生活中的优化问题举例(2)

合集下载

3.4生活中的优化问题举例

3.4生活中的优化问题举例
第七页,编辑于星期一:十四点 十二分。
变式训练
2.某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程 只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用 为256万元,距离为x米的相邻两墩之间的桥面工程费用为
万元,(2假设桥x)墩x等距离分布,所有桥墩都视为点,且不考虑其他因
素,记余下工程的费用为y万元. (1)试写出y关于x的函数关系式; (2)当m=640米时,需新建多少个桥墩才能使y最小?
费用最省、用料最少问题
例2.已知A、B两地相距200千米,一只船从A地逆水而行到B地,水 速为8千米/小时,船在静水中的速度为v千米/小时(8<v≤v0).若船每小时 的燃料费与其在静水中的速度的平方成正比.当v=12千米/小时时,每 小时的燃料费为720元,为了使全程燃料费最省,船在静水中的速 度为多少?
第十三页,编辑于星期一:十四点 十二分。
第十四页,编辑于星期一:十四点 十二分。
第十二页,编辑于星期一:十四点 十二分。
(1)审题:阅读理解文字表达的题意,分清条件和结论,找出问 题的主要关系; (2)建模;将文字语言转化成数学语言,利用数学知识,建立相应 的数学模型; (3)解模:把数学问题化归为常规问题,选择合适的数学方法 求解; (4)对结果进行验证评估,定性定量分析,作出正确的判断,确定 其答案. 注:在将实际问题转化成数学问题时,要注意所设变量的取值 范围.
第九页,编辑于星期一:十四点 十二分。
变式训练
3.某集团为了获得更大的收益,每年要投入一定的资金用于广告促销, 经调查,每年投入广告费t(百万元),可增加销售额约为-t2+5t(百万 元)(0≤t≤3). (1)若该公司将当年的广告费控制在300万元之内,则应投入多少广告

高中数学选修1-1教学设计-生活中的优化问题举例

高中数学选修1-1教学设计-生活中的优化问题举例

§1.4.2生活中的优化问题举例(2)
【学情分析】:
在基本方法已经掌握的基础上,本节课重点放在提高学生的应用能力上。

【教学目标】:
1.掌握利用导数求函数最值的基本方法。

2.提高将实际问题转化为数学问题的能力.提高学生综合、灵活运用导数的知识解决生活中问题的能力
3.体会导数在解决实际问题中的作用.
【教学重点】:
利用导数解决生活中的一些优化问题.
【教学难点】:
将生活中的问题转化为用函数表示的数学问题,再用导数解决数学问题,从而得出问题的最优化选择。

【教法、学法设计】:
练---讲---练.
【教学过程设计】:
396500500x x x ⎫+=⎪⎭ 500=
20=.。

生活中的优化问题举例

生活中的优化问题举例

利用导数解决优化问题的基本思路:
建立数学模型
优化问题
用函数表示的数学问题
解决数学模型
作答
优化问题解决方案
用导数解决数学问题
这是一个典型的数学建模过程
解决优化问题的一般步骤:
(1)审题 (2)建模
(3)解模
(4)回归
温馨提示:用导数解决实际问题,要特
别注意在实际问题中变量的取值范围.
课堂小结
解决优化问题的步骤:
' 当x∈(0,16)时, S x > 0; 当x∈(16,+∞) 时, S' x < 0; .因此,x=16是函数S(x)的 极小值点,也是最小值点.所以,当版心 高为16dm,宽为8dm时,能使四周空白 面积最小.
例2.饮料瓶大小对饮料公司利润的影响
某制造商制造并出售球形瓶装的某种饮料.瓶子的 制造成本是 0.8πr 2 分,其中r(单位:cm)是瓶子的半 径.已知每售出1 mL的饮料,制造商可获利0.2分,且制 造商能制作的瓶子的最大半径为6 cm.那么瓶子半径多 大时,能使每瓶饮料的利润最大和最小?
解:由于瓶子的半径为r,所以每瓶饮料的利润是
y =f
r = 0.2
4 πr 3 - 0.8πr 2 3
r3 2 = 0.8π - r , 0 < r ≤ 6. 3

f'
r
= 0.8π r 2 - 2r = 0
r 0.当r 0,2时, 当r 2,6时, f ' r 0.
0 < x < 2.5
令 V ' = 12x 2 - 52x + 40 = 0
4 x - 1 3x - 10 = 0 10 得: x1 = 1, x 2 = (舍去) 3 '

凸优化 生活例子

凸优化 生活例子

凸优化生活例子
1.路线规划:无论是在日常生活中选择最佳的出行路线,还是在物流行业中
选择货物的运输路径,凸优化都能帮助我们找到最优解。

例如,地图应用常常使用凸优化算法为用户规划最短或最快路线。

2.购物决策:在购买商品或服务时,我们经常需要在预算内寻找最佳的商品。

凸优化可以帮助我们找到在预算约束下的最优购买方案,实现花费的最小化。

3.电力系统优化:电力系统的负荷优化是凸优化应用的典型案例。

通过优化
电力的分配和调度,可以提高电力系统的效率并降低能源浪费。

4.农业灌溉:在农业中,灌溉系统的优化设计也是凸优化的应用场景。

通过
合理分配水源,可以提高灌溉效率,节约水资源。

5.通信网络:在通信网络中,信号传输的优化、数据包的路由选择等都涉及
到凸优化技术的应用。

这有助于提高网络的传输效率和稳定性。

优化问题举例

优化问题举例
s( x ) ( x 4)( 128 2) 128 x
2x
求导数,有 S ' ( x ) 2 512 , 2
512 令s' ( x ) 2 2 0, x
128 128 于是宽为 8 x 16
512 8, x 0 x
x
解得,x=16 (x=-16舍去)

; 。
(4)瓶子的半径r的取值范围是 (5)怎样求利润的最大、最小值?
例题:
某制造商制造并出售球形瓶装饮料.瓶子制造成 本是0.8πr2分.已知每出售1ml的饮料,可获利 0.2分,且瓶子的最大半径为6cm. (1)瓶子半径多大时,能使每瓶饮料的利润最大? (2)瓶子半径多大时,每瓶饮料的利润最小?
当r (2,6]时, f ' (r ) 0.
解: 由于瓶子的半径为r,所以每瓶饮料的利 3 4 r 润为: y f (r ) 0.2 0.8r 2 (0 r 6)
令 f ' (r ) 0.8 (r 2 2r ) 0
3
当r 2时, f ' (r ) 0. 当r (0,2)时, f ' (r ) 0; 当r (2,6]时, f ' (r ) 0. 因此,当r>2时,f’(r)>0,它表示f(r)单调递 增,即半径越大,利润越高; 当r〈2时,f’(r)〈0,它表示f(r)单调递减, 即半径越大,利润越低。 (1)半径为2时,利润最小。这时f(2)<0,表示 此种瓶内饮料的利润还不够瓶子的成本,此时 利润是负值; (2)半径为6时,利润最大。
生活中的优化问题举例
生活中经常遇到求利润最大、用 料最省、效率最高等问题,这些问题 通常称为优化问题,通过前面的学习, 知道,导数是求函数最大(小)值的 有力工具,本节我们运用导数,解决 一些生活中的优化问题。

2020年高考山东版高考理科数学 第五节 生活中的优化问题举例(数学建模二)

2020年高考山东版高考理科数学      第五节 生活中的优化问题举例(数学建模二)

