天津市2019-2020河西区初三期末数学答案

合集下载

最新2019—2020学年天津市河西区九年级(上)期末数学试卷

最新2019—2020学年天津市河西区九年级(上)期末数学试卷

最新2019—2020学年天津市河西区九年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分,每小题只有一个选项符合题意)1.(3分)下列各点中关于原点对称的两个点是()A.(﹣5,0)和(0,5) B.(2,﹣1)和(1,﹣2)C.(5,0)和(0,﹣5)D.(﹣2,﹣1)和(2,1)2.(3分)如图由圆形组成的四个图形中,可以看做是中心对称图形的有()A.4个B.3个C.2个D.1个3.(3分)已知抛物线y=x2﹣x,它与x轴的两个交点间的距离为()A.0 B.1 C.2 D.44.(3分)如图,DE∥BC,且AD=4,DB=2,DE=3.5,则BC的长度为()A.5.5 B.5.25 C.6.5 D.75.(3分)如图,P是⊙O直径AB延长线上的一点,PC与⊙O相切于点C,若∠P=20°,则∠A的度数为()A.40°B.35°C.30°D.25°6.(3分)从一副扑克牌中随机抽取一张,它恰好是Q的概率为()A.B.C.D.7.(3分)下列叙述正确的是()A.任意两个正方形一定是相似的B.任意两个矩形一定是相似的C.任意两个菱形一定是相似的D.任意两个等腰梯形一定是相似的8.(3分)观察下列两个三位数的特点,猜想其中积的结果最大的是()A.901×999 B.922×978 C.950×950 D.961×9399.(3分)正六边形的周长为6mm,则它的面积为()A.mm2B.mm2C.3mm2D.6mm210.(3分)数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a,小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.勾股定理是逆定理C.直径所对的圆周角是直角D.90°的圆周角所对的弦是直径11.(3分)75°的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是()A.6cm B.7cm C.8cm D.9cm12.(3分)如图,抛物线y=﹣x 2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列三个判断中,①当x>0时,y>0;②若a=﹣1,则b=4;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;正确的是()A.①B.②C.③D.①②③都不对二、填空题(共6小题,每小题3分,满分18分)13.(3分)已知⊙O的直径为10cm,若直线AB与⊙O相切.那么点O到直统AB的距离是.14.(3分)将点P(3,4)绕原点逆时针旋转90°,得到的点P的对应点的坐标为.15.(3分)如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长为.16.(3分)已知二次函数y=x2+bx+5(b为常数),若在函数值y=1的情况下,只有一个自变量x的值与其对应,则此时b的值为.17.(3分)如图,AB与CD相交于点O,且∠OAD=∠OCB,延长AD、CB交于点P,那么图中的相似三角形的对数为.18.(3分)如图,在每个小正方形的边长为1的网格中,点A,B均在格点上,即AB=4,点E为线段AB上的动点.若使得BE=,则的值为;请你在网格中,用无刻度的直尺,找到点E的位置,并简要说明此位置是如何找到的(不要求证明).三、解答题(共7小题,满分66分)19.(8分)已知抛物线y=x2﹣2x+1.(1)求它的对称轴和顶点坐标;(2)根据图象,确定当x>2时,y的取值范围.20.(8分)在一个不透明的盒子里,装有三个分别写有数字6,﹣2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于10的概率.21.(10分)如图,Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一点,AE=5,ED ⊥AB于D.(1)求证:△ACB∽△ADE;(2)求AD的长度.22.(10分)如图,在矩形ABCD中,AB=8,AD=12,过点A,D两点的⊙O与BC边相切于点E,求⊙O的半径.23.(10分)某商品现在的售价为每件35元.每天可卖出50件.市场调查反映:如果调整价格.每降价1元,每天可多卖出2件.请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销售额是多少?设每件商品降价x元.每天的销售额为y元.(I)分析:根据问题中的数量关系.用含x的式子填表:原价每件降价1元每件降价2元…每件降价x元每件售价(元)35 34 33 …每天售量(件)50 52 54 …(Ⅱ)(由以上分析,用含x的式子表示y,并求出问题的解)24.(10分)在平面直角坐标系中,己知O为坐标原点,点A(3,0),B(0,4),以点A 为旋转中心,把△ABO顺时针旋转,得△ACD.记旋转角为α.∠ABO为β.(Ⅰ)如图①,当旋转后点D恰好落在AB边上时,求点D的坐标;(Ⅱ)如图②,当旋转后满足BC∥x轴时,求α与β之间的数量关系:(Ⅲ)当旋转后满足∠AOD=β时,求直线CD的解析式(直接写出结果即可).25.(10分)如图,已知Rt△ABC中,∠C=90°,AC=8.BC=6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从A→B→C方向运动,它们到C点后都停止运动,设点P、Q运动的时间为t秒.(Ⅰ)在运动过程中,请你用t表示P、Q两点间的距离,并求出P、Q两点间的距离的最大值;(Ⅱ)经过t秒的运动,求△ABC被直线PQ扫过的面积S与时间t的函数关系式.2015-2016学年天津市河西区九年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分,每小题只有一个选项符合题意)1.(3分)(2015秋•河西区期末)下列各点中关于原点对称的两个点是()A.(﹣5,0)和(0,5) B.(2,﹣1)和(1,﹣2)C.(5,0)和(0,﹣5)D.(﹣2,﹣1)和(2,1)【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【解答】解:A、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故A错误;B、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故B错误;C、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故C错误;D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;故选:D.【点评】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.2.(3分)(2015秋•河西区期末)如图由圆形组成的四个图形中,可以看做是中心对称图形的有()A.4个B.3个C.2个D.1个【分析】根据中心对称图形定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【解答】解:第一、二、四个图形是中心对称图形,共3个,故选:B.