bx+2-b,在自变量x的值满足-1≤x≤2的情况下,函数有最大值m,则 m 的最小值是 ___________三、解答题(共 8 题,共72 分)17.(本题8分)解方程组x2y93x 2 y118.(本题8分)如图, A 、 D 、B 、 E 四点顺次在同一条直线上,AC= DF , BC= EF ,AD = BE19.(本题8分)某校为了了解九年级学生体育测试成绩情况,以九年(1) 班学生的体育测试成绩为样本,按 A 、B 、 C、 D 四个等级(从高到底)进行统计,并将统计结果绘制成两幅不完整的统计图,请你结合图中所给信息解答下列问题:(1)写出 D 级学生的人数占全班总人数的百分比为__________ , C 级学生所在的扇形圆心角的度数为 __________(2)该班学生体育测试成绩的中位数落在等级__________ 内(3)若该校九年级学生共有500 人,请你估计这次考试中 A 级和 B 级的学生共有多少人?20.(本题 8 分)下表是某店两天销售两种商品的帐目记录,由于字迹潦草,无法准确辨认.第 二天的总金额的个位数字,只知道是0 或 5,并且已知两种商品的单价均为整数总数量(单位:件) 总金额AB (单位:元)第一天 30 10 380第二天1510230(1) 请求出 A 、B 两种商品的销售价(2) 若一件 A 产品的进价为 8 元,一件 B 产品的进价为 7 元,某天共卖出两种产品50 件,且两者总利润不低于 80 元,则至多销售B 商品多少件?21.(本题 8 分)已知: △ ABC 是边长为 4 的等边三角形,点 别与边 AB 、 BC 相交于点 D 、 E , EF ⊥ AC ,垂足为 FO 在边AB上, ⊙ O过点B 且分(1) 求证:直线 EF 是 ⊙ O 的切线(2) 当直线 DF 与 ⊙ O 相切时,求 ⊙ O 的半径22.(本题 10 分)已知,点 A 、 B 分别是 x 轴、 y 轴上的动点, A(m , 0) 、 B(0 , n) (1) 若 m = 3 , n = 1,以 AB 为边,画等边 △ ABC ,直接写出点 C 的坐标(2) 如图 1,若 m =- 1,n = 2,平移线段 AB ,到得四边形 ABCD 是平行四边形, 且 BC = 2AB .C 、D 两点在反比例函数yk( x < 0)的图象上,求 k 的值x(3) 在 (2)的条件下,已知点 P(- n ,n)( n > 0),过点 P 作平行于 x 轴的直线,交直线 y =- x -1 于 R ,过点 P 作平行于 y 轴的直线,交函数 ykT .若 PT ≥ PR ,结合函( x < 0)的图象于点x数的图象,直接写出n 的取值范围23.(本题 10 分)在 □ABCD 中,∠ ABD = 90 °,∠ C = 45 °,点 E 是边 BC 上任意一点,连接 AE 交对角线 BD 与点 G(1)如图 1,当点 E 是边 BC 的中点时.若 AB= 2,求线段 AE 的长(2)如图 2,过点 D 作直线 AE 的垂线,交边 BC 于点 F ,连结 GF ,求证: AG= DF + GF(3) 如图 3,过点 D 作直线 AE 的垂线,交边 BC 于点 F ,连结 GF 、 AF,线段 AF 与对角线 BD 交于点O.若点 O 恰好是线段 BG 的中点,请探究线段 DF 与 GF 的之间的数量关系,并说明理由1 x2在第二象限内的一动点,直线PQ: y= kx- k 24.(本题12 分)如图1,点 P 是抛物线y4+1 交抛物线于另一点Q(1)求直线 PQ 经过的定点 A 的坐标(2)如图 1,若 AP= 3AQ,求点 P 的坐标(3) 如图 2,过点 P 的另一条直线交 y 轴于点 B(0 ,- 1),交抛物线于另一点 C,且直线 CQ 经过定点 D ,求 S△ABD的面积2017~2018 学年度下学期九年级数学五模测试题参考答案及评分标准一、选一选 ,比比谁细心1. D2. D3. B4. C5.D6.A7. A8. D9.B 10.C二、填一填 ,看看谁仔细11. 5 3 12. 1 13.15.8 3 816.11 14. 85°6三、 解一解 , 更棒 ( 本大 共9 小 ,共 72 分 )17. 解:由① +②,得4x 8 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分 解之得x2 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分把 x 2 代入①,得22y 9⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分∴ y7 7 分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2∴ 个方程 的解是x 2y7 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分218. 明:∵ AD = BE∴ AD+DB=BE+DB∴ AB=DE ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分在△ ACB 与 △ DFE 中, ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分AC DFAB DE ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分CB FE∴ △ACB ≌△ DFE⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分∴∠ C =∠ F ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分19. 解 : ⑴ 4% ;72°; ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分⑵ B ; ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分⑶ 26%+50%=76%⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分500× 76%=380(人) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 7 分答:估 次考 中A 和B 的学生共有 380 人 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分20. 解: (1) 解: A 、B 两种 品的 售 价分x 元、 y 元 , 第二天的 金 个位数字 m⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分依 意30x 10 y 380 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分15x 10y230 mx 10x 29当 m = 0 , 解得3 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分y 8当 m = 5 , 解得y9由于两种 价均 整数 , 故 A 售 价 10 元 , B 售 价 8 元 . ⋯⋯⋯⋯⋯⋯⋯5 分(2) 售 B 商品 x 件 , 售 A 商品 (50- x)件依 意( 1 0 8 ) ( 5x0 ) (x8 7 ) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分解之得x ≤ 20⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分故至多 售 B 商品 20 件 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 8 分21. 解及 (1 ) 接 OE , OB=OE.∵△ ABC 是等 三角形,∴∠ ABC=∠C=60°. ⋯⋯⋯⋯⋯⋯⋯⋯ 1 分∴△ OBE 是等 三角形 .∴∠ OEB=∠C =60°. ∴OE ∥AC. ⋯⋯⋯⋯⋯⋯⋯⋯ 2 分∵EF ⊥AC ,∴∠ EFC=90°. ∴∠ OEF=∠EFC=90°. ⋯⋯⋯⋯⋯⋯⋯⋯ 3 分∴EF 是⊙O 的切 . ⋯⋯⋯⋯⋯⋯⋯⋯4 分(2) 接 DF, DE , ∵DF 是⊙O 的切 ,∴∠ ADF=90°. ⋯⋯⋯⋯⋯⋯⋯⋯ 5 分4 r4 2r.⊙O 的半径 r , BE=r ,EC=, AD=在 Rt △ADF 中,∵∠ A=60°, ∴AF=2AD=8 4r .∴FC=4 (8 4r ) 4r4 . ⋯⋯⋯⋯⋯⋯⋯⋯6 分在 Rt △CEF 中 , ∵∠ C=60°, ∴EC=2FC.∴ 4 r =2( 4r 4 ) . ⋯⋯⋯⋯⋯⋯⋯⋯7 分解之得 r4 . ∴⊙O 的半径是 4. ⋯⋯⋯⋯⋯⋯⋯⋯ 8 分33解法 多,其它解法参照 分.22. 解:⑴画图如下:点 C 的坐 (3 ,2)或( 0.- 1),画 正确1 分,一个点坐 1分⑵如 ,C 、D 两点作 x 的垂 ,垂足F 、G , B 点作BM ⊥ CF ,垂足 M , D 点作 DH ⊥ CF ,垂足 H ,∵CD ∥ AB ,CD=AB ,∴△ CDH ≌△ ABO (AAS ),⋯⋯⋯⋯⋯⋯⋯⋯ 4 分∴DH=AO=1, CH=OB=2, C (p , q ), D ( p - 1,q - 2), pq =( p - 1)( q - 2) =k ,解之得 q=2- 2p ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分∵M( p,2 ), ∴ CM=q 2 ,MB= p ,∴BC=p2(q 2)25p2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分AB= 5 ,因BC=2AB,5 p2 2 5 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分解之得: p=- 2, q= 6,所以, k= pq=- 12. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分⑶ 0 n 3 或 n 4 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分23.解及:⑴ A 作 AH⊥ BC,于点 H, ∵四 ABCD是平行四形,∴ AB∥ CD,∠ C=45°, ∴∠DAB=∠ ABH=45° , △ ABH,△ ABD是等腰直角三角形,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分∵ AB=2,∴ AH=BH= 2 ,AD= 2 2 , ∵∠ ABD=90° , ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分∵点 E 是 BC的中点 ,∴BE= 2 ,HE= 2 2 , ∴ AE= AH2HE2=( 2) 2(2 2) 2=10 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分⑵ 点 B 作 BK⊥ BC交 AE 于点 K, ∵∠ ABD=90,∴∠ ABK=∠ DBF=45° , ⋯⋯⋯⋯⋯⋯⋯4分又∵ DF⊥ AE,∴∠ GDF+∠ DGE=90° , 而∠ AGB+∠ BAG=90° , 且∠ AGB=∠DGE,∴∠ BAG=∠ GDF,由( 1)知 AB=BD,⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分6 分∴△ ABK≌△ DBF,∴ AK=DF,BK=BF,⋯⋯⋯⋯⋯⋯⋯⋯⋯∴△ KBG≌△ FBG,∴ KG=FG⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分∴AG=AK+KG=DF+FG⋯⋯⋯⋯⋯⋯⋯⋯⋯. 8 分BAG=∠ BDM,△ABG≌△法二 : 延DF、 AB 相交点M,由∠ AGB=∠ DGE,可得,∠DBM,AG=DM=FM+DF再.△ BGF≌△ BMF,GF=MF也.可以出 .(3) DF 与 GF 的之 的数量关系是 DF=2FG.⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分理由如下:∵∠ GFB= ∠ GKB=180°-∠ AKB=180°-∠ DFB=∠ DFC,∴△ GBF ∽△ DCF,BF=a,FC=b,BG BF a , 又∵BOBFa , BOa , ∵ BG=2BO,DC=BD, DCCF b OD ADa+b BD2a+b ∴aa , 解之得, b=2a , ∴DFb 2 , ∴ DF2FG. ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 10 分2b2a+bGFa方法 多,其它方法参照 分 .24.解:⑴由条件得k( x1) 1 y 0 ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分由 x1 0,1 y0 得x 1 , y 1. ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分∴直 PQ 的定点 A(1,1). ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分用 察法参照 分 .(2)P(m, 1m 2 ) , 点 A 作 EF ∥ x,PE ⊥EF,QF ⊥ EF 分 于点 E 、 F,4△ PEA ∽△ QFA,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分∵AP=3AQ,∴ PE=3FQ,AE=3AF,∴ AF1m, QF1 (1 1 m2 ) ,33 4∴ Q(4 m 16 m 2) , ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分, 123代入抛物 y1 x2 可得 , m 22m8 0 , ⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分4解之得 m 12, m 2 4(舍去 )∴ P( 2,1) ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 7 分(3)1 21 2 ) , C (t , 12) , 由直和抛物 y1x 2 立P(m,m ) , Q (n, ntPQ4444 y kxk 11 x2y1 x2 可得 ,kxk 1 0 , 由根与系数的关系可知44m n 4k ,mn 4k 4 , ∴ m n mn 4 , ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 8 分直 PB yax 1 , 和抛物 y1x 2 立可得 , 1 x 2 ax 1 0 , 由根与系数的关系4 4可知 mt 4 , ∴ m4 , ∴ 4 n 4n 4t tt即 4nt4(t n) ,⋯⋯⋯⋯⋯⋯⋯⋯⋯9分由 C,Q 两点坐可求得,直CQy 1t) x1114) ⋯⋯⋯⋯⋯⋯⋯⋯⋯10分(n nt ==x nt (x44416当 x4, y1,∴直CQ定点D(4,1) ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 11 分∴ S ABD 1(41) 2 3 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分2111(1tn) x nt444。