第五节生活中的优化问题举例(数学建模二)A组基础题组1.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=-x3+81x-234,则使该生产厂家获得最大年利润的年产量为()A.13万件B.11万件C.9万件D.7万件答案C由题意得,y'=-x2+81,令y'=0,解得x=9或x=-9(舍去).当0<x<9时,y'>0;当x>9时,y'<0.故当x=9时,y取最大值.2.(2019孝感模拟)某品牌小汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/时)的函数解析式为y=x3-x+18(0<x≤120).要使该汽车行驶200千米时的油耗最低,则汽车匀速行驶的速度应为()A.60千米/时B.80千米/时C.90千米/时D.100千米/时答案C当速度为x千米/小时时,该汽车行驶200千米时行驶了小时,设耗油量为h(x)升,y=x3-x+18(0<x≤120).依题意得h(x)=-·=x2+-20(0<x≤120),h'(x)=x-=-(0<x≤120).令h'(x)=0,得x=90.当x∈(0,90)时,h'(x)<0,h(x)是减函数;当x∈(90,120]时,h'(x)>0,h(x)是增函数.所以当x=90时,h(x)取得极小值h(90)=18.因为h(x)在(0,120]上只有一个极值,所以当x=90时取得最小值.故选C.3.设底面为正三角形的直棱柱的体积为V,那么其表面积最小时,底面正三角形的边长为()A. B. C. D.2答案C设底面正三角形的边长为x,侧棱长为l,则V=x2·sin60°·l,∴l=,∴S表=2S底+S侧=x2sin60°+3xl=x2+.令S'表=x-=0,得x=,又当x∈(0,)时,S'表<0;x∈(,+∞)时,S'表>0,∴当x=时,表面积最小.4.在半径为r的半圆内作一内接梯形,使其下底为直径,其他三边为圆的弦,则梯形的面积最大时,梯形的上底长为()A. B.r C.r D.r答案D设梯形的上底长为2x,高为h,面积为S,∵h=-,∴S=-=(r+x)·-.∴S'=---=-=-.令S'=0,得x=(x=-r舍去),∴h=r.当x∈时,S'>0;当x∈时,S'<0,∴当x=时,S取最大值,即当梯形的上底长为r 时,它的面积最大.5.某厂生产某种产品x件的总成本c(x)=1200+x3(万元),已知产品单价的平方与产品件数x 成反比,生产100件这样的产品单价为50万元,则产量定为件时,总利润最大.答案25解析设产品的单价为p万元,根据已知,可设p2=,其中k为比例系数.因为当x=100时,p=50,所以k=250000,所以p2=,p=(x>0).设总利润为y万元,则y=·x-1200-x3=500-x3-1200.y'=-x2.令y'=0,得x=25.当0<x<25时,y'>0;当x>25时,y'<0.因此当x=25时,函数y取得极大值,也是最大值.6.要做一个圆锥形的漏斗,其母线长为20cm,要使其体积最大,则高为cm.答案解析设该漏斗的高为x cm,则其底面半径为-cm,体积V=π(202-x2)x=π(400x-x3)(0<x<20),则V'=π(400-3x2).令V'=0,解得x1=,x2=-(舍去).当0<x<时,V'>0;当<x<20时,V'<0,所以当x=时,V取得最大值.7.统计表明,某种型号的汽车在匀速行驶过程中的耗油量y(L/h)关于行驶速度x(km/h)的解析式可以表示为y=x3-x+8(0<x≤120).已知甲、乙两地相距100km.(1)当汽车以40km/h的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少?解析(1)汽车以40km/h的速度从甲地匀速行驶到乙地需=2.5(h),要耗油-×2.5=17.5(L).(2)当匀速行驶速度为x km/h时,汽车从甲地行驶到乙地需h,设耗油量为h L,依题意得h(x)=-=-+(0<x≤120),则h'(x)=-=-(0<x≤120).令h'(x)=0,得x=80.当x∈(0,80)时,h'(x)<0,h(x)是减函数;当x∈(80,120]时,h'(x)>0,h(x)是增函数.所以当x=80时,h(x)取得极小值h(80)=11.25.因为h(x)在(0,120]上只有一个极小值,所以它也是最小值.所以当汽车以80km/h的速度匀速行驶时,从甲地到乙地耗油最少,为11.25L.8.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h 米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).(1)将V表示成r的函数V(r),并求该函数的定义域;(2)讨论函数V(r)的单调性,并确定r和h为何值时,该蓄水池的体积最大.解析(1)因为蓄水池侧面的总成本为100·2πrh=200πrh元,底面的总成本为160πr2元,所以蓄水池的总成本为(200πrh+160πr2)元.又据题意知200πrh+160πr2=12000π,所以h=(300-4r2),从而V(r)=πr2h=(300r-4r3).又由r>0,h>0可得r<5,故函数V(r)的定义域为(0,5).(2)因V(r)=(300r-4r3),故V'(r)=(300-12r2).令V'(r)=0,解得r1=5,r2=-5(舍去).当r∈(0,5)时,V'(r)>0,故V(r)在(0,5)上为增函数;当r∈(5,5)时,V'(r)<0,故V(r)在(5,5)上为减函数.由此可知,V(r)在r=5处取得最大值,此时h=8.即当r=5,h=8时,该蓄水池的体积最大.B组提升题组1.某商店经销一种奥运纪念品,每件产品的成本为30元,并且每卖出一件产品需向税务部门上交a(a为常数,4≤a≤5)元的税收,设每件产品的日售价为x(35≤x≤41)元,根据市场调查,日销售量与e x(e为自然对数的底数)成反比.已知每件产品的日售价为40元时,日销量为10件.(1)求该商店的日利润L(x)元与每件产品的日售价x元的函数关系式;(2)当每件产品的日售价为多少元时,该商品的日利润L(x)最大?并求出L(x)的最大值.解析(1)设日销售量为,则=10,所以k=10e40,则日销售量为件.则日利润L(x)=(x-30-a)=--(35≤x≤41).(2)由(1)可得L'(x)=-,因为4≤a≤5,所以35≤a+31≤36.令L'(x)=0,得x=a+31,故L(x)在[35,a+31]上为增函数,在(a+31,41]上为减函数.所以当x=a+31时,L(x)取得最大值,最大值为10e9-a.2.某种商品的成本为5元/件,开始按8元/件销售,销售量为50件,为了获得最大利润,商家先后采取了提价与降价两种措施进行试销.经试销发现:销售单价每上涨1元,每天的销售量就减少10件,而降价后,日销售量Q(单位:件)与实际销售单价x(单位:元)满足关系:Q(x)=---(1)试写出该商家的销售利润y与销售单价x的函数关系式;(利润=销售额-成本)(2)当实际销售单价为多少元时,日销售利润最大?并求出最大利润.解析(1)根据题意得y=--------=-----(2)由(1)得当5<x<7时,y=39(2x3-39x2+252x-535),y'=39(6x2-78x+252),令y'=0,则6x2-78x+252=0,解得x=6或x=7(舍去).当5<x<6时,y'>0;当6<x<7时,y'<0,故当x=6时,y max=195.当7≤x<8时,y=6(33-x),故当x=7时,y max=156.当8≤x≤13时,y=-10x2+180x-650=-10(x-9)2+160,故当x=9时,y max=160.综上可知,当实际销售单价定为6元时,日销售利润最大,最大利润为195元.3.如图,点C为某沿海城市的高速公路出入口,直线BD为海岸线,∠CAB=,AB⊥BD,是以A 为圆心,半径为1km的圆弧形小路.该市拟修建一条从C通往海岸的观光专线-PQ,其中P 为上异于B,C的一点,PQ与AB平行,设∠PAB=θ.(1)证明:观光专线-PQ的总长度随θ的增大而减小;(2)已知新建道路PQ的单位成本是翻新道路的单位成本的2倍,当θ取何值时,观光专线-PQ的修建总成本最低?请说明理由.解析(1)证明:由题意,∠CAP=-θ,所以=-θ.又PQ=AB-APcosθ=1-cosθ,所以观光专线的总长度f(θ)=-θ+1-cosθ=-θ-cosθ++1,0<θ<.因为当0<θ<时,f'(θ)=-1+sin θ<0,所以f(θ)在上单调递减,即观光专线-PQ的总长度随θ的增大而减小.(2)设翻新道路的单位成本为a(a>0),则总成本g(θ)=a--=a(-θ-2cosθ++2),0<θ<,g'(θ)=a(-1+2sinθ),令g'(θ)=0,得sinθ=,因为0<θ<,所以θ=.当0<θ<时,g'(θ)<0;当<θ<时,g'(θ)>0.所以,当θ=时,g(θ)最小,即当θ=时,观光专线-PQ的修建总成本最低.。