【点评】此题主要考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(3分)(2015秋•河西区期末)已知抛物线y=x2﹣x,它与x轴的两个交点间的距离为()A.0 B.1 C.2 D.4【分析】根据解方程x2﹣x=0抛物线与x轴的两交点坐标,然后利用两点间的距离公式求出两交点间的距离.【解答】解:当y=0时,x2﹣x=0,解得x1=0,x2=2,则抛物线与x轴的两交点坐标为(0,0),(2,0),所以抛物线与x轴的两个交点间的距离为2.故选C.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标转化为解关于x的一元二次方程.4.(3分)(2015秋•河西区期末)如图,DE∥BC,且AD=4,DB=2,DE=3.5,则BC的长度为()A.5.5 B.5.25 C.6.5 D.7【分析】根据相似三角形的判定得出△ADE∽△ABC,得出比例式,代入求出即可.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=,∵AD=4,DB=2,DE=3.5,∴=,∴BC=5.25,故选B.【点评】本题考查了相似三角形的性质和判定的应用,能求出△ADE∽△ABC是解此题的关键.5.(3分)(2015秋•河西区期末)如图,P是⊙O直径AB延长线上的一点,PC与⊙O相切于点C,若∠P=20°,则∠A的度数为()A.40°B.35°C.30°D.25°【分析】根据题意,可知∠COB=70°,OA=OC,即可推出∠A=35°.【解答】解:∵PC与⊙O相切于点C,∴OC⊥CP,∵∠P=20°,∴∠COB=70°,∵OA=OC,∴∠A=35°.故选B.【点评】本题主要考查了切线性质、三角形外角的性质、等腰三角形的性质,解题的关键在于确定OC⊥CP,OA=OC.6.(3分)(2015秋•河西区期末)从一副扑克牌中随机抽取一张,它恰好是Q的概率为()A.B.C.D.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:一副扑克牌共有54张,其中只有4张Q,∴从一副扑克牌中随机抽出一张牌,得到Q的概率是=;故选B.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.(3分)(2015秋•河西区期末)下列叙述正确的是()A.任意两个正方形一定是相似的B.任意两个矩形一定是相似的C.任意两个菱形一定是相似的D.任意两个等腰梯形一定是相似的【分析】根据对应边成比例,对应角相等的图形是相似图形,对各选项分析判断后利用排除法求解.【解答】解:A、任意两个正方形,对应边成比例,对应角都是直角,一定相等,所以一定相似,故本选项正确;B、任意两个矩形,对应边不一定成比例,对应角都是直角,一定相等,所以也不一定相似,故本选项错误;C、任意两个菱形,对应边成比例,但对应角不一定相等,所以不一定相似,故本选项错误;D、任意两个等腰梯形,对应边不一定成比例,对应角不一定相等,所以不一定相似,故本选项错误.故选A.【点评】本题主要考查了相似图形的定义,注意从对应边与对应角两个方面考虑解答.8.(3分)(2015秋•河西区期末)观察下列两个三位数的特点,猜想其中积的结果最大的是()A.901×999 B.922×978 C.950×950 D.961×939【分析】根据平方差公式计算即可判断.【解答】解:∵901×999=(950﹣49)(950+49))=9502﹣49,922×978=(950﹣28)(950+28)=9502﹣282,950×950=9502,961×939=(950+11)(950﹣11)=9502﹣112,∴950×950最大,故选C.【点评】本题考查平方差公式,解题的关键是利用平方差公式简便运算,记住(a+b)(a ﹣b)=a2﹣b2,运算基础题,中考常考题型.9.(3分)(2015•河西区二模)正六边形的周长为6mm,则它的面积为()A.mm2B.mm2C.3mm2D.6mm2【分析】首先根据题意画出图形,即可得△OBC是等边三角形,又由正六边形ABCDEF的周长为6mm,即可求得BC的长,继而求得△OBC的面积,则可求得该六边形的面积.【解答】解:如图,连接OB,OC,过O作OM⊥BC于M,∴∠BOC=×360°=60°,∵OB=OC,∴△OBC是等边三角形,∵正六边形ABCDEF的周长为6mm,∴BC=6÷6=1mm,∴OB=BC=1mm,∴BM=BC=mm,∴OM==mm,∴S△OBC=×BC×OM=×1×=mm2,∴该六边形的面积为:×6=mm2,故选B.【点评】此题主要考查了圆的内接六边形的性质与等边三角形的判定与性质,注意掌握数形结合思想是解答此题的关键.10.(3分)(2015秋•河西区期末)数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a,小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.勾股定理是逆定理C.直径所对的圆周角是直角D.90°的圆周角所对的弦是直径【分析】由AB是直径,根据直径所对的圆周角是直角即可判定∠ACB是直角.【解答】解:∵AB是直径,∴∠ACB是直角.则∠ACB是直角的依据是:直径所对的圆周角是直角.故选C.【点评】此题考查了圆周角定理.注意掌握直径所对的圆周角是直角定理的应用是解此题的关键.11.(3分)(2015秋•抚顺县期末)75°的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是()A.6cm B.7cm C.8cm D.9cm【分析】根据弧长公式L=,将n=75,L=2.5π,代入即可求得半径长.【解答】解:∵75°的圆心角所对的弧长是2.5πcm,由L=,∴2.5π=,解得:r=6,故选:A.【点评】此题主要考查了弧长公式的应用,熟练掌握弧长公式:L=才能准确的解题.12.(3分)(2015秋•河西区期末)如图,抛物线y=﹣x2+2x+m+1交x轴于点A(a,0)和B (b,0),交y轴于点C,抛物线的顶点为D,下列三个判断中,①当x>0时,y>0;②若a=﹣1,则b=4;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;正确的是()A.①B.②C.③D.①②③都不对【分析】观察函数图象可直接得到抛物线在x轴上方所对应的自变量的范围,从而可对①进行判断;把A点坐标代入y=﹣x2+2x+m+1中求出m,确定抛物线解析式,再通过解方程﹣x2 +2x+3=0得到B点坐标,从而可对②进行判断;先确定抛物线的对称轴为直线x=1,则点P和点Q在对称轴两侧,所以点P到直线x=1的距离为1﹣x1,点Q到直线x=1的距离为x2﹣1,然后比较点Q点对称轴的距离和点P点对称轴的距离的大小,再根据二次函数的性质可对③进行判断.【解答】解:当a<x<b时,y>0,所以①错误;当a=﹣1时,A点坐标为(﹣1,0),把A(﹣1,0)代入y=﹣x2+2x+m+1得﹣1﹣2+m+1=0,解得m=2,则抛物线解析式为y=﹣x2+2x+3,解方程﹣x2+2x+3=0得x1=﹣1,x2=3,则B(3,0),即b=3,所以②错误;抛物线的对称轴为直线x=﹣=1,因为x1<1<x2,所以点P和点Q在对称轴两侧,点P到直线x=1的距离为1﹣x1,点Q到直线x=1的距离为x 2﹣1,则x2﹣1﹣(1﹣x1)=x2+x1﹣2,而x1+x2>2,所以x2﹣1﹣(1﹣x1)>0,所以点Q到对称轴的距离比点P到对称轴的距离要大,所以y1>y2,所以③正确.故选C.【点评】本题考查了抛物线与x轴的交点问题:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.判断点P、点Q到对称轴的距离的大小是判断命题③的真假的关键.二、填空题(共6小题,每小题3分,满分18分)13.