勤学早·2018年武汉市中考数学模拟试卷(一)(word版)
2018年武汉市中考数学模拟试卷(一)(解答参考时间:120分钟,满分:120分)一、选择题(共10小题,每小题3分,共30分)1.武汉某天的最低气温25℃,最高气温33℃,则这天的温差是( )A .6℃B .7℃C .8℃D .-8℃ 2.代数式1a -4在实数范围内有意义,则实数a 的取值范围为( )A .a =4B .a >4C .a <4D .a ≠4 3.计算2x +3x 的结果是( )A .5x 2B .6x 2C .5xD .12x4.一个不透明的口袋里装有若干除颜色外完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球个数有( )A .12个B .18个C .20个D .24个 5.计算(a +1)(a -2)的结果是( )A .a 2-2B .a 2+2C .a 2-a -2D .a 2+a -2 6.点A (a ,-5)关于y 轴对称点的坐标(-2,b ),则a 、b 的值是( ) A .a =2,b =5 B .a =2,b =-5 C .a =-2,b =5 D .a =-2,b =-5 7.如图是一个几何体的三视图,则这个几何体是( )A .正方体B .长方体C .三棱柱D .三棱锥 8.某社区青年志愿者小分队12名同学的年龄情况如下表:则这12A .2,20岁 B .2,19岁 C .19岁,20岁 D .19岁,19岁 9.如图,从家到电影院的路线图,规定每次只能向上或向右走,那么 小丽从家到电影院一共有( )不同的走法. A .6种 B .8种 C .10种 D .15种10.如图,AB 是⊙O 的直径,AT 是⊙O 的切线,BT 交⊙O 于点C ,D 是⊙O 上一点,CD 交AB 于点E .若∠ATB =2∠CDO ,AB =30,AT =40,则CD 的长为( )A .20B .103C .109D .24二、填空题(共6个小题,每小题3分,共18分) 11.计算2+12.化简(a a -2-4a 2-2a)的结果是 .13.随机掷一枚质地均匀的硬币两次,落地后有一次正面朝上,一次反面朝上的概率为 .14.如图,四边形ABCD 中,∠ACB =∠ADB =90°,∠BAC =30°,∠ACD =20°,则∠CAD 的度数为 .15.如图,在平行四边形ABCD 中,点F 子啊AD 上,AF =6cm ,BF =12cm ,∠FBD =∠CBD ,点E 是BC 的中点,若点P 以1cm /秒的速度从点A 出发,沿AD 向点F 运动;点Q 同时以2cm /秒的速度从点C 出发,沿CB 向点B 运动,点P 运动到F 点时停止运动,点Q 也同时停止运动,当点P 运动 秒时,以点P 、Q 、E 、F 为顶点的四边形是平行四边形.16.已知抛物线y =-x 2+(m -1)x +m 的顶点坐标为(x 0,y 0),当14≤y 0≤254时,m 的取值范围是 .三、解答题(共8题,共72分)17.(本题8分)解方程组⎩⎨⎧=-=+②①33 1y x y x18.(本题8分)如图,点O 是线段AB 和线段CD 的中点,求证AD ∥BC .19.(本题8分)中学生带手机上学的现象越来越受到社会的关注,为此某记者随机调查了某市城区若干名中学生家长对这种现象的态度(态度分为:(A )无所谓;(B )基本赞成;(C )赞成;(D )反对),并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题: (1)此次抽样调查中,共调查了 名中学生家长;(2)将图1的折线统计图补充完整;(3)根据抽样调查结果,请你估计该市城区6000名中学生家长中有多少名家长持反对态度?BCODA20.(本题8分)下表中有两种移动电话计费方式(1)如果每月主叫时间不超过400min,当主叫时间为多少时,两种方式收费相同?(2)如果每月主叫时间超过400min,选择哪种方式更省钱?21.(本题8分)如图,在△ABC中,∠ACB=90°,点O在边BC上,以点O为圆心,OB为半径的⊙O 交AB于点E,D为⊙O上一点,弧BD=弧BE.(1)如图1,若AE=BE,求证:四边形ACDE是平行四边形;(2)如图2,若OB=OC,BE=2AE,求tan∠CAD的值.22.(本题10分)如图,在平面直角坐标系中,A(-2,0),B(0,-1),以AB为边画平行四边形ABCD.(1)如图1,若四边形ABCD为正方形,画出图形,并写出C,D的坐标;(2)若CD落在双曲线y=4x上,求C,D的坐标;(3)若AB⊥BC且BC=2AB,直接写出CD所在直线的解析式.23.(本题10分)如图1,△ABC 中,∠ACB 的平分线CE 交AB 于点E . (1)求证:AE BE =AC BC;(2)如图2,AD ⊥BC 交CE 于F ,BD =2AD ,∠AEC =45°. ①求证:BE =2AE ; ②直接写出sin ∠ACE 的值.24.(本题12分)已知抛物线y =12x 2-mx +12m 2+12m +1的顶点为A ,交y 轴于点B .(1)求证:抛物线的顶点A 在定直线l 上,并求定值线l 的解析式;(2)当m =1时,直线l 交抛物线于另一点M ,交x 轴于点C ,N 为抛物线上一点,且∠NMC =2∠ACO ,求点N 的坐标;(3)如图2,当m =2时,过点A 作直线l 1(不经过点O ),分别交x 轴,y 轴于点E ,F ,点P 为对称轴右侧抛物线上的动点(点P 、A 、O 不共线),直线P A 分别交x 轴,y 轴于点G 、H ,过点P 作PK ∥y 轴交直线l 1于点K ,若AE ·AF =AG ·AH ,求点K 的纵坐标.。
2018年武汉市中考数学试卷(word版含标准答案)
2018年武汉市初中毕业生考试数学试卷考试时间:2018年6月20日14:30~16:30 一、选择题(共10小题,每小题3分,共30分) 1.温度由-4℃上升7℃是( )A .3℃B .-3℃C .11℃D .-11℃2.若分式21x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-2 B .x <-2C .x =-2D .x ≠-2 3.计算3x 2-x 2的结果是( )A .2B .2x 2C .2xD .4x 24.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40 B .42、38C .40、42D .42、40 5.计算(a -2)(a +3)的结果是( )A .a 2-6B .a 2+a -6C .a 2+6D .a 2-a +6 6.点A (2,-5)关于x 轴对称的点的坐标是( )A .(2,5)B .(-2,5)C .(-2,-5)D .(-5,2)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( ) A .3 B .4 C .5D .68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( ) A .41B .21 C .43 D .65 9 1 2 3 4 56789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ……平移表中带阴影的方框,方框中三个数的和可能是( )A .2019B .2018C .2016D .201310.如图,在⊙O 中,点C 在优弧AB ⌒ 上,将弧BC ⌒沿BC 折叠后刚好经过AB 的中点D .若⊙O的半径为5,AB =4,则BC 的长是( ) A .32 B .23C .235D .265二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算3)23(-+的结果是___________ 12.下表记录了某种幼树在一定条件下移植成活情况移植总数n 400 1500 3500 7000 9000 14000 成活数m3251336 3203 6335 8073 12628 成活的频率(精确到0.01) 0.8130.8910.9150.9050.8970.902由此估计这种幼树在此条件下移植成活的概率约是___________(精确到0.1) 13.计算22111mm m---的结果是___________14.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是___________15.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是22360t t y -=.在飞机着陆滑行中,最后4 s 滑行的距离是___________m16.如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE平分△ABC 的周长,则DE 的长是___________ 三、解答题(共8题,共72分)17.(本题8分)解方程组:⎩⎨⎧=+=+16210y x y x18.(本题8分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G ,求证:GE =GF19.(本题8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图学生读书数量统计表 学生读书数量扇形图 阅读量/本学生人数1 152 a3 b 45(1) 直接写出m 、a 、b 的值(2) 估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本题8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A 、B 型钢板共100块,并全部加工成C 、D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板x 块(x 为整数)(1) 求A 、B 型钢板的购买方案共有多少种?(2) 出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若将C 、D 型钢板全部出售,请你设计获利最大的购买方案21.(本题8分)如图,PA 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB 、PC ,PC 交AB 于点E ,且P A =PB (1) 求证:PB 是⊙O 的切线 (2) 若∠APC =3∠BPC ,求CEPE的值22.(本题10分)已知点A (a ,m )在双曲线xy 8=上且m <0,过点A 作x 轴的垂线,垂足为B (1) 如图1,当a =-2时,P (t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C① 若t =1,直接写出点C 的坐标 ② 若双曲线xy 8=经过点C ,求t 的值 (2) 如图2,将图1中的双曲线x y 8=(x >0)沿y 轴折叠得到双曲线xy 8-=(x <0),将线段OA 绕点O 旋转,点A 刚好落在双曲线xy 8-=(x <0)上的点D (d ,n )处,求m 和n 的数量关系23.(本题10分)在△ABC 中,∠ABC =90°(1) 如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN(2) 如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠PAC =552,求tanC 的值 (3) 如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =53,52AC AD , 直接写出tan ∠CEB 的值24.(本题12分)抛物线L :y =-x 2+bx +c 经过点A (0,1),与它的对称轴直线x =1交于点B(1) 直接写出抛物线L 的解析式(2) 如图1,过定点的直线y =kx -k +4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值(3) 如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴 与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标。
(完整版)2018年武汉市中考数学试卷及答案解析(最新整理)
CE
22.(本题 10 分)已知点 A(a,m)在双曲线 y 8 上且 m<0,过点 A 作 x 轴的垂线,垂足为 B x
BF CE
∴△ABF≌△DCE(SASA),∴∠DEC=∠AFB,∴GE=GF.
19.解析 (1)m=50,a=10,b=20
(2) 115 210 3 20 4 5 500 1150 (本) 50
答:该年级全体学生在这次活动中课外阅读书箱的总量大约是 1150 本.
20.解析
(1)设 A 型钢板 x 块,则 B 型钢板有(100-x)块.