2022-2021年《金版学案》数学·选修1-1(人教A版)习题:3.4生活中的优化问题举例

2022-2021年《金版学案》数学·选修1-1(人教A版)习题:3.4生活中的优化问题举例

第三章 导数及其应用 3.4 生活中的优化问题举例A 级 基础巩固 一、选择题1.把长为12 cm 的细铁丝截成两段,各自摆成一个正三角形,那么这两个正三角形的面积之和的最小值是( )A.323 cm 2 B .4 cm 2 C .3 2 cm 2D .2 3 cm 2解析:设一个正三角形的边长为x cm ,则另一个正三角形的边长为(4-x )cm ,则这两个正三角形的面积之和为S =34x 2+34(4-x )2=32[(x -2)2+4]≥23(cm 2).答案:D2.某公司生产一种产品,固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x (0≤x ≤390)的关系是R (x )=-x 3900+400x ,0≤x ≤390,则当总利润最大时,每年生产的产品单位数是( )A .150B .200C .250D .300解析:由题意可得总利润P (x )=-x 3900+300x -20 000,0≤x ≤390,由P ′(x )=0,得x =300.当0≤x <300时,P ′(x )>0;当300<x ≤390时,P ′(x )<0,所以当x =300时,P (x )最大.答案:D3.将8分为两个非负数之和,使其立方和最小,则这两个数为( ) A .2和6 B .4和4 C .3和5D .以上都不对解析:设一个数为x ,则另一个数为8-x ,其立方和y =x 3+(8-x )3=83-192x +24x 2且0≤x ≤8,y ′=48x -192.令y ′=0,即48x -192=0,解得x =4.当0≤x <4时,y ′<0;当4<x ≤8时,y ′>0,所以当x =4时,y 取得微小值,也是最小值.答案:B4.做一个容积为256 m 3的方底无盖水箱,所用材料最省时,它的高为( ) A .6 m B .8 m C .4 m D .2 m解析:设底面边长为x m ,高为h m .则有x 2h =256, 所以h =256x 2.所用材料的面积设为S m 2,则有S =4x ·h +x 2=4x ·256x 2+x 2=256×4x +x 2.S ′=2x -256×4x 2,令S ′=0得x =8,因此h =25664=4(m).答案:C5.假如圆柱截面的周长l 为定值,则体积的最大值为( )A.⎝ ⎛⎭⎪⎫l 63π B.⎝ ⎛⎭⎪⎫l 33π C.⎝ ⎛⎭⎪⎫l 43π D.14⎝ ⎛⎭⎪⎫l 43π 解析:设圆柱的底面半径为r ,高为h ,体积为V ,则4r +2h =l ,所以 h =l -4r 2,V =πr 2h =l 2πr 2-2πr 3⎝ ⎛⎭⎪⎫0<r <l 4. 则V ′=l πr -6πr 2,令V ′=0,得r =0或r =l6,而r >0,所以 r =l6是其唯一的极值点.所以 当r =l6时,V 取得最大值,最大值为⎝ ⎛⎭⎪⎫l 63π.答案:A 二、填空题6.某商品每件的成本为30元,在某段时间内,若以每件x 元出售,可卖出(200-x )件,当每件商品的定价为________元时,利润最大.解析:由题意知,利润S (x )=(x -30)(200-x )=-x 2+230x -6000(30≤x ≤200),所以S ′(x )=-2x +230,令S ′(x )=0,解得x =115.当30≤x <115时,S ′(x )>0;当115<x ≤200时,S ′(x )<0,所以当x =115时,利润S (x )取得极大值,也是最大值.答案:1157.已知某矩形广场面积为4万平方米,则其周长至少为________米.解析:设广场的长为x 米,则宽为40 000x 米,于是其周长为y =2⎝ ⎛⎭⎪⎫x +40 000x (x>0),所以y ′=2⎝ ⎛⎭⎪⎫1-40 000x 2, 令y ′=0,解得x =200(x =-200舍去),这时y =800.当0<x <200时,y ′<0;当x >200时,y ′>0.所以当x =200时,y 取得最小值,故其周长至少为800米.答案:8008.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为________.解析:设圆柱的底面半径R ,母线长为L ,则V =πR 2L =27π,所以L =27R 2.要使用料最省,只需使圆柱表面积最小.S 表=πR 2+2πRL =πR 2+2π·27R,令S ′表=2πR -54πR2=0,得R =3,即当R =3时,S 表最小.答案:3 三、解答题9.如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm 2,四周空白的宽度为10 cm ,两栏之间的中缝空白的宽度为5 cm.怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?解:设广告的高和宽分别为x cm ,y cm ,则每栏的高和宽分别为x -20,y -252,其中x >20,y >25.两栏面积之和为2(x -20)· y -252=18 000,由此得y =18 000x -20+25.广告的面积S =xy =x ⎝ ⎛⎭⎪⎪⎫18 000x -20+25=18 000x x -20+25x , 所以 S ′=18 000[(x -20)-x ](x -20)2+25=-360 000(x -20)2+25. 令S ′>0得x >140,令S ′<0得20<x <140.所以 函数在(140,+∞)上单调递增,在(20,140)上单调递减,所以 S (x )的最小值为S (140).当x =140时,y =175.即当x =140,y =175时,S 取得最小值24 500,故当广告的高为140 cm ,宽为175 cm 时,可使广告的面积最小.10.现有一批货物由海上从A 地运往B 地,已知轮船的最大航行速度为35海里/时,A 地到B 地之间的航行距离约为500海里,每小时的运输成本由燃料费和其余费用组成,轮船每小时的燃料费与轮船速度的平方成正比(比例系数为0.6),其余费用为每小时960元.(1)把全程运输成本y (元)表示为速度x (海里/时)的函数; (2)为了使全程运输成本最小,轮船应以多大速度航行?解:(1)依题意得y =500x (960+0.6x 2)=480 000x +300x ,且由题意知函数的定义域为(0,35],即y =480 000x+300x (0<x ≤35).(2)由(1)得y ′=-480 000x 2+300,令y ′=0,解得x =40或x =-40(舍去).由于函数的定义域为(0,35],所以函数在定义域内没有极值点.又当0<x ≤35时,y ′<0,所以函数y =480 000x +300x 在(0,35]上单调递减,故当x =35时,函数y=480 000x +300x 取得最小值.故为了使全程运输成本最小,轮船应以35海里/时的速度航行.B 级 力量提升1.某公司的盈利y (元)和时间x (天)的函数关系是y =f (x ),且f ′(100)=-1,这个数据说明在第100天时( )A .公司已经亏损B .公司的盈利在增加C .公司的盈利在渐渐削减D .公司有时盈利有时亏损解析:由于f ′(100)=-1,所以函数图象在x =100处的切线的斜率为负值,说明公司的盈利在渐渐削减.答案:C2.某公司租地建仓库,每月土地占用费y 1(万元)与仓库到车站的距离成反比,而每月库存货物的运费y 2(万元)与仓库到车站的距离成正比.假如在距离车站10千米处建仓库,y 1和y 2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站________千米处.解析:依题意可设每月土地占用费y 1=k 1x ,每月库存货物的运费y 2=k 2x ,其中x 是仓库到车站的距离,k 1,k 2是比例系数.于是由2=k 110,得k 1=20;由8=10k 2,得k 2=45.因此,两项费用之和为y =20x +4x5(x >0),y ′=-20x 2+45,令y ′=0,得x =5或x =-5(舍去).当0<x <5时,y ′<0;当x >5时,y ′>0.因此,当x =5时,y 取得微小值,也是最小值.故当仓库建在离车站5千米处时,两项费用之和最小.答案:53.某公司生产某种产品的固定成本为20 000元,每生产1吨该产品需增加投入100元,已知总收益满足函数R (x )=⎩⎨⎧400 x -12x 2(0≤x ≤400),80 000(x >400),其中x 是该产品的月产量(单位:吨). (1)将利润表示为月产量的函数f (x );(2)当月产量为何值时,该公司所获利润最大?最大利润为多少元? 解:(1)f (x )=⎩⎪⎨⎪⎧-12x 2+300x -20 000(0≤x ≤400),60 000-100x (x >400).(2)当0≤x ≤400时,f ′(x )=-x +300, 当0≤x <300时,f ′(x )>0,f (x )是增函数; 当x >300时,f ′(x )<0,f (x )是减函数;所以 当x =300时,f (x )取得极大值,也是最大值,且最大值为25 000. 当x >400时,f (x )=60 000-100x ,易知f (x )是减函数, 所以 f (x )<60 000-100×400=20 000<25 000, 综上,当x =300时,f (x )有最大值25 000.即当月产量为300吨时,利润最大,最大利润为25 000元.。

1.4生活中的优化问题(带答案)

1.4生活中的优化问题(带答案)

