平面向量基本运算小题专练

合集下载

(完整版)平面向量基本概念练习题

(完整版)平面向量基本概念练习题

(完整版)平面向量基本概念练习题第二章平面向量§2.1 平面向量的实际背景及基本概念班级___________姓名____________学号____________得分____________一、选择题1.下列物理量中,不能称为向量的是()A .质量B .速度C .位移D .力 2.设O 是正方形ABCD 的中心,向量AO OB CO OD u u u r u u u r u u u r u u u r 、、、是()A .平行向量B .有相同终点的向量C .相等向量D .模相等的向量3.下列命题中,正确的是()A .|a | = |b |?a = bB .|a |> |b |?a > bC .a = b ?a 与b 共线D .|a | = 0?a = 04.在下列说法中,正确的是()A .两个有公共起点且共线的向量,其终点必相同;B .模为0的向量与任一非零向量平行;C .向量就是有向线段;D .若|a |=|b |,则a =b5.下列各说法中,其中错误的个数为()(1)向量AB u u u r 的长度与向量BA u u u r 的长度相等;(2)两个非零向量a 与b 平行,则a 与b 的方向相同或相反;(3)两个有公共终点的向量一定是共线向量;(4)共线向量是可以移动到同一条直线上的向量;(5)平行向量就是向量所在直线平行A .2个B .3个C .4个D .5个 *6.△ABC 中,D 、E 、F 分别为BC 、CA 、AB 的中点,在以A 、B 、C 、D 、E 、F 为端点的有向线段所表示的向量中,与EF u u u r 共线的向量有()A .2个B .3个C .6个D .7个二、填空题7.在(1)平行向量一定相等;(2)不相等的向量一定不平行;(3)共线向量一定相等;(4)相等向量一定共线;(5)长度相等的向量是相等向量;(6)平行于同一个向量的两个向量是共线向量中,说法错误的是_______________________.8.如图,O 是正方形ABCD 的对角线的交点,四边形OAED 、OCFB 是正方形,在图中所示的向量中,(1)与AO u u u r 相等的向量有_________________________;(2)与AO u u u r 共线的向量有_________________________;(3)与AO u u u r 模相等的向量有_______________________;(4)向量AO u u u r 与CO u u u r 是否相等?答:_______________.9.O 是正六边形ABCDEF 的中心,且AO =u u u r a ,OB =u u u r b ,AB =u u u r c ,在以A 、B 、C 、D 、E 、F 、O 为端点的向量中:(1)与a 相等的向量有;(2)与b 相等的向量有;(3)与c 相等的向量有.*10.下列说法中正确是_______________(写序号)(1)若a 与b 是平行向量,则a 与b 方向相同或相反;(2)若AB u u u r 与CD u u u r 共线,则点A 、B 、C 、D 共线;(3)四边形ABCD 为平行四边形,则AB u u u r =CD u u u r ;(4)若a = b ,b = c ,则a = c ;(5)四边形ABCD 中,AB DC =u u u r u u u r 且||||AB AD =u u u r u u u r ,则四边形ABCD 为正方形;(6)a 与b 方向相同且|a | = |b |与a = b 是一致的;三、解答题11.如图,以1×3方格纸中两个不同的格点为起点和终点的所有向量中,有多少种大小不同的模?有多少种不同的方向?O A B C D E F12.在如图所示的向量a 、b 、c 、d 、e 中(小正方形边长为1)是否存在共线向量?相等向量?模相等的向量?若存在,请一一举出.13.某人从A 点出发向西走了200m 达到B 点,然后改变方向向西偏北600走了450m 到达C 点,最后又改变方向向东走了200m 到达D 点(1)作出向量AB u u u r 、BC u u u r 、CD u u u r (1cm 表示200m );(2)求DA u u u r 的模.*14.如图,中国象棋的半个棋盘上有一只“马”,开始下棋时它位于A 点,这只“马”第一步有几种可能的走法?试在图中画出来;若它位于图中的P 点,则这只“马”第一步有几种可能的走法?它能否走若干步从A 点走到与它相邻的B 点处?。

平面向量的基本概念及线性运算练习题(基础、经典、好用)

平面向量的基本概念及线性运算练习题(基础、经典、好用)

平面向量的基本概念及线性运算一、选择题1.(2013·湛江质检)若a +c 与b 都是非零向量,则“a +b +c =0”是“b ∥(a +c )”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.设P 是△ABC 所在平面内的一点,BC→+BA →=2BP →,则( ) A.P A →+PB→=0 B.PC →+P A →=0 C.PB →+PC →=0 D.P A →+PB→+PC →=0 3.下列命题中是真命题的是( )①对任意两向量a 、b ,均有:|a |-|b |<|a |+|b |;②对任意两向量a 、b ,a -b 与b -a 是相反向量;③在△ABC 中,AB→+BC →-AC →=0; ④在四边形ABCD 中,(AB→+BC →)-(CD →+DA →)=0. A .①②③ B .②④ C .②③④ D .②③4.已知A 、B 、C 三点共线,点O 在该直线外,若OB →=λOA →+μOC →,则λ+μ的值为( )A .0B .1C .2D .35.(2013·佛山调研)已知e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,则a 与b 共线的条件是( )A .λ=0B .e 2=0C .e 1∥e 2D .e 1∥e 2或λ=0二、填空题6.如图4-1-2所示,向量a -b =________(用e 1,e 2表示).图4-1-27.(2013·揭阳模拟)已知点O 为△ABC 外接圆的圆心,且OA→+OB →+OC →=0,则△ABC 的内角A 等于________.8.已知向量a ,b 是两个非零向量,则在下列四个条件中,能使a 、b 共线的条件是________(将正确的序号填在横线上).①2a -3b =4e ,且a +2b =-3e ;②存在相异实数λ、μ,使λa +μb =0;③xa +yb =0(实数x ,y 满足x +y =0);④若四边形ABCD 是梯形,则AB→与CD →共线. 三、解答题图4-1-39.(2013·清远调研)如图4-1-3所示,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,求实数m 的值. 10.设a ,b 是不共线的两个非零向量.(1)若OA→=2a -b ,OB →=3a +b ,OC →=a -3b ,求证:A 、B 、C 三点共线. (2)若AB→=a +b ,BC →=2a -3b ,CD →=2a -kb ,且A 、C 、D 三点共线,求k 的值. 11.设O 是平面上一定点,A ,B ,C 是平面上不共线的三点,动点P 满足OP →=OA →+λ(AB →|AB→|+AC →|AC →|),λ∈[0,+∞).求点P 的轨迹,并判断点P 的轨迹通过下述哪一个定点: ①△ABC 的外心;②△ABC 的内心;③△ABC 的重心;④△ABC 的垂心.解析及答案一、选择题1.【解析】 若a +b +c =0,则b =-(a +c ),∴b ∥(a +c );若b ∥(a +c ),则b =λ(a +c ),当λ≠-1时,a +b +c ≠0,因此“a +b +c =0”是“b ∥(a +c )”的充分不必要条件.【答案】 A2.【解析】 由BC→+BA →=2BP →知,点P 是线段AC 的中点, 则PC →+P A →=0.【答案】 B3.【解析】 ①假命题.∵当b =0时,|a |-|b |=|a |+|b |.∴该命题不成立.②真命题,这是因为(a -b )+(b -a )=0,∴a -b 与b -a 是相反向量.③真命题.∵AB→+BC →-AC →=AC →-AC →=0. ④假命题.∵AB→+BC →=AC →,CD →+DA →=CA →, ∴(AB→+BC →)-(CD →+DA →)=AC →-CA →=AC →+AC →≠0, ∴该命题不成立.【答案】 D4.【解析】 因为A 、B 、C 三点共线,所以AB→=kAC →, ∴OB→-OA →=k (OC →-OA →),所以OB →=OA →+kOC →-kOA →, ∴OB→=(1-k )OA →+kOC →,又因为OB →=λOA →+μOC →,所以λ=1-k ,μ=k ,所以λ+μ=1. 【答案】 B5.【解析】 若e 1与e 2共线,则e 2=λ′e 1,∴a =(1+λλ′)e 1,此时a ∥b ,若e 1与e 2不共线,设a =μb ,则e 1+λe 2=μ·2e 1,∴λ=0,1-2μ=0.【答案】 D二、填空题6.【解析】 由图知,a -b =BA →=e 1+(-3e 2)=e 1-3e 2. 【答案】 e 1-3e 27.【解析】 由OA→+OB →+OC →=0,知点O 为△ABC 重心,又O 为△ABC 外接圆的圆心,∴△ABC 为等边三角形,A =60°.【答案】 60°8.【解析】 由①得10a -b =0,故①对.②对.对于③当x =y =0时,a 与b 不一定共线,故③不对.若AB ∥CD ,则AB→与CD →共线,若AD ∥BC ,则AB →与CD →不共线,故④不对. 【答案】 ①②三、解答题9.【解】 如题图所示,AP→=AB →+BP →, ∵P 为BN 上一点,则BP→=kBN →, ∴AP→=AB →+kBN →=AB →+k (AN →-AB →), 又AN →=13NC →,即AN →=14AC →, 因此AP →=(1-k )AB →+k 4AC →, 所以1-k =m ,且k 4=211,解得k =811.则m =1-k =311.10.【解】 (1)证明 AB →=OB →-OA →=a +2b ,AC→=OC →-OA →=-a -2b . 所以AC→=-AB →,又因为A 为公共点, 所以A 、B 、C 三点共线.(2)AC→=AB →+BC →=(a +b )+(2a -3b )=3a -2b , 因为A 、C 、D 三点共线,所以AC→与CD →共线. 从而存在实数λ使AC →=λCD →,即3a -2b =λ(2a -kb ),解得λ=32,k =43,所以k =43.11.【解】 如图,记AM →=AB →|AB →|,AN →=AC →|AC→|,则AM →,AN →都是单位向量, ∴|AM→|=|AN →|,AQ →=AM →+AN →,则四边形AMQN 是菱形,∴AQ 平分∠BAC . ∵OP →=OA →+AP →,由条件知OP →=OA →+λAQ →, ∴AP →=λAQ →(λ∈[0,+∞)),∴点P 的轨迹是射线AQ ,且AQ 通过△ABC 的内心.。

平面向量基本定理及坐标运算练习题

平面向量基本定理及坐标运算练习题

平面向量基本定理及坐标运算一.选择题1.若向量AB =(1,2),BC =(3,4),则AC =( )A (4,6)B (-4,-6)C (-2,-2)D (2,2) 2.若向量a =(x -2,3)与向量b =(1,y +2)相等,则( )A .x =1,y =3B .x =3,y =1C .x =1,y =-5D .x =5,y =-13.下列各组向量中:①(1,2)- ②(3,5) ③(2,3)- ④(6,10) ⑤13(,)24-⑥(0,0) 能作为表示它们所在平面内所有向量的基底的是( ) A .①⑥B .①③C .②④D .③⑤4.若向量a =(1,1),b =(1,-1),c =(-1,2),则c 等于 ( )A .21-a 23+b B .21a 23-bC .23a 21-bD .23-a +21b 5.已知向量),cos ,(sin ),4,3(αα==b a 且a ∥b ,则αtan = ( )A .43B .43-C .34D .34-6.已知ABCD 的两条对角线交于点E ,设1e AB =,2e AD =,用21,e e 来表示ED 的表达式( )A .212121e e --B .212121e e +- C .212121e e - D .212121e e +7.已知平面向量a =(x,1),b =(-x ,x 2),则向量a +b( ).A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第二、四象限的角平分线 8.已知平面向量a =(1,2),b =(-2,m),且a ∥b ,则2a +3b =( ). A .(-2,-4) B .(-3,-6) C .(-4,-8) D .(-5,-10)9.已知两点P 1(-1,-6)、P2(3,0),点P (-37,y)分有向线段21P P 所成的比为λ,则λ、y的值为( )A .-41,8 B .41,-8 C .-41,-8 D .4,8110.若向量a =(x+3,x 2-3x -4)与AB 相等,已知A (1,2)和B (3,2),则x 的值为 A 、-1 B 、-1或4C 、4D 、1或-411.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个顶点的坐标是( )A 、(1,5)或(5,5)B 、(1,5)或(-3,-5)C 、(5,-5)或(-3,-5)D 、(1,5)或(5,-5)或(-3,-5)12.设i 、j 是平面直角坐标系内分别与x 轴、y 轴方向相同的两个单位向量,且j i OA 24+=, j i OB 43+=,则△OAB 的面积等于( )A 、15B 、10C 、D 、513.己知P 1(2,-1) 、P 2(0,5) 且点P 在P 1P 2的延长线上,||2||21PP P P =, 则P 点坐标为( )A 、(-2,11)B 、()3,34C 、(32,3) D 、(2,-7) 14.已知,A (2,3),B (-4,5),则与AB 共线的单位向量是 ( )A 、)1010,10103(-=e B 、)1010,10103()1010,10103(--=或e C 、)2,6(-=eD 、)2,6()2,6(或-=e15. 设点A(2,0),B(4,2),若点P 在直线AB 上,且|AB →|=2|AP →|,则点P 的坐标为( ) A .(3,1) B .(1,-1) C .(3,1)或(1,-1) D .无数多个16.设两个向量a =(λ+2,λ2-cos 2α)和b =⎝ ⎛⎭⎪⎫m ,m 2+sin α,其中λ,m ,α为实数.若a =2b ,则λm 的取值范围是( ).A .[-6,1]B .[4,8]C .(-∞,1]D .[-1,6]二.填空题17.若向量a =(2,m )与b =(m ,8)的方向相反,则m 的值是 . 18.已知a =(2,3),b =(-5,6),则|a +b |= ,|a -b |= .19.设a =(2,9),b =(λ,6),c =(-1,μ),若a +b =c ,则λ= , μ= .20.△ABC 的顶点A (2,3),B (-4,-2)和重心G (2,-1),则C 点坐标为21. 设a =(1,2),b =(2,3),若向量λa+b 与向量c =(-4,-7)共线,则λ=________.22.若三点A(2,2),B(a,0),C(0,b)(ab≠0)共线,则1a +1b的值为________.23.设向量a ,b 满足|a|=25,b =(2,1),且a 与b 的方向相反,则a 的坐标为________.24.设e 1,e 2是平面内一组基向量,且a =e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量a ,b 的线性组合,即e 1+e 2=________a +________b.25.已知点A (-1,5),若向量AB 与向量a =(2,3)同向,且AB =3a ,则点B 的坐标为__________.26.平面上三个点,分别为A (2,-5),B (3,4),C (-1,-3),D 为线段BC 的中点,则向量DA 的坐标为_________.27.在平面直角坐标系xOy 中,四边形ABCD 的边AB ∥DC ,AD ∥BC.已知点A(-2,0),B(6,8),C(8,6),则D 点的坐标为________. 三.解答题28.已知点A(-1,2),B(2,8)以及AC →=13AB →,DA →=-13BA →,求点C ,D 的坐标和CD →的坐标.29.已知A(1,1)、B(3,-1)、C(a ,b). (1)若A 、B 、C 三点共线,求a 、b 的关系式; (2)若AC =2AB ,求点C 的坐标.30.已知向量OA →=(3,4),OB →=(6,-3),O C →=(5-m ,-3-m).若点A ,B ,C 能构成三角形,求实数m 满足的条件.31.已知O(0,0),A(1,2),B(4,5)及OP →=OA →+tAB →,求 (1)t 为何值时,P 在x 轴上P 在y 轴上P 在第二象限(2)四边形OABP 能否成为平行四边形若能,求出相应的t 值;若不能,请说明理由.。