12.下表记录了某种幼树在一定条件下移植成活情况
移植总数 n
400 1500 3500 7000 9000 14000
成活数 m
325 1336 3203 6335 8073 12628
成活的频率(精确到 0.01) 0.813 0.891 0.915 0.905 0.897 0.902
由此估计这种幼树在此条件下移植成活的概率约是___________(精确到 0.1)
2018 年武汉市初中毕业生考试数学试卷
考试时间:2018 年 6 月 20 日 14:30~16:30
一、选择题(共 10 小题,每小题 3 分,共 30 分)
1.温度由-4℃上升 7℃是( )
A.3℃
B.-3℃
C.11℃
、 D.-11℃
2.若分式 1 在实数范围内有意义,则实数 x 的取值范围是( ) x2
2018年湖北省武汉市中考数学模拟题含答案(共4套).doc
、-、-2C.-D.-、--12.化简:-b13.在-1、0、、1、2、3中任取两个数,两数相乘结果是无理数的概率是__________2018武汉中考数学模拟题一一、选择题(共10小题,每小题3分,共30分)1.25的平方根为()A.5B.±5C.-5D.±42.如果分式A.x≠0xx-1无意义,那么x的取值范围是()B.x=1C.x≠1D.x=-13.(-a+3)2的计算结果是()A.-a2+9B.-a2-6a+9C.a2-6a+9D.a2+6a+94.在不透明的布袋中,装有大小、形状完全相同的3个黑球、2个红球,从中摸一个球,摸出的是个黑球,这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件5.下列运算结果是a6的是()A.a3·a3B.a3+a3C.a6÷a3D.(-2a2)36.将点A(1,-2)绕原点逆时针旋转90°得到点B,则点B的坐标为()A.(-1,-2)B.(2,1)C.(-2,-1)D.(1,2)7.由6个大小相同的小正方体组合成一个几何体,其俯视图如图所示,其中正方形中的数字表示该位置放置的小正方体的个数,则该几何体的主视图为()8.在我市开展的“好书伴我成长”读书活动中,学校随机调查了九年级50名学生读书的册数统计数据如下表所示,那么这50名学生读书册数的平均数与中位数分别为()册数人数311321631741A.2和3B.3和3C.2和2D.3和29.在如图的4×4的方格中,与△ABC相似的格点三角形(顶点均在格点上)(且不包括△ABC)的个数有()A.23个B.24个C.31个D.32个10.二次函数y=mx2-nx-2过点(1,0),且函数图象的顶点在第三象限.当m+n为整数时,则mn的值为()A.-1322B.-1、34132434、2二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:-7-2=__________1-b+1b+1=__________1314.如图,△ABC中,AB=AC,∠BAC=66°,OD垂直平分线段AB,AO平分∠BAC,将∠C沿EF(点E在BC 上,点F在AC上)折叠,点C与点O恰好重合,则∠OEC=___________=,AD=7,A⎩3x-y=1615.如图,在四边形ABCD中,AC与BD交于点O,∠DAB与∠ACB互补,C=6,AB=8,则BC=___________OD5OB316.如图,C是半径为4的半圆上的任意一点,AB为直径,延长AC至点P使CP=2CA.当点C从B运动到A时,动点P的运动路径长为___________三、解答题(共8题,共72分)⎧x+2y=317.(本题8分)解方程组:⎨18.(本题8分)如图,已知点E、C在线段BF上,BE=CF,AB∥DE,AC∥DF,求证:ABC≌△DEF△19.(本题8分)某校体育组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图请根据以上不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了__________名同学的体育测试成绩,扇形统计图中B级所占的圆心角是__________(2)补全条形统计图(3)若该校九年级共有200名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C 级)均有名20.(本题8分)某校安排6名教师和300名学生春游,准备租用45座大客车和30座的小客车.若租用1辆大客车和2辆小客车共需租金960元;若租用2辆大客车和1辆小客车共需租金1080元(1)求1辆大客车和1辆小客车的租金各为多少元?(2)若总共租用8辆客车,总费用不超过3080元,问有几种租车方案,最省钱的方案是哪种?21.(本题8分)如图,BC为⊙O的直径,点A为⊙O上一点,点E△为ABC的内心,OE⊥EC(1)若BC=10,求DE的长(2)求sin∠EBO的值22.(本题10分)如图,直线y=2x与函数y k(x>0)的图象交于第一象限的点A,且A点的x横坐标为1,过点A作AB⊥x轴于点B,C为射线BA上一点,作CE⊥AB交双曲线于点E,延长OC 交AE于点F(1)则k=__________(2)作EM∥y轴交直线OA于点M,交OC于点G①求证:AF=FE②比较MG与EG的大小,并证明你的结论(2)若点G在线段EF上,点D在线段BC上,且GF==,α=90°,EB=1,求线段GD的长23.(本题10分)如图,在△ABC△与AFE中,AC=2AB,AF=2AE,∠CAB=∠FAE=α(1)求证:∠ACF=∠ABECD1EF CB3(3)将(2)中改为120°,其它条件不变,请直接写出GDCF的值24.(本题12分)在平面直角坐标系中,抛物线C1:y=ax2+bx-1的最高点为点D(-1,0),将C1左移1个单位,上移1个单位得到抛物线C2,点P为C2的顶点(1)求抛物线C1的解析式(2)若过点D的直线l与抛物线C2只有一个交点,求直线l的解析式(3)直线y=x+c与抛物线C2交于D、B两点,交y轴于点A,连接AP,过点B作BC⊥AP于点C,点Q为C2上PB之间的一个动点,连接PQ交BC于点E,连接BQ并延长交AC于点F,试说明:FC·(AC+E C)为定值2018武汉中考数学模拟题二一、选择题(共10小题,每小题3分,共30分)1.64的算术平方根是()A.8B.-8C.4D.-42.要使分式5x1有意义,则x的取值范围是()A.x≠1B.x>1C.x<1D.x≠-13.下列计算结果为x8的是()A.x9-x B.x2·x4C.x2+x6D.(x2)44.有两个事件,事件A:投一次骰子,向上的一面是3;事件B:篮球队员在罚球线上投篮一次,投中,则()A.只有事件A是随机事件C.事件A和B都是随机事件5.计算(a-3)2的结果是()B.只有事件B是随机事件D.事件A和B都不是随机事件A.a2-4B.a2-2+4C.a2-4a+4D.a2+46.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(a,b)B.(-a,b)C.(b,-a)D.(-b,a)7.如图是由一些小正方体组合而成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,则这个几何体主视图是()8.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时)人数313.51424.51A.中位数是4,平均数是3.75C.中位数是4,平均数是3.8B.众数是4,平均数是3.75D.众数是2,平均数是3.89.把所有正奇数从小到大排列,并按如下规律分组:(1)(3,5,7)、(9,11,13,15,17),(19,21,23,25,27,29,31),……,现有等式Am=(i,j)表示正奇数m是第i组第j个数(从左往右数),如A7=(2,3),则A89=()A.(6,7)B.(7,8)C.(7,9)D.(6,9)10.二次函数y=2x2-2x+m(0<m<y的取值范围为()A.y<0B.0<y<m12),如果当x=a时,y<0,那么当x=a-1时,函数值C.m<y<m+4D.y>m二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:(-3)+8=___________12.计算:a⎩3x+2y=81+a-1a-1=___________13.不透明的袋子中有6个除了颜色不同其他都一样的球,其中有3个黑球,2个白球,1个红球.拿出两个球,颜色相同的概率是___________14.如图,E是矩形ABCD的对角线的交点,点F在边AE上,且DF=DC.若∠ADF=25°,则∠BEC=__________15.如图,从一张腰为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用次剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为__________16.已知OM⊥ON,斜边长为4的等腰直角△ABC的斜边AC在射线ON上,顶点C与O重合.若点A沿NO方向向O运动,△ABC的顶点C随之沿OM方向运动,点A移动到点O为止,则直角顶点B运动的路径长是__________三、解答题(共8题,共72分)⎧2x-y=317.(本题8分)解方程组:⎨18.(本题8分)已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF,求证:∠B=∠E19.(本题8分)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司的随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是___________(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?20.(本题 8 分)荔枝是深圳的特色水果,小明的妈妈先购买了 2 千克桂味和 3 千克糯米糍,共 花费 90 元;后又购买了 1 千克桂味和 2 千克糯米糍,共花费 55 元.(每次两种荔枝的售价都不 变)(1) 求桂味和糯米糍的售价分别是每千克多少元(2) 如果还需购买两种荔枝共 12 千克,要求糯米糍的数量不少于桂味数量的 2 倍,请设计一种 购买方案,使所需总费用最低21.(本题 8 分)如图,直径 AE 平分弦 CD ,交 CD 于点 G ,EF ∥CD ,交 AD 的延长线于 F ,AP ⊥ AC 交 CD 的延长线于点 P (1) 求证:EF 是⊙O 的切线(2) 若 AC =2,PD = 1CD ,求 tan ∠P 的值222.(本题 10 分)已知,直线 l 1:y =-x +n 过点 A (-1,3),双曲线 C : y m x(x >0),过点B (1,2),动直线 l 2:y =kx -2k +2(k <0)恒过定点 F (1) 求直线 l 1,双曲线C 的解析式,定点 F 的坐标(2) 在双曲线 C 上取一点 P (x ,y ),过 P 作 x 轴的平行线交直线 l 1 于 M ,连接 PF ,求证:PF =PM (3) 若动直线 l 2 与双曲线 C 交于 P 1、P 2 两点,连接 OF 交直线 l 1 于点 E ,连接 P 1E 、P 2E ,求证:EF 平分∠P 1EP 223.(本题10分)已知△ABC中,D为AB边上任意一点,DF∥AC交BC于F,AE∥BC,∠CDE =∠ABC=∠ACB=α(1)如图1,当α=60°时,求证:△DCE是等边三角形(2)如图2,当α=45°时,求证:①CD2;②CE⊥DE DE(3)如图3,当α为任意锐角时,请直接写出线段CE与DE的数量关系(用α表示)24.(本题12分)在平面直角坐标系xOy中,抛物线c1:y=ax2-4a+4(a<0)经过第一象限内的定点P(1)直接写出点P的坐标(2)若a=-1,如图1,点M的坐标为(2,0)是x轴上的点,N为抛物线c1上的点,Q为线段MN的中点,设点N在抛物线c1上运动时,Q的运动轨迹为抛物线c2,求抛物线c2的解析式(3)直线y=2x+b与抛物线c1相交于A、B两点,如图2,直线PA、PB与x轴分别交于D、C两点,当PD=PC时,求a的值12.计算:2x2018武汉中考数学模拟题三一、选择题(共10小题,每小题3分,共30分)1.4的值为()A.±22.要使分式1x+3B.2C.-2D.2有意义,则x的取值应满足()A.x≥3B.x<3C.x≠-3D.x≠33.下列计算结果为x6的是()A.x·x6B.(x2)3C.x7-x D.x12÷x24.袋中装有4个红球和2个黄球,这些球的形状、大小、质地完全相同.在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是不可能事件的是()A.摸出的三个球中至少有一个红球C.摸出的三个球都是红球5.计算(a-1)2正确的是()B.摸出的三个球中有两个球是黄球D.摸出的三个球都是黄球A.a2-1B.a2-2a+1C.a2-2a-1D.a2-a+16.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标为()A.(3,1)B.(2,-1)C.(4,1)D.(3,2)7.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图是()8.