1。

4生活中的优化问题举例1.要制做一个圆锥形的漏斗,其母线长为20cm,要使其体积最大,则高为() A。

错误!cm B.错误!cm C.错误!cm D.错误!cm [答案] D2.用总长为6m的钢条制作一个长方体容器的框架,如果所制作容器的底面的相邻两边长之比为3:4,那么容器容积最大时,高为()A.0.5m B.1m C.0。

8m D.1.5m[答案] A[解析]设容器底面相邻两边长分别为3x m、4x m,则高为错误!=错误!(m),容积V=3x·4x·错误!=18x2-84x3错误!,V′=36x-252x2,由V′=0得x=1或x=0(舍去).x∈错误!时,V′〉0,x∈错误!时,V′<0,7所以在x=错误!处,V有最大值,此时高为0。

5m。

3.内接于半径为R的球且体积最大的圆锥的高为()A.R B.2R C.错误!R D.错误!R[答案] C[解析]设圆锥高为h,底面半径为r,则R2=(h-R)2+r2,∴r2=2Rh-h2, ∴V=错误!πr2h=错误!h(2Rh-h2)=错误!πRh2-错误!h3,V′=错误!πRh-πh2。

令V′=0得h=错误!R.当0<h〈错误!R时,V′〉0;当错误!<h〈2R时,V′〈0。

因此当h=错误!R时,圆锥体积最大.4.福建炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时时,原油温度(单位:℃)为f(x)=错误!x3-x2+8(0≤x≤5),那么,原油温度的瞬时变化率的最小值是()A.8 B.错误!C.-1 D.-8[答案] C[解析]瞬时变化率即为f′(x)=x2-2x为二次函数,且f′(x)=(x-1)2-1,又x∈[0,5],故x=1时,f′(x)min=-1.5.某厂生产某种产品x件的总成本:C(x)=1 200+错误!x3,又产品单价的平方与产品件数x成反比,生产100件这样的产品的单价为50元,总利润最大时,产量应定为__________件.[答案]25[解析]设产品单价为a元,又产品单价的平方与产品件数x成反比,即a2x=k,由题知a=错误!。

利用导数解最优化问题

利用导数解最优化问题

利用导数解最优化问题作者:侯立成来源:《新校园·学习版》2008年第06期2007年考试说明中要求“会利用导数解决某些实际问题”,具体就是会利用导数知识解决实际生活中的最优化问题,其关键是建立函数模型.具体步骤需先审清题意,明确常量与变量及其关系,再写出实际问题的函数关系式.一般情况下,对于实际问题需要注明变量的取值范围.下面以2007年高考题为例,举例说明:一、投资最优化问题例1 (2007年湖北高考题)商品每件成本9元,售价为30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x(单位:元,0≤x≤30)的平方成正比,已知商品单价降低2元时,一星期多卖出24件.(I)将一个星期的商品销售利润表示成的函数;(II)如何定价才能使一个星期的商品销售利润最大?分析:商品销售利润是根据卖出的件数与实际售价共同决定的,由于每星期多卖出的商品件数与商品单价的降低值的平方成正比,所以应当合理降价,以便多卖,必然存在一个数,使两者之积最大,即商品销售利润最大.解:(Ⅰ)设商品降价x元,则多卖的商品数为kx2,若记商品在一个星期的获利为f(x),则依题意有f(x)=(30-x-9)(432+kx2)=(21-x)(432+kx2),又由已知条件,24=k•22,于是有k=6,所以f(x)=-6x3+126x2-432x+9072,x∈[0,30].(Ⅱ)根据(Ⅰ),我们有f′(x)=-18x2+252x-432=-18(x-2)(x-12).故x=12时,f(x)达到极大值.因为f(0)=9072,f(12)=11264,所以定价为30-12=18元能使一个星期的商品销售利润最大.二、设计最优化问题例2 (2007年北京高考题)如图,有一块半椭圆形钢板,其半轴长为2r,短半轴长为r,计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S.(I)求面积S以x为自变量的函数式,并写出其定义域;(II)求面积S的最大值.解:(I)依题意,以AB的中点O为原点建立直角坐标系O-xy(如图),则点C的横坐标为x.点C的纵坐标y满足方程+ =1(y≥0),解得y=2 (0S= (2x+2r)•2 ,=2(x+r)•其定义域为{x|0(II)记f(x)=4(x+r)2(r2-x2),0则f′(x)=8(x+r)2(r-2x).令f′(x)=0,得x= r.因为当00;当即梯形面积S的最大值为 r2.点评:在实际问题中,若函数在区间内只有一个极值点,那么只要根据实际意义判定最大(小)值即可,不必再与端点函数值比较.巩固训练1、(2007年福建高考题)某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)2万件.(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值Q (a).2、(2007年重庆高考题)用长为18m的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?巩固训练答案:1、解:(Ⅰ)分公司一年的利润L(万元)与售价x的函数关系式为:L=(x-3-a)(12-x)2,x∈[9,11].(Ⅱ)L′(x)=(12-x)2-2(x-3-a)(12-x)=(12-x)(18+2a-3x).令L′=0得x=6+ a或x=12(不合题意,舍去).∵3≤a≤5,∴8≤6+ a≤ .在x=6+ a两侧L′的值由正变负.所以(1)当8≤6+ aLmax=L(9)=(9-3-a)(12-9)2=9(6-a).(2)当9≤6+ a≤ 即≤a≤5时,Lmax=L(6+ a)=(6+ a-3-a)[12-(6+ a)]2=4(3- a)3,所以Q(a)=9(6-a),3≤a< ,4(3- a)3,≤a≤5.2、解:设长方体的宽为x(m),则长为2x(m),高为h= =4.5-3x(m)(0故长方体的体积为V(x)=2x2(4.5-3x)=9x2-6x3(m3)(0从而V′(x)=18x-18x2=18x(1-x).令V′(x)=0,解得x=0(舍去)或x=1,因此x=1.当00;当1故在x=1处V(x)取得极大值,并且这个极大值就是V(x)的最大值.从而最大体积V=V(1)=9×12-6×13=3(m3),此时长方体的长为2m,高为1.5m.答:当长方体的长为2m,宽为1m,高为1.5m时,体积最大,最大体积为3m3.注:“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。

生活中的优化问题举例

生活中的优化问题举例
A.6 h B.8 h C.10 h D.12 h
解析:设将这批货物全部运到最快需 t 小时,依题意 t =4v00+16·2vv02=4v00+1460v0≥8.当且仅当4v00=1460v0,即 v= 100 km/h 时,最快需 8 小时,故选 B.
答案:B
4.一房地产公司有 50 套公寓要出租,当月租金定为 1000 元时,公寓会全部租出去,当月租金每增加 50 元,就会多 一套租不出去,而租出去的公寓每月需花费 100 元维修费, 则房租定为________元时可获得最大收入.
因此乙方取得最大利润的年产量 t=(10s00)2(吨).
(2)设甲方净收入为 v 元,则 v=st-0.002t2.
将 t=(10s00)2 代入上式,得到甲方净收入 v 与赔付价格 s 之间的函 数关系式 v=10s002-2×1s40003.
又 v′=-10s0202+8×1s50003=10002×s85000-s3,令 v′=0, 得 s=20. 当 s<20 时,v′>0;当 s>20 时,v′<0,所以 s=20 时,v 取得 最大值.
(3)MP(x)=-30x2+60x+3275=-30(x-1)2+3305.所 以,当 x≥1 时,MP(x)单调递减,所以单调减区间为[1,19], 且 x∈N*,单调递减的实际意义是:随着产量的增加,每艘 船的利润与前一艘比较,利润在减少.
费用最省问题 例 2 某单位用木料制作如图所示的框架,框架的下部 是边长分别为 x、y(单位:m)的矩形,上部是等腰直角三角 形,要求框架围成的总面积为 8 m2,问 x、y 分别为多少时 用料最省(精确到 0.001 m)?
因此甲方向乙方要求赔付价格 s=20(元/吨)时,获最大净收入.