平面向量基本定理基础训练题(含详解)

平面向量基本定理基础训练题(含详解)

平面向量基本定理基础训练题(含详解)学校:___________姓名:___________班级:___________考号:___________一、单选题1.在ABC 中,E 是AC 的中点,3BC BF =,若AB a =,AC b =,则EF =( )A .2136a b - B .1133a b +C .1124a b D .1133a b -2.如图,已知AB a =,AC b =,3BD DC =,用a 、b 表示AD ,则AD 等于( )A .34a b + B .3144a b + C .1144a b +D .1344a b +3.已知A ,B ,C 三点不共线,且点O 满足0OA OB OC ++=,则下列结论正确的是( ) A .1233OA AB BC =+ B .2133OA AB BC =+ C .1233OA AB BC =- D .2133OA AB BC =-- 4.在ABC 中,E 为AC 上一点,3AC AE =,P 为BE 上任一点,若(0,0)AP mAB nAC m n =+>>,则31m n+的最小值是 A .9 B .10 C .11D .125.在等腰梯形ABCD 中,//AB DC ,2AB DC =,E 为BC 的中点,则( )A .3142AE AB AD →→→=+B .3122AE AB AD →→→=+C .1142AE AB AD →→→=+D .3144AE AB AD →→→=+6.在平行四边形ABCD 中,若4CE ED =,则BE =( )A .45AB AD -+ B .45AB AD - C .45AB AD -+D .34AB AD -+二、填空题7.在正方形ABCD 中,,M N 分别是,BC CD 的中点,若AC AM AN λμ=+,则实数λμ+=_______.8.已知ABC ,若点D 满足34AB ACAD +=,且()BD CD λλ=∈R ,则λ=________.参考答案1.A 【解析】 【分析】根据向量的运算法则计算得到答案. 【详解】1223EF EC CF AC CB =+=+()12212336AC AB AC AB AC =+-=-2136a b =-. 故选:A . 【点睛】本题考查了向量的基本定理,意在考查学生的计算能力和转化能力. 2.D 【解析】分析:用向量的加法法则表示出AD ,再由数乘与减法运算可得. 详解:由题意34AD AB BD a BC =+=+3()4a AC AB =+-3()4a b a =+-1344a b =+, 故选D .点睛:本题考查平面向量基本定理,考查平面向量的线性运算,解题时抓住向量线性运算的运算法则(加法、减法、数乘等)就可以把任一向量用基底表示出来. 3.D 【解析】 【分析】由0OA OB OC ++=可知,所以O 为ABC ∆的重心,运用向量的加法运算,21()32OA AB AC →→→=-⨯+,整理后可求结果.【详解】因为0OA OB OC ++=,所以O 为ABC ∆的重心,所以211121()()()323333OA AB AC AB AC AB AB BC AB BC →→→→→→→→→→=-⨯+=-+=-++=--.故选:D. 【点睛】本题考查了向量加法的运算,考查了向量的线性表示,考查了平面向量的基本定理,属于基础题. 4.D 【解析】 【分析】由题意结合向量共线的充分必要条件首先确定,m n 的关系,然后结合均值不等式的结论整理计算即可求得最终结果. 【详解】由题意可知:3AP mAB nAC mAB nAE =+=+,,,A B E 三点共线,则:31m n +=,据此有:()3131936612n m m n m n m n m n ⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当11,26m n ==时等号成立. 综上可得:31m n+的最小值是12.本题选择D 选项. 【点睛】本题主要考查三点共线的充分必要条件,均值不等式求最值的方法等知识,意在考查学生的转化能力和计算求解能力. 5.A 【解析】 【分析】根据题意,选基底AB →,AD →表示向量AE →即可求解. 【详解】由等腰梯形ABCD 中,2AB DC =,E 为BC 的中点可知,AE AB BE →→→=+,①12AE AD DC CE AD AB CE→→→→→→→=++=++②①+②得:322AE AD AB →→→=+,即3142AE AB AD →→→=+,故选:A 【点睛】本题主要考查了向量的加法,向量的基底,属于容易题. 6.A 【解析】 【分析】由4,CE ED =得45CE CD =,在BEC △中,利用向量加法可得. 【详解】44,,5CE ED CE CD =∴=4455BE BC CE AD CD AB AD ∴=+=+=-+故选:A. 【点睛】本题考查平面向量的线性运算. 用已知向量表示某一向量的两个关键点:(1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键. (2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量. 7.43【解析】 【分析】由题意结合平面向量线性运算法则可得22AC AB AB A A D D μλλμ⎛⎫⎛⎫=+++= ⎪ ⎪⎝+⎭⎝⎭,由平面向量基本定理可得1212μλλμ⎧+=⎪⎪⎨⎪+=⎪⎩,即可得解.【详解】由题意画出图形,如图所示:由题意可得()()AC AB BM A AM AN D DN λμλμ=++++=11112222AB BC AD DC AB AD AB AD λμλμ⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22AB AD μλλμ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,又AC AB AD =+,所以1212μλλμ⎧+=⎪⎪⎨⎪+=⎪⎩,从而3()22λμ+=,即43λμ+=. 故答案为:43.【点睛】本题考查了平面向量线性运算法则、平面向量基本定理的应用,考查了运算求解能力,属于基础题. 8.13-【解析】【分析】根据题意,利用平面向量的基本定理,化简即可得到结论. 【详解】由34AB ACAD+=,可得43AD AB AC=+,所以,33AD AD AB AC+=+,即()3AD AB AC AD-=-,所以,3BD DC=,故13BD CD=-.故答案为:1 3 -.【点睛】本题考查平面向量的基本定理,属于基础题.。

平面向量练习题及答案

平面向量练习题及答案

平面向量练习题及答案平面向量练习题及答案在数学学科中,平面向量是一个非常重要的概念。

它不仅在几何学中有广泛的应用,还在物理学、工程学等领域中发挥着重要的作用。

掌握平面向量的基本概念和运算法则对于解决各种实际问题具有重要意义。

本文将为大家提供一些平面向量练习题及答案,希望能够帮助大家更好地理解和掌握这一概念。

1. 题目:已知向量a = (3, -2)和向量b = (-1, 4),求向量a + b的结果。

解答:向量a + b的结果可以通过将向量a和向量b的对应分量相加得到。

所以,向量a + b = (3 + (-1), -2 + 4) = (2, 2)。

2. 题目:已知向量a = (2, -5)和向量b = (4, 3),求向量a - b的结果。

解答:向量a - b的结果可以通过将向量a和向量b的对应分量相减得到。

所以,向量a - b = (2 - 4, -5 - 3) = (-2, -8)。

3. 题目:已知向量a = (3, -2)和向量b = (-1, 4),求向量a与向量b的数量积。

解答:向量a与向量b的数量积可以通过将向量a和向量b的对应分量相乘,并将结果相加得到。

所以,向量a与向量b的数量积为3*(-1) + (-2)*4 = -3 - 8 = -11。

4. 题目:已知向量a = (2, -5),求向量a的模长。

解答:向量a的模长可以通过计算向量a的坐标分量的平方和的平方根得到。

所以,向量a的模长为√(2^2 + (-5)^2) = √(4 + 25) = √29。

5. 题目:已知向量a = (3, -2)和向量b = (-1, 4),求向量a与向量b的夹角的余弦值。

解答:向量a与向量b的夹角的余弦值可以通过计算向量a与向量b的数量积与向量a和向量b的模长的乘积的商得到。

所以,向量a与向量b的夹角的余弦值为(-11) / (√(3^2 + (-2)^2) * √((-1)^2 + 4^2)) = -11 / (√13 * √17)。

平面向量的运算 练习(含答案)

平面向量的运算 练习(含答案)

6.2平面向量的运算练习一、单选题1.化简OP PS QS +-的结果等于( ). A .QPB .OQC .SPD .SQ2.如图,M 在四面体OABC 的棱BC 的中点,点N 在线段OM 上,且13MN OM =,设OA a =,OB b =,OC c =,则下列向量与AN 相等的向量是( )A .1133a b c -++B .1133a b c ++C .1166a b c -++D .1166a b c ++3.如图,在四边形ABCD 中,AC 与BD 交于点O ,若AD BC =,则下面互为相反向量的是( )A .AC 与CBB .OB 与ODC .AB 与DCD .AO 与OC4.已知平行四边形ABCD 中,E 为边AD 的中点,AC 与BE 相交于点F ,若EF xAB y AD =+,则( )A .11,36x y ==-B .11,24x y ==-C .11,33x y ==-D .11,23x y ==-5.()()32a b a b a +---=( ) A .5aB .5bC .5a -D .5b -6.已知向量a ,b 不共线,若2AB a b =+,37BC a b =-+,45CD a b =-,则( ) A .A ,B ,C 三点共线 B .A ,B ,D 三点共线 C .A ,C ,D 三点共线D .B ,C ,D 三点共线7.已知向量a 、b 满足2a =,5b =,且a 与b 夹角的余弦值为15,则()()23a b a b +⋅-=( ) A .30-B .28-C .12D .728.如图,在ABC 中,12AN NC =,P 是BN 上的一点,若1139AP m AB AC ⎛⎫=++ ⎪⎝⎭,则实数m 的值为( )A .19B .29C .23D .13二、多选题9.如图,在平行四边形ABCD 中,下列计算正确的是A .AB AD AC += B .AC CD DO OA ++= C .++=AB AC CD ADD .0AC BA DA ++=10.如图,D ,E ,F 分别是ABC 的边AB ,BC ,CA 的中点,则AF DB -等于( )A .FDB .EC C .BED .DF11.在ABC 中,12,33AE AB AD AC ==,记,BC a CA b ==,则下列结论中正确的是( ) A .()13AE a b =-- B .AD b =-C .()13DE b a =- D .AB a b =+12.设a ,b ,c 是三个非零向量,且相互不共线,则下列说法正确的是( ) A .若a b a b +=-,则a b ⊥ B .若a b =,则()()a b a b +⊥- C .若a c b c ⋅=⋅,则a b -不与c 垂直D .()()b c a a c b ⋅-⋅不与c 垂直三、填空题13.在ABC 中,,,D E F 分别是,,AB BC CA 的中点,则AE DB -=___________. 14.下列四个等式:①a +b =b +a ;①-(-a )=a ;①AB +BC +CA =0;①a +(-a )=0. 其中正确的是______(填序号).15.已知a ,b 是不共线的向量,OA a b λμ=+,32OB a b =-,23OC a b =+,若A ,B ,C 三点共线,则实数λ,μ满足__________.16.已知m 、n 是夹角为120°的两个单位向量,向量()1a tm t n =+-,若n a ⊥,则实数t =______.四、解答题17.如图,E ,F ,G ,H 分别是梯形ABCD 的边AB ,BC ,CD ,DA 的中点,化简下列各式:(1)DG EA CB ++; (2)EG CG DA EB +++.18.化简:(1)BA BC-;(2)AB BC AD+-;(3)AB DA BD BC CA++--.19.已知△OBC中,点A是线段BC的中点,点D是线段OB的一个三等分点(靠近点B),设AB=a→,AO=b→.(1)用向量a→与b→表示向量OC;(2)若35OE OA=,判断C,D,E是否共线,并说明理由.20.已知2,3,,a b a b ==的夹角为60︒,53,3c a b d a kb =+=+,当实数k 为何值时, (1)→→d//c(2)c d ⊥21.已知向量a 与b 的夹角3π4θ=,且3a =,22b =. (1)求a b ⋅,()(2)a b a b +⋅-; (2)求a b +;(3)a 与a b +的夹角的余弦值.22.已知向量,,a b c 满足:2a =,()R c a tb t =-∈,,3a b π=.(1)若1a b ⋅=,求b 在a 方向上的投影向量; (2)求||c 的最小值.答案1.B 2.A 3.B 4.A 5.B 6.B 7.B 8.D 9.AD 10.BCD 11.AC 12.AB 13.AF 14.①①①① 15.513λμ+=. 16.2317.(1)DG EA CB GC BE CB GB BE GE +++++===; (2)0EG CG DA EB EG GD DA AE ED DE ==+=++++++. 18.(1)BA BC CA -=.(2)AB BC AD AC AD DC +-=-=.(3)AB DA BD BC CA AB BD AD AC CB AD AD AB AB ++--=+-++=-+=. 19.解(1)①AB =a →,AO =b →,点A 是BC 的中点,∴AC =-a →.①OC OA AC =+=-a →-b →. (2)假设存在实数λ,使CE =λCD .①CE CO OE =+=a →+b →+35(-b →)=a →+25b →,11(33CD CB BD CB BO CB BA AO =+=+=++)=2a →+13(-a →+b →)=53a →+13b →,①a →+25b →=λ5133a b →→⎛⎫+ ⎪⎝⎭,①5131235λλ⎧=⎪⎪⎨⎪=⎪⎩,,此方程组无解, ①不存在实数λ,满足CE =λCD . ①C ,D ,E 三点不共线. 20.(1)若→→d//c ,得c d λ=,即53(3)a b a kb λ+=+,即35,3,k λλ=⎧⎨=⎩解得53λ=,95k =.(2)若c d ⊥,则0c d ⋅=,即53)(3)0(a b a kb +⋅+=,得()22159530k k ++⋅+=a a b b , ()115495233902k k ⨯++⨯⨯⨯+⋅=,解得2914k =-. 21.(1)已知向量a 与b 的夹角3π4θ=,且3a =,22b =,则3πcos364a b a b ⎛⋅=⋅⋅=⨯=- ⎝⎭, 所以()22()(2)296281a b a b a a b b +⋅-=-⋅-=---⨯=-;(2)()(222292a b a b a ab b +=+=+⋅+=+⨯-(3)a 与a b +的夹角的余弦值为()296cos ,535a a baa ba ab a a ba a b⋅++⋅-+====⨯⋅+⋅+ 22.(1)由数量积的定义可知:cos ,a bb a b a⋅=,所以b 在a 方向上的投影向量为: 11||cos ,||||||224a ab a a b a b a a a a ⋅<>=⋅=⋅=; (2)()()2222c a tb a tb a ta b tb =-=-=-⋅+又2a =,,3a b π=,所以()224c t bt b =-+令R x t b =∈所以22c x =-=所以当1x t b ==时,c 取到最小值为。