为调查某班学生每天使用零花钱的情况,童老师随机调查了30名同学,结果如下表:每天使用零花钱(单位:元)人数52105158209256则这30名同学每天使用的零花钱的众数和中位数分别是()A.20、15B.20、17.5C.20、20D.15、159.正方形A1B1C1O、A2B2C2C1、A3B3C3C2、……按如图的方式放置,点A1、A2、A3……和点C1、C2、C3……分别在直线y=x+1和x轴上,则点B6的坐标是()A.(31,16)B.(63,32)C.(15,8)D.(31,32)10.已知关于x的二次函数y=x2-2x-2,当a≤x≤a+2时,函数有最大值1,则a的值为()A.-1或1C.-1或3B.1或-3D.3或-3二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:2-(-4)=___________2-x-1x-1=___________13.学校为了了解九年级学生“一分钟跳绳次数”的情况,随机选取了4名女生和2名男生,⎩3x + 2 y = 1则从这 6 名学生中选取 2 名同时跳绳,恰好选中一男一女的概率是 ___________14.如图,将矩形 ABCD 沿 BD 翻折,点 C 落在 P 点处,连接 AP .若∠ABP =26°,则∠APB = ___________15.已知平行四边形内有一个内角为 60°,且 60°的两边长分别为 3、4.若有一个圆与这个平行 四边形的三边相切,则这个圆的半径为___________16.如图,已知线段 AB =6,C 、D 是 AB 上两点,且 AC =DB =1,P 是线段 CD 上一动点,在 AB 同侧分别作等边△APE 和△PBF ,G 为线段 EF 的中点,点 P 由点 C 移动到点 D 时,G 点移动的路 径长度为___________三、解答题(共 8 题,共 72 分)⎧x - y = 217.(本题 8 分)解方程组: ⎨ 18.(本题 8 分)已知:如图,BD ⊥AC 于点 D ,CE ⊥AB 于点 E ,AD =AE ,求证:BE =CD19.(本题 8 分)某市三景区是人们节假日游玩的热点景区,某学校对九(1)班学生“五一”小长 假随父母到这三个景区游玩的计划做了全面调查.调查分四个类别: A 、游三个景区; B 、游两 个景区;C 、游一个景区; D 、不到这三个景区游玩.现根据调查结果绘制了不完整的条形统计 图和扇形统计图,请结合图中信息解答下列问题:(1) 九(1)班共有学生______人,在扇形统计图中,表示“B 类别”的扇形的圆心角的度数为______ (2) 请将条形统计图补充完整(3) 若该校九年级有 1000 名学生,求计划“五一”小长假随父母到该景区游玩的学生多少名?20.(本题8分)运输360吨化肥,装载了6辆大卡车和3辆小汽车;运输440吨化肥,装载了8辆大卡车和2辆小汽车(1)每辆大卡车与每辆小汽车平均各装多少吨化肥?(2)现在用大卡车和小汽车一共10辆去装化肥,要求运输总量不低于300吨,则最少需要几辆大卡车?21.(本题8分)如图,⊙O△是ABC的外接圆,弧AB=弧AC,AP是⊙O的切线,交BO的延长线于点P(1)求证:AP∥BC(2)若tan∠P=3,求tan∠PAC的值422.(本题10分)如图,一次函数y=kx+b(k≠0)的图象与反比例函数ymx(m≠0)的图象交于A(-3,1)、B(1,n)两点(1)求反比例函数和一次函数的解析式(2)设直线AB与y轴交于点C,若点P在x轴上,使BP=AC,请直接写出点P的坐标(3)点H为反比例函数第二象限内的一点,过点H作y轴的平行线交直线AB于点G.若HG=2,求此时H的坐标(3)若点P是线段AG上一点,连接BP.若∠PBG=1∠BAF,AB=3,AF=2,求(E23.本题10分)如图,射线BD是∠MBN的平分线,点A、C分别是角的两边BM、BN上两点,且AB=BC,是线段BC上一点,线段EC的垂直平分线交射线BD于点F,连接AE交BD于点G,连接AF、EF、FC(1)求证:AF=EF(2)求证:△AGF△∽BAFEG2GP24.(本题12分)如图,抛物线y=ax2-(2a+1)x+b的图象经过(2,-1)和(-2,7)且与直线y=kx-2k-3相交于点P(m,2m-7)(1)求抛物线的解析式(2)求直线y=kx-2k-3与抛物线y=ax2-(2a+1)x+b的对称轴的交点Q的坐标(3)在y轴上是否存在点T△,使PQT的一边中线等于该边的一半?若存在,求出点T的坐标;若不存在,请说明理由2018武汉中考数学模拟题四一、选择题(共10小题,每小题3分,共30分)1.364=()A.4B.±8C.8D.±42.如果分式x没有意义,那么x的取值范围是()x1A.x≠0B.x=0C.x≠-1D.x=-13.下列式子计算结果为2x2的是()A.x+x B.x·2x C.(2x)2D.2x6÷x34.下列事件是随机事件的是()A.从装有2个红球、2个黄球的袋中摸出3个球,至少有一个红球B.通常温度降到0℃以下,纯净的水结冰C.任意画一个三角形,其内角和是360°D.随意翻到一本书的某页,这页的页码是奇数5.运用乘法公式计算(4+x)(x-4)的结果是()A.x2-16B.16-x2C.x2+16D.x2-8x+166.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)以点B为位似中心,在网格内画出△A 1B1C1△,使A1B1C1与△ABC位似,且位似比为2∶1,点C1的坐标是()A.(1,0)B.(1,1)C.(-3,2)D.(0,0)7.如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的左视图是()A.B.C.D.8.统计学校排球队员的年龄,发现有12、13、14、15等四种年龄,统计结果如下表:年龄(岁)12131415人数(个)2468根据表中信息可以判断该排球队员的平均年龄为()A.13B.14C.13.5D.59.观察下列各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第5个图形中小圆点的个数为()A.50B.51C.48D.522C.m≤2D.m>12.计算:x-1P⎩x-2y=5L L10.已知二次函数y=x2-(m+1)x-5m(m为常数),在-1≤x≤3的范围内至少有一个x的值使y≥2,则m的取值范围是()A.m≤0B.0≤m≤1二、填空题(共6小题,每小题3分,共18分)11.计算:计算7-(-4)=___________1=___________-x-2x-211213.在-2、-1、0、1、2这五个数中任取两数m、n,求二次函数y=(x-m)2+n的顶点在坐标轴上的概率是___________14.为正方形ABCD内部一点,PA=1,PD=2,PC=3,求阴影部分的面积SABCP=______15.如图,将一段抛物线y=x(x-3)(0≤x≤3)记为C1,它与x轴交于点O和点A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C2,交x轴于点A3.若直线y=x+m于C1、C2、C3共有3个不同的交点,则m的取值范围是___________16.如图,在平面直角坐标系第一象限有一半径为5的四分之一⊙O,且⊙O内有一定点A(2,1)、B、D为圆弧上的两个点,且∠BAD=90°,以AB、AD为边作矩形ABCD,则AC的最小值为___________三、解答题(共8小题,共72分,应写出文字说明、证明过程或演算步骤)⎧3x+2y=317.(本题8分)解方程:⎨18.(本题8分)如图,AB∥DE,AC∥DF,点B、E、C、F在一条直线上,求证:△ABC∽△DEF19.(本题8分)某厂签订48000辆自行车的组装合同,这些自行车分为L1、L2、L3三种型号,它们的数量比例及每天能组装各种型号自行车的数量如图所示:若每天组装同一型号自行车的数量相同,根据以上信息,完成下列问题:(1)从上述统计图可知,此厂需组装L1、2、3型自行车的辆数分别是,________辆,________辆,________辆(2)若组装每辆不同型号的自行车获得的利润分别是L1:40元/辆,L2:80元/辆,L3:60元/辆,且a=40,则这个厂每天可获利___________元(3)若组装L1型自行车160辆与组装L3型自行车120辆花的时间相同,求a((m2-1)x y(m+1)2+21是否为一个固定的值?若是,求出其值;若不20.本题8分)为了抓住文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,那么该商店至少要购进A种纪念品多少件?21.(本题8分)如图,⊙O是弦AB、AC、CD相交点P,弦AC、BD的延长线交于E,∠APD =2m°,∠PAC=m°+15°(1)求∠E的度数(2)连AD、BC,若BC=3,求m的值AD22.(本题10分)如图,反比例函数y=为kx与y=mx交于A、B两点.设点A、B的坐标分别A(x1,y1)、B(x2,y2),S=|x1y1|,且(1)求k的值34=s-1s(2)当m变化时,代数式12是,请说理由2x ym+1(3)点C在y轴上,点D的坐标是(-1,32).若将菱形ACOD沿x轴负方向平移m个单位,在平移过程中,若双曲线与菱形的边AD始终有交点,请直接写出m的取值范围②如图2,若AD=,作∠MDN=2α,使点M在AC上,点N在BC的延长线上,完成图G点的直线y=-x+交于点P,C、D两点关于原点对称,DP的延长线交抛物线于点M.当23.(本题10分)如图,△ABC中,CA=CB(1)当点D为AB上一点,∠A=1∠MDN=α2①如图1,若点M、N分别在AC、BC上,AD=BD,问:DM与DN有何数量关系?证明你的结论1BD42,判断DM与DN的数量关系,并证明(2)如图3,当点D为AC上的一点,∠A=∠BDN=α,CN∥AB,CD=2,AD=1,直接写出AB·CN的积24.(本题12分)如图1,直线y=mx+4与x轴交于点A,与y轴交于点C,CE∥x轴交∠CAO的平分线于点E,抛物线y=ax2-5ax+4经过点A、C、E,与x轴交于另一点B(1)求抛物线的解析式(2)点P是线段AB上的一个动点,连CP,作∠CPF=∠CAO,交直线BE于F.设线段PB的长为x,线段BF的长为65y,当P点运动时,求y与x的函数关系式,并写出自变量x的取值范围(3)如图2,点G的坐标为(16,0),过A点的直线y=kx+3k(k<0)交y轴于点N,与过3116k3kk的取值发生变化时,问:tan∠APM的值是否发生变化?若不变,求其值,若变化,请说明理由=22-316.22018武汉中考数学模拟题三答案一、选择题(共10小题,每小题3分,共30分)题号答案1B2C3B4D5B6B7A8B9D10A第10题选A(1)a+a+2<1,即a<0 2当x=a时,y最大=a2-2a-2=1a=-1,a=3(舍去)(2)a+a+2=1,即a=0 2x=a或a+2时,y最大=a2-2a-2=(a+2)2-2(a+2)-2=1无解。
2018年武汉市九年级中考数学真题模拟卷及答案解析
九年级中考数学模拟试卷(120分卷)一、选择题(本大题共10小题,每题3分,共30分)1.9的平方根为()A.3 B.﹣3 C.±3 D.2.若分式有意义,则x的取值范围是()A.x≠1 B.x=2 C.x≠2 D.x>23.下列式子计算结果为x2﹣4的是()A.(x+1)(x﹣4)B.(x+2)(x﹣2)C.(x+2)(2﹣x)D.(x﹣2)2 4.小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件是随机事件的是()A.掷一次骰子,在骰子向上的一面上的点数大于0B.掷一次骰子,在骰子向上的一面上的点数为7C.掷三次骰子,在骰子向上的一面上的点数之和刚好为18D.掷两次骰子,在骰子向上的一面上的点数之积刚好是115.下列运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6 C.a4÷a2=2a D.(a+b)2=a2+ab+b26.在平面直角坐标系中,点A(﹣1,5),将点A向右平移2个单位、再向下平移3个单位得到点A1;再将线段OA1绕原点O顺时针旋转90°得到OA2.则A2的坐标为()A.(﹣1,2)B.(2,1) C.(2,﹣1)D.(3,﹣1)7.图中三视图对应的正三棱柱是()A.B.C.D.8.为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如29.在平面直角坐标系中,点A、B的坐标分别为(﹣3,0)、(3,0),点P在反比例函数y=的图象上.若△PAB为直角三角形,则满足条件的点P的个数为()A.2个 B.4个 C.5个 D.6个10.如果函数y=2x2﹣3ax+1,在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为﹣23,则a的值为()A.B.C.或D.二、填空题(本大题共6小题,每题3分,共18分)11.计算式子﹣2﹣(+3)的结果为.12.计算﹣的结果是.13.袋中有三个小球,分别为1个红球和2个黄球,它们除颜色外完全相同.随机取出一个小球然后放回,再随机取出一个小球,则两次取出的小球颜色不相同的概率为.14.如图,把一张长方形纸条ABCD沿EF折叠,若∠1=50°,则∠AEG=.15.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,取BC的中点P.