(3分)(2015秋•河西区期末)已知⊙O的直径为10cm,若直线AB与⊙O相切.那么点O到直统AB的距离是 5 .【分析】根据圆的切线的性质:圆心到切线的距离等于圆的半径,求出圆的半径即可.【解答】解:∵⊙O的直径是10,∴⊙O的半径是5,∵直线AB与⊙O相切,∴点O到AB的距离等于圆的半径,是5.故答案为:5.【点评】本题考查了切线的性质和直线与圆的位置关系的理解和运用,关键是理解圆的切线的定义,题目比较典型,难度不大.14.(3分)(2015秋•河西区期末)将点P(3,4)绕原点逆时针旋转90°,得到的点P的对应点的坐标为(﹣4,3).【分析】作出图形,过点P作PA⊥x轴于点A,作PB⊥y轴于点B,过点P′作PA′⊥y轴于点A′,作PB′⊥x轴于点B′,根据点A的坐标求出PA、PB的长度,根据旋转变换只改把图形的位置,不改变图形的形状与大小求出P′A′、P′B′的长度,即可得解.【解答】解:如图,过点P作PA⊥x轴于点A,作PB⊥y轴于点B,过点P′作PA′⊥y轴于点A′,作PB′⊥x轴于点B′,∵点P(3,4),∴PA=4,PB=3,∵点P(3,4)绕坐标原点逆时针旋转90°得到点P′,∴P′A′=PA=4,P′B′=PB=3,∴点P′的坐标是(﹣4,3).故答案为:(﹣4,3).【点评】本题考查了坐标与图形的变化﹣旋转,熟练掌握旋转变换的性质是解题的关键,作出图形更形象直观.15.(3分)(2009•宁德)如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长为 6 .【分析】位似图形就是特殊的相似图形位似比等于相似比.利用相似三角形的性质即可求解.【解答】解:∵△ABC与△DEF是位似图形,位似比为2:3,∴AB:DE=2:3,∴DE=6.故答案为:6.【点评】本题主要考查位似的定义.解题的关键是掌握位似图形是相似图形的特殊形式,位似比等于相似比的特点.16.(3分)(2015秋•河西区期末)已知二次函数y=x2+bx+5(b为常数),若在函数值y=1的情况下,只有一个自变量x的值与其对应,则此时b的值为±4 .【分析】根据在函数值y=l的情况下,只有一个自变量x的值与其对应,得到x2+bx+5=1有两个相等的实数根,求此时b的值即可.【解答】解:由题意得,x2+bx+5=1有两个相等的实数根,所以△=b2﹣16=0,解得,b=±4.故答案为±4.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴是直线x=﹣,当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=﹣时,y=;当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=﹣时,y=.17.(3分)(2015秋•河西区期末)如图,AB与CD相交于点O,且∠OAD=∠OCB,延长AD、CB交于点P,那么图中的相似三角形的对数为 2 .【分析】利用两角法推知图中的相似三角形即可.【解答】解:如图,∵在△ABP与△CDP中,∠BAP=∠DCP,∠APB=∠CPD,∴△ABP∽△CDP,∴∠ABP=∠CDP,∴∠ADO=∠CBO,又∵∠OAD=∠OCB,∴△OAD∽△OCB,综上所述,图中的相似三角形有2对:△ABP∽△CDP,△OAD∽△OCB.故答案是:2.【点评】本题考查了相似三角形的判定.①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.18.(3分)(2015秋•河西区期末)如图,在每个小正方形的边长为1的网格中,点A,B 均在格点上,即AB=4,点E为线段AB上的动点.若使得BE=,则的值为;请你在网格中,用无刻度的直尺,找到点E的位置,并简要说明此位置是如何找到的(不要求证明)在B所在横线的上边第9条线上找到格点F,连接BF,BF交F下距离是5的横线与BF的交点是G,过G作GE∥AF交AB于点E,点E就是所求..【分析】首先求得AE的长,即可求得的值,根据平行线分线段成比例定理即可作出E的位置.【解答】解:AE=AB﹣BE=4﹣=,则===.找到E的方法:在B所在横线的上边第9条线上找到格点F,连接BF,BF交F下距离是5的横线与BF的交点是G,过G作GE∥AF交AB于点E,点E就是所求.【点评】本题考查了线段的比值,以及平行线分线段成比例定理,正确理解利用平行线分线段成比例定理是关键.三、解答题(共7小题,满分66分)19.(8分)(2015秋•河西区期末)已知抛物线y=x2﹣2x+1.(1)求它的对称轴和顶点坐标;(2)根据图象,确定当x>2时,y的取值范围.【分析】(1)把抛物线解析式化为顶点式即可得出对称轴和顶点坐标;(2)利用描点法画出图象,根据图象利用数形结合的方法确定当x>2时,y的取值范围即可.【解答】解:(1)y=x2﹣2x+1=(x﹣1)2,对称轴为直线x=1,顶点坐标为(1,0);(2)抛物线图象如下图所示:由图象可知当x>2时,y的取值范围是y>1.【点评】本题考查了二次函数的性质,解题的关键是确定对称轴及顶点坐标并作出图象.20.(8分)(2009•吉林)在一个不透明的盒子里,装有三个分别写有数字6,﹣2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于10的概率.【分析】解此题的关键是准确列表或画树形图,找出所有的可能情况,即可求得概率.【解答】解:第二次第一次6 ﹣2 76 (6,6)(6,﹣2)(6,7)﹣2 (﹣2,6)(﹣2,﹣2)(﹣2,7)7 (7,(7,﹣(7,6)2)7)(2分)(1)P(两数相同)=.(3分)(2)P(两数和大于10)=.(5分)【点评】此题可以采用列表法或者采用树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21.(10分)(2015秋•中山区期末)如图,Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一点,AE=5,ED⊥AB于D.(1)求证:△ACB∽△ADE;(2)求AD的长度.【分析】(1)求出∠EDA=∠C=90°,根据相似三角形的判定得出相似即可;(2)根据相似得出比例式,代入求出即可.【解答】(1)证明:∵DE⊥AB,∠C=90°,∴∠EDA=∠C=90°,∵∠A=∠A,∴△ACB∽△ADE;(2)解:∵△ACB∽△ADE,∴=,∴=,∴AD=4.【点评】本题考查了相似三角形的性质和判定的应用,能推出△ACB∽△ADE是解此题的关键.22.(10分)(2015秋•河西区期末)如图,在矩形ABCD中,AB=8,AD=12,过点A,D 两点的⊙O与BC边相切于点E,求⊙O的半径.【分析】首先连接OE,并反向延长交AD于点F,连接OA,由在矩形ABCD中,过A,D两点的⊙O与BC边相切于点E,易得四边形CDFE是矩形,由垂径定理可求得AF的长,然后设⊙O的半径为x,则OE=EF﹣OE=8﹣x,利用勾股定理即可得:(8﹣x)2+36=x2,继而求得答案.【解答】解:连接OE,并反向延长交AD于点F,连接OA,∵BC是切线,∴OE⊥BC,∴∠OEC=90°,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDFE是矩形,∴EF=CD=AB=8,OF⊥AD,∴AF=AD=×12=6,设⊙O的半径为x,则OE=EF﹣OE=8﹣x,在Rt△OAF中,OF2+AF2=OA2,则(8﹣x)2+36=x2,解得:x=6.25,∴⊙O的半径为:6.25.【点评】此题考查了切线的性质、垂径定理、矩形的性质以及勾股定理.注意准确作出辅助线是解此题的关键.23.(10分)(2012•河北模拟)某商品现在的售价为每件35元.