平面向量练习题及答案

平面向量练习题及答案

平面向量练习题及答案1. 向量初步概念和运算(1) 已知向量a=3i+4j,求向量a的模长。

答案:|a| = √(3^2 + 4^2) = 5(2) 已知向量b=-2i+5j,求向量b的模长。

答案:|b| = √((-2)^2 + 5^2) = √29(3) 已知向量c=2i+3j,求向量c的模长和方向角(与x轴正方向的夹角)。

答案:|c| = √(2^2 + 3^2) = √13方向角θ = arctan(3/2)2. 向量的线性运算(1) 已知向量a=3i+4j,向量b=-2i+5j,求向量a+b。

答案:a+b = (3-2)i + (4+5)j = i + 9j(2) 已知向量a=3i+4j,向量b=2i-7j,求向量a-b。

答案:a-b = (3-2)i + (4-(-7))j = i + 11j(3) 已知向量a=3i+4j,求向量-2a的模长。

答案:|-2a| = |-2(3i+4j)| = |-6i-8j| = √((-6)^2 + (-8)^2) = 103. 向量的数量积与投影(1) 已知向量a=3i+4j,向量b=-2i+5j,求向量a·b的值。

答案:a·b = (3*-2) + (4*5) = -6 + 20 = 14(2) 已知向量a=3i+4j,向量b=-2i+5j,求向量a在b方向上的投影。

答案:a在b方向上的投影= (a·b)/|b| = 14/√294. 向量的夹角和垂直判定(1) 判断向量a=3i+4j和向量b=-2i+5j是否相互垂直。

答案:两个向量相互垂直的条件是a·b = 0。

计算得到a·b = 14,因此向量a和向量b不相互垂直。

(2) 已知向量a=3i+4j,向量b=-8i+6j,求向量a和向量b的夹角。

答案:向量a和向量b的夹角θ = arccos((a·b)/(∣a∣*∣b∣)) = arccos((-66)/(√25*√100))5. 向量共线和平面向量的应用(1) 已知向量a=3i+4j,向量b=-6i-8j,判断向量a和向量b是否共线。

平面向量的加减与数量积练习题

平面向量的加减与数量积练习题

平面向量的加减与数量积练习题一、向量的加减平面向量的加减是指根据向量的性质进行运算,可以将向量看作有方向和大小的箭头,通过对箭头进行平移和反转等操作进行运算。

1. 已知向量a = 2i + 3j,b = 4i - 5j,求a + b的结果。

解:将a和b的对应分量进行相加,得到:a +b = (2 + 4)i + (3 - 5)j = 6i - 2j2. 已知向量c = 6i - 7j,d = -3i + 2j,求c - d的结果。

解:将c和d的对应分量进行相减,得到:c -d = (6 - (-3))i + (-7 - 2)j = 9i - 9j二、数量积数量积也称为点积或内积,是将两个向量进行运算得到的结果,具体计算方式为将两个向量的对应分量相乘后相加。

3. 已知向量e = 3i + 4j,f = 2i - 5j,求e · f的结果。

解:将e和f的对应分量相乘后相加,得到:e ·f = (3 * 2) + (4 * (-5)) = 6 - 20 = -144. 已知向量g = 5i + 3j,h = -2i + 6j,求g · h的结果。

解:将g和h的对应分量相乘后相加,得到:g · h = (5 * (-2)) + (3 * 6) = -10 + 18 = 8三、练习题1. 已知向量m = 2i + j,n = 3i - 4j,求m + n的结果。

解:将m和n的对应分量进行相加,得到:m + n = (2 + 3)i + (1 - 4)j = 5i - 3j2. 已知向量p = 4i + 3j,q = -2i + 5j,求p - q的结果。

解:将p和q的对应分量进行相减,得到:p - q = (4 - (-2))i + (3 - 5)j = 6i - 2j3. 已知向量r = i - 2j,s = 3i + 4j,求r · s的结果。

解:将r和s的对应分量相乘后相加,得到:r · s = (1 * 3) + (-2 * 4) = 3 - 8 = -54. 已知向量t = 5i + 2j,u = -3i + 6j,求t · u的结果。

基础专项练(二) 平面向量、不等式

基础专项练(二) 平面向量、不等式

专项练(二) 平面向量、不等式一、单项选择题1.(2021·天津卷)已知a ∈R ,则“a >6”是“a 2>36”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件答案 A解析 由题意,若a >6,则a 2>36,故充分性成立;若a 2>36,则a >6或a <-6,推不出a >6,故必要性不成立; 所以“a >6”是“a 2>36”的充分不必要条件.2.已知向量OA →=(3,-4),OB →=(6,-3),OC →=(2m ,m +1).若AB →∥OC →,则实数m 的值为( ) A.15 B.-35 C.-3 D.-17答案 C解析 易知AB →=(3,1),且OC →=(2m ,m +1),由AB →∥OC →,得2m =3(m +1),∴m=-3.3.(2021·浙江卷)已知非零向量a ,b ,c ,则“a ·c =b ·c ”是“a =b ”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件答案 B解析 由a ·c =b ·c 可得(a -b )·c =0,所以(a -b )⊥c 或a =b ,所以“a ·c =b ·c ”是“a =b ”的必要不充分条件.故选B.4.已知P (a ,b )为圆x 2+y 2=4上任意一点,则当1a 2+4b 2取最小值时,a 2的值为( )A.45B.2C.43D.3答案 C解析 因为P (a ,b )为圆x 2+y 2=4上任意一点,所以a 2+b 2=4. 所以1a 2+4b 2=14⎝ ⎛⎭⎪⎫1a 2+4b 2(a 2+b 2)=14⎝ ⎛⎭⎪⎫5+b 2a 2+4a 2b 2≥14⎝⎛⎭⎪⎫5+2b 2a 2·4a 2b 2=94, 当且仅当b 2=2a 2=83时取等号,故a 2=43.5.(2021·青岛调研)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( ) A.1 B.2 C. 2 D.22答案 C解析 因为(a -c )·(b -c )=0,所以(a -c )⊥(b -c ).如图所示,设OC→=c ,OA →=a ,OB →=b , 则CA →=a -c ,CB →=b -c , 所以AC→⊥BC →. 又因为OA→⊥OB →,所以O ,A ,C ,B 四点共圆,当且仅当OC 为圆的直径时,|c |最大,且最大值为 2.6.(2021·长沙一模)在平面直角坐标系xOy 内,已知直线l 与圆O :x 2+y 2=8相交于A ,B 两点,且|AB |=4,若OC →=2OA →-OB →且M 是线段AB 的中点,则OC →·OM →的值为( ) A. 3 B.2 2 C.3D.4解析 由OC→=2OA →-OB →,知A ,B ,C 三点共线.因为|AB |=4,M 是线段AB 的中点,则OM ⊥AB , 所以|OM |=R 2-22=8-4=2.在直角△CMO 中,OC →·OM →=|OM →|·|OC→|cos ∠COM =|OM →|2=4.7.已知单位向量a ,b 满足|a -b |+23a ·b =0,则|t a +b |(t ∈R )的最小值为( ) A.23 B.32 C.223 D.22答案 B解析 由|a -b |+23a ·b =0,得|a -b |=-23a ·b , 平方得a 2-2a ·b +b 2=12(a ·b )2, 整理得(2a ·b +1)(3a ·b -1)=0, 所以a ·b =-12或a ·b =13.因为|a -b |=-23a ·b ≥0,所以a ·b ≤0, 所以a ·b =-12,所以|t a +b |=|t a +b |2=t 2+1+2t a ·b =t 2-t +1=⎝ ⎛⎭⎪⎫t -122+34≥32⎝ ⎛⎭⎪⎫当且仅当t =12时取“=”. 8.若对任意的x ,y ∈R ,不等式x 2+y 2+xy ≥3(x +y -a )恒成立,则实数a 的取值范围为( ) A.(-∞,-1] B.(-∞,1] C.[-1,+∞)D.[1,+∞)解析 不等式x 2+y 2+xy ≥3(x +y -a )对任意x ,y ∈R 恒成立等价于x 2+(y -3)x +y 2-3y +3a ≥0对任意x ,y ∈R 恒成立,∴Δ=(y -3)2-4(y 2-3y +3a )=-3y 2+6y +9-12a ≤0, ∴4a ≥-y 2+2y +3=-(y -1)2+4, 当y =1时,-y 2+2y +3取得最大值4, ∴4a ≥4,解得a ≥1.因此,实数a 的取值范围是[1,+∞). 二、多项选择题9.(2021·湖南四校联考)在△ABC 中,D ,E ,F 分别是边BC ,CA ,AB 的中点,AD ,BE ,CF 交于点G ,则( ) A.EF →=12CA →-12BC → B.BE →=-12BA →+12BC → C.AD →+BE →=FC → D.GA→+GB →+GC →=0 答案 CD解析 如图,因为点D ,E ,F 分别是边BC ,CA ,AB 的中点,所以EF→=12CB →=-12BC →,故A 不正确;BE →=BC →+CE →=BC →+12CA →=BC →+12(CB →+BA →)=BC →-12BC →-12AB →=-12AB →+12BC →,故B 不正确;FC →=AC →-AF →=AD →+DC →+F A →=AD →+12BC →+F A →=AD →+FE →+F A →=AD→+FB →+BE →+F A →=AD→+BE →,故C 正确; 由题意知,点G 为△ABC 的重心,所以AG→+BG →+CG →=23AD →+23BE →+23CF →=23×12(AB→+AC →)+23×12(BA →+BC →)+23×12(CB →+CA →)=0,即GA →+GB →+GC →=0,故D 正确.故选CD.10.(2021·山东质检)若a >0,b >0,且a +b =4,则下列不等式恒成立的是( )A .0<1ab ≤14 B.ab <2 C.1a +1b ≥1 D.1a 2+b 2≤18答案 CD解析 A 选项,由ab ≤a +b 2=2知ab ≤4.因为a >0,b >0,所以ab >0,所以1ab ≥14,当且仅当a =b =2时等号成立,故A 错误;B 选项,ab ≤a +b2=2,当且仅当a =b =2时等号成立,故B 错误; C 选项,1a +1b ≥21a ·1b =2ab≥2×12=1,当且仅当a =b =2时等号成立,故C 正确;D 选项,因为a 2+b 2≥(a +b )22=8,当且仅当a =b =2时等号成立,所以1a 2+b 2≤18,故D 正确.故选CD. 11.(2021·南京、盐城一模)下列关于向量a ,b ,c 的运算,一定成立的是( ) A.(a +b )·c =a·c +b·c B.(a·b )·c =a·(b·c ) C.a·b ≤|a|·|b| D.|a -b|≤|a|+|b|答案 ACD解析 对于A ,因为向量满足分配律,所以A 一定成立;对于B ,因为(a·b )·c =|a||b|cos 〈a ,b 〉·c 表示一个与c 平行的向量,a·(b·c )=|b||c| cos 〈b ,c 〉·a 表示一个与a 平行的向量,而c 与a 不一定共线,所以B 不一定成立;对于C ,a·b =|a|·|b|cos 〈a ,b 〉≤|a|·|b|,所以C 一定成立;对于D ,因为|a -b|2=|a|2+|b|2-2a·b =|a|2+|b|2-2|a||b|cos 〈a ,b 〉≤|a|2+|b|2+2|a||b|=(|a|+|b|)2,所以|a -b|≤|a|+|b|,所以D 一定成立.综上所述,选ACD. 12.(2021·济南统考)设a ,b 为正实数,下列命题正确的是( ) A.若a 2-b 2=1,则a -b <1 B.若1b -1a =1,则a -b <1 C.若|a -b |=1,则|a -b |<1D.若|a 3-b 3|=1,则|a -b |<1 答案 AD解析 若a 2-b 2=1,则a 2-1=b 2, 即(a +1)(a -1)=b 2.∵a +1>a -1,∴a -1<b <a +1, ∴a -b <1,故A 正确;若1b -1a =1,则可取a =7,b =78,而a -b >1,故B 错误; 若|a -b |=1,则可取a =9,b =4,而|a -b |=5>1,故C 错误; 若|a 3-b 3|=1,当a >b >0时,得a 3-b 3=1,a 3-1=b 3, 即(a -1)(a 2+a +1)=b 3.∵a 2+a +1>b 2,∴a -1<b ,即a -b <1; 当0<a <b 时,得b 3-a 3=1,b 3-1=a 3, 即(b -1)(b 2+1+b )=a 3. ∵b 2+1+b >a 2,∴b -1<a ,即b -a <1.故|a -b |<1,D 正确.故选AD. 三、填空题13.(2021·全国乙卷)已知向量a =(1,3),b =(3,4),若(a -λb )⊥b ,则λ=________. 答案 35解析 法一 a -λb =(1-3λ,3-4λ),∵(a -λb )⊥b , ∴(a -λb )·b =0,即(1-3λ,3-4λ)·(3,4)=0, ∴3-9λ+12-16λ=0,解得λ=35.法二 由(a -λb )⊥b 可知,(a -λb )·b =0,即a ·b -λb 2=0,从而λ=a ·bb2=(1,3)·(3,4)32+42=1525=35.14.(2021·天津卷)若a >0,b >0,则1a +ab 2+b 的最小值为________. 答案 2 2解析 ∵a >0,b >0,∴1a +ab 2+b ≥21a ·a b 2+b =2b +b ≥22b ·b =22,当且仅当1a =a b 2且2b =b ,即a=b =2时等号成立, ∴1a +ab2+b 的最小值为2 2. 15.(2021·枣庄模拟)如图,由四个全等的三角形与中间的一个小正方形EFGH 拼成的一个大正方形ABCD 中,AF →=3AE →.设AF →=xAB →+yAD →,则x +y 的值为________.答案 65解析 连接BD 交AF 于点M (图略). 令|BF |=1,则|AF |=3,所以tan ∠ABF =3, 所以tan ∠FBM =tan(∠ABF -45°)=3-11+3=12, 所以|FM |=12,|AM |=52,则|AM ||AF |=56, 所以AM→=56AF →=56xAB →+56yAD →. 因为点M 在BD 上,所以56x +56y =1,即x +y =65. 16.(2021·福州质检)已知a >b ,b >0,若不等式m 3a +b≤3a +1b 恒成立,则m 的最大值为________. 答案 16解析 由题意,不等式m 3a +b≤3a +1b 恒成立,且a >0,b >0,即有m ≤(3a +b )⎝ ⎛⎭⎪⎫3a +1b 恒成立,即m ≤⎣⎢⎡⎦⎥⎤(3a +b )⎝ ⎛⎭⎪⎫3a +1b min 成立.由(3a +b )⎝ ⎛⎭⎪⎫3a +1b =10+3a b +3b a ≥10+23ab·3ba=16,当且仅当3ab=3ba,即a=b时,取得等号,即有m≤16,则m的最大值为16.。

平面向量基本定理基础训练题(含详解)

平面向量基本定理基础训练题(含详解)

平面向・根本定理根底练习题〔含详解〕一、单项选择题1.在A A 8c 中,E 是AC 的中点,BC = 3BF >假设而=工,衣=B ,那么丽=〔3.A,8, C 三点不共线,且点.满足OU .月+3=6,那么以下结论正确的选项是〔4 .在△A8C 中,E 为AC 上一点,AC = 3AE^ P 为BE 上任一点、,假设一 一 一 3 1AP = mAB + nAC(m > 0,〃 > 0),那么—+ -的最小值是 ni nB. 10 D. 12 5 .在等腰梯形A8CD 中,AB//DC , AB = 2DC. E 为BC 的中点,那么〔〕 6 .在平行四边形A5CD 中,假设右后=4瓦,那么诟=〔〕学校;姓名: 班级: 考号:C. 1 - 1 rD. —a ——b 3 32・如图,方=[,AC = b^ Bl5 = 3DC ,用£、办表示那么45等于〔 A.B. 1 - > rC. —a + —h 4 4D. 3 - 1 r — a + — b 4 4 1 - 31 — a +—b 4 4 一 1 ____ ? ____ A. OA = -AB + -BC一 ? 一 1 ________ B. OA = -AB + -BC 3 3—1 —,2 — C. OA = — AB — BCD. OA = --AB--BC A. 9C. 11 T 3 T 1 一 A. AE = -AB+-AD 4 2 — 1 T 1 一 C. AE = -AB+-AD 4 2 T 3 T 1 T B. AE =」A8+ — A . 2 2 T 3 T 1TD. — 4 43 6 4B. -AB-ADC. -AB + -AD 5 5 二、填空题7 .在正方形48CQ 中,M,N 分别是的中点,假设/=幺而+以丽,那么实 数九〞 =.8 .△A8C,假设点D 满足'万,且丽=23(4eR),那么2 =.A. —AB + AD 5 D. —AB + AD 4参考答案1. A【解析】【分析】根据向量的运算法那么计算得到答案.【详解】正皮+入汐毛衣+|〔金衣〕=1通-次亨力应选:A.【点睛】此题考查了向量的根本定理,意在考查学生的计算水平和转化水平.2. D【解析】分析:用向量的加法法那么表示出Afi,再由数乘与减法运算可得.详解:由题意__ ____ ____ 3 ___ 3 __ ___ 3 _ ] _ 3 _AD = AB + BD = a + — BC =d +二〔AC — A8〕=a + —〔b -ci〕 = —a + — h ♦4 4 4 4 4应选D.点睛:此题考查平面向量根本定理,考查平面向量的线性运算,解题时抓住向量线性运算的运算法那么〔加法、减法、数乘等〕就可以把任一向量用基底表示出来.3.D【解析】【分析】由3A +砺+ 0心=6可知,所以.为AABC的重心,运用向量的加法运算,T 2 1T -= 一一x —〔A8+ AC〕,整理后可求结果.3 2【详解】由于.4+oQ+od =〔i,所以.为AABC的重心,T 7 1 -> -> 1T T 1 2Tl 7所以QA = ——x — (A8+ AC) = 一一( A8+ AC) = 一一( A8+ AB+ 8C)= —二48 一一3c.3 2 3 3 3 3应选:D.【点睛】此题考查了向量加法的运算,考查了向量的线性表示,考查了平面向量的根本定理,属于根底题.4. D【解析】【分析】由题意结合向量共线的充分必要条件首先确定〃?,〃的关系,然后结合均值不等式的结论整理计算即可求得最终结果.【详解】由题意可知:AP = mAB + nAC = mAB + 3nAE^A,8,E三点共线,那么:〃? + 3〃 = l,据此有:3 1 (3 1 Y 、9n m 回~nt — + —= — + — (〃? + 3〃) = 6 + — + —>6 + 2—x—= 12, m n \ m n J m n V in n当且仅当m =1,〃 =,时等号成立.2 63 1综上可得:二十一的最小值是12.m n此题选择O选项.【点睛】此题主要考查三点共线的充分必要条件,均值不等式求最值的方法等知识,意在考查学生的转化水平和计算求解水平.5. A【解析】【分析】根据题意,选基底荒,行表示向量/即可求解.【详解】由等腰梯形A3CQ中,AB = 2DC , E为8c的中点可知,AE = AB+BE(X)AE = AD+DC+CE = AD^-AB + CE®2T T 3 T ①+②得:2AE = AO+二A8,2T 3 T 1 一即AE = -AB+-AD.4 2应选:A【点睛】此题主要考查了向量的加法,向量的基底,属于容易题.6. A【解析】【分析】由在=4瓦,得在=:也,在△8EC中,利用向量加法可得.【详解】vCE = 4EZ),.-.CE = -CD,।・・・・・—।।।・... BE = BC + CE = AD + — CD = —— AB + AD5 5应选:A.【点睛】此题考查平面向量的线性运算.用向量表示某一向量的两个关键点:⑴用向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键.⑵要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的假设干向量之和,等于由起始向量的始点指向末尾向量的终点的向量.47.-3【解析】【分析】由题意结合平面向量线性运算法那么可得=2 _ __ .// + — AD = AB + AD ,由2)2+2=1平而向量根本定理可得J ,即可得解.〃十丁1【详解】由题意画出图形,如下图:.4 ____________________ BD N C由题意可得衣=夭宿+ 4 病=人〔而+ 两〕 + 〃〔而+ 7= /i〔A8 + ; 8c〕 + 〃〔AO + goC〕= 4〔45 + ;4O〕+ 4W〕AD+^AB\ +外荏+ 〔〃 +.酝X +幺=1又就=丽+莅,所以J 1 ,k=l3 4从而二〔2 + 〃〕= 2,即2 + 〃 =不.4 故答案为:y.【点睛】此题考查了平而向量线性运算法那么、平而向量根本定理的应用根底题.I8.—3,考查了运算求解水平,属于【解析】【分析】根据题意,利用平而向量的根本定理,化简即可得到结论. 【详解】由而可得4而=3而+ /,4所以,3AD + AD = 3AB + AC^即3〔而-而〕=正-所以,3前=灰,故= .3故答案为:一1.3【点睛】此题考查平面向量的根本定理,属于根底题.。

高中数学6.2.2《平面向量的运算》基础过关练习题(含答案)

高中数学6.2.2《平面向量的运算》基础过关练习题(含答案)

第六章 6.2 6.2.2A 级——基础过关练1.(多选)如图,在平行四边形ABCD 中,下列结论正确的是( )A .AB →=DC → B .AD →+AB →=AC → C .AB →-AD →=BD → D .AD →+CB →=0【答案】ABD 【解析】A 项显然正确;由平行四边形法则知B 正确;C 项中AB →-AD →=DB →,故C 错误;D 项中AD →+CB →=AD →+DA →=0.故选ABD .2.化简以下各式:①AB →+BC →+CA →;②AB →-AC →+BD →-CD →;③OA →-OD →+AD →;④NQ →+QP →+MN →-MP →.结果为零向量的个数是( )A .1B .2C .3D .4【答案】D 【解析】①AB →+BC →+CA →=AC →+CA →=AC →-AC →=0; ②AB →-AC →+BD →-CD →=(AB →+BD →)-(AC →+CD →)=AD →-AD →=0; ③OA →-OD →+AD →=(OA →+AD →)-OD →=OD →-OD →=0; ④NQ →+QP →+MN →-MP →=NP →+PM →+MN →=NM →-NM →=0. 3.(2020年北京期末)如图,向量a -b 等于( )A .3e 1-e 2B .e 1-3e 2C .-3e 1+e 2D .-e 1+3e 2【答案】B 【解析】如图,设a -b =AB →=e 1-3e 2,∴a -b =e 1-3e 2.故选B .4.对于菱形ABCD ,给出下列各式:①AB →=BC →;②|AB →|=|BC →|;③|AB →-CD →|=|AD →+BC →|;④|AD →+CD →|=|CD →-CB →|. 其中正确的个数为( ) A .1 B .2 C .3D .4【答案】C 【解析】由菱形的图形,可知向量AB →与BC →的方向是不同的,但它们的模是相等的,所以②正确,①错误;因为|AB →-CD →|=|AB →+DC →|=2|AB →|,|AD →+BC →|=2|BC →|,且|AB →|=|BC →|,所以|AB →-CD →|=|AD →+BC →|,即③正确;因为|AD →+CD →|=|BC →+CD →|=|BD →|,|CD →-CB →|=|CD →+BC →|=|BD →|,所以④正确.综上所述,正确的个数为3.故选C .5.若|AB →|=8,|AC →|=5,则|BC →|的取值范围是( ) A .[3,8] B .(3,8) C .[3,13]D .(3,13)【答案】C 【解析】由于BC →=AC →-AB →,则有|AB →|-|AC →|≤|BC →|≤|AB →|+|AC →|,即3≤|BC →|≤13.6.若非零向量a 与b 互为相反向量,给出下列结论:①a ∥b ;②a ≠b ;③|a|≠|b|;④b =-a.其中所有正确命题的序号为________.【答案】①②④ 【解析】非零向量a ,b 互为相反向量时,模一定相等,因此③不正确.7.若a ,b 为相反向量,且|a|=1,|b|=1,则|a +b|=________,|a -b|=________. 【答案】0 2 【解析】若a ,b 为相反向量,则a +b =0,所以|a +b|=0.又a =-b ,所以|a|=|-b|=1.因为a 与-b 共线,所以|a -b|=2.8.如图,已知向量a 和向量b ,用三角形法则作出a -b +a .解:如图所示,作向量OA →=a ,向量OB →=b ,则向量BA →=a -b ;作向量AC →=a ,则BC →=a -b +a .9.如图,已知OA →=a ,OB →=b ,OC →=c ,OD →=d ,OF →=f ,试用a ,b ,c ,d ,f 表示以下向量:AC →,AD →,AD →-AB →,AB →+CF →,BF →-BD →. 解:AC →=OC →-OA →=c -a . AD →=AO →+OD →=OD →-OA →=d -a . AD →-AB →=BD →=OD →-OB →=d -b .AB →+CF →=OB →-OA →+OF →-OC →=b -a +f -c . BF →-BD →=OF →-OB →-(OD →-OB →)=OF →-OD →=f -d .10.如图,在四边形ABCD 中,对角线AC ,BD 交于点O ,且|AB →|=|AD →|=1,OA →+OC →=OB →+OD →=0,cos ∠DAB =12,求|DC →+BC →|与|CD →+BC →|.解:∵OA →+OC →=OB →+OD →=0, ∴OA →=CO →,OB →=DO →.∴四边形ABCD 为平行四边形.又|AB →|=|AD →|=1,∴▱ABCD 为菱形. ∵cos ∠DAB =12,∠DAB ∈(0,π),∴∠DAB =π3,∴△ABD 为正三角形.∴|DC →+BC →|=|AB →+BC →|=|AC →|=2|AO →|=3,|CD →+BC →|=|BD →|=|AB →|=1.B 级——能力提升练11.在平面上有A ,B ,C 三点,设m =AB →+BC →,n =AB →-BC →,若m 与n 的长度恰好相等,则有( )A .A ,B ,C 三点必在一条直线上 B .△ABC 必为等腰三角形且∠B 为顶角 C .△ABC 必为直角三角形且∠B 为直角D .△ABC 必为等腰直角三角形【答案】C 【解析】以BA →,BC →为邻边作平行四边形ABCD ,则m =AB →+BC →=AC →,n =AB →-BC →=AB →-AD →=DB →,由m ,n 的长度相等可知,两对角线相等,因此平行四边形一定是矩形.故选C .12.平面内有四边形ABCD 和点O ,若OA →+OC →=OB →+OD →,则四边形ABCD 的形状是( )A .梯形B .平行四边形C .矩形D .菱形【答案】B 【解析】因为OA →+OC →=OB →+OD →,所以OA →-OB →=OD →-OC →,即BA →=CD →.所以AB CD .故四边形ABCD 是平行四边形.13.平面上有一个△ABC 和一点O ,设OA →=a ,OB →=b ,OC →=c .又OA →,BC →的中点分别为D ,E ,则向量DE →等于( )A .12(a +b +c )B .12(-a +b +c )C .12(a -b +c )D .12(a +b -c )【答案】B 【解析】DE →=DO →+OE →=-12a +12(b +c )=12(-a +b +c ).14.如图,在正六边形ABCDEF 中,与OA →-OC →+CD →相等的向量有________.①CF →;②AD →;③DA →;④BE →;⑤CE →+BC →;⑥CA →-CD →;⑦AB →+AE →.【答案】① 【解析】OA →-OC →+CD →=CA →+CD →=CF →;CE →+BC →=BC →+CE →=BE →≠CF →;CA →-CD →=DA →≠CF →;AB →+AE →=AD →≠CF →.15.已知|a|=7,|b|=2,且a ∥b ,则|a -b|的值为________.【答案】5或9 【解析】当a 与b 方向相同时,|a -b|=||a|-|b||=7-2=5;当a 与b 方向相反时,|a -b|=|a|+|b|=7+2=9.16.如图所示,点O 是四边形ABCD 内任一点,试根据图中给出的向量,确定a ,b ,c ,d 的方向(用箭头表示),使a +b =BA →,c -d =DC →,并画出b -c 和a +d .解:因为a +b =BA →,c -d =DC →,所以a =OA →,b =BO →,c =OC →,d =OD →.如图所示,作平行四边形OBEC ,平行四边形ODF A .根据平行四边形法则可得,b -c =EO →,a +d =OF →.17.如图所示,O 是平行四边形ABCD 的对角线AC ,BD 的交点,若AB →=a ,DA →=b ,OC →=c ,试证明:b +c -a =OA →.证明:(方法一)因为b +c =DA →+OC →=OC →+CB →=OB →,OA →+a =OA →+AB →=OB →,所以b +c =OA →+a ,即b +c -a =OA →.(方法二)OA →=OC →+CA →=OC →+CB →+CD →=c +DA →+BA →=b +c -AB →=b +c -a .(方法三)因为c -a =OC →-AB →=OC →-DC →=OC →+CD →=OD →=OA →+AD →=OA →-DA →=OA →-b ,所以b +c -a =OA →.C 级——探索创新练18.已知|a |=8,|b |=15. (1)求|a -b |的取值范围;(2)若|a -b |=17,则表示a ,b 的有向线段所在的直线所成的角是多少? 解:(1)由向量三角不等式||a |-|b ||≤|a -b |≤|a |+|b |,得7≤|a -b |≤23. 当a ,b 同向时,不等式左边取等号, 当a ,b 反向时,不等式右边取等号. (2)易知|a |2+|b |2=82+152=172=|a -b |2. 作OA →=a ,OB →=b ,则|BA →|=|a -b |=17, 所以△OAB 是直角三角形,其中∠AOB =90°. 所以表示a ,b 的有向线段所在的直线成90°角.。

平面向量的线性运算练习题

平面向量的线性运算练习题

平面向量的线性运算练习题1. 已知平面向量a = 3i - 2j,b = 2i + 5j,求向量a + b的结果。

求解:a +b = (3i - 2j) + (2i + 5j)= 3i - 2j + 2i + 5j= 5i + 3j所以,向量a + b的结果为5i + 3j。

2. 已知平面向量u = 4i - 3j,v = 2i + 7j,w = -i + 2j,求向量2u - 3v + 4w的结果。

求解:2u - 3v + 4w = 2(4i - 3j) - 3(2i + 7j) + 4(-i + 2j)= 8i - 6j - 6i - 21j - 4i + 8j= -2i - 19j所以,向量2u - 3v + 4w的结果为-2i - 19j。

3. 已知平面向量p = -3i + 4j,q = 5i + 2j,r = 2i - j,s = -i - 5j,求向量(p + q) - (r - s)的结果。

求解:(p + q) - (r - s) = (-3i + 4j + 5i + 2j) - (2i - j + -i - 5j)= (-3i + 5i + 2i) + (4j + 2j - j - 5j)= 4i + 0j= 4i所以,向量(p + q) - (r - s)的结果为4i。

4. 已知平面向量a = 2i + 3j,b = 4i - 5j,求向量a与向量b的数量积。

求解:a ·b = (2i + 3j) · (4i - 5j)= 2i · 4i + 2i · -5j + 3j · 4i + 3j · -5j= 8i^2 - 10ij + 12ij - 15j^2= 8i^2 + 2ij - 15j^2 (注意i^2 = -1,j^2 = -1)= 8(-1) + 2ij - 15(-1)= -8 + 2ij + 15= 7 + 2ij所以,向量a与向量b的数量积为7 + 2ij。

含解析高中数学《平面向量》专题训练30题(精)

含解析高中数学《平面向量》专题训练30题(精)

含解析高中数学《平面向量》专题训练30题(精)含解析高中数学《平面向量》专题训练30题(精)1.已知向量.(1)若,求x的值;(2)记,求函数y=f(x)的最大值和最小值及对应的x的值.【答案】(1)(2)时,取到最大值3;时,取到最小值.【解析】【分析】(1)根据,利用向量平行的充要条件建立等式,即可求x的值.(2)根据求解求函数y=f(x)解析式,化简,结合三角函数的性质即可求解最大值和最小值及对应的x的值.【详解】解:(1)∵向量.由,可得:,即,∵x∈[0,π]∴.(2)由∵x∈[0,π],∴∴当时,即x=0时f(x)max=3;当,即时.【点睛】本题主要考查向量的坐标运用以及三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.2.已知中,点在线段上,且,延长到,使.设.(1)用表示向量;(2)若向量与共线,求的值.【答案】(1),;(2)【解析】【分析】(1)由向量的线性运算,即可得出结果;(2)先由(1)得,再由与共线,设,列出方程组求解即可.【详解】解:(1)为BC的中点,,可得,而(2)由(1)得,与共线,设即,根据平面向量基本定理,得解之得,.【点睛】本题主要考查向量的线性运算,以及平面向量的基本定理,熟记定理即可,属于常考题型.3.(1)已知平面向量、,其中,若,且,求向量的坐标表示;(2)已知平面向量、满足,,与的夹角为,且(+)(),求的值.【答案】(1)或;(2)【解析】【分析】(1)设,根据题意可得出关于实数、的方程组,可求得这两个未知数的值,由此可得出平面向量的坐标;(2)利用向量数量积为零表示向量垂直,化简并代入求值,可解得的值.【详解】(1)设,由,可得,由题意可得,解得或.因此,或;(2),化简得,即,解得4.已知向量,向量.(1)求向量的坐标;(2)当为何值时,向量与向量共线.【答案】(1)(2)【解析】【详解】试题分析:(1)根据向量坐标运算公式计算;(2)求出的坐标,根据向量共线与坐标的关系列方程解出k;试题解析:(1)(2),∵与共线,∴∴5.已知向量与的夹角,且,.(1)求,;(2)求与的夹角的余弦值.【答案】(1),;(2).【解析】【分析】(1)利用平面向量数量积的定义可计算得出的值,利用平面向量数量积的运算性质计算得出的值;(2)计算出的值,利用平面向量夹角的余弦公式可求得与的夹角的余弦值.【详解】(1)由已知,得,;(2)设与的夹角为,则,因此,与的夹角的余弦值为.6.设向量,,记(1)求函数的单调递减区间;(2)求函数在上的值域.【答案】(1);(2).【解析】【详解】分析:(1)利用向量的数量积的坐标运算式,求得函数解析式,利用整体角的思维求得对应的函数的单调减区间;(2)结合题中所给的自变量的取值范围,求得整体角的取值范围,结合三角函数的性质求得结果.详解:(1)依题意,得.由,解得故函数的单调递减区间是.(2)由(1)知,当时,得,所以,所以,所以在上的值域为.点睛:该题考查的是有关向量的数量积的坐标运算式,三角函数的单调区间,三角函数在给定区间上的值域问题,在解题的过程中一是需要正确使用公式,二是用到整体角思维.7.在中,内角,,的对边分别是,,,已知,点是的中点.(Ⅰ)求的值;(Ⅱ)若,求中线的最大值.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(1)由正弦定理,已知条件等式化边为角,结合两角和的正弦公式,可求解;(2)根据余弦定理求出边的不等量关系,再用余弦定理把用表示,即可求解;或用向量关系把用表示,转化为求的最值.【详解】(Ⅰ)由已知及正弦定理得.又,且,∴,即.(Ⅱ)方法一:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴在和中,由余弦定理得,,①.②由①②,得,当且仅当时,取最大值.方法二:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴,两边平方得,∴,当且仅当时,取最大值.【点睛】本题考查正弦定理、余弦定理在三角形中应用,考查基本不等式和向量的模长公式的灵活运用,是一道综合题.8.已知平面向量,.(1)若,求的值;(2)若,与共线,求实数m的值.【答案】(1);(2)4.【解析】(1)求出,即可由坐标计算出模;(2)求出,再由共线列出式子即可计算.【详解】(1),所以;(2),因为与共线,所以,解得m=4.9.已知向量.(Ⅰ)若,求的值;(Ⅱ)若,求向量与夹角的大小.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)首先求出的坐标,再根据,可得,即可求出,再根据向量模的坐标表示计算可得;(Ⅱ)首先求出的坐标,再根据计算可得;【详解】解:(Ⅰ)因为,所以,由,可得,即,解得,即,所以;(Ⅱ)依题意,可得,即,所以,因为,所以与的夹角大小是.10.如图,在中,,,,,.(1)求的长;(2)求的值.【答案】(1);(2).【解析】(1)将用和表示,利用平面向量数量积的运算律和定义计算出的值,即可得出的长;(2)将利用和表示,然后利用平面向量数量积的运算律和定义计算出的值.【详解】(1),,,,,,.;(2),,,.【点睛】本题考查平面向量模与数量积的计算,解题的关键就是选择合适的基底将题中所涉及的向量表示出来,考查计算能力,属于中等题.11.如图所示,在中,,,,分别为线段,上一点,且,,和相交于点.(1)用向量,表示;(2)假设,用向量,表示并求出的值.【答案】(1);(2),.【解析】【分析】(1)把放在中,利用向量加法的三角形法则即可;(2)把,作为基底,表示出,利用求出.【详解】解:由题意得,,所以,(1)因为,,所以.(2)由(1)知,而而因为与不共线,由平面向量基本定理得解得所以,即为所求.【点睛】在几何图形中进行向量运算:(1)构造向量加、减法的三角形法则和平行四边形法则;(2)树立“基底”意识,利用基向量进行线性运算.12.已知向量与的夹角为,且,.(1)若与共线,求k;(2)求,;(3)求与的夹角的余弦值【答案】(1);(2),;(3).【解析】【分析】(1)利用向量共线定理即可求解.(2)利用向量数量积的定义:可得数量积,再将平方可求模.(3)利用向量数量积即可夹角余弦值.【详解】(1)若与共线,则存在,使得即,又因为向量与不共线,所以,解得,所以.(2),,(3).13.已知.(1)当为何值时,与共线(2)当为何值时,与垂直?(3)当为何值时,与的夹角为锐角?【答案】(1);(2);(3)且.【解析】【分析】(1)利用向量共线的坐标表示:即可求解.(2)利用向量垂直的坐标表示:即可求解.(3)利用向量数量积的坐标表示,只需且不共线即可求解.【详解】解:(1).与平行,,解得.(2)与垂直,,即,(3)由题意可得且不共线,解得且.14.如图,在菱形ABCD中,,.(1)若,求的值;(2)若,,求.(3)若菱形ABCD的边长为6,求的取值范围.【答案】(1);(2);(3).【解析】【分析】(1)由向量线性运算即可求得值;(2)先化,再结合(1)中关系即可求解;(3)由于,,即可得,根据余弦值范围即可求得结果.【详解】解:(1)因为,,所以,所以,,故.(2)∵,∴∵ABCD为菱形∴∴,即.(3)因为,所以∴的取值范围:.【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算;(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.15.已知,,与夹角是.(1)求的值及的值;(2)当为何值时,?【答案】(1);(2)【解析】【分析】(1)利用数量积定义及其向量的运算性质,即可求解;(2)由于,可得,利用向量的数量积的运算公式,即可求解.【详解】(1)由向量的数量积的运算公式,可得,.(2)因为,所以,整理得,解得.即当值时,.【点睛】本题主要考查了数量积定义及其运算性质、向量垂直与数量积的关系,其中解答中熟记向量的数量积的运算公式,以及向量垂直的坐标运算是解答的关键,着重考查了推理能力与计算能力,属于中档题.16.设向量(I)若(II)设函数【答案】(I)(II)【解析】【详解】(1)由=(sinx)2+(sinx)2=4sin2x,=(cosx)2+(sinx)2=1,及,得4sin2x=1.又x∈,从而sinx=,所以x=.(2)sinx·cosx+sin2x=sin2x-cos2x+=sin+,当x∈时,-≤2x-≤π,∴当2x-=时,即x=时,sin取最大值 1.所以f(x)的最大值为.17.化简.(1).(2).【答案】(1);(2).【解析】(1)利用平面向量加法的三角形法则化简可得所求代数式的结果;(2)利用平面向量加法的三角形法则化简可得所求代数式的结果.【详解】(1);(2).18.已知点,,,是原点.(1)若点三点共线,求与满足的关系式;(2)若的面积等于3,且,求向量.【答案】(1)(2)或【解析】【分析】(1)由题意结合三点共线的充分必要条件确定m,n满足的关系式即可;(2)由题意首先求得n的值,然后求解m的值即可确定向量的坐标.【详解】(1),,由点A,B,C三点共线,知∥,所以,即;(2)由△AOC的面积是3,得,,由,得,所以,即,当时,,?解得或,当时,,方程没有实数根,所以或.【点睛】本题主要考查三点共线的充分必要条件,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.19.如图,在直角梯形中,为上靠近B的三等分点,交于为线段上的一个动点.(1)用和表示;(2)求;(3)设,求的取值范围.【答案】(1);(2)3;(3).【解析】【分析】(1)根据给定条件及几何图形,利用平面向量的线性运算求解而得;(2)选定一组基向量,将由这一组基向量的唯一表示出而得解;(3)由动点P设出,结合平面向量基本定理,建立为x的函数求解.【详解】(1)依题意,,,;(2)因交于D,由(1)知,由共起点的三向量终点共线的充要条件知,,则,,;(3)由已知,因P是线段BC上动点,则令,,又不共线,则有,,在上递增,所以,故的取值范围是.【点睛】由不共线的两个向量为一组基底,用该基底把相关条件和结论表示成向量的形式,再通过向量的运算来解决.20.设向量满足,且.(1)求与的夹角;(2)求的大小.【答案】(1);(2)【解析】【分析】(1)由已知得,展开求得,结合夹角公式即可求解;(2)由化简即可求解.【详解】(1)设与的夹角为θ由已知得,即,因此,得,于是,故θ=,即与的夹角为;(2)由.21.已知,,(t∈R),O是坐标原点.(1)若点A,B,M三点共线,求t的值;(2)当t取何值时,取到最小值?并求出最小值.【答案】(1)t;(2)当t时,?的最小值为.【解析】【分析】(1)求出向量的坐标,由三点共线知与共线,即可求解t的值.(2)运用坐标求数量积,转化为函数求最值.【详解】(1),,∵A,B,M三点共线,∴与共线,即,∴,解得:t.(2),,,∴当t时,?取得最小值.【点睛】关键点点睛:(1)由三点共线,则由它们中任意两点构成的向量都共线,求参数值.(2)利用向量的数量积的坐标公式得到关于参数的函数,即可求最值及对应参数值.22.设向量,,.(1)求;(2)若,,求的值;(3)若,,,求证:A,,三点共线.【答案】(1) 1(2)2(3)证明见解析【解析】【分析】(1)先求,进而求;(2)列出方程组,求出,进而求出;(3)求出,从而得到,得到结果.(1),;(2),所以,解得:,所以;(3)因为,所以,所以A,,三点共线.23.在平面直角坐标系中,已知,.(Ⅰ)若,求实数的值;(Ⅱ)若,求实数的值.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)求出向量和的坐标,然后利用共线向量的坐标表示得出关于的方程,解出即可;(Ⅱ)由得出,利用向量数量积的坐标运算可得出关于实数的方程,解出即可.【详解】(Ⅰ),,,,,,解得;(Ⅱ),,,解得.【点睛】本题考查平面向量的坐标运算,考查利用共线向量和向量垂直求参数,考查计算能力,属于基础题.24.在中,,,,点,在边上且,.(1)若,求的长;(2)若,求的值.【答案】(1);(2).【解析】【分析】(1)先设,,根据题意,求出,,再由向量模的计算公式,即可得出结果;(2)先由题意,得到,,再由向量数量积的运算法则,以及题中条件,得到,即可求出结果.【详解】(1)设,,则,,因此,所以,,(2)因为,所以,同理可得,,所以,∴,即,同除以可得,.【点睛】本题主要考查用向量的方法求线段长,考查由向量数量积求参数,熟记平面向量基本定理,以及向量数量积的运算法则即可,属于常考题型.25.已知向量,,,且.(1)求,;(2)求与的夹角及与的夹角.【答案】(1),;(2),.【解析】【分析】(1)由、,结合平面向量数量积的运算即可得解;(2)记与的夹角为,与的夹角为,由平面向量数量积的定义可得、,即可得解.【详解】(1)因为向量,,,且,所以,所以,又,所以;(2)记与的夹角为,与的夹角为,则,所以.,所以.【点睛】本题考查了平面向量数量积的运算与应用,考查了运算求解能力,属于基础题.26.平面内给定三个向量,,.(1)求满足的实数,;(2)若,求实数的值.【答案】(1),;(2).【解析】【分析】(1)依题意求出的坐标,再根据向量相等得到方程组,解得即可;(2)首先求出与的坐标,再根据向量共线的坐标表示计算可得;【详解】解:(1)因为,,,且,,,,.,解得,.(2),,,.,,,.,解得.27.如图,已知中,为的中点,,交于点,设,.(1)用分别表示向量,;(2)若,求实数t的值.【答案】(1),;(2).【解析】(1)根据向量线性运算,结合线段关系,即可用分别表示向量,;(2)用分别表示向量,,由平面向量共线基本定理,即可求得t的值.【详解】(1)由题意,为的中点,,可得,,.∵,∴,∴(2)∵,∴∵,,共线,由平面向量共线基本定理可知满足,解得.【点睛】本题考查了平面向量的线性运算,平面向量共线基本定理的应用,属于基础题.28.已知,向量,.(1)若向量与平行,求k的值;(2)若向量与的夹角为钝角,求k的取值范围【答案】(1)或;(2).【解析】(1)利用向量平行的坐标表示列式计算即得结果;(2)利用,且不共线,列式计算即得结果.【详解】解:(1)依题意,,,又,得,即解得或;(2)与的夹角为钝角,则,即,即,解得或.由(1)知,当时,与平行,舍去,所以.【点睛】思路点睛:两向量夹角为锐角(或钝角)的等价条件:(1)两向量夹角为锐角,等价于,且不共线;(2)两向量夹角为钝角,等价于,且不共线.29.已知.(1)若,求的值;(2)若,求向量在向量方向上的投影.【答案】(1)(2)【解析】【分析】(1)先得到,根据可得,即可求出m;(2)根据求出m=2,再根据求在向量方向上的投影.【详解】;;;;;;;在向量方向上的投影为.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题.30.平面内给定三个向量.(1)求;(2)求满足的实数m和n;(3)若,求实数k.【答案】(1)6;(2);(3).【解析】(1)利用向量加法的坐标运算得到,再求模长即可;(2)先写的坐标,再根据使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可.【详解】解:(1)由,得,;(2),,,,故,解得;(3),,,,,,即,解得.【点睛】结论点睛:若,则等价于;等价于.试卷第1页,共3页试卷第1页,共3页。

《平面向量》基础测试题

《平面向量》基础测试题

基础测试(一)选择题(第题4分,共24分)1.计算BA++等于().DBAC+CD(A)0 (B)0(C)2DB(D)2 AC【提示】+=(CDAC+)+(BABA+AC+CDDBAD+=0.DB+)=DA【答案】(B).【点评】本题考查向量的加法及运算律,相反向量,零向量的表示方法.2.若向量a=(3,2),b=(0,-1),则向量2b-a的坐标是().(A)(3,-4)(B)(-3,4)(C)(3,4)(D)(-3,-4)【提示】2b-a=2(0,-1)-(3,2)=(-3,-4).【答案】(D).【点评】本题考查向量的坐标运算.3.下列各组向量中,共线的是().(A)a=(-2,3),b=(4,6)(B)a=(1,-2),b=(7,14)(C)a=(2,3),b=(3,2)(D)a=(-3,2),b=(6,-4)【提示】若a=(x,y),b=(x2,y2),则a与b共线的充要条件是x1 y2-x2 y1 =0.这里(-3)×(-4)-2×6=0.故选(D).【答案】(D).【点评】本题以坐标的形式考查向量共线的充要条件.对于(A),(-2)×6-3×4=-24≠0,排除(A);对于(B),1×14-(-2)×7=28≠0,排除(B);对于(C),2×2-3×3=-5≠0,排除(C).4.平面上有三个点A (1,3),B (2,2),C (7,x ),若∠ABC =90°,则x 的值为( ).(A )5 (B )6 (C )7 (D )8 【提示】∠ABC =90°,即AB ⊥BC ,因AB =(1,-1),BC =(5,x -2),得1×5+(-1)×(x -2)=0,解出x =7. 【答案】(C ).【点评】本题考查向量的坐标运算及向量垂直的充要条件.5.设s 、t 为非零实数,a 与b 均为单位向量时,若|s a +t b |=|t a -s b |,则a 与b 的夹角θ 的大小为( ).(A )30° (B )45° (C )60° (D )90° 【提示】由|s a +t b |=|t a -s b |,得s 2a 2+t 2b 2+2 st a · b =t 2a 2+s 2b 2-2 st a b . 又a 、b 均为单位向量,|a |=1,|b |=1, 即a 2=1,b 2=1.∴ 4 s t a ·b =0,有|a |·|b |cos θ =0,得cos θ =0.∴ θ =90°. 【答案】(D ).【点评】本题主要考查平面向量的数量积及运算律.6.如图,D 、C 、B 三点在地面同一条直线上,从C 、D 两点测得A 点仰角分别为α、β, (α >β),则A 点距地面高度AB 等于( ).(A ))sin(cos sin βαβα-m (B ))cos(cos sin βαβα-m(C ))sin(cos cos βαβα-m (D ))cos(cos cos βαβα-m【提示】在△ACD 由正弦定理,得AC =)(sin sin βαβ-s m ,再在直角三角形中求AB .【答案】(A ).【点评】本题主要考查应用正弦定理解三角形的有关知识.(二)填空题(每题4分,共20分)1.已知向量a =(1,2),b =(3,1),那么向量2a -21b 的坐标是_________.【提示】 2a -21b=2(1,2)-21(3,1)=(2,4)-(23,21)=(2-23,4-21)=(21,321). 【答案】(21,321).【点评】本题考查平面向量的坐标运算.2.已知A (-1,2),B (2,4),C (4,-3),D (x ,1),若AB 与CD 共线,则|BD |的值等于________.【提示】由AB 与CD 共线,先得x =10,再求|BD |的长. 【答案】73.【点评】本题考查向量的模、向量的坐标运算及向量共线的充要条件.3.已知点P 1(1,2),P 2(-2,1),直线P 1P 2与x 轴相交于点P ,则点P 分21P P 所成的比λ 的值为_____.【提示】由直线P 1P 2与x 轴相交于点P ,得点P 的纵坐标为0,于是0=λλ+⨯+112,即λ =-2.【答案】-2.【点评】本题考查线段的定比分点的坐标公式.4.将点A (2,4)按向量a =(-5,-2)平移后,所得到的对应点A ′的坐标是______. 【提示】由已知,x =2,y =4,h =-5,k =-2,代入平移公式⎩⎨⎧+='+='ky y h x x ,得x ′=-3,y ′=2. 【答案】(-3,2).【点评】本题考查点的平移公式.主要应分清平移前后点的坐标.5.在△ABC 中,已知a =2,b =22,c =6+2.则这个三角形的最小角的度数是___________. 【提示】先由已知条件判断△ABC 三条边中的最短的边,它所对的角便是该三角形的最小角.由于c >b >a ,则a 对的角A 为最小.利用余弦定理,得cos A =bcac b 2222-+=)26(2222)26()22(222+⨯⨯-++=23,∴ A =30°. 【答案】30°.【点评】本题主要考查应用余弦定理解决三角形的有关问题.(三)解答题(每题14分,共56分)1.设平面三点A (1,0),B (0,1),C (2,5).(1)试求向量2AB +AC 的模; (2)试求向量AB 与AC 的夹角; (3)试求与BC 垂直的单位向量的坐标. 【提示】AB 、AC 的坐标为终点坐标与始点坐标的差,求出AB 、AC 的坐标后,可得2AB +AC 的坐标,(1)可解,对于(2),可先求AB 、AC 的值,代入 cos θ ,即可;对于(3),设所求向量的坐标为(x ,y ),根据题意,可得关于x 、y 的二元方程组,解出x ,y . 【答案】(1)∵ AB =(0-1,1-0)=(-1,1),AC =(2-1,5-0)=(1,5). ∴ 2AB +AC =2(-1,1)+(1,5)=(-1,7). ∴ |2AB +AC |=227)1(+-=50. (2)∵ |AB |=221)1(+-=2.|AC |=2251+=26,AB ·AC =(-1)×1+1×5=4. ∴ cos θ AC AB ⋅=2624⋅=13132.(3)设所求向量为m =(x ,y ),则 x 2+y 2=1. ①又 BC =(2-0,5-1)=(2,4),由BC ⊥m ,得 2 x +4 y =0. ②由①、②,得⎪⎪⎩⎪⎪⎨⎧-==.55552y x 或⎪⎪⎩⎪⎪⎨⎧==.-55552y x∴ (552,-55)或(-552,55)即为所求.【点评】本题考查向量的模,向量的坐标运算、向量的数量积,向量垂直的充要条件以及运算能力.2.如图,已知AB =DC =a ,BC =b ,且|a |=|b |.(1)用a ,b 表示AD ,AO ,OB ; (2)求AC ·BD .【提示】由AB =DC ,可判定四边形ABCD 为平行四边形,于是利用平行四边形的性质.可求AD ,AO ,OB .又AC =AB +BC .BD =AD -AB ,AD =BC 利用数量积的运算性质及已知条件|a |=|b |.可求AC ·BD . 【答案】(1)∵ AB =DC ,∴ 四边形ABCD 为平行四边形. ∴ AD =BC =b .∴ AC =AB +BC =a +b ,BD =AD -AB =b -a , 而 AO =21AC ,OB =-21BD ,∴ AO =21a +21b ,OB =21a -21b .(2)∵ AC =a +b ,BD =b -a ,∴ AC ·BD =(b +a )(b -a ) =b 2-a 2=|b |2-|a |2=0.【点评】本题考查平面向量的加减法,基本定理、数量积及运算律.解题时注意结合平面图形的几何特征,寻求向量之间的联系.由题目的条件及结论可知,四边形ABCD 为菱形. 3.一只船按照北偏西30°方向,以36海里/小时的速度航行,一灯塔M 在船北偏东15°,经40分钟后,灯塔在船北偏东45°.求船与灯塔原来的距离. 【提示】先画船航行的示意图,将题目的已知条件分别与三角形内的边、角对应起来,从而确定三角形内的边角关系,运用正弦定理或余弦定理解决.【答案】如图,设船原来的位置为A ,40分钟后的位置为B ,则AB =36×32=24(海里).在△ABM 中,∠BAM =30°+15°=45°. ∠ABM =180°-(45°+30°)=105°,∴ ∠AMB =180°-(∠ABM +∠BAM )=30°. 由正弦定理,得 AM =AMB AB ∠sin · sin ∠ABM=︒30sin 24· sin 105°=12(2+6)(海里).答:船与灯塔原来的距离为12(2+6)海里. 【点评】本题考查解斜三角形的应用问题.关键是画出示意图(这里必须弄清方位角的概念),建立数学模型,将实际问题转化为解斜三角形的问题.4.在□ABCD 中,对角线AC =65,BD =17,周长为18,求这个平行四边形的面积. 【提示一】要求得平行四边形的面积,须知两条邻边及它的夹角.由周长为18,知两条邻边的和为9,可据两条已知的对角线,利用余弦定理求得两条邻边及夹角. 【提示二】在△AOB 和△BOC 中利用余弦定理求解.【解法一】如图,在□ABCD 中,设AB =x ,则BC =9-x ,在△ABC 中,据余弦定理,得 AC 2=AB 2+BC 2-2 AB BC cos ABC . 在△ABD 中,据余弦定理,得 BD 2=AB 2+AD 2-2 AB · AD cos DAB .由已知 AC =65,BD =17,∠DAB +∠ABC =180°,BC =AD . 故角 65=x 2 +(9-x ) 2-2 AB BC cos ABC , 17=x 2 +(9-x 2)+2 AB BC cos ABC , 二式相加,得 82=4 x 2-36 x +162 即 x 2-9 x +20=0 解得 x =4,或x =5, 在△ADB 中,由余弦定理,得 cos ∠DAB =ABAD BDAB AD ⋅-+2222=542175422⨯⨯-+=53.∴ s in ∠DAB =54.∴ sin □ABCD =AB · AD s in DAB=4×5×54=16.【解法二】在△AOB 和△BOC 中,由余弦定理,得AB 2=OA 2+OB 2-2 OA · OB cos ∠AOB , BC 2=OC 2+OB 2-2 OC · OB cos ∠BOC , 可设 AB =x ,则BC =9-x , 而OA =OC =21AC ,OB =21BD ,∠AOB +∠BOC =180°,代入后化简,可求得 x =4或x =5.在△ADB 中,由余弦定理,得 cos ∠DAB =ABAD BDAB AD ⋅-+2222=542175422⨯⨯-+=53.∴ s in ∠DAB =54.∴ sin □ABCD =AB · AD s in DAB=4×5×54=16.【点评】本题考查余弦定理的灵活运用.3.如图,某观测站C 在城A 的南偏西20°方向上,从城A 出发有一条出路,走向是南偏东40°,在C 处测得距C 处31千米的公路上的B 处有一人正沿着公路向城A 走去.走20千米后到达D 处.测得CD =21千米,这时此人距城A 多少千米.【提示】要求AD 的长,在△ACD 中,应用正弦定理,只需求∠ACD ,而∠CDB 是△ACD 的一个外角,∠CAD 已知,故只需求∠CDB ,在△CDB 中,已知两边,可利用余弦定理求角.【答案】由已知,在△CDB 中,CD =21,DB =20,BC =31,据余弦定理,有 cos ∠CDB =DBCD BCDBCD⋅-+2222=-71.∴ sin ∠CDB =CDB 2cos 1-=374.在△ACD 中,∠CAD =20°+40°=60°, ∴ ∠ACD =∠CDB -∠CAD =∠CDB -60°. ∴ sin ∠ACD =sin (∠CDB -60°)=sin ∠CDB cos 60°-cos ∠CDB sin 60° =374×21-(-71)×23=1435.由正弦定理,得 AD =CADCD ∠sin · sin ∠ACD =15(千米).答:此人距A 城15千米. 【点评】本题结合三角函数的知识,主要考查了正弦、余弦定理的应用.解此类应用问题的关键是正确理解题意,建立数学模型,将实际问题转化为解斜三角形的问题,再根据正弦、余弦定理予以解决.4.已知平面向量a =(7,9),若向量x 、y 满足2x +y =a ,x ⊥y ,|x |=|y |,求x 、y 的坐标.【提示】设x =(x 1,x 2),y =(y 1,y 2),由已知,可以得到含有x 1,x 2,y 1,y 2的四个关系式,建立方程组,解之即可. 【答案】设x =(x 1,x 2),y =(y 1,y 2).由2x +y =a ,得 2(x 1,x 2)+(y 1,y 2)=(7,9), 即⎩⎨⎧=+=+)2(92)1(722211y x y x 由x ⊥y ,得x 1y 1+x 2y 2=0. ③ 由 |x |=|y |,得 x 12+x 22=y 12+y 22=0. ④ 将(1)式化为 y 1=7-2 x 1,(2)式化为 y 2=9-2 x 2, 代入③式,得 x 1(7-2 x 1)+x 2(9-2 x 2)=0, 即 2(x 12+x 22)=7 x 1+9 x 2, ⑤ 代入④式,得 x 12+x 22=(7-2 x 1) 2 +(9-2 x 2) 2, 即 3(x 12+x 22)=28 x 1+36 x 2-130. ⑥ 由⑤、⑥,得⎩⎨⎧=+=+.529726212221x x x x 解之得,⎪⎪⎩⎪⎪⎨⎧==51152321x x 或⎩⎨⎧==.5121x x 分别代入(1)、(2),得⎪⎪⎩⎪⎪⎨⎧=-=52351121y y 或⎩⎨⎧-==.1521y y ∴ x =(523,511),y =(-511,523).或 x =(1,5),y =(5,-1)即为所求.【点评】本题考查向量的坐标运算,向量垂直的充要条件,两点间距离公式及运算能力.。

平面向量小题基础练-高考数学重点专题冲刺演练(原卷版)

平面向量小题基础练-高考数学重点专题冲刺演练(原卷版)

平面向量小题基础练-新高考数学复习分层训练(新高考通用)一、单选题1.(2023·江苏泰州·统考一模)已知向量,a b 满足2π1,2,,3a b a b ==<>= ,则()a ab ⋅+= ()A .-2B .-1C .0D .22.(2023·湖北·荆州中学校联考二模)已知向量()3,4m =- ,()12,5n =- ,则m n n ⋅+=()A .56-B .69C .43-D .433.(2023·江苏·二模)在ABC 所在平面内,D 是BC 延长线上一点且4BD CD =,E 是AB 的中点,设AB a =,AC b = ,则ED = ()A .1455a b + B .3144a b + C .5463a b -+ D .5564a b -+ 4.(2023·江苏泰州·泰州中学校考一模)已知平面单位向量a ,b ,c 满足2π,,,3a b b c c a 〈〉=〈〉=〈〉=r r r r r r ,则32a b c ++=r r r ()A .0B .1CD 5.(2023·江苏南通·统考模拟预测)若向量,a b 满足||||||a b a b +=+ ,则向量,a b 一定满足的关系为()A .0a =B .存在实数λ,使得a bλ= C .存在实数,m n ,使得ma nb= D .||||||a b a b -=- 6.(2023·湖北武汉·统考模拟预测)平面向量()()2,,2,4a k b =-= ,若a b ⊥ ,则a b -=r r ()A .6B .5C .D .7.(2023·湖南邵阳·统考二模)已知向量()1,3a = ,()1,1b =- ,()4,5c = .若a 与b cλ+ 垂直,则实数λ的值为()A .219B .411C .2D .47-8.(2023·湖南·模拟预测)如图,在平行四边形ABCD 中,AB a =,AD b = ,若23AE AC = ,则DE = ()A .1233a b -B .2133a b -C .1233a b +D .2133a b + 9.(2023·湖南常德·统考一模)已知向量a 为单位向量,向量()1,1b = ,()()21a b a b +⋅-= ,则向量a 与向量b 的夹角为()A .π6B .π4C .π3D .π210.(2023·广东佛山·统考一模)已知单位向量a ,b 满足0a b ⋅= ,若向量c a = ,则cos ,a c = ()A B .12C D .1411.(2023·广东深圳·统考一模)已知a ,b 为单位向量,且357a b -= ,则a 与a b - 的夹角为()A .π3B .2π3C .π6D .5π612.(2023·广东茂名·统考一模)在ABC 中,AB c = ,AC b = ,若点M 满足2MC BM =uuu r uuu r ,则AM = ()A .1233b c + B .2133b c - C .5233c b - D .2133b c + 13.(2023·广东湛江·统考一模)在平行四边形ABCD 中,E 为边BC 的中点,记AC a = ,DB b = ,则AE = ()A .1124a b - B .2133a b + C .12a b + D .3144a b + 14.(2023·浙江金华·浙江金华第一中学校考模拟预测)若向量(),2a x = ,()1,2b =- ,且a b ⊥ ,则a = ()A .B .4C .D .15.(2023·浙江·校联考模拟预测)已知向量,a b 满足||1a = ,||3b = ,(3,1)a b -= ,则|3|a b -= ()A .B C .D .16.(2023·浙江嘉兴·统考模拟预测)等边ABC 的边长为3,若2AD DC = ,BF FD = ,则AF = ()A .2B .2C .2D .217.(2023·江苏南通·二模)在平行四边形ABCD 中,12BE BC = ,13AF AE = .若AB mDF nAE =+ ,则m n +=()A .12B .34C .56D .43二、填空题18.(2023·湖北·校联考模拟预测)已知向量(2,4),(,1)m n x =-=- ,若m n ∥,则x =__________.19.(2023·湖北·统考模拟预测)已知()4,2a = ,()1,1b = ,则a 在b 方向上的投影向量的坐标为__________.20.(2023·湖南湘潭·统考二模)已知向量(,2),(1,3)a m b =-= ,若()a b b -⊥ ,则m =__________.21.(2023·广东惠州·统考模拟预测)已知平面向量(2,4)a =- ,(,1)b λ= ,若a 与b 垂直,则实数λ=__________.22.(2023·广东广州·统考一模)已知向量()()1,2,3,,a b x a == 与a b + 共线,则a b -=r r __________.23.(2023·浙江·校联考模拟预测)已知向量(4,),(3,1)a m m b =+= ,且//a b r r ,则m =______.24.(2023·浙江温州·统考二模)已知向量()()1,2,2,a b λ== ,若()()a b a b +- ∥,则λ=__________.25.(2023·江苏·统考一模)在ABC 中,已知2BD DC = ,CE EA = ,BE 与AD 交于点O .若CO xCB yCA =+(),R x y ∈,则x y +=________.26.(2023·江苏·统考一模)已知向量a ,b 满足2a = ,3b = ,0a b ⋅= .设2c b a =- ,则cos ,a c = ___________.27.(2023·山东·烟台二中校联考模拟预测)已知1e ,2e是夹角为120°的单位向量,若1223m e e =+ ,124n e e =- ,则m ,n 的夹角为__________.28.(2023·山东济宁·统考一模)已知平面向量()1,2a =- ,(),3b m =- ,若2a b + 与a 共线,则m =______.29.(2023·湖南张家界·统考二模)已知a 是单位向量,()1,1b =- ,若向量a 与向量b 夹角π0,4α⎛⎫∈ ⎪⎝⎭,写出一个满足上述条件的向量a ______.30.(2023·广东·统考一模)已知向量,a b 满足()2,4,0a b b a a ==-⋅= ,则a 与b 的夹角为___________.。

平面向量相关运算(习题)

平面向量相关运算(习题)

平面向量相关运算(习题)➢ 巩固练习1. 设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA OC OB OD −−→−−→−−→−−→+++等于( ) A .OM −−→B .2OM −−→C .3OM −−→D .4OM −−→2. 设P 是△ABC 所在平面内的一点,2BC BA BP −−→−−→−−→+=,则( )A .PA PB −−→−−→+=0 B .PC PA −−→−−→+=0 C .PB PC −−→−−→+=0D .PA PB PC −−→−−→−−→++=03. 已知O 是△ABC 所在平面内一点,D 为BC 边中点,且2OA OB OC −−→−−→−−→++=0,那么( ) A .AO OD −−→−−→= B .2AO OD −−→−−→= C .3AO OD −−→−−→=D .2AO OD −−→−−→=4. 设D 为△ABC 所在平面内一点3BC CD −−→−−→=,则( )A .1433AD AB AC −−→−−→−−→=-+B .1433AD AB AC −−→−−→−−→=- C .4133AD AB AC −−→−−→−−→=+D .4133AD AB AC −−→−−→−−→=-5. △ABC 中,点D 在AB 上,CD 平分ACB ∠.若CB −−→=a ,CA −−→=b ,1=a ,2=b ,则CD −−→=( )A .1233+a bB .2133+a bC .3455+a bD .4355+a b6. 已知两个非零向量a ,b 满足|a +b |=|a -b |,则下面结论正确的是( )A .a //bB .a ⊥bC .|a |=|b |D .a +b =a -b7. 在△ABC 中,M 是BC 的中点,AM =1,点P 在AM 上且满足2AP PM −−→−−→=,则()PA PB PC −−→−−→−−→⋅+等于( )A .49-B .43-C .43D .498. △ABC 是边长为2的等边三角形,已知向量a ,b 满足2AB −−→=a ,2AC +−−→=a b ,则下列结论正确的是( ) A .|b |=1 B .a ⊥b C .a ·b =1D .(4)+BC −−→⊥a b9. 已知P 是△ABC 所在平面内一点,若CB PA PB λ−−→−−→−−→=+(λ∈R ),则点P 一定在( ) A .△ABC 的内部B .AC 边所在直线上 C .AB 边所在直线上D .BC 边所在直线上10. 已知点1)A ,(00)B ,,0)C .设∠BAC 的平分线AE 与BC 相交于E ,那么有BC CE λ−−→−−→=,其中λ等于( )A .2B .12 C .-3D .-1311. 若A ,B ,C 是直线l 上不同的三个点,若O 不在l 上,存在实数x 使得20x OA x OB BC −−→−−→−−→++=,实数x 为( )A .-1B .0CD 12. 已知向量a =(1,0),b =(0,1),c =a +λb (λ∈R ),向量d 如图所示.则( )A .存在λ>0,使得向量c 与向量d 垂直B .存在λ>0,使得向量c 与向量d 夹角为60°C .存在λ<0,使得向量c 与向量d 夹角为30°d 11yxOD .存在λ>0,使得向量c 与向量d 共线13. 设a 是已知的平面向量且a ≠0,关于向量a 的分解,有如下四个命题:①给定向量b ,总存在向量c ,使a =b +c ;②给定向量b 和c ,总存在实数λ和μ,使a =λb +μc ;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使a =λb +μc ; ④给定正数λ和μ,总存在单位向量b 和单位向量c ,使a =λb +μc . 上述命题中的向量b ,c 和a 在同一平面内且两两不共线,则真命题的个数是( ) A .1 B .2 C .3 D .414. 设D ,E 分别是△ABC 的边AB ,BC 上的点,12AD AB =,23BE BC =,若12DE AB AC λλ−−→−−→−−→=+(λ1,λ2为实数),则λ1+λ2的值为__________.15. 已知向量a =(-3,2),b =(2,1),c =(3,-1),t ∈R ,(1)求|a +t b |的最小值及相应的t 值; (2)若a -t b 与c 共线,求实数t .16. 已知非零向量e 1,e 2不共线.(1)如果−−→AB =e 1+e 2,−−→BC =2e 1+8e 2,−−→CD =3(e 1-e 2),求证:A ,B ,D 三点共线;(2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.【参考答案】1. D2. B3. A4. A5. B6. B7. A8. D9. B 10. C11.A12.D13.B14.1 215.(1)最小值为5;t为45;(2)3516.(1)略;(2)1或-1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.已知=(3,4),=(5,12),则与夹角的余弦为()A.B.C.D.
2.已知向量=(1,1),2+=(4,2),则向量,的夹角的余弦值为()A.B.C.D.
3.设O是△ABC的内心,AB=c,AC=b,若,则()A. B.C.D.
4.已知平面向量=(1,2),=(﹣3,x),若∥,则x等于()A.2 B.﹣3 C.6 D.﹣6
5.设向量=(x﹣2,2),=(4,y),=(x,y),x,y∈R,若⊥,则||的最小值是()
A.B.C.2 D.
6.已知,则=()
A.9 B.3 C.1 D.2
7.在△ABC中,+=2,||=1,点P在AM上且满足=2,则•(+)等于()
A.B.C.﹣D.﹣
8.在△ABC中,M为边BC上任意一点,N为AM中点,,则λ+μ的值为()
A.B.C.D.1
9.已知,是不共线的向量,=λ+,=+μ(λ、μ∈R),那么A、B、C三点共线的充要条件为()
A.λ+μ=2B.λ﹣μ=1C.λμ=﹣1 D.λμ=1
10.△ABC中,AB=5,BC=3,CA=7,若点D满足,则△ABD的面积为()
A.B.C.D.5
11.在△ABC中,M是AB边所在直线上任意一点,若=﹣2+λ,则λ=()A.1 B.2 C.3 D.4
12.如图,在△ABC中,,P是BN上的一点,若,则实数m的值为()
A.B.C.1 D.3
13.设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=BC,若(λ1,λ2为实数),则λ1+λ2的值为()
A.1 B.2 C.D.
14.已知向量=(2,1),=(x,﹣2),若∥,则+等于()A.(﹣2,﹣1)B.(2,1) C.(3,﹣1)D.(﹣3,1)
15.已知两个单位向量的夹角为θ,则下列结论不正确的是()A.方向上的投影为cosθB.
C.D.
16.设,为单位向量,若向量满足|﹣(+)|=|﹣|,则||的最大值是()
A.1 B.C.2 D.2
17.△ABC内接于以O为圆心,1为半径的圆,且,则的值为()
A. B.C.D.
18.已知向量=(k,3),=(1,4),=(2,1),且(2﹣3)⊥,则实
数k=()
A.﹣B.0 C.3 D.
19.已知向量、,其中||=,||=2,且(﹣)⊥,则向量
和的夹角是()
A.B.C.D.π
20.设向量=(1,0),=(,),则下列结论正确的是()
A.||=||B.•=C.(﹣)⊥D.∥
21.如图,B、D是以AC为直径的圆上的两点,其中AB=,AD=,则•=()
A.1 B.2 C.t D.2t
22.如图,O为△ABC的外心,AB=4,AC=2,∠BAC为钝角,M是边BC的中点,则•的值为()
A.4 B.5 C.7 D.6
23.若正方形ABCD的边长为1,则•等于()
A. B.1 C.D.2
24.已知平面内三点A,B,C满足||=||=1,||=,则•为()
A.B.﹣C.D.﹣
25.已知向量=(3,2),=(﹣1,1),则|2|=()
A.B.C.5D.
26.已知向量,,满足||=2,||=•=3,若(﹣2)•(﹣)=0,则|﹣|的最小值是()
A.2+B.2﹣C.1 D.2
27.已知,为单位向量,|+|=|﹣|,则在+的投影为()A.B.﹣C.D.
1.已知,是非零向量且满足(﹣2)⊥,(﹣2)⊥,则与的夹角是()
A.B.C.D.
2.在边长为1的等边△ABC中,设=()
A. B.C.D.
3.设x,y∈R,向量=(x,1),=(1,y),=(2,﹣4),且⊥,∥,则|+|=()
A.B.C.D.10
4.已知平面向量=(1,2),=(x,﹣2),若与共线,则x的值为()A.﹣4 B.4 C.﹣1 D.1
5.已知向量、不共线,若=+2,=﹣4﹣,=﹣5﹣3,则四边形ABCD是()
A.梯形B.平行四边形C.矩形D.菱形
6.D是△ABC边AB上的中点,记=,=,则向量=()
A. B. C.D.
7.已知平面向量=(1,1),=(1,﹣1),则向量﹣2﹣的坐标是()
A.(﹣3,﹣1)B.(﹣3,1)C.(﹣1,0)D.(﹣1,2)
8.已知向量=(1,1),=(1,﹣1),若=+,则=()A.(﹣1,﹣2)B.(1,2) C.(﹣1,2)D.(1,﹣2)
9.已知,若共线,则实数x=()
A. B.C.1 D.2
10.若向量,且,则的值是()
A.B.C.D.2
11.已知||=1,||=,且(﹣)和垂直,则与的夹角为()A.60°B.30°C.45°D.135°
12.设向量,满足:|=,||=1,•=﹣,则向量与的夹角为()A.30°B.60°C.120° D.150°
13.若向量=(cosα,sinα),=(cosβ,sinβ),则一定满足()A.的夹角等于α﹣βB.()⊥()
C.∥D.⊥
14.已知向量,满足||=3,||=2,且⊥(+),则在方向上的投影为()
A.3 B.C.﹣D.﹣3
15.向量,的夹角是60°,||=2,||=1,则|2﹣|=()A.B.13 C.D.7
16.已知向量,,,满足||=||=•=2,(﹣)•((﹣2)=0,则|﹣|的最小值为()
A.B. C.D.
17.已知=(2,3),=(﹣4,7),则在上的投影为()
A.B.C.D.
18.已知||=||=2,(+2)•(﹣)=﹣2,则与的夹角为()A.B.C.D.
19.在△ABC中,=2,E是BD上的一点,若=x+,则实数x的值为
()
A.B.C.D.
20.下列各式中不能化简为的是()
A.++B.+++C.﹣+ D.+﹣
21.已知平面向量满足:⊥,=﹣2,||=2,=+λ,则实数λ的值为()
A.﹣4 B.﹣2 C.2 D.4
22.已知点A(1,3),B(4,﹣1),则与向量的方向相反的单位向量是()A.(﹣,)B.(﹣,)C.(,﹣)D.(,﹣)23.△ABC的外接圆的圆心为O,半径为2,且,则向量在方向上的投影为()
A.B.3 C.D.﹣3
24.向量=(2,0),=(x,y),若与﹣的夹角等于,则||的最大值为()
A.4 B.2C.2 D.
25.设向量,满足||=||=|+|=1,则|﹣t|(t∈R)的最小值为()A.2 B.C.1 D.
26.已知平面向量=(1,),|﹣|=1.则||的取值范围是()A.[0,1]B.[1,3]C.[2,4]D.[3,4]
27.已知向量,的夹角为45°,且||=1,|2﹣|=,则||=()A.B.2C.3D.4
28.已知、为平面向量,若+与的夹角为,+与的夹角为,则=()
A. B. C.D.
29.已知,是平面内两个互相垂直的单位向量,若向量满足()•()=0,则||的最大值是()A.1 B.2 C.D.
30.已知向量是单位向量,,若•=0,且|﹣|+|﹣2|=,则|+2 |的取值范围是()A.[1,3]B.[]C.[,] D.[,3]
31.已知向量满足:,则在上的投影长度的取值范围是()
A.B.C.D.
32.已知向量,的模分别为1,2,它们的夹角为60°,则向量﹣与﹣4+的夹角为()A.60°B.120°C.30°D.150°
33.已知向量,,且||=2,=0,则||的最小值为()A.B.1 C.D.2
34.已知向量||=||=|﹣|=1,则|2﹣|=()
A.2 B.C.3 D.2
35.已知两个不共线的向量,满足||=3,|+|=2|﹣|,设,的夹角为θ,则cosθ的最小值是()
A.B.C.D.
36.若两个非零向量,满足|+|=|﹣|=2||,则向量+与﹣的夹角是()
A.B.C.D.
37.若||=1,||=2,=,且,则与的夹角为()A.30°B.60°C.120° D.150°
38.设向量,满足||=1,与﹣的夹角为150°,则||的取值范围是()A.[,1)B.[,+∞)C.[,+∞)D.(1,+∞)
39.已知,满足:||=3,||=2,则|+|=4,则|﹣|=()A.B.C.3 D.
40.在边长为1的正三角形ABC中,设D,E分别为AB,AC的中点,则•=()
A.﹣B.﹣C.﹣D.0。

相关文档
最新文档