当点B从点O向x轴正半轴移动到点M(2,0)时,则点P移动的路线长为.16.定义函数f(x),当x≤3时,f(x)=x2﹣2x,当x>3时,f(x)=x2﹣10x+24,若方程f(x)=2x+m有且只有两个实数解,则m的取值范围为.三、解答题(本大题共8小题,共72分)17.解方程:5x﹣1=3(x﹣1)18.如图,AC和BD相交于点O,OA=OC,OB=OD,求证:AB∥CD.19.为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数(3)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?20.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元(1)A商品的单价是元,B商品的单价是元(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,设购买A商品的件数为x件,该商店购买的A、B两种商品的总费用为y元①求y与x的函数关系式②如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,求购买B商品最多有多少件?21.如图,⊙O与直线l相离,OA⊥l于点A,OA交⊙O于点C,过点A作⊙O 的切线AB,切点为B,连接BC交直线l于点D(1)求证:AB=AD;(2)若tan∠OCB=2,⊙O的半径为3,求BD的长.22.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3(1)求反比例函数y=的解析式;(2)若直线y=﹣x+m与反比例函数y=(x>0)的图象相交于两个不同点E、F(点E在点F的左边),与y轴相交于点M①则m的取值范围为(请直接写出结果)②求ME•MF的值.23.已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一个动点,过C作CE垂直于BD的延长线,垂足为E,如图1(1)求证:AD•CD=BD•DE;(2)若BD是边AC的中线,如图2,求的值;(3)如图3,连接AE.若AE=EC,求的值.24.如图,抛物线y=x2+x﹣(k>0)与x轴交于点A、B,点A在点B的右边,与y轴交于点C(1)如图1,若∠ACB=90°①求k的值;②点P为x轴上方抛物线上一点,且点P到直线BC的距离为,则点P的坐标为(请直接写出结果)(2)如图2,当k=2时,过原点O的任一直线y=mx(m≠0)交抛物线于点E、F(点E在点F的左边)①若OF=2OE,求直线y=mx的解析式;②求+的值.2018年湖北省武汉市中考数学预测试卷参考答案与试题解析一、选择题(本大题共10小题,每题3分,共30分)1.9的平方根为()A.3 B.﹣3 C.±3 D.【考点】21:平方根.【分析】根据平方根的定义求解即可,注意一个正数的平方根有两个.【解答】解:9的平方根有:=±3.故选C.2.若分式有意义,则x的取值范围是()A.x≠1 B.x=2 C.x≠2 D.x>2【考点】62:分式有意义的条件.【分析】根据分母不等于0列式计算即可得解.【解答】解:根据题意得,x﹣2≠0,解得x≠2.故选:C.3.下列式子计算结果为x2﹣4的是()A.(x+1)(x﹣4)B.(x+2)(x﹣2)C.(x+2)(2﹣x)D.(x﹣2)2【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=x2﹣3x﹣4,不符合题意;B、原式=x2﹣4,符合题意;C、原式=4﹣x2,不符合题意;D、原式=x2﹣4x+4,不符合题意,故选B4.小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件是随机事件的是()A.掷一次骰子,在骰子向上的一面上的点数大于0B.掷一次骰子,在骰子向上的一面上的点数为7C.掷三次骰子,在骰子向上的一面上的点数之和刚好为18D.掷两次骰子,在骰子向上的一面上的点数之积刚好是11【考点】X1:随机事件.【分析】根据必然事件、不可能事件、随机事件的概念以及事件发生的可能性大小判断即可.【解答】解:掷一次骰子,在骰子向上的一面上的点数大于0是必然事件;掷一次骰子,在骰子向上的一面上的点数为7是不可能事件;掷三次骰子,在骰子向上的一面上的点数之和刚好为18是随机事件;掷两次骰子,在骰子向上的一面上的点数之积刚好是11是不可能事件,故选:C.5.下列运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2【考点】4I:整式的混合运算.【分析】分别利用积的乘方运算法则以及同底数幂的除法运算法则、完全平方公式、单项式乘以单项式运算法则化简求出答案.【解答】解:A、2a•3a=6a2,故此选项错误;B、(3a2)3=27a6,正确;C、a4÷a2=a2,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选:B.6.在平面直角坐标系中,点A(﹣1,5),将点A向右平移2个单位、再向下平移3个单位得到点A1;再将线段OA1绕原点O顺时针旋转90°得到OA2.则A2的坐标为()A.(﹣1,2)B.(2,1) C.(2,﹣1)D.(3,﹣1)【考点】R7:坐标与图形变化﹣旋转;Q3:坐标与图形变化﹣平移.【分析】根据平移、中心旋转的定义画出图形,即可解决问题.【解答】解:如图所示,点A向右平移两个单位再向下平移3个单位得A1(1,2),再将线段OA1绕原点O顺时针旋转90°得到OA2,A2坐标(2,﹣1).故选C.7.图中三视图对应的正三棱柱是()A.B.C.D.【考点】U3:由三视图判断几何体.【分析】利用俯视图可淘汰C、D选项,根据主视图的侧棱为实线可淘汰B,从而判断A选项正确.【解答】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确.故选A.8.为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如2【考点】W6:极差;W2:加权平均数;W4:中位数;W5:众数.【分析】根据表格中的数据,求出中位数,平均数,众数,极差,即可做出判断.【解答】解:15名同学一周的课外阅读量为0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,中位数为2;平均数为(0×1+1×4+2×6+3×2+4×2)÷15=2;众数为2;极差为4﹣0=4;所以A、B、C正确,D错误.故选D.9.在平面直角坐标系中,点A、B的坐标分别为(﹣3,0)、(3,0),点P在反比例函数y=的图象上.若△PAB为直角三角形,则满足条件的点P的个数为()A.2个 B.4个 C.5个 D.6个【考点】G6:反比例函数图象上点的坐标特征.【分析】设点P的坐标为(x,y),分∠APB=90°、∠PAB=90°和∠PBA=90°三种情况考虑:当∠APB=90°时,以AB为直径作圆,由圆与双曲线无交点可知此时点P 不存在;当∠PAB=90°时,可找出x=﹣3,进而可得出点P的坐标;当∠PBA=90°时,可找出x=3,进而可得出点P的坐标.综上即可得出结论.【解答】解:设点P的坐标为(x,y),当∠APB=90°时,以AB为直径作圆,如图所示,∵圆与双曲线无交点,∴点P不存在;当∠PAB=90°时,x=﹣3,y==﹣3,∴点P的坐标(﹣3,﹣3);当∠PBA=90°时,x=3,y==3,∴点P的坐标为(3,3).综上所述:满足条件的点P有2个.故选A.10.如果函数y=2x2﹣3ax+1,在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为﹣23,则a的值为()A.B.C.或D.【考点】H7:二次函数的最值.【分析】分a<、≤a≤4和a>4三种情况,找出函数值y的最小值,令其等于﹣23,即可得出关于a的一元一次(或一元二次)方程,解之即可得出结论.【解答】解:抛物线y=2x2﹣3ax+1的对称轴为x=a.当a<1,即a<时,有2﹣3a+1=﹣23,解得:a=(舍去);当1≤a≤3,即≤a≤4时,有a2=24,解得:a=或a=﹣(舍去);当a>3,即a>4时,有18﹣9a+1=﹣23,解得:a=.综上所述:a的值为或.故选C.二、填空题(本大题共6小题,每题3分,共18分)11.计算式子﹣2﹣(+3)的结果为﹣5.【考点】1A:有理数的减法.【分析】减去一个数,等于加上这个数的相反数.【解答】解:﹣2﹣(+3)=﹣2﹣3=﹣(2+3)=﹣5,故答案为:﹣5.12.计算﹣的结果是.【考点】6B:分式的加减法.【分析】根据同分母分式加减运算法则计算即可,最后要注意将结果化为最简分式.【解答】解:原式===,故答案为:.13.袋中有三个小球,分别为1个红球和2个黄球,它们除颜色外完全相同.随机取出一个小球然后放回,再随机取出一个小球,则两次取出的小球颜色不相同的概率为.【考点】X6:列表法与树状图法.【分析】根据题意列表,再根据表格即可求得所有等可能的结果与两次取出的小球颜色相同的情况,然后根据概率公式求解.4种,所以两次取出的小球颜色不相同的概率=,故答案为:.14.如图,把一张长方形纸条ABCD沿EF折叠,若∠1=50°,则∠AEG=80°.【考点】JA:平行线的性质;PB:翻折变换(折叠问题).【分析】根据长方形性质得出平行线,根据平行线的性质求出∠DEF,根据折叠求出∠FEG,即可求出答案.【解答】解:∵四边形ABCD是长方形,∴AD∥BC,∴∠DEF=∠1=50°,∵沿EF折叠D到D′,∴∠FEG=∠DEF=50°,∴∠AEG=180°﹣50°﹣50°=80°,故答案为:80°.15.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,取BC的中点P.当点B从点O向x轴正半轴移动到点M(2,0)时,则点P移动的路线长为.【考点】O4:轨迹;D5:坐标与图形性质;KD:全等三角形的判定与性质;KW:等腰直角三角形;LF:正方形的判定.【分析】先过P作PD⊥x轴于D,作PE⊥y轴于E,根据△AEP≌△BDP(AAS),得出PE=PD,进而得到点P的运动路径是∠AOM的角平分线,再分别求得当点B与点O重合时,OP=OC=,当点B与点M重合时,OP=OD=,进而得到点P移动的路线长.【解答】解:如图所示,过P作PD⊥x轴于D,作PE⊥y轴于E,则∠DPE=90°,∠AEP=∠BDP=90°,连接AP,∵△ABC是等腰直角三角形,P是BC的中点,∴AP=BC=BP,且AP⊥BC,即∠APB=90°,∴∠APE=∠BPD,在△AEP和△BDP中,,∴△AEP≌△BDP(AAS),∴PE=PD,∴点P的运动路径是∠AOM的角平分线,如图所示,当点B与点O重合时,AB=AO=1,OC=,∴OP=OC=;如图所示,当点B与点M重合时,过P作PD⊥x轴于D,作PE⊥y轴于E,连接OP,由△AEP≌△BDP,可得AE=BD,设AE=BD=x,则OE=1+x,OD=2﹣x,∵矩形ODPE中,PE=PD,∴四边形ODPE是正方形,∴OD=OE,即2﹣x=1+x,解得x=,∴OD=2﹣=,∴等腰Rt△OPD中,OP=OD=,∴当点B从点O向x轴正半轴移动到点M时,则点P移动的路线长为﹣=.故答案为:.16.定义函数f(x),当x≤3时,f(x)=x2﹣2x,当x>3时,f(x)=x2﹣10x+24,若方程f(x)=2x+m有且只有两个实数解,则m的取值范围为m>﹣3或﹣12<m<﹣4.【考点】HA:抛物线与x轴的交点.【分析】分别画出x≤3和x>3的函数图象,得出两抛物线的交点坐标(3,3),结合函数图象知①直线f(x)=2x+m过点(3,3)时;②当直线f(x)=2x+m与f(x)=x2﹣2x只有一个交点时,方程只有一个实数解,分别求出m的值,结合函数图象可得m的取值范围.【解答】解:∵x≤3时,f(x)=x2﹣2x=(x﹣1)2﹣1,∴该抛物线的顶点坐标为(1,﹣1),当f(x)=0时,由x2﹣2x=0得x=0或x=2,∴抛物线与x轴的交点为(0,0)和(2,0),∵x>3时,f(x)=x2﹣10x+24=(x﹣5)2﹣1,∴此时抛物线的顶点坐标为(5,﹣1),当f(x)=0时,由x2﹣10x+24=0得x=4或x=6,∴此时抛物线与x轴的交点为(4,0)和(6,0),由可得,即两抛物线交点坐标为(3,3),如图所示:直线f(x)=2x+m可看作直线y=2x平移得到,①当直线f(x)=2x+m过点(3,3),即6+m=3,得m=﹣3时,直线f(x)=2x+m与f(x)=x2﹣2x的图象有两个交点;②当直线f(x)=2x+m与f(x)=x2﹣2x有一个交点,即x2﹣2x=2x+m只有一个解时,方程f(x)=2x+m有且只有两个解,解得:m=﹣4,当直线f(x)=2x+m与f(x)=x2﹣10x+24只有1个交点时,即2x+m=x2﹣10x+24只有一个解,解得:m=﹣12,由图象可知当m>﹣3或﹣12<m<﹣4时,方程f(x)=2x+m有且只有两个实数解,故答案为:m>﹣3或﹣12<m<﹣4.三、解答题(本大题共8小题,共72分)17.解方程:5x﹣1=3(x﹣1)【考点】86:解一元一次方程.【分析】根据去括号,移项,合并同类项,可得答案.【解答】解:去括号,得5x﹣1=3x﹣3,移项,合并同类项,得﹣2x=﹣2,系数化为1,得x=﹣1.18.如图,AC和BD相交于点O,OA=OC,OB=OD,求证:AB∥CD.