第五节 生活中的优化问题举例(数学建模二)

第五节 生活中的优化问题举例(数学建模二)

考点突破 栏目索引
1-1 甲方是一农场,乙方是一工厂,由于乙方生产需占用甲方的资源,因 此甲方有权向乙方索赔,以此来弥补经济损失并获得一定的净收入.在 乙方不赔付甲方的情况下,乙方的年利润x(元)与年产量t(吨)满足函数关 系式x=2 000 t .若乙方每生产一吨产品必须赔付甲方s元(以下称s为赔 付价格). (1)将乙方的实际年利润w(元)表示为年产量t(吨)的函数,并求出乙方实 际年利润最大时的年产量; (2)甲方每年受乙方生产影响的经济损失金额y(元)与年产量t(吨)的函数
解析 (1)每年的能源消耗费用为C(x)= k (0≤x≤10),
3x 5
由题可知C(0)=8,得k=40,因此C(x)= 40 .
3x 5
而隔热层的建造费用为C1(x)=6x.
所以隔热层建造费用与20年的能源消耗费用之和为f(x)=20C(x)+C1(x)=
20× 40 +6x= 800 +6x(0≤x≤10).
考点突破 栏目索引
方法技巧 利用导数解决几何中的面积、体积最大问题时,一定要看清题意,分析 几何体的特征,设出变量,列出函数关系式,注明定义域,再利用导数求最 值.若在定义域内只有一个极值,则这个极值便是最值,解此类题时,要注 意利用数形结合的思想及函数的思想分析问题.
对应的最小值为f(5)=6×5+ 800 =70.
35 5
故当隔热层修建5 cm厚时,总费用达到最小值70万元.
考点突破
栏目索引
考点突破 栏目索引
方法技巧 1.解决费用最省问题,也是导数的一个重要应用.解决这类问题,第一要 选取合适的量为自变量,并确定其取值范围;第二将费用表示为自变量 的函数,再利用导数求最值,使问题得到解决. 2.把实际问题转化为数学问题,正确列出解析式是解题的关键,利用导数 求最值时要注意函数的定义域.

生活中的节约问题——数学优化问题举例

生活中的节约问题——数学优化问题举例

教学设计生活中的节约问题——数学优化问题举例大兴一中张秀春一.内容和内容解析随着低碳生活逐步深入,节约问题成了人们最为关注的问题了。

而数学中的“优化问题”是现实生活中常碰到的节约问题,比如速度最快、距离最小、费用最低、用料最省、效率最高、增长率、膨胀率等。

而解决方法可以多样,学生较为熟悉的是线性规划问题,二次函数最值问题,或结合函数图象解决最值以及用导数求函数的单调性、最值等。

线性规划是利用数学为工具,来研究在一定的人、财、物、时、空等资源条件下,如何精打细算巧安排,用最少的资源取得最大的效益,即解决节约问题。

它在工程设计、经济管理、科学研究等方面的应用非常广泛。

而本节内容主要是应用线性规划和导数解决生活中的节约问题,使学生体会线性规划、导数在解决生活中的节约问题的广泛作用和强大实力。

教材主要在效率、利润、最大容量三个方面举例说明。

从教学内容分析,教材例题与学生生活经验有一定的差距离,问题信息量大,数学建模要求高,在具体的教学中,可以设置有一定梯度和接近学生生活中的节约问题,提高学生的学习兴趣,同时告诉学生如何去思考解决这类问题的一般思路。

二、教学目标:1、知识目标:(1)进一步了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念;巩固线性规划问题的一般解法(即图解法);会求线性目标函数的最大值、最小值。

(2)巩固导数的相关概念、性质及导数的意义,用导数求实际问题的最大值、最小值。

理解什么是数学中的优化问题。

2、能力目标:培养学生建模能力及提高学生解决实际问题的能力;同时渗透数形结合、化归的数学思想方法,培养学生的节约意识和“用数学” 的意识及创新能力。

3、情感目标:通过对物资调运、产品安排、下料问题等问题的调查、研究,培养学生的节约意识和习惯,倡导学生的低碳生活,使学生了解社会主义市场经济,建立市场经济意识,焕发学生振兴中华的责任感。

三.教学难点和重点分析重点:线性规划、导数的应用,了解生活中的节能问题,熟练掌握生活中常遇到的“效率最高”,“容量最大”,“利润最大”的解决方案。

生活中的优化问题举例

生活中的优化问题举例

学案60答案 生活中的优化问题举例例1. 用长为90 cm ,宽为48 cm 的长方形铁皮做一个无盖的容器,先在四个角分别截去一个小正方形,然后把四边翻转90°,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?解:设容器的高为x ,容器的容积为V ,则V =(90-2x )(48-2x )x (0<x <24),即V =4x 3-276x 2+4 320x .因为V ′=12x 2-552x +4 320,由V ′=12x 2-552x +4 320=0,得x 1=10,x 2=36. 因为0<x <10时,V ′>0,10<x <36时,V ′<0,x >36时,V ′>0,所以当x =10时,V 有极大值V (10)=19 600.又因为0<x <24,所以V (10)也是最大值.所以当x =10时,V 有最大值V (10)=19 600.故当容器的高为10 cm 时,容器的容积最大,最大容积是19 600 cm 3.例2.一艘轮船在航行中每小时的燃料费和它的速度的立方成正比.已知速度为每小时10海里时,燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问轮船的速度是多少时,航行1海里所需的费用总和最小?解:设速度为每小时v 海里的燃料费是每小时p 元,那么由题设的比例关系得p =k ·v 3,其中k 为比例系数,它可以由v =10,p =6求得,即k =6103=0.006,则p =0.006v 3.又设当船的速度为每小时v 海里时,行1海里所需的总费用为q 元,那么每小时所需的总费用是0.006v 3+96(元),而行1海里所需时间为1v小时,所以行1海里的总费用为q =1v (0.006v 3+96)=0.006v 2+96v .q ′=0.012v -96v 2=0.012v 2(v 3-8 000), 令q ′=0,解得v =20.因为当v <20时,q ′<0;当v >20时,q ′>0,所以当v =20时q 取得最小值,即速度为20海里/小时时,航行1海里所需费用总和最小.例3.某食品厂进行蘑菇的深加工,每公斤蘑菇的成本为20元,并且每公斤蘑菇的加工费为t 元(t 为常数,且2≤t ≤5),设该食品厂每公斤蘑菇的出厂价为x 元(25≤x≤40),根据市场调查,日销售量q 与e x 成反比,当每公斤蘑菇的出厂价为30元时,日销售量为100公斤.(1)求该工厂的每日利润y 元与每公斤蘑菇的出厂价x 元的函数关系式;(2)若t =5,当每公斤蘑菇的出厂价为多少元时,该工厂的每日利润最大?并求最大值.解: (1)设日销量q =k e x ,则k e 30=100,所以k =100e 30, 所以日销量q =100e 30e x ,所以y =100e 30(x -20-t )e x (25≤x ≤40).(2)当t =5时,y =100e 30(x -25)e x ,所以y ′=100e 30(26-x )e x . 由y ′>0,得x <26,由y ′<0,得x >26,所以y 在[25,26)上单调递增,在[26,40]上单调递减,所以当x =26时,y max =100e 4.故当每公斤蘑菇的出厂价为26元时,该工厂的每日利润最大,最大值为100e 4元.四、反馈训练1.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为( ) A .13万件 B .11万件 C .9万件 D .7万件1.解析:选C.因为x >0,y ′=-x 2+81=(9-x )(9+x ),令y ′=0,解得x =9或x =-9(舍去),当x ∈(0,9)时,y ′>0,当x ∈(9,+∞)时,y ′<0,所以y 先增后减.所以当x =9时函数取得最大值.选C.2.用长为24 m 的钢筋做成一个长方体框架,若这个长方体框架的底面为正方形,则这个长方体体积的最大值为________.2.解析:设长方体的底面边长为x m ,则高为(6-2x )m ,所以x ∈(0,3),则V =x 2(6-2x )=6x 2-2x 3,V ′=12x -6x 2,令V ′=0得x =2或x =0(舍),所以当x ∈(0,2)时,V ′>0,V 是增函数,当x ∈[2,3)时,V ′<0,V 是减函数,所以当x =2时,V max =22×2=8(m 3).3.某市旅游部门开发一种旅游纪念品,每件产品的成本是15元,销售价是20元,月平均销售a 件,通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价格提高的百分率为x (0<x <1),那么月平均销售量减少的百分率为x 2.记改进工艺后,旅游部门销售该纪念品的月平均利润是y (元).(1)写出y 关于x 的函数关系式;(2)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大.解:(1)改进工艺后,每件产品的销售价为20(1+x ),月平均销售量为a (1-x 2)件,则月平均利润y =a (1-x 2)·[20(1+x )-15](元),所以y 关于x 的函数关系式为y =5a (1+4x -x 2-4x 3)(0<x <1).(2)由y ′=5a (4-2x -12x 2)=0,得x 1=12,x 2=-23(舍去),当12<x <1时,y ′<0,当0<x <12时,y ′>0; 所以函数y =5a (1+4x -x 2-4x 3)(0<x <1)在x =12处取得极大值,即最大值. 故改进工艺后,产品的销售价为20⎝ ⎛⎭⎪⎫1+12=30元时,旅游部门销售该纪念品的月平均利润最大.五、课时作业.1.已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量,增加收益.据测算,若今年的实际销售单价为x 元/件(1≤x ≤2),今年新增的年销量(单位:万件)与(x -2)2成正比,比例系数为4.(1)写出今年商户甲的收益y (单位:万元)与今年的实际销售单价x 间的函数关系式;(2)商户甲今年采取降低单价,提高销量的营销策略是否能获得比往年更大的收益(即比往年收益更多)?说明理由.解:(1)由题意知,今年的销售量为[1+4(x -2)2](万件).因为每销售一件,商户甲可获利(x -1)元,所以今年商户甲的收益y =[1+4(x -2)2]·(x -1)=4x 3-20x 2+33x -17(1≤x ≤2).(2)由(1)知y =f (x )=4x 3-20x 2+33x -17,1≤x ≤2,从而y ′=f ′(x )=12x 2-40x +33=(2x -3)(6x -11).令y ′=0,解得x =32或x =116.又f ⎝ ⎛⎭⎪⎫32=1,f (2)=1, 所以f (x )在区间[1,2]上的最大值为1(万元).而往年的收益为(2-1)×1=1(万元),所以,商户甲采取降低单价,提高销量的营销策略不能获得比往年更大的收益.2.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r m ,高为h m ,体积为V m 3.假设建造成本仅与表面积有关,侧面的建造成本为100元/m 2,底面的建造成本为160元/m 2,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大. 解:(1)∵蓄水池侧面的总成本为100×2πrh =200πrh (元),底面的总成本为160πr 2元,∴蓄水池的总成本为(200πrh +160πr 2)元.根据题意,得200πrh +160πr 2=12 000π,所以h =15r(300-4r 2), 从而V (r )=πr 2h =π5(300r -4r 3). 由h >0且r >0,可得0<r <53,故函数V (r )的定义域为(0,53).(2)由(1)知V (r )=π5(300r -4r 3), 故V ′(r )=π5(300-12r 2). 令V ′(r )=0,解得r 1=5,r 2=-5(舍去).当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上为增函数;当r ∈(5,53)时,V ′(r )<0,故V (r )在(5,53)上为减函数.由此,可知V (r )在r =5处取得最大值,此时h =8,即当r =5,h =8时,该蓄水池的体积最大.3.某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =a x -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.解:(1)因为x =5时,y =11,所以a 2+10=11,解得a =2. (2)由(1)可知,该商品每日的销售量y =2x -3+10(x -6)2, 所以商场每日销售该商品所获得的利润f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2(3<x <6). f ′(x )=10[(x -6)2+2(x -3)(x -6)]=30(x -4)(x -6),解30(x -4)(x -6)=0,得x 1=4,x 2=6(舍去).当x所以,当x =4时,函数f (x )取得最大值,最大值为42.故当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大4.已知某公司生产某种产品的年固定成本为10万元,每生产1千件该产品需要另投入1.9万元.设R (x )(单位:万元)为销售收入,根据市场调查知R (x )=⎩⎪⎨⎪⎧10x -130x 3,0≤x ≤10,2003,x >10.其中x 是年产量(单位:千件). (1)写出年利润W 关于年产量x 的函数解析式;(2)求年产量为多少时,该公司可从这一产品生产中获得最大利润?解:(1)设年产量为x 千件,年利润为W 万元,依题意有W =⎩⎪⎨⎪⎧10x -130x 3-10-1.9x ,0≤x ≤10,2003-10-1.9x ,x >10.(2)设f (x )=-130x 3+8.1x -10,0≤x ≤10. f ′(x )=-110x 2+8.1,令f ′(x )=0得x 1=9,x 2=-9(舍去).当0<x <9时,f ′(x )>0;当9<x <10时,f ′(x )<0,故当x =9时,f (x )取得最大值38.6.当x >10时,f (x )=1703-1.9x <1133<38.6. 即当年产量为9千件时,该公司所获年利润最大.5.如图是某市在城市改造中的沿市内主干道城站路修建的圆形休闲广场,圆心为O ,半径为100 m ,其与城站路一边所在直线l 相切于点M ,MO 的延长线交圆O 于点N ,A 为上半圆弧上一点,过点A 作l 的垂线,垂足为点B .市园林局计划在△ABM 内进行绿化,设△ABM 的面积为S (单位:m 2).(1)以∠AON =θ(rad)为自变量,将S 表示成θ的函数;(2)求使绿化面积最大时点A 的位置及最大绿化面积.解:(1)由题意知,BM =100sin θ,AB =100+100cos θ,故S =5 000sin θ(1+cos θ)(0<θ<π).(2)因为S =5 000sin θ(1+cos θ)(0<θ<π),所以S ′=5 000(cos θ+cos2θ-sin 2θ)=5 000(2cos 2θ+cos θ-1)=5 000(cos θ+1)(2cos θ-1).令S ′=0,得cos θ=12或cos θ=-1(舍去),又θ∈(0,π),故θ=π3. 当0<θ<π3时,12<cos θ<1,S ′>0; 当π3<θ<π时,-1<cos θ<12,S ′<0. 故当θ=π3时,S 取得极大值,也是最大值,最大值为3 7503,此时AB =150. 即当点A 距路边的距离为150 m 时,绿化面积最大,最大面积为3 750 3 m 2.。

生活中的优化问题举例(含过程)

生活中的优化问题举例(含过程)
(1)求 k 的值及 f(x)的表达式; (2)隔热层修建多厚时,总费用 f(x)达到最小,并求最小值.
▪ [思路分析] 代入数据求k的值,建造费用加上20年能源消耗综合得出总费用f(x),利用导数求 最值.
[解析] (1)设隔热层厚度 xcm,由题意建筑物每年的能源消耗费用为 C(x)= 3x+k 5(0≤x≤10),再由 C(0)=8 得 k=40,
上述解决优化问题的过程是一个典型的 数学建模 过程.
体积面积最值问题
例1 请你设计一个包装盒,如图所示, ABCD是边长为60 cm的正方形硬纸片, 切去阴影部分所示的四个全等的等腰 直角三角形,再沿虚线折起,使得A, B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒. 点E,F在边AB上,是被切去的一个等腰直角三角形斜边的两个端点.设AE =FB=x(cm). 某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒 的高与底面边长的比值.
自主练习巩固2
某工厂生产某种产品,已知该产品的月产量 x(吨)与每吨产品的价格 P(元/吨) 之间的关系为 P=24200-15x2,且生产 x 吨的成本为 R=50000+200x 元.问 每月生产多少吨该产品才能使利润达到最大?最大利润是多少?(利润=收 入-成本).
[思路分析] 根据题意,月收入=月产量×单价=Px,月利润=月收入-成本 =Px-(50000+200x)(x≥0),列出函数关系式建立数学模型后再利用导数求最大值.
自主练习巩固1
▪ 有一块边长为a的正方形铁板,现从铁板的四个角各截去一个相同 的小正方形,做成一个长方体形的无盖容器.为使其容积最大,截 下的小正方形边长应为多少?
▪ [思路分析] 设截下的小正方形边长为x,用x表示出长方体的边长, 根据题意列出关系式,然后利用导数求最值.

生活中的优化问题举例

生活中的优化问题举例

3.4 生活中的优化问题举例1.掌握应用导数解决实际问题的基本思路.(重点)2.灵活利用导数解决实际生活中的优化问题,提高分析问题,解决问题的能力.(难点)[基础·初探]教材整理优化问题阅读教材P101第一自然段,完成下列问题.1.优化问题(1)生活中经常会遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.(2)用导数解决优化问题的实质是求函数的最值.2.用导数解决优化问题的基本思路甲工厂八年来某种产品年产量与时间(单位:年)的函数关系如图3-4-1所示:图3-4-1现有下列四种说法:①前四年该产品产量增长速度越来越快;②前四年该产品产量增长速度越来越慢;③第四年后该产品停止生产;④第四年后该产品年产量保持不变.其中说法正确的有()A.①④B.②④C.①③D.②③【解析】由图象可知,②④是正确的.【答案】 B[小组合作型]先在四个角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图3-4-2).问该容器的高为多少时,容器的容积最大?最大容积是多少?【导学号:97792051】图3-4-2【精彩点拨】设自变量(高)为x―→根据长方体的体积公式建立体积关于x的函数―→利用导数求出容积的最大值―→结论【自主解答】设容器的高为x cm,容器的容积为V(x)cm3,则:V(x)=x(90-2x)(48-2x)=4x3-276x2+4 320x(0<x<24).所以V′(x)=12x2-552x+4 320=12(x2-46x+360)=12(x-10)(x-36).令V′(x)=0,得x=10或x=36(舍去).当0<x<10时,V′(x)>0,即V(x)是增加的;当10<x<24时,V′(x)<0,即V(x)是减少的.因此,在定义域(0,24)内,函数V (x )只有当x =10时取得最大值,其最大值为V (10)=19 600(cm 3).因此当容器的高为10 cm 时,容器的容积最大,最大容积为19 600 cm 3.1.求几何体面积或体积的最值问题,关键是分析几何体的几何特征,根据题意选择适当的量建立面积或体积的函数,然后再用导数求最值.2.实际问题中函数定义域确定的方法(1)根据图形确定定义域,如本例中长方体的长、宽、高都大于零; (2)根据问题的实际意义确定定义域,如人数必须为整数,销售单价大于成本价、销售量大于零等.[再练一题]1.已知矩形的两个顶点位于x 轴上,另两个顶点位于抛物线y =4-x 2在x 轴上方的曲线上,求这个矩形面积最大时的长和宽.【解】 设矩形边长AD =2x (0<x <2), 则|AB |=y =4-x 2,则矩形面积为S =2x (4-x 2)=8x -2x 3(0<x <2), ∴S ′=8-6x 2,令S ′=0, 解得x 1=233,x 2=-233(舍去).当0<x <233,S ′>0,当233<x <2时,S ′<0, 所以,当x =233时,S 取得最大值, 此时S max =3239.即矩形的边长分别为433,83时,矩形的面积最大.10 000平方米,该中心每块球场的建设面积为1 000平方米,球场的总建筑面积的每平方米的平均建设费用与球场数有关,当该中心建球场x 块时,每平方米的平均建设费用(单位:元)可近似地用f (x )=800⎝ ⎛⎭⎪⎫1+15ln x 来刻画.为了使该球场每平方米的综合费用最省(综合费用是建设费用与购地费用之和),该网球中心应建几个球场?【精彩点拨】 先求每平方米的购地费用,综合费用是建设费用与购地费用之和.【自主解答】 设建成x 个球场,则1≤x ≤10,每平方米的购地费用为128×1041 000x =1 280x 元,因为每平方米的平均建设费用(单位:元)可近似地用f (x )=800⎝ ⎛⎭⎪⎫1+15ln x 来表示,所以每平方米的综合费用为g (x )=f (x )+1 280x =800+160ln x +1 280x (x >0),所以g ′(x )=160(x -8)x 2(x >0),令g ′(x )=0,则x =8,当0<x <8时,g ′(x )<0,当x >8时,g ′(x )>0,所以x =8时,函数取得极小值,且为最小值. 故当建成8个球场时,每平方米的综合费用最省.实际生活中用料最省、费用最低、损耗最小、最节省时间等问题都需要利用导数求解相应函数的最小值.根据f ′(x )=0求出极值点(注意根据实际意义舍去不合适的极值点)后,函数在该点附近满足左减右增,则此时唯一的极小值就是所求函数的最小值.[再练一题]2.甲、乙两地相距400千米,汽车从甲地匀速行驶到乙地,速度不得超过100千米/时,已知该汽车每小时的运输成本P (元)关于速度v (千米/时)的函数关系是P =119 200v 4-1160v 3+15v .(1)求全程运输成本Q (元)关于速度v 的函数关系式;(2)为使全程运输成本最少,汽车应以多大速度行驶?并求此时运输成本的最小值.【解】 (1)Q =P ·400v =⎝ ⎛⎭⎪⎫119 200v 4-1160v 3+15v ·400v =⎝ ⎛⎭⎪⎫119 200v 3-1160v 2+15·400 =v 348-52v 2+6 000(0<v ≤100). (2)Q ′=v 216-5v ,令Q ′=0,则v =0(舍去)或v =80, 当0<v <80时,Q ′<0; 当80<v ≤100时,Q ′>0,∴v =80千米/时时,全程运输成本取得极小值,即最小值,且Q min =Q (80)=2 0003(元).[探究共研型]探究 【提示】 关于利润问题常用的两个等量关系: ①利润=收入-成本;②利润=每件产品的利润×销售件数.某生产饮料的企业拟投入适当的广告费对产品进行促销,在一年内,预计年销量Q (万件)与广告费x (万元)之间的函数关系为Q =3x +1x +1(x ≥0),已知生产此产品的年固定投入为3万元,每生产1万件此产品需再投入32万元.若每件产品售价为“年平均每件成本的150%”与“年平均每件所占广告费的50%”之和,则(1)试将年利润y(万元)表示为年广告费x(万元)的函数.如果年广告费投入100万元,那么企业是亏损还是盈利?(2)当年广告费投入多少万元时,企业年利润最大?【精彩点拨】(1)利用题中等量关系列出y与x的函数关系式,将x=100代入所求关系式判断y>0还是y<0;(2)先求出(1)中函数关系式的导函数,再利用导数求最值.【自主解答】(1)由题意,每年销售Q万件,成本共计为(32Q+3)万元.销售收入是(32Q+3)·150%+x·50%,∴年利润y=年收入-年成本-年广告费=12(32Q+3-x)=12⎝⎛⎭⎪⎫32×3x+1x+1+3-x=-x2+98x+352(x+1)(x≥0),∴所求的函数关系式为:y=-x2+98x+352(x+1)(x≥0).因为当x=100时,y<0,所以当年广告费投入100万元时,企业亏损.(2)由y=f(x)=-x2+98x+352(x+1)(x≥0),得f′(x)=-x2-2x+632(x+1)2(x≥0).令f′(x)=0,则x2+2x-63=0.∴x=-9(舍去)或x=7.又∵当x∈(0,7)时,f′(x)>0;当x∈(7,+∞)时,f′(x)<0,∴f(x)极大值=f(7)=42.又∵在(0,+∞)上只有一个极值点,∴f(x)max=f(x)极大值=f(7)=42.故当年广告费投入7万元时,企业年利润最大.1.利润最大问题是生活中常见的一类问题,一般根据“利润=收入-成本”或“利润=每件产品利润×销售件数”建立函数关系式,再用导数求最大值.2.解答此类问题时,要认真理解相应的概念,如:成本、利润、单价、销售量、广告费等等,以免因概念不清而导致解题错误.[再练一题]3.某工厂生产某种产品,已知该产品的月生产量x (吨)与每吨产品的价格p (元/吨)之间的关系式为p =24 200-15x 2,且生产x 吨产品的成本为R =50 000+200x (元).问该工厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入-成本)【导学号:97792052】【解】 每月生产x 吨时的利润为 f (x )=⎝ ⎛⎭⎪⎫24 200-15x 2x -(50 000+200x )=-15x 3+24 000x -50 000(x ≥0). 由f ′(x )=-35x 2+24 000=0, 解得x 1=200,x 2=-200(舍去).因为f (x )在[0,+∞)内只有一个点x =200使f ′(x )=0, 故它就是最大值点,且最大值为 f (200)=-15×2003+24 000×200-50 000 =3 150 000(元).所以每月生产200吨产品时利润达到最大,最大利润为315万元.1.要做一个圆锥形漏斗,其母线长为20 cm ,要使其体积最大,则其高为( )A.2033 cmB.100 cmC.20 cmD.203 cm【解析】 设圆锥的高为h cm , 则V =13π(400-h 2)×h , 所以V ′(h )=13π(400-3h 2). 令V ′(h )=0,得h 2=4003, 所以h =2033.故选A. 【答案】 A2.某产品的销售收入y 1(万元)是产品x (千台)的函数:y 1=17x 2(x >0);生产总成本y 2(万元)也是x 的函数:y 2=2x 3-x 2(x >0),为使利润最大,应生产( )A.9千台B.8千台C.6千台D.3千台【解析】 利润函数y =y 1-y 2=18x 2-2x 3(x >0),求导得y ′=36x -6x 2,令y ′=0,得x =6或x =0(舍去).因0<x <6时,y =18x 2-2x 3递增, x >6时,y =18x 2-2x 3递减, ∴x =6时利润最大,故选C. 【答案】 C3.把长度为16的线段分成两段,各围成一个正方形,则它们的面积和的最小值为________.【解析】 设其中一段长为x ,则另一段长为16-x ,设两正方形的面积分别为S 1,S 2,面积之和为S ,则S =S 1+S 2=⎝ ⎛⎭⎪⎫x 42+⎝⎛⎭⎪⎫16-x 42=116x 2+116x 2-2x +16 =18x 2-2x +16(0<x <16). 令S ′=14x -2=0,得x =8.即x=8时,S有最小值,最小值为8.【答案】84.某商品一件的成本为30元,在某段时间内,若以每件x元出售,可卖出(200-x)件,当每件商品的售价为________元时,利润最大.【解析】利润为S(x)=(x-30)(200-x)=-x2+230x-6 000,S′(x)=-2x +230,由S′(x)=0得x=115,这时利润达到最大.【答案】1155.某造船公司年最高造船量是20艘,已知造船x艘的产值函数为R(x)=3 700x+45x2-10x3(单位:万元),成本函数为C(x)=460x+5 000(单位:万元).求:(1)利润函数P(x)(提示:利润=产值-成本)的解析式;(2)年造船量安排多少艘时,可使造船公司的年利润最大?【导学号:97792053】【解】(1)P(x)=R(x)-C(x)=-10x3+45x2+3 240x-5 000(x∈N且x∈[1,20]).(2)P′(x)=-30x2+90x+3 240=-30(x+9)(x-12)(x∈N且x∈[1,20]),当1≤x≤12时,P′(x)>0,P(x)单调递增;当12<x≤20时,P′(x)<0,P(x)单调递减;∴x=12时,P(x)取最大值,即年造船12艘时,造船公司的年利润最大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
32 3 9
作业
课本41页A组第6题 B组第1题
m
n mn
它是一个关于 r 的二次函数,从函数解析式上可以判
断,不是 r 越小,磁盘的存储量越大.
为求 f (r) 的最大值,计算 f (r) 0 .
f (r) 2 R 2r
mn
令 f (r) 0,解得 r R 2
当 r R 时, f (r) 0 ;当 r R 时, f (r) 0 .
x8,最小面积S48256872(dm2)
8
此时y12816(dm)x8dm 8
解法二:由解法(一)得
S(x)4x2568≤ 24x•2568
x
x
232872
当 且 仅 当 4 x 2 5 6 ,即 x 8 (x 0 )时 S 取 最 小 值 x此时y=128 8 Nhomakorabea16
答 : 应 使 用 版 心 宽 为 8 d m , 长 为 1 6 d m , 四 周 空 白 面 积 最 小
当 产 量 q 为 8 4 时 , 利 润 L 最 大
另 解 : 利 润 L p q C (2 5 1 8 q )q (1 0 0 4 q ) 18q2 21q10 当 q2ba1 21 484时 , L的 值 最 大
课外练习: 如图所示,在二次函数 f ( x) 4x x2 的图象与 x 轴所 围成的图形中有一个内接矩形 ABCD ,设点 B 的坐标 为 ( x, 0) ,问 x 取何值时,矩形的面积最大?
导数法
不等式法
解 : 设 版 心 的 宽 为 x d m , 长 为 y d m2
则有 xy=128,(1)
另设四周空白面积为S,
y
则 S 2 (x 2 ) 2 2 y 1
4x2y8 (2)
由(1)式得: y 1 2 8 x
x
代入(2)式中得:
S(x)4x2568(x0). x
令S(x)0,即 42x5260
特所占用的磁道长度不得小于 n 。为了数据检索便利,磁盘格式化
时要求所有磁道要具有相同的比特数。
问题:现有一张半径为 R 的磁盘,它的存储区是半径介于 r 与 R 之
间的环形区域.⑴是不是 r 越小,磁盘的存储量越大?⑵ r 为多少
时,磁盘具有最大存储量(最外面的磁道不存储任何信息)?
1答案
2答案
解:由题意知:存储量=磁道数×每磁道的比特数。
又设铁路上每吨千米的运费为3t元,
则公路上每吨千米的运费为5t元. B
D
A
这样,每吨原料从供应站B运到工厂C的总运费为
y 5 tC D 3 tB D 5 t4 0 0 x 2 3 t ( 1 0 0 x ) ( 0 ≤ x ≤ 1 0 0 ) .
令yt(
5x 3)0 ,在
400x2
0≤x≤100的范围内有唯一解x=15.
又设铁路上每吨千米的运费为3t元,则公路上每吨 千米的运费为5t元.这样,每吨原料从供应站B运到工厂C 的总运费为
y5tC D 3tB D 5t 400x23t(100x)
(0≤ x≤ 100).
1答案
解:设DA=xkm,那么DB=(100-x)km,CD= 202 x2 C 400 x2 km.
所以,当x=15(km),即D点选在距A点15千米时,总运费最省.
注:可以进一步讨论,当AB的距离大于15千米时,要找的 最优点总在距A点15千米的D点处;当AB之间的距离 不超过15千米时,所选D点与B点重合.
练习3 (课本第41页A组第7题)
已知:某商品生产成本C与产量q的函数关系式为 C1004q
计算机把数据存储在磁盘上。磁盘是
带有磁性介质的圆盘,并有操作系统将其
R
格式化成磁道和扇区。磁道是指不同半径
所构成的同心轨道,扇区是指被同心角分
r
割所成的扇形区域。磁道上的定长弧段可
作为基本存储单元,根据其磁化与否可分
别记录数据 0 或 1,这个基本单元通常被
称为比特(bit)。
为了保障磁盘的分辨率,磁道之间的宽度必需大于 m ,每比
练习2(课本第75页B组第5题):
C
如图,铁路线上AB段长100km,
工厂C到铁路的距离CA=20km.
现在要在AB上某一处D,向C修 一条公路.已知铁路每吨千米与
B
D
A
公路每吨千米的运费之比为3:5.为了使原料
从供应站B运到工厂C的运费最省,D应修在何处?
解:设DA=xkm,那么DB=(100-x)km,CD= 202 x2 400 x2 km.
, 价格p与产量q的函数关系式为 p 25 1 q 求产量 q 为何值时,利润 L 最大? 8
解 : 利 润 L p q C (2 5 1 q )q (1 0 0 4 q )1q2 21q100
8
8
L'1q21,令L'0, 4
求得q84
当 L'0时 ,q84, 当 L'0时 ,q84,
设存储区的半径介于 r 与 R 之间,由于磁道之间
的宽度必需大于 m ,且最外面的磁道不存储任何信
息,故磁道数最多可达 R r 。由于每条磁道上的比 m
特数相同,为获得最大存储量,最内一条磁道必须装
满,即每条磁道上的比特数可达 2 r 。
∴磁盘总存储量 f (r) R r × 2nr 2 r(R r)
2
2
因此 r R 时,磁盘具有最大存储量。 2
此时最大存储量为 2 R2
mn 4
练习 练习1(课本第40页A组第4题):
学校或班级举行活动,通常需要张贴海报 进行宣传.现让你设计一张如图所示的竖向张 贴的海报,要求版心面积为间 128dm2,上、下两 边各空2dm.左、右两边各空1dm.如何设计海 报的尺寸,才能使四周空白的面积最小?
人教课标A版选修2-2
Learning English 专业辅导,专业品质
中学生学习报 数学周刊
国家级优秀教辅读物 ISO9001国际质量管理体系认证
复习
利用导数解决优化问题的基本思路:
建立数学模型
优化问题
用函数表示数学问题
优化问题的答案
解决数学模型
作答
用导数解决数学问题
例 2. 磁盘的最大存储量问题
相关文档
最新文档