每天可卖出50件.市场调查反映:如果调整价格.每降价1元,每天可多卖出2件.请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销售额是多少?设每件商品降价x元.每天的销售额为y元.(I)分析:根据问题中的数量关系.用含x的式子填表:原价每件降价1元每件降价2元…每件降价x元每件售价(元)35 34 33 …每天售量(件)50 52 54 …(Ⅱ)(由以上分析,用含x的式子表示y,并求出问题的解)【分析】(I)现在的售价为每件35元,则每件商品降价x元,每件售价为(35﹣x)元;多买2x件,即每天售量为(50+2x)件;(Ⅱ)每天的销售额=每件售价×每天售量,即y=(35﹣x)(50+2x),配方后得到y=﹣2(x﹣5)2+1800,根据二次函数的性质得到当x=5时,y取得最大值1800.【解答】解:(Ⅰ)35﹣x,50+2x;(Ⅱ)根据题意,每天的销售额y=(35﹣x)(50+2x),(0<x<35)配方得y=﹣2(x﹣5)2+1800,∵a<0,∴当x=5时,y取得最大值1800.答:当每件商品降价5元时,可使每天的销售额最大,最大销售额为l 800元.【点评】本题考查了二次函数的应用:根据题意构建二次函数关系式,再利用配方法配成顶点式,然后根据二次函数的性质讨论函数的最大值或最小值.24.(10分)(2011•天津)在平面直角坐标系中,己知O为坐标原点,点A(3,0),B(0,4),以点A为旋转中心,把△ABO顺时针旋转,得△ACD.记旋转角为α.∠ABO为β.(Ⅰ)如图①,当旋转后点D恰好落在AB边上时,求点D的坐标;(Ⅱ)如图②,当旋转后满足BC∥x轴时,求α与β之间的数量关系:(Ⅲ)当旋转后满足∠AOD=β时,求直线CD的解析式(直接写出结果即可).【分析】(1)过点D作DM⊥x轴于点M,求证△ADM∽△ABO,根据相似比求AM的长度,推出OM和MD的长度即可;(2)根据等腰三角形的性质,推出α=180°﹣2∠ABC,结合已知条件推出∠ABC=90°﹣∠ABO=90°﹣β,即α=2β;(3)做过点D作DM⊥x轴于点M,根据勾股定理和△OAB∽△OMD,推出D点的横坐标和纵坐标,然后求出C点坐标,就很容易得到CD的解析式了.【解答】解:(1)∵点A(3,0),B(0,4),得OA=3,OB=4,∴在Rt△AOB中,由勾股定理,得AB==5,根据题意,有DA=OA=3.如图①,过点D作DM⊥x轴于点M,则MD∥OB,∴△ADM∽△ABO.有,得,∴OM=,∴,∴点D的坐标为(,).(2)如图②,由已知,得∠CAB=α,AC=AB,∴∠ABC=∠ACB,∴在△ABC中,∴α=180°﹣2∠ABC,∵BC∥x轴,得∠OBC=90°,∴∠ABC=90°﹣∠ABO=90°﹣β,∴α=2β;(3)若顺时针旋转,如图,过点D作DE⊥OA于E,过点C作CF⊥OA于F,∵∠AOD=∠ABO=β,∴tan∠AOD==,设DE=3x,OE=4x,则AE=4x﹣3,在Rt△ADE中,AD2=AE2+DE2,∴9=9x2+(4x﹣3)2,∴x=,∴D(,),∴直线AD的解析式为:y=x﹣,∵直线CD与直线AD垂直,且过点D,∴设y=﹣x+b,把D(,)代入得,=﹣×+b,解得b=4,∵互相垂直的两条直线的斜率的积等于﹣1,∴直线CD的解析式为y=﹣4.同理可得直线CD的另一个解析式为y=x﹣4.【点评】本题主要考查了相似三角形的判定和性质、勾股定理、待定系数法求一次函数解释式等知识点,本题关键在于结合图形找到相似三角形,求相关线段的长度和有关点的坐标.25.(10分)(2015秋•河西区期末)如图,已知Rt△ABC中,∠C=90°,AC=8.BC=6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从A→B→C方向运动,它们到C点后都停止运动,设点P、Q运动的时间为t秒.(Ⅰ)在运动过程中,请你用t表示P、Q两点间的距离,并求出P、Q两点间的距离的最大值;(Ⅱ)经过t秒的运动,求△ABC被直线PQ扫过的面积S与时间t的函数关系式.【分析】(Ⅰ)分Q在AB边上与Q在BC边上,分别如图1和图2所示,表示出PQ的长,当Q与B重合时,PQ取得最大值,求出即可;(Ⅱ)分两种情况考虑:当Q在AB边上时,如图1,△ABC被直线PQ扫过的面积为S△AQP;当Q在BC边上时,△ABC被直线PQ扫过的面积为S四边形ABQP,分别表示出S与t的函数关系式即可.【解答】解:(Ⅰ)分两种情况考虑:当Q在AB边上时,过Q作QE⊥AC,交AC于点E,连接PQ,如图1所示:∵∠C=90°,∴QE∥BC,∴△ABC∽△AQE,∴==,在Rt△ABC中,AC=8,BC=6,根据勾股定理得:AB=10,∵AQ=2t,AP=t,∴==,整理得:PE=t,QE=t,根据勾股定理得:PQ2=QE2+PE2,整理得:PQ=t;当Q在BC边上时,连接PQ,如图2所示:由AB+BQ=2t,AB=10,得到BQ=2t﹣10,CQ=BC﹣BQ=6﹣(2t﹣10)=16﹣2t,由AP=t,AC=8,得到PC=8﹣t,根据勾股定理得:PQ==,当Q与B重合时,PQ的值最大,则当t=5时,PQ最大值为3;(Ⅱ)分两种情况考虑:当Q在AB边上时,如图1,△ABC被直线PQ扫过的面积为S△AQP,此时S=AP•QE=t•t=t2(0<t≤5);当Q在BC边上时,△ABC被直线PQ扫过的面积为S四边形ABQP,此时S=S△ABC﹣S△PQC=×8×6﹣(8﹣t)(16﹣2t)=﹣t2+16t﹣40(5<t≤8).综上,经过t秒的运动,△ABC被直线PQ扫过的面积S与时间t的函数关系式为.【点评】此题考查了动点问题的函数图象,涉及的知识有:相似三角形的判定与性质,勾股定理,以及三角形面积求法,利用了分类讨论的思想,分类讨论时考虑问题要全面,做到不重不漏.参与本试卷答题和审题的老师有:2300680618;sd2011;gsls;zjx111;守拙;lantin;HJJ ;弯弯的小河;fangcao;zcx;王学峰;蓝月梦;zhjh;nhx600;lf2-9;ZHAOJJ;sks(排名不分先后)菁优网2016年11月8日。

天津市河西区2019-2020学年中考数学最后模拟卷含解析

天津市河西区2019-2020学年中考数学最后模拟卷含解析

天津市河西区2019-2020学年中考数学最后模拟卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各数是不等式组32123xx+⎧⎨--⎩fp的解是()A.0 B.1-C.2 D.32.如图,把长方形纸片ABCD折叠,使顶点A与顶点C重合在一起,EF为折痕.若AB=9,BC=3,试求以折痕EF为边长的正方形面积()A.11 B.10 C.9 D.163.某春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩()m 1.50 1.60 1.65 1.70 1.75 1.80人数124332这些运动员跳高成绩的中位数是()A.1.65m B.1.675m C.1.70m D.1.75m4.函数的自变量x的取值范围是()A.x>1 B.x<1 C.x≤1D.x≥15.如图,在矩形ABCD中AB=2,BC=1,将矩形ABCD绕顶点B旋转得到矩形A'BC'D,点A恰好落在矩形ABCD的边CD上,则AD扫过的部分(即阴影部分)面积为()A.8πB.222π-C.23π-D.6π6.不等式组21xx≥-⎧⎨>⎩的解集在数轴上表示为()A.B.C.D.7.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°8.估计3﹣2的值应该在()A.﹣1﹣0之间B.0﹣1之间C.1﹣2之间D.2﹣3之间9.若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-110.把直线l:y=kx+b绕着原点旋转180°,再向左平移1个单位长度后,经过点A(-2,0)和点B(0,4),则直线l的表达式是()A.y=2x+2 B.y=2x-2 C.y=-2x+2 D.y=-2x-211.如图,⊙O内切于正方形ABCD,边BC、DC上两点M、N,且MN是⊙O的切线,当△AMN的面积为4时,则⊙O的半径r是()A.2B.22C.2 D.4312.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2 B.4 C.6 D.8二、填空题:(本大题共6个小题,每小题4分,共24分.)13.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表:价格/(元/kg)12 10 8 合计/kg小菲购买的数量/kg 2 2 2 6小琳购买的数量/kg 1 2 3 6从平均价格看,谁买得比较划算?()A.一样划算B.小菲划算C.小琳划算D.无法比较14.某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.15.计算:7+(-5)=______.16.如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为_________.17.关于x的一元二次方程x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,且x12+x22=4,则x12﹣x1x2+x22的值是_____.18.钓鱼岛周围海域面积约为170000平方千米,170000用科学记数法表示为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,菱形ABCD,AB=4,∠ADC=120o,连接对角线AC、BD交于点O,(1)如图2,将△AOD沿DB平移,使点D与点O重合,求平移后的△A′BO与菱形ABCD重合部分的面积.(2)如图3,将△A′BO绕点O逆时针旋转交AB于点E′,交BC于点F,①求证:BE′+BF=2,②求出四边形OE′BF的面积.20.(6分)已知抛物线y=ax2+bx+2过点A(5,0)和点B(﹣3,﹣4),与y轴交于点C.(1)求抛物线y=ax2+bx+2的函数表达式;(2)求直线BC的函数表达式;(3)点E是点B关于y轴的对称点,连接AE、BE,点P是折线EB﹣BC上的一个动点,①当点P在线段BC上时,连接EP,若EP⊥BC,请直接写出线段BP与线段AE的关系;②过点P作x轴的垂线与过点C作的y轴的垂线交于点M,当点M不与点C重合时,点M关于直线PC 的对称点为点M′,如果点M′恰好在坐标轴上,请直接写出此时点P的坐标.21.(6分)某电器商场销售甲、乙两种品牌空调,已知每台乙种品牌空调的进价比每台甲种品牌空调的进价高20%,用7200元购进的乙种品牌空调数量比用3000元购进的甲种品牌空调数量多2台.求甲、乙两种品牌空调的进货价;该商场拟用不超过16000元购进甲、乙两种品牌空调共10台进行销售,其中甲种品牌空调的售价为2500元/台,乙种品牌空调的售价为3500元/台.请您帮该商场设计一种进货方案,使得在售完这10台空调后获利最大,并求出最大利润.22.(8分)如图,在平行四边形ABCD中,连接AC,做△ABC的外接圆⊙O,延长EC交⊙O于点D,连接BD、AD,BC与AD交于点F分,∠ABC=∠ADB。

2019-2020学年天津市河西区九年级(上)期末数学试卷

2019-2020学年天津市河西区九年级(上)期末数学试卷

2019-2020学年天津市河西区九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)已知O e 的半径为6cm ,点P 到圆心O 的距离为6cm ,则点P 和O e 的位置关系是( )A .点P 在圆内B .点P 在圆上C .点P 在圆外D .不能确定2.(3分)下列图形中,可以看作是中心对称图形的是( )A .B .C .D .3.(3分)半径为3的圆中,30︒的圆心角所对的弧的长度为( )A .2πB .32πC .34πD .12π 4.(3分)同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率是( )A .15B .13C .35D .165.(3分)如图,ABC ∆与DEF ∆是位似图形,相似比为2:3,已知3AB =,则DE 的长为( )A .72B .92C .83D .1636.(3分)如图,AB 为O e 的直径,C ,D 为O e 上的两点,且C 为¶AD 的中点,若20BAD ∠=︒,则ACO ∠的度数为( )A .30︒B .45︒C .55︒D .60︒7.(3分)如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与ABC ∆相似的是( )A .B .C .D .8.(3分)直线41y x =-+与抛物线22y x x k =++只有一个交点,则k 的值为( )A .0B .2C .6D .109.(3分)如图,已知在Rt ABC ∆中,90ACB ∠=︒,CD AB ⊥于D ,则下列结论错误的是( )A .CD AC AB BC =g g B .2AC AD AB =g C .2BC BD AB =g D .AC BC AB CD =g g10.(3分)顺次连接边长为6cm 的正六边形的不相邻的三边的中点,又形成一个新的正三角形,则这个新的正三角形的面积等于( )A 2813B .2363cmC .2183cmD 293 11.(3分)如图,将ABC ∆绕点A 逆时针旋转,旋转角为(0180)αα︒<<︒,得到ADE ∆,这时点B ,C ,D 恰好在同一直线上,下列结论一定正确的是( )A .AB ED = B .EA BC ⊥ C .902B α∠=︒-D .902EAC α∠=︒+12.(3分)如图,边长都为4的正方形ABCD 和正三角形EFG 如图放置,AB 与EF 在一条直线上,点A 与点F 重合.现将EFG ∆沿AB 方向以每秒1个单位的速度匀速运动,当点F 与B 重合时停止.在这个运动过程中,正方形ABCD 和EFG ∆重叠部分的面积S 与运动时间t 的函数图象大致是( )A .B .C .D .二、填空题(本大题共6小題,每小题3分,共18分)13.(3分)从一副没有“大小王”的扑克牌中随机抽取一张,点数为“6”的概率是 .14.(3分)如图所示,写出一个能判定ABC DAC ∆∆∽的条件 .15.(3分)如图,在ABC ∆中,//DE BC ,且DE 把ABC ∆分成面积相等的两部分.若4AD =,则DB 的长为 .16.(3分)已知:如图,PA ,PB ,DC 分别切O e 于A ,B ,E 点,若0PA l cm =,则PCD∆的周长为 .17.(3分)二次函数2y x bx c =++中,函数y 与自变量x 的部分对应值如表,则m 的值为 .x 2-1- 0 1 2 3 4 y 7 2 1- 2-m 2 7 18.(3分)如图,在边长为1的正方形ABCD 中,将射线AC 绕点A 按顺时针方向旋转α度(0360)α<︒…,得到射线AE ,点M 是点D 关于射线AE 的对称点,则线段CM 长度的最小值为 .三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(8分)解方程:27300x x --=.20.(8分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸取一个小球.利用树形图或列表求下列事件的概率:(1)两次取出的小球的标号相同;(2)两次取出的小球标号的和等于4.21.(10分)在ABC ∆中,90C ∠=︒,以边AB 上一点O 为圆心,OA 为半径的圆与BC 相切于点D ,分别交AB ,AC 于点E ,F .(1)如图①,连接AD ,若25CAD ∠=︒,求B ∠的大小;(2)如图②,若点F 为¶AD 的中点,O e 的半径为2,求AB 的长.22.(10分)如图①,E是平行四边形ABCD的边AD上的一点,且53AEDE=,CE交BD于点F.(Ⅰ)若15BF=,求DF的长;(Ⅱ)如图②,若延长BA和CE交于点P,8AB=,能否求出AP的长?若能,求出AP的长;若不能,说明理由.23.(10分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD AM…,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若20a=米,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)若70a=米,求矩形菜园ABCD面积的最大值.24.(10分)在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,90BAC AGF∠=∠=︒,若ABC∆固定不动,AFG∆绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合).(1)求证:ABE DCA∆∆∽;(2)在旋转过程中,试判断等式222BD CE DE +=是否始终成立,若成立,请证明;若不成立,请说明理由.25.(10分)在平面直角坐标系中,将二次函数2(0)y ax a =>的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x 轴交于点A 、B (点A 在点B 的左侧),1OA =,经过点A 的一次函数(0)y kx b k =+≠的图象与y 轴正半轴交于点C ,且与抛物线的另一个交点为D ,ABD ∆的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图象下方,求ACE ∆面积的最大值,并求出此时点E 的坐标;(3)若点P 为x 轴上任意一点,在(2)的结论下,求35PE PA +的最小值.2019-2020学年天津市河西区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)已知Oe的半径为6cm,点P到圆心O的距离为6cm,则点P和Oe的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定【解答】解:OQ e的半径为6cm,P到圆心O的距离为6cm,即6OP=,∴点P在Oe上.故选:B.2.(3分)下列图形中,可以看作是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,故本选项不合题意;B、是中心对称图形,故本选项符合题意;C、不中心对称图形,故本选项不合题意;D、不中心对称图形,故本选项不合题意.故选:B.3.(3分)半径为3的圆中,30︒的圆心角所对的弧的长度为()A.2πB.32πC.34πD.12π【解答】解:弧长3031802ππ==g g,故选:D.4.(3分)同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率是( )A .15B .13C .35D .16【解答】解:列表如下:共有6636⨯=种等可能的结果数,其中向上一面的两个骰子的点数相同的占6种, 所以向上一面的两个骰子的点数相同的概率61366==. 故选:D .5.(3分)如图,ABC ∆与DEF ∆是位似图形,相似比为2:3,已知3AB =,则DE 的长为( )A .72B .92C .83D .163【解答】解:ABC ∆Q 与DEF ∆是位似图形,相似比为2:3,ABC DEF ∴∆∆∽,∴23AB DE =,即323DE =, 解得,92DE =, 故选:B .6.(3分)如图,AB 为O e 的直径,C ,D 为O e 上的两点,且C 为¶AD 的中点,若20BAD ∠=︒,则ACO ∠的度数为( )A .30︒B .45︒C .55︒D .60︒【解答】解:AB Q 为O e 的直径,C 为¶AD 的中点,OC AD ∴⊥,20BAD ∠=︒Q ,9070AOC BAD ∴∠=︒-∠=︒,OA OC =Q , 180180705522AOC ACO CAO ︒-∠︒-︒∴∠=∠===︒, 故选:C .7.(3分)如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与ABC ∆相似的是( )A .B .C .D .【解答】解:根据题意得:223110AB +=2AC =,22112BC =+= ::25BC AC AB ∴=,A 、三边之比为25ABC ∆相似;B 2223,图中的三角形(阴影部分)与ABC ∆不相似; C 、三边之比为522ABC ∆不相似;D 、三边之比为2:5:13,图中的三角形(阴影部分)与ABC ∆不相似. 故选:A .8.(3分)直线41y x =-+与抛物线22y x x k =++只有一个交点,则k 的值为( )A .0B .2C .6D .10【解答】解:根据题意得:2241x x k x ++=-+,即26(1)0x x k ++-=,则△364(1)0k =--=,解得:10k =.故选:D .9.(3分)如图,已知在Rt ABC ∆中,90ACB ∠=︒,CD AB ⊥于D ,则下列结论错误的是( )A .CD AC AB BC =g g B .2AC AD AB =g C .2BC BD AB =g D .AC BC AB CD =g g【解答】解:由三角形的面积公式可知,CD AB AC BC =g g ,A 错误,符合题意,D 正确,不符合题意;Rt ABC ∆Q 中,90ACB ∠=︒,CD AB ⊥,2AC AD AB ∴=g ,2BC BD AB =g ,B 、C 正确,不符合题意;故选:A .10.(3分)顺次连接边长为6cm 的正六边形的不相邻的三边的中点,又形成一个新的正三角形,则这个新的正三角形的面积等于( )A 2813B .2363cmC .2183cmD 293 【解答】解:如图所示:作AP GH ⊥于P ,BQ GH ⊥于Q ,如图所示: GHM ∆Q 是等边三角形,60MGH GHM ∴∠=∠=︒,Q 六边形ABCDEF 是正六边形,120BAF ABC ∴∠=∠=︒,正六边形ABCDEF 是轴对称图形,G Q 、H 、M 分别为AF 、BC 、DE 的中点,GHM ∆是等边三角形,3AG BH cm ∴==,60MGH GHM ∠=∠=︒,60AGH FGM ∠=∠=︒, 180BAF AGH ∴∠+∠=︒, //AB GH ∴,Q 作AP GH ⊥于P ,BQ GH ⊥于Q ,6PQ AB cm ∴==,906030PAG ∠=︒-︒=︒, 1322PG AG cm ∴==, 同理:32QH cm =,9GH PG PQ QH cm ∴=++=, GHM ∴∆的面积223813GH cm ==; 故选:A .11.(3分)如图,将ABC ∆绕点A 逆时针旋转,旋转角为(0180)αα︒<<︒,得到ADE ∆,这时点B ,C ,D 恰好在同一直线上,下列结论一定正确的是( )A .AB ED =B .EA BC ⊥C .902B α∠=︒-D .902EAC α∠=︒+【解答】解:Q 将ABC ∆绕点A 逆时针旋转,旋转角为α,AB AD ∴=,BAD α∠=,1809022B αα︒-∴∠==︒-, 故选:C .12.(3分)如图,边长都为4的正方形ABCD 和正三角形EFG 如图放置,AB 与EF 在一条直线上,点A 与点F 重合.现将EFG ∆沿AB 方向以每秒1个单位的速度匀速运动,当点F 与B 重合时停止.在这个运动过程中,正方形ABCD 和EFG ∆重叠部分的面积S 与运动时间t 的函数图象大致是( )A .B .C .D .【解答】解:当02t 剟时,2(tan 60)32t t S t ︒==g g ,即S 与t 是二次函数关系,有最小值(0,0),开口向上, 当24t <…时,24(4sin 60)(4)[(4)tan 60]343(4)22t t S t ⨯⨯︒--︒=-=--g g ,即S 与t 是二次函数关系,开口向下, 由上可得,选项C 符合题意, 故选:C .二、填空题(本大题共6小題,每小题3分,共18分)13.(3分)从一副没有“大小王”的扑克牌中随机抽取一张,点数为“6”的概率是 113. 【解答】解:Q 没有大小王的扑克牌共52张,其中点数为6的扑克牌4张,∴随机抽取一张点数为8的扑克,其概率是415213=, 故答案为113. 14.(3分)如图所示,写出一个能判定ABC DAC ∆∆∽的条件 2AC DC BC =g (答案不唯一) .【解答】解:已知ABC ∆和DCA ∆中,ACD BAC ∠=∠; 如果ABC DAC ∆∆∽,需满足的条件有: ①DAC B ∠=∠或ADC BAC ∠=∠;②2AC DC BC =g ;故答案为:2AC DC BC =g (答案不唯一).15.(3分)如图,在ABC ∆中,//DE BC ,且DE 把ABC ∆分成面积相等的两部分.若4AD =,则DB的长为 424- .【解答】解://DE BC Q , ADE ABC ∴∆∆∽,DE Q 把ABC ∆分成面积相等的两部分,ADE DBCE S S ∆∴=四边形,∴12ADE ABC S S ∆∆=, ∴2AD AB =, 4AD =Q ,42AB ∴=.424DB AB AD ∴=-=-.故答案为:424-.16.(3分)已知:如图,PA ,PB ,DC 分别切O e 于A ,B ,E 点,若0PA l cm =,则PCD ∆的周长为 20cm .【解答】解:PA Q 、PB 分别切O e 于A 、B , 10PB PA cm ∴==,CA Q 与CE 为e 的切线, CA CE ∴=,同理得到DE DB =,PDC ∴∆的周长PD DC PC PD DB CA PC =++=+++ PDC ∴∆的周长20PA PB cm =+=,故答案为20cm .17.(3分)二次函数2y x bx c =++中,函数y 与自变量x 的部分对应值如表,则m 的值为1- .x2-1-0 1 23 4 y721- 2-m27【解答】解:根据图表可以得到, 点(2,7)-与(4,7)是对称点, 点(1,2)-与(3,2)是对称点,∴函数的对称轴是:1x =,∴横坐标是2的点与(0,1)-是对称点,1m ∴=-.18.(3分)如图,在边长为1的正方形ABCD 中,将射线AC 绕点A 按顺时针方向旋转α度(0360)α<︒…,得到射线AE ,点M 是点D 关于射线AE 的对称点,则线段CM 长度的最小值为 21- .【解答】解:如图所示:连接AM .Q 四边形ABCD 为正方形,22112AC AD CD ∴=+=+ Q 点D 与点M 关于AE 对称,1AM AD ∴==.∴点M 在以A 为圆心,以AD 长为半径的圆上.如图所示,当点A 、M 、C 在一条直线上时,CM 有最小值. CM ∴的最小值21AC AM =-',21.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程) 19.(8分)解方程:27300x x --=. 【解答】解:27300x x --=, (10)(3)0x x -+=, 100x -=,30x +=, 110x =,23x =-.20.(8分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸取一个小球.利用树形图或列表求下列事件的概率: (1)两次取出的小球的标号相同; (2)两次取出的小球标号的和等于4. 【解答】解:(1)如图,随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号相同的有4种,所有两次摸出的小球标号相同的概率为41 164=;(2)因为两次取出的小球标号的和等于4的有3种,所以其概率为316.21.(10分)在ABC∆中,90C∠=︒,以边AB上一点O为圆心,OA为半径的圆与BC相切于点D,分别交AB,AC于点E,F.(1)如图①,连接AD,若25CAD∠=︒,求B∠的大小;(2)如图②,若点F为¶AD的中点,Oe的半径为2,求AB的长.【解答】解:(1)连接OD,OAQ为半径的圆与BC相切于点D,OD BC∴⊥,90ODB∴∠=︒,Q在ABC∆中,90C∠=︒,ODB C∴∠=∠,//OD AC∴,25CAD ADO∴∠=∠=︒,OA OD=Q,25OAD ODA ∴∠=∠=︒, 250BOD OAD ∴∠=∠=︒, 9040B BOD ∴∠=︒-∠=︒;(2)连接OF ,OD ,由(1)得://OD AC , AFO FOD ∴∠=∠,OA OF =Q ,点F 为¶AD 的中点, A AFO ∴∠=∠,AOF FOD ∠=∠, 60A AFO AOF ∴∠=∠=∠=︒, 9030B A ∴∠=︒-∠=︒, 2OA OD ==Q , 24OB OD ∴==, 6AB OA OB ∴=+=.22.(10分)如图①,E 是平行四边形ABCD 的边AD 上的一点,且53AE DE =,CE 交BD 于点F .(Ⅰ)若15BF=,求DF的长;(Ⅱ)如图②,若延长BA和CE交于点P,8AB=,能否求出AP的长?若能,求出AP的长;若不能,说明理由.【解答】解:(Ⅰ)Q四边形ABCD是平行四边形,//AD BC∴,AD BC=,Q53 AEDE=,∴38ED DF BC BF==,又BQ15F=,∴8153DF =,∴458 DF=;(Ⅱ)解:能.Q四边形ABCD是平行四边形,//PB DC∴,8AB DC==,∴PA AE DC ED=,∴5 83 PA=,403 PA∴=.23.(10分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD AM…,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若20a=米,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)若70a=米,求矩形菜园ABCD面积的最大值.【解答】解:(1)设AB xm =,则(1002)BC x m =-,由题意得: (1002)450x x -= 解得:15x =,245x =当5x =时,10029020x -=>,不合题意舍去; 当45x =时,10021020x -=< 答:AD 的长为10m ; (2)设AB xm =,则 1(100)2S x x =- 21(50)12502x =--+,(070)x <…50x ∴=时,S 的最大值是1250.答:当50x =时,矩形菜园ABCD 面积的最大值为1250.24.(10分)在同一平面内,将两个全等的等腰直角三角形ABC 和AFG 摆放在一起,A 为公共顶点,90BAC AGF ∠=∠=︒,若ABC ∆固定不动,AFG ∆绕点A 旋转,AF 、AG 与边BC 的交点分别为D 、E (点D 不与点B 重合,点E 不与点C 重合). (1)求证:ABE DCA ∆∆∽;(2)在旋转过程中,试判断等式222BD CE DE +=是否始终成立,若成立,请证明;若不成立,请说明理由.【解答】(1)证明:45BAE BAD ∠=∠+︒Q ,45CDA BAD ∠=∠+︒, BAE CDA ∴∠=∠,又45B C ∠=∠=︒,ABE DCA ∴∆∆∽;(2)解:成立.如图,将ACE ∆绕点A 顺时针旋转90︒至ABH ∆位置,则CE BH =,AE AH =,45ABH C ∠=∠=︒,旋转角90EAH ∠=︒. 连接HD ,在EAD ∆和HAD ∆中, 45AE AH HAD EAD AD AD =⎧⎪∠=∠=︒⎨⎪=⎩, ()EAD HAD SAS ∴∆≅∆.DH DE ∴=.又90HBD ABH ABD ∠=∠+∠=︒,222BD BH HD ∴+=,即222BD CE DE +=.25.(10分)在平面直角坐标系中,将二次函数2(0)y ax a =>的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x 轴交于点A 、B (点A 在点B 的左侧),1OA =,经过点A 的一次函数(0)y kx b k =+≠的图象与y 轴正半轴交于点C ,且与抛物线的另一个交点为D ,ABD ∆的面积为5. (1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图象下方,求ACE ∆面积的最大值,并求出此时点E 的坐标;(3)若点P 为x 轴上任意一点,在(2)的结论下,求35PE PA +的最小值.【解答】解:(1)将二次函数2(0)y ax a =>的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为2(1)2y a x =--,1OA =Q ,∴点A 的坐标为(1,0)-,代入抛物线的解析式得,420a -=, ∴12a =, ∴抛物线的解析式为21(1)22y x =--,即21322y x x =--. 令0y =,解得11x =-,23x =,(3,0)B ∴,4AB OA OB ∴=+=,ABD ∆Q 的面积为5, ∴152ABD D S AB y ∆==g , 52D y ∴=,代入抛物线解析式得,2513222x x =--, 解得12x =-,24x =,5(4,)2D ∴, 设直线AD 的解析式为y kx b =+, ∴5420k b k b ⎧+=⎪⎨⎪-+=⎩,解得:1212k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AD 的解析式为1122y x =+. (2)过点E 作//EM y 轴交AD 于M ,如图,设213(,)22E a a a --,则11(,)22M a a +,∴221113132222222EM a a a aa =+-++=-++, 22111311(2)1(34)22224ACE AME CME S S S EM a a a a ∆∆∆∴=-=⨯=-++⨯=---g , 21325()4216a =--+, ∴当32a =时,ACE ∆的面积有最大值,最大值是2516,此时E 点坐标为315(,)28-. (3)作E 关于x 轴的对称点F ,连接EF 交x 轴于点G ,过点F 作FH AE ⊥于点H ,交x 轴于点P ,315(,)28E -Q ,1OA =, 35122AG ∴=+=,158EG =, ∴5421538AG EG ==, 90AGE AHP ∠=∠=︒Q3sin 5PH EG EAG AP AE ∴∠===, ∴35PH AP =,E Q 、F 关于x 轴对称, PE PF ∴=,35PE AP FP HP FH ∴+=+=,此时FH 最小, 1515284EF =⨯=Q ,AEG HEF ∠=∠, ∴4sin sin 5AG FH AEG HEF AE EF ∠=∠===, ∴415354FH =⨯=.35PE PA ∴+的最小值是3.。

2019届天津市河西区九年级上期末数学试卷【含答案及解析】

2019届天津市河西区九年级上期末数学试卷【含答案及解析】

2019届天津市河西区九年级上期末数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 若将一个正方形的各边长扩大为原来的4倍,则这个正方形的面积扩大为原来的()A.16倍 B.8倍 C.4倍 D.2倍2. 下列图案中,既是轴对称图形又是中心对称图形的是()A. B.C. D.3. 下列随机事件的概率,既可以用列举法求得,又可以用频率估计获得的是()A.某种幼苗在一定条件下的移植成活率B.某种柑橘在某运输过程中的损坏率C.某运动员在某种条件下“射出9环以上”的概率D.投掷一枚均匀的骰子,朝上一面为偶数的概率4. 正六边形的边长为2,则它的面积为()A. B. C. D.5. 袋中装有除颜色外完全相同的a个白球、b个红球、c个黄球,则任意摸出一个球是黄球的概率为()A. B. C. D.6. 如图,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高(杆的宽度忽略不计)()A.4m B.6m C.8m D.12m7. 下列说法正确的是()A.两个大小不同的正三角形一定是位似图形B.相似的两个五边形一定是位似图形C.所有的正方形都是位似图形D.两个位似图形一定是相似图形8. 如图,将△ABC绕点C(0,﹣1)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b) B.(﹣a.﹣b﹣1)C.(﹣a,﹣b+1) D.(﹣a,﹣b﹣2)9. 下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A. B.C. D.10. 过以下四边形的四个顶点不能作一个圆的是()A.等腰梯形B.矩形C.直角梯形D.对角是90°的四边形11. 如图,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,连接ED,图中的相似三角形的对数为()A.4对 B.6对 C.8对 D.9对12. 二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.函数有最小值B.当﹣1<x<2时,y>0C.a+b+c<0D.当x<,y随x的增大而减小二、填空题13. 两地的实际距离是2000m,在绘制的地图上量得这两地的距离是2cm,那么这幅地图的比例尺为.14. 在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球然后放回,再随机摸出一个小球,则两次取出的小球标号相同的概率为.15. 在平面直角坐标系中,O为原点,点A(4,0),点B(0,3)把△ABO绕点B逆时针旋转90°,得△A′BO′,点A、O旋转后的对应点为A′、O′,那么AA′的长为.16. 如图,在△ABC中,已知∠C=90°,BC=6,AC=8,则它的内切圆半径是.17. 如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为.18. 将边长为4的正方形ABCD向右倾斜,边长不变,∠ABC逐渐变小,顶点A、D及对角线BD的中点N分别运动列A′、D′和N′的位置,若∠A′BC=30°,则点N到点N′的运动路径长为.三、解答题19. 如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB在变换到AB′的过程中扫过区域的面积.20. 学生甲与学生乙学习概率初步知识后设计了如下游戏:学生甲手中有6,8,10三张扑克牌,学生乙手中有5,7,9三张扑克牌,每人从各自手中取一张牌进行比较,数字大的为本局获胜,每次