【考点】KD:全等三角形的判定与性质;J9:平行线的判定.【分析】根据条件证明△AOB≌△COD就可以得出∠A=∠C就可以得出结论.【解答】证明:在△AOB和△COD中,∴△AOB≌△COD(SAS),∴∠A=∠C,∴AB∥CD.19.为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数(3)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)由体育社团的人数除以占的百分比,确定出共调查的人数即可;(2)由文学社团的人数除以总人数,再乘以360°即可得到结果;(3)由体育社团的百分比乘以1500即可得到结果.【解答】解:(1)根据题意得:80÷40%=200(人),则此次共调查了200人;(2)根据题意得:60×200×360°=108°,则文学社团在扇形统计图中所占的圆心角度数为108°;(3)根据题意得:1500×40%=600(人),则喜欢体育类社团的学生约有600人.20.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元(1)A商品的单价是16元,B商品的单价是4元(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,设购买A商品的件数为x件,该商店购买的A、B两种商品的总费用为y元①求y与x的函数关系式②如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,求购买B商品最多有多少件?【考点】FH:一次函数的应用;CE:一元一次不等式组的应用.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)①根据题意可以得到y与x的函数关系式;②根据题意可以列出相应的不等式组,从而可以解答本题.【解答】解:(1)A商品的单价是x元,B商品的单价是y元,,解得,即A商品的单价是16元,B商品的单价是4元,故答案为:16,4;(2)①由题意可得,y=16x+4(2x﹣4)=24x﹣16,即y与x的函数关系式是y=24x﹣16;②由题意可得,,解得,12≤x≤13,∴20≤2x﹣4≤22,∴购买B商品最多有22件,答:购买B商品最多有22件.21.如图,⊙O与直线l相离,OA⊥l于点A,OA交⊙O于点C,过点A作⊙O 的切线AB,切点为B,连接BC交直线l于点D(1)求证:AB=AD;(2)若tan∠OCB=2,⊙O的半径为3,求BD的长.【考点】MC:切线的性质;T7:解直角三角形.【分析】(1)连接OB,利用切线的性质以及等腰三角形的性质证明∠ADB=∠ABD,利用等角对等边证得;(2)设AC=a,则AB=AD=2a,在Rt△AOB中利用勾股定理即可列方程求得a的值,进而求得BD的长.【解答】解:(1)证明:连接OB.∵AB是⊙O的切线,OA⊥l,∴∠OBA=∠OAD=90°,又OB=OC,∴∠OBC=∠COB=∠ACD,∴∠ADB=∠ABD,∴AB=AD;(2)∵tan∠OCB=tan∠ACD==2,⊙O的半径是3,设AC=a,则AB=AD=2a,在Rt△AOB中,OA2=AB2+OB2,∴(a+3)2=(2a)2+32,∴a=2.过点A作AE⊥BD,设AE=x,DE=2x,则5x2=16,x=,∴BD=BE=,∴BD=.22.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3(1)求反比例函数y=的解析式;(2)若直线y=﹣x+m与反比例函数y=(x>0)的图象相交于两个不同点E、F(点E在点F的左边),与y轴相交于点M①则m的取值范围为m>4(请直接写出结果)②求ME•MF的值.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)设D的坐标是(4,a),则A的坐标是(4,a+3),由点C是OA的中点,可用含a的代数式表示出点C的坐标,再根据反比例函数图象上点的坐标特征即可找出4a=2×=k,解之即可得出a、k的值,进而即可得出反比例函数的解析式;(2)①将一次函数解析式代入反比例函数解析式中,整理后可得出关于x的一元二次方程,由m>0以及根的判别式△>0,即可得出关于m的不等式组,解之即可得出结论;②由一次函数解析式可得出∠MEG=∠MFH=45°,进而可得出ME=GE、MF= HF,将一次函数解析式代入反比例函数解析式中,由根与系数的关系可得出x E•x F=4,进而可得出ME•MF=2x E•x F=8,此题得解.【解答】解:(1)设D的坐标是(4,a),则A的坐标是(4,a+3).又∵点C是OA的中点,∴点C的坐标是(2,),∴4a=2×=k,解得a=1,k=4,∴反比例函数的解析式为y=;(2)①将y=﹣x+m代入y=中,﹣x+m=,整理,得:x2﹣mx+4=0,∵直线y=﹣x+m与反比例函数y=(x>0)的图象相交于两个不同点E、F,∴,解得:m>4.故答案为:m>4.②过点E、F分别作y轴的垂线,垂足分别为G、H.由y=﹣x+m可知:∠MEG=∠MFH=45°,∴ME=GE,MF=HF.由y=﹣x+m=,得x2﹣mx+4=0,∴x E•x F=4,∴ME•MF=2x E•x F=8.23.已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一个动点,过C作CE垂直于BD的延长线,垂足为E,如图1(1)求证:AD•CD=BD•DE;(2)若BD是边AC的中线,如图2,求的值;(3)如图3,连接AE.若AE=EC,求的值.【考点】SO:相似形综合题.【分析】(1)直接判断出△ABD∽△ECD,即可得出结论;(2)先设AB=AC=2a,CD=a,则BC=a,AD=a.求出BD,而△BAD∽△CED,得出,代入求出CE即可解决问题.(2)如图3,延长CE、BA相交于点F.只要证明△BEC≌△BEF,推出CE=EF,CF=2CE,由ABD≌△ACF,推出BD=CF,即可解决问题.【解答】解:(1)∵CE⊥BD,∴∠A=∠E=90°,∵∠ADB=∠EDC,∴△BAD∽△CED,∴,∴AD•CD=BD•DE;(2)设CD=AD=a,则AB=AC=2a.在Rt△ABD中,由勾股定理得:BD=a,由(1)知,△BAD∽△CED,∴,∴,解得:CE=a,∴==;(3)如图3,延长CE、BA相交于点F.∵BE是∠ABC的角平分线,且BE⊥CF在△BEC和△BEF中,,∴△BEC≌△BEF,∴CE=EF,∴CF=2CE又∵∠ABD+∠ADB=∠CDE+∠ACF=90°,且∠ADB=∠CDE,∴∠ABD=∠ACF∵AB=AC,∠BAD=∠CAF=90°,在△ABD和△ACF中,,∴△ABD≌△ACF(ASA),∴BD=CF,∴BD=2CE,∴=2.24.如图,抛物线y=x2+x﹣(k>0)与x轴交于点A、B,点A在点B的右边,与y轴交于点C(1)如图1,若∠ACB=90°①求k的值;②点P为x轴上方抛物线上一点,且点P到直线BC的距离为,则点P的坐标为(﹣4﹣,)(请直接写出结果)(2)如图2,当k=2时,过原点O的任一直线y=mx(m≠0)交抛物线于点E、F(点E在点F的左边)①若OF=2OE,求直线y=mx的解析式;②求+的值.【考点】HF:二次函数综合题.【分析】(1)①选将函数关系式变形为y=(x﹣2)(x+k),从而可得到点A和点B的坐标,然后再求得点C的坐标,接下来再证明△OBC∽△OCA,依据相似三角形的性质可得到OC2=AO•OB,从而列出关于k的方程,故此可求得k的值;②将k=8代入抛物线的解析式得:y=x2+x﹣4,然后再求得点A、B、C的坐标,依据勾股定理可求得AC的长,由点B和点C的坐标可求得BC的解析式,设M 为AC的中点,则M(1,﹣2),过点M作PM∥BC,交抛物线与点P.然后求得PM的解析式,最后求得PM与抛物线的交点P的坐标即可;(2)①过点E、F分别作x轴的垂线,垂直分别为M,N.把k=2代入得:y=x2﹣1.将y=mx代入得:x2﹣1=mx,依据一元二次方程根与系数的关系得到x E+x F=4m,x E•x F=﹣4,由OF=2OE,可得到x F=﹣2x E,从而可求得m的值;②设∠FON=α,则+=cosα(+).由直线的解析式可知cosα=,然后依据一元二次方程根与系数的关系得到+=,故此可求得问题的答案.【解答】解:(1)①∵y= [x2+(k﹣2)x﹣2k]=(x﹣2)(x+k),∴点A的坐标为(2,0),点B的坐标为(﹣k,0).∵将x=0代入抛物线的解析式为y=﹣.∴点C的坐标为(0,﹣).∵∠BCO+∠ACO=90°,∠OBC+∠BCO=90°,∴∠OBC=∠OCA.又∵∠BOC=∠AOC,∴△OBC∽△OCA.∴=.∴OC2=AO•OB.∴k2=2k,解得:k=8或k=0(舍去).②将k=8代入抛物线的解析式得:y=x2+x﹣4.当x=0时,y=﹣4,∴C(0,﹣4).令y=0得:x2+x﹣4=0,解得x=﹣8或x=2.∴A(2,0)B(﹣8,0).∴AC==2.设直线BC的解析式为y=kx+b,将点B和点C的坐标代入得:,解得:,∴直线BC的解析式为y=x﹣4.设M为AC的中点,则M(1,﹣2),如图1所示:过点M作PM∥BC,交抛物线与点P.设直线PM的解析式为y=﹣x+c,将点M的坐标代入得:﹣+c=﹣2,解得:c=﹣.∴直线PM的解析式为y=﹣x﹣.∴﹣x﹣=x2+x﹣4,解得x=﹣4﹣或x=﹣4+(舍去).当x=﹣4﹣时,y=.∴点P的坐标为(﹣4﹣,).故答案为:(﹣4﹣,).(2)①过点E、F分别作x轴的垂线,垂直分别为M,N.把k=2代入得:y=x2﹣1.由x2﹣1=mx,得到x E+x F=4m,x E•x F=﹣4.∵OF=2OE,∴x F=﹣2x E,且x E<0,∴﹣2x E•x E=﹣4,解得:x E=﹣.∴﹣+2=4m,解得:m=.②设∠FON=α,则+=cosα(+).∵直线EF的解析式为y=mx,∴tanα=m,∴cosα=.∴+====.∴+=cosα(+)=•=1.。
2018年武汉市中考数学试卷(真题+答案)
2018年湖北省武汉市中考数学试卷副标题题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.温度由-4℃上升7℃是()A. 3℃B. −3℃C. 11℃D. −11℃2.若分式1x+2在实数范围内有意义,则实数x的取值范围是()A. x>−2B. x<−2C. x=−2D. x≠−23.计算3x2-x2的结果是()A. 2B. 2x2C. 2xD. 4x24.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A. 2、40B. 42、38C. 40、42D. 42、405.计算(a-2)(a+3)的结果是()A. a2−6B. a2+a−6C. a2+6D. a2−a+66.点A(2,-5)关于x轴对称的点的坐标是( )A. (2,5)B. (−2,5)C. (−2,−5)D. (−5,2)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A. 3B. 4C. 5D. 68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A. 14B. 12C. 34D. 569.将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A. 2019B. 2018C. 2016D. 201310.如图,在⊙O中,点C在优弧AB⏜上,将弧BC⏜沿BC折叠后刚好经过AB的中点D.若⊙O的半径为√5,AB=4,则BC的长是()A. 2√3B. 3√2C. 5√32D. √652二、填空题(本大题共6小题,共18.0分) 11. 计算(√3+√2)−√3的结果是______12. 下表记录了某种幼树在一定条件下移植成活情况移植总数n 400 1500 3500 7000 9000 14000 成活数m3251336 3203 6335 8073 12628 成活的频率(精确到0.01) 0.8130.8910.9150.9050.8970.902由此估计这种幼树在此条件下移植成活的概率约是______(精确到0.1). 13. 计算mm 2−1-11−m 2的结果是______.14. 以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是______.15. 飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是y =60t -32t 2.在飞机着陆滑行中,最后4s 滑行的距离是______m .16. 如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC 的周长,则DE 的长是____.17.三、计算题(本大题共1小题,共8.0分) 18. 解方程组:{x +y =102x +y =16.四、解答题(本大题共7小题,共64.0分)19. 如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G ,求证:GE =GF .20.某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1152a3b45(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?21.用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x为整数).(1)求A、B型钢板的购买方案共有多少种?(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若将C、D 型钢板全部出售,请你设计获利最大的购买方案.22.如图,PA是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC交AB于点E,且PA=PB.(1)求证:PB是⊙O的切线;(2)若∠APC=3∠BPC,求PE的值.CE23. 已知点A (a ,m )在双曲线y =8x 上且m <0,过点A 作x 轴的垂线,垂足为B .(1)如图1,当a =-2时,P (t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C .①若t =1,直接写出点C 的坐标; ②若双曲线y =8x 经过点C ,求t 的值.(2)如图2,将图1中的双曲线y =8x (x >0)沿y 轴折叠得到双曲线y =-8x (x <0),将线段OA 绕点O 旋转,点A 刚好落在双曲线y =-8x (x <0)上的点D (d ,n )处,求m 和n 的数量关系.24. 在△ABC 中,∠ABC =90°.(1)如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN ;(2)如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠PAC =2√55,求tan C 的值;(3)如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =35,ADAC =25,直接写出tan ∠CEB 的值.25.抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN 的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.答案和解析1.【答案】A【解析】解:温度由-4℃上升7℃是-4+7=3℃,故选:A.根据题意列出算式,再利用加法法则计算可得.本题主要考查有理数的加法,解题的关键是熟练掌握有理数的加法法则.2.【答案】D【解析】解:∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠-2.故选:D.直接利用分式有意义的条件分析得出答案.此题主要考查了分式有意义的条件,正确把握定义是解题关键.3.【答案】B【解析】解:3x2-x2=2x2,故选:B.根据合并同类项解答即可.此题考查合并同类项,关键是根据合并同类项的法则解答.4.【答案】D【解析】解:这组数据的众数和中位数分别42,40.故选:D.根据众数和中位数的定义求解.本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.5.【答案】B【解析】解:(a-2)(a+3)=a2+a-6,故选:B.根据多项式的乘法解答即可.此题考查多项式的乘法,关键是根据多项式乘法的法则解答.6.【答案】A【解析】解:点A(2,-5)关于x轴的对称点的坐标为(2,5).故选:A.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.【答案】C【解析】解:结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故选:C.易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.此题主要考查了由三视图判断几何体,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.8.【答案】C【解析】【分析】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率==.故选C.9.【答案】D【解析】【分析】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.设中间数为x,则另外两个数分别为x-1、x+1,进而可得出三个数之和为3x,令其分别等于四个选项中数,解之即可得出x的值,由x为整数、x不能为第一列及第八列数,即可确定x值,此题得解.【解答】解:设中间数为x,则另外两个数分别为x-1、x+1,∴三个数之和为(x-1)+x+(x+1)=3x.根据题意得:3x=2019、3x=2018、3x=2016、3x=2013,解得:x=673,x=(舍去),x=672,x=671.∵673=84×8+1,∴2019不合题意,舍去;∵672=84×8,∴2016不合题意,舍去;∵671=83×8+7,∴三个数之和为2013.故选D.10.【答案】B【解析】解:连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE 于F,如图,∵D为AB的中点,∴OD⊥AB,∴AD=BD=AB=2,在Rt△OBD中,OD==1,∵将弧沿BC折叠后刚好经过AB的中点D.∴弧AC和弧CD所在的圆为等圆,∴=,∴AC=DC,∴AE=DE=1,易得四边形ODEF为正方形,∴OF=EF=1,在Rt△OCF中,CF==2,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3,∴BC=3.故选:B.连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,利用垂径定理得到OD⊥AB,则AD=BD=AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC和弧CD所在的圆为等圆,则根据圆周角定理得到=,所以AC=DC,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF为正方形得到OF=EF=1,然后计算出CF后得到CE=BE=3,于是得到BC=3.本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理.11.【答案】√2【解析】解:原式=+-=故答案为:根据二次根式的运算法则即可求出答案.本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.12.【答案】0.9【解析】【分析】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.概率是大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率.【解答】解:概率是大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.9.故答案为0.9.13.【答案】1m−1【解析】解:原式=+=故答案为:根据分式的运算法则即可求出答案.本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.14.【答案】30°或150°【解析】解:如图1,∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED-∠AEB-∠CED=30°.如图2,∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC-∠ADE=90°-60°=30°,∴∠CED=∠ECD=(180°-30°)=75°,∴∠BEC=360°-75°×2-60°=150°.故答案为:30°或150°.分等边△ADE在正方形的内部和外部两种情况分别求解可得.本题考查了正方形的性质,等边三角形的性质,等腰三角形的判定与性质,熟记各性质并准确识图是解题的关键.15.【答案】24【解析】解:当y取得最大值时,飞机停下来,则y=60t-1.5t2=-1.5(t-20)2+600,此时t=20,飞机着陆后滑行600米才能停下来.因此t的取值范围是0≤t≤20;即当t=16时,y=576,所以600-576=24(米)故答案是:24.由于飞机着陆,不会倒着跑,所以当y取得最大值时,t也取得最大值,求得t 的取值范围即可,结合取值范围求得最后4s滑行的距离.此题考查二次函数的实际运用,运用二次函数求最值问题常用公式法或配方法是解题关键.16.【答案】√32【解析】解:延长BC 至M ,使CM=CA ,连接AM ,作CN ⊥AM 于N ,∵DE 平分△ABC 的周长,∴ME=EB ,又AD=DB ,∴DE=AM ,DE ∥AM ,∵∠ACB=60°, ∴∠ACM=120°, ∵CM=CA ,∴∠ACN=60°,AN=MN , ∴AN=AC•sin ∠ACN=, ∴AM=, ∴DE=,故答案为:. 延长BC 至M ,使CM=CA ,连接AM ,作CN ⊥AM 于N ,根据题意得到ME=EB ,根据三角形中位线定理得到DE=AM ,根据等腰三角形的性质求出∠ACN ,根据正弦的概念求出AN ,计算即可.本题考查的是三角形中位线定理、等腰三角形的性质、解直角三角形,掌握三角形中位线定理、正确作出辅助性是解题的关键.17.【答案】解:{x +y =10 ①2x +y =16 ②, ②-①得:x =6,把x =6代入①得:y =4,则方程组的解为{x =6y =4. 【解析】方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【答案】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中{AB=DC ∠B=∠C BF=CE∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.【解析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.19.【答案】解:(1)由题意可得,m=15÷30%=50,b=50×40%=20,a=50-15-20-5=10,即m的值是50,a的值是10,b的值是20;(2)(1×15+2×10+3×20+4×5)×50050=1150(本),答:该年级全体学生在这次活动中课外阅读书籍的总量大约是1150本.【解析】(1)根据题意和统计图中的数据可以求得m、a、b的值;(2)根据统计图中的数据可以求得该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本.本题考查扇形统计图、用样本估计总体、统计表,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.【答案】解:设购买A 型钢板x 块,则购买B 型钢板(100-x )块,根据题意得,{x +3(100−x)≥2502x+(100−x)≥120,解得,20≤x ≤25,∵x 为整数,∴x =20,21,22,23,24,25共6种方案,即:A 、B 型钢板的购买方案共有6种;(2)设总利润为w ,根据题意得,w =100(2x +100-x )+120(x +300-3x )=100x +10000-240x +36000=-140x +46000, ∵-140<0,∴当x =20时,w max =-140×20+46000=43200元, 即:购买A 型钢板20块,B 型钢板80块时,获得的利润最大.【解析】(1)根据“C 型钢板不少于120块,D 型钢板不少于250块”建立不等式组,即可得出结论;(2)先建立总利润和x 的关系,即可得出结论.此题主要考查了一元一次不等式组的应用,一次函数的性质,根据题意得出正确的等量关系是解题关键.21.【答案】(1)证明:连接OP 、OB .∵PA 是⊙O 的切线,∴PA ⊥OA ,∴∠PAO =90°,∵PA =PB ,PO =PO ,OA =OB ,∴△PAO ≌△PBO .∴∠PAO =∠PBO =90°,∴PB ⊥OB ,∴PB 是⊙O 的切线.(2)设OP 交AB 于K .∵AB 是直径,∴∠ABC =90°,∴AB ⊥BC ,∵PA 、PB 都是切线,∴PA =PB ,∠APO =∠BPO ,∵OA =OB ,∴OP 垂直平分线段AB ,∴OK ∥BC ,∵AO =OC ,∴AK =BK ,∴BC=2OK,设OK=a,则BC=2a,∵∠APC=3∠BPC,∠APO=∠OPB,∴∠OPC=∠BPC=∠PCB,∴BC=PB=PA=2a,∵△PAK∽△POA,∴PA2=PK•PO,设PK=x,则有:x2+ax-4a2=0,解得x=√17−12a(负根已经舍弃),∴PK=√17−12a,∵PK∥BC,∴PE EC =PKBC=√17−14.【解析】(1)想办法证明△PAO≌△PBO.可得∠PAO=∠PBO=90°;(2)首先证明BC=2OK,设OK=a,则BC=2a,再证明BC=PB=PA=2a,由△PAK∽△POA,可得PA2=PK•PO,设PK=x,则有:x2+ax-4a2=0,解得x= a(负根已经舍弃),推出PK=a,由PK∥BC,可得==;本题考查相似三角形的判定和性质、圆周角定理、切线的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,学会利用参数解决问题,属于中考常考题型.22.【答案】解:(1)①如图1-1中,由题意:B(-2,0),P(1,0),PB=PC=3,∴C(1,3).②图1-2中,由题意C(t,t+2),∵点C在y=8上,x∴t(t+2)=8,∴t=-4 或2,(2)如图2中,①当点A与点D关于x轴对称时,A(a,m),D(d,n),∴m+n=0.②当点A绕点O旋转90°时,得到D′,D′在y=-8上,x作D′H⊥y轴,则△ABO≌△D′HO,∴OB=OH,AB=D′H,∵A(a,m),∴D′(m,-a),即D′(m,n),∵D′在y=-8上,x∴mn=-8,综上所述,满足条件的m、n的关系是m+n=0或mn=-8.【解析】(1)①如图1-1中,求出PB、PC的长即可解决问题;②图1-2中,由题意C(t,t+2),理由待定系数法,把问题转化为方程解决即可;(2)分两种情形①当点A与点D关于x轴对称时,A(a,m),D(d,n),可得m+n=0.②当点A绕点O旋转90°时,得到D′,D′在y=-上,作D′H⊥y轴,则△ABO≌△D′HO,推出OB=OH,AB=D′H,由A(a,m),推出D′(m,-a),即D′(m ,n ),由D′在y=-上,可得mn=-8;本题考查反比例函数综合题、旋转变换、待定系数法、全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加辅助线,构造全等三角形解决问题,属于中考压轴题.23.【答案】解:(1)∵AM ⊥MN ,CN ⊥MN ,∴∠AMB =∠BNC =90°,∴∠BAM +∠ABM =90°,∵∠ABC =90°,∴∠ABM +∠CBN =90°,∴∠BAM =∠CBN ,∵∠AMB =∠NBC ,∴△ABM ∽△BCN ;(2)如图2,过点P 作PF ⊥AP 交AC 于F ,在Rt △AFP 中,tan ∠PAC =PF AP =2√55=2√5, 同(1)的方法得,△ABP ∽△PQF , ∴AB PQ =BP FQ =AP PF =√52, 设AB =√5a ,PQ =2a ,BP =√5b ,FQ =2b (a >0,b >0),∵∠BAP =∠C ,∠B =∠CQF =90°,∴△ABP ∽△CQF ,∴CQ AB =FQ BP ,∴CQ =AB⋅FQBP =2a ,∵BC =BP +PQ +CQ =√5b +2a +2a =4a +√5b∵∠BAP =∠C ,∠B =∠B =90°,∴△ABP ∽△CBA ,∴AB BC =BP AB ,∴BC =AB×AB BP =5a 2√5b =√5a 2b, ∴4a +√5b =√5a 2b ,a =√55b , ∴BC =4×√55b +√5b =9√55b ,AB =√5a =b , 在Rt △ABC 中,tan C =AB BC =√59;(3)在Rt △ABC 中,sin ∠BAC =BC AC =35,过点A 作AG ⊥BE 于G ,过点C 作CH ⊥BE 交EB 的延长线于H ,∵∠DEB=90°,∴CH∥AG∥DE,∴GH EG =ACAD=52同(1)的方法得,△ABG∽△BCH∴BG CH =AGBH=ABBC=43,设BG=4m,CH=3m,AG=4n,BH=3n,∵AB=AE,AG⊥BE,∴EG=BG=4m,∴GH=BG+BH=4m+3n,∴4m+3n4m =52,∴n=2m,∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中,tan∠BEC=CHEH =314.【解析】(1)利用同角的余角相等判断出∠BAM=∠CBN,即可得出结论;(2)先判断出△ABP∽△PQF,得出=,再判断出△ABP∽△CQF,得出CQ=2a,进而建立方程用b表示出a,即可得出结论;(3)先判断出=,再同(2)的方法,即可得出结论.此题是相似形综合题,主要考查了同角的余角相等,相似三角形的判定和性质,锐角三角函数,平行线分线段成比例定理,构造图1是解本题的关键.24.【答案】解:(1)由题意知{−b2×(−1)=1c=1,解得:b=2、c=1,∴抛物线L的解析式为y=-x2+2x+1;(2)如图1,∵y =kx -k +4=k (x -1)+4,∴当x =1时,y =4,即该直线所过定点G 坐标为(1,4), ∵y =-x 2+2x +1=-(x -1)2+2,∴点B (1,2),则BG =2,∵S △BMN =1,即S △BNG -S △BMG =12BG •x N -12BG •x M =1, ∴x N -x M =1,由{y =kx −k +4y =−x 2+2x +1,得x 2+(k -2)x -k +3=0, 解得:x =2−k±√(k−2)2−4(3−k)2=2−k±√k2−82,则x N =2−k+√k2−82,x M =2−k−√k2−82,由x N -x M =1得√k 2−8=1,∴k =±3, ∵k <0,∴k =-3;(3)如图2,设抛物线L 1的解析式为y =-x 2+2x +1+m ,∴C (0,1+m )、D (2,1+m )、F (1,0), 设P (0,t ),①当△PCD ∽△FOP 时,PC CD =FOOP ,∴1+m−t 2=1t , ∴t 2-(1+m )t +2=0;②当△PCD ∽△POF 时,PC CD =PO OF ,∴1+m−t 2=t 1, ∴t =13(m +1);(Ⅰ)当方程①有两个相等实数根时,△=(1+m )2-8=0,解得:m =2√2-1(负值舍去),此时方程①有两个相等实数根t 1=t 2=√2,方程②有一个实数根t =2√23, ∴m =2√2-1,此时点P 的坐标为(0,√2)和(0,2√23); (Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:19(m +1)2-13(m +1)+2=0,解得:m =2(负值舍去),此时,方程①有两个不相等的实数根t 1=1、t 2=2,方程①有一个实数根t =1,∴m =2,此时点P 的坐标为(0,1)和(0,2);综上,当m =2√2-1时,点P 的坐标为(0,√2)和(0,2√23); 当m =2时,点P 的坐标为(0,1)和(0,2).【解析】(1)根据对称轴为直线x=1且抛物线过点A (0,1)求解可得;(2)根据直线y=kx-k+4=k (x-1)+4知直线所过定点G 坐标为(1,4),从而得出BG=2,由S △BMN =S △BNG -S △BMG =BG•x N -BG•x M =1得出x N -x M =1,联立直线和抛物线解析式求得x=,根据x N -x M =1列出关于k 的方程,解之可得;(3)设抛物线L 1的解析式为y=-x 2+2x+1+m ,知C (0,1+m )、D (2,1+m )、F (1,0),再设P (0,t ),分△PCD ∽△POF 和△PCD ∽△POF 两种情况,由对应边成比例得出关于t 与m 的方程,利用符合条件的点P 恰有2个,结合方程的解的情况求解可得.本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式、利用割补法求三角形的面积建立关于k的方程及相似三角形的判定与性质等知识点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辆,且 a= 40,则这个厂每天可获利 ___________元
(3) 若组装 L1 型自行车 160 辆与组装 L3 型自行车 120 辆花的时间相同,求 a
20.(本题 8 分)为了抓住文化艺术节的商机,某商店决定购进
A、B 两种艺术节纪念品.若
购进 A 种纪念品 8 件, B 种纪念品 3 件,需要 950 元;若购进 A 种纪念品 5 件, B 种纪念品
使△ A1 B1C1 与△ ABC位似,且位似比为 2∶ 1,点 C1 的坐标是(
)
A. (1, 0)
B. (1,1)
C. (- 3, 2)
D. (0, 0)
2.如果分式 x 没有意义,那么 x 的取值范围是(
)
x1
A. x≠ 0
B. x= 0
3.下列式子计算x+ x
B. x· 2x
13.在- 2、- 1、0、1、2 这五个数中任取两数 坐标轴上的概率是 ___________
m 、n,求二次函数 y= (x-m )2+ n 的顶点在
14.P 为正方形 ABCD内部一点, PA= 1,PD= 2 ,PC= 3 ,求阴影部分的面积 SABCP= ______
15.如图,将一段抛物线 y= x(x- 3)( 0≤ x≤3)记为 C1,它与 x 轴交于点 O 和点 A1;将 C1 绕点 A1 旋转 180°得 C2,交 x 轴于点 A2;将 C2 绕点 A2 旋转 180°得 C2,交 x 轴于点 A3.若直 线 y= x+ m 于 C1、 C2、C3共有 3 个不同的交点,则 m 的取值范围是 ___________
L1、 L2、 L3 三种型
若每天组装同一型号自行车的数量相同,根据以上信息,完成下列问题:
(1) 从上述统计图可知, 此厂需组装 L1、L2、L3 型自行车的辆数分别是, ________辆,________ 辆, ________辆
(2) 若组装每辆不同型号的自行车获得的利润分别是
L1:40 元 / 辆, L2:80 元 / 辆, L3:60 元 /
年龄(岁)
12
13
14
15
人数(个)
2
4
6
8
根据表中信息可以判断该排球队员的平均年龄为(
)
A.13
B. 14
C. 13.5
D. 5
9.观察下列各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第
5 个图形中小
圆点的个数为(
)
A.50
B. 51
C. 48
D. 52
10.已知二次函数 y= x2- (m + 1)x- 5m( m 为常数),在- 1≤ x≤ 3 的范围内至少有一个 x
m 变化时,代数式
( m2 (m
1) x1 y2 1) 2
2 x2 y1 是否为一个固定的值?若是,求出其值;若不 m1
是,请说理由 (3) 点 C在 y 轴上,点 D 的坐标是 (-1, 3 ).若将菱形 ACOD沿 x 轴负方向平移 m 个单位,
2 在平移过程中,若双曲线与菱形的边 AD 始终有交点,请直接写出 m 的取值范围
2018 武汉中考数学模拟题一
一、选择题 (共 10 小题,每小题 3 分,共 30 分)
1.已知: △ ABC 在直角坐标平面内,三个顶点的坐标分别为
A(0,3)、B(3,4)、C(2, 2)(正
方形网格中每个小正方形的边长是一个单位长度) 以点 B 为位似中心, 在网格内画出 △ A1B1C1,
4.下列事件是随机事件的是(
)
C. x≠- 1 C. (2x)2
D. x=- 1 D. 2x6÷ x3
A.从装有 2 个红球、 2 个黄球的袋中摸出 3 个球,至少有一个红球
B.通常温度降到 0℃以下,纯净的水结冰
C.任意画一个三角形,其内角和是 360°
D.随意翻到一本书的某页,这页的页码是奇数
5.运用乘法公式计算 (4+ x)(x- 4)的结果是(
的值使 y≥ 2,则 m 的取值范围是(
)
A.m ≤ 0 二、填空题(共
B. 0≤ m ≤ 1 2
C. m≤ 1 2
6 小题,每小题 3 分,共 18 分)
D. m> 1 2
11.计算:计算 7- (- 4)= ___________
12.计算: x 1 1 = ___________ x 2 x2
16.如图,在平面直角坐标系第一象限有一半径为 5 的四分之一 ⊙ O,且 ⊙ O 内有一定点 A(2, 1)、 B、D 为圆弧上的两个点,且∠ BAD= 90°,以 AB、 AD 为边作矩形 ABCD,则 AC的最小 值为 ___________ 三、解答题(共 8 小题,共 72 分,应写出文字说明、证明过程或演算步骤)
6 件,需要 800 元
(1) 求购进 A、 B 两种纪念品每件各需多少元?
(2) 若该商店决定购进这两种纪念品共 100 件,考虑市场需求和资金周转,用于购买这
100
件纪念品的资金不少于 7500 元,那么该商店至少要购进 A 种纪念品多少件?
21.(本题 8 分)如图, ⊙ O 是弦 AB、AC、CD 相交点 P,弦 AC、BD 的延长线交于 E,∠ APD =2m °,∠ PAC= m °+ 15°
(1) 求∠ E 的度数
BC (2) 连 AD、BC,若
AD
3 ,求 m 的值
22.(本题 10 分)如图,反比例函数 为
y k 与 y=mx 交于 A、B 两点.设点 A、B 的坐标分别 x
A(x1,y1)、B(x2, y2),S=| x1y1| ,且 3 4 s1 s
(1) 求 k 的值
(2)
当
3x 2y 3
17.(本题 8 分)解方程:
x 2y 5
18.(本题 8 分)如图, AB∥ DE,AC∥DF,点 B、E、C、F 在一条直线上,求证: △ABC∽ △ DEF
19.(本题 8 分)某厂签订 48000 辆自行车的组装合同,这些自行车分为 号,它们的数量比例及每天能组装各种型号自行车的数量如图所示:
)
A. x2-16
B. 16- x2
C. x2+ 16
D. x2- 8x+ 16
6. 3 64 =(
)
A.4
B.± 8
C. 8
D.± 4
7.如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方
块的个数,这个几何体的左视图是(
)
A.
B.
C.
D.
8.统计学校排球队员的年龄,发现有 12、13、 14、 15 等四种年龄,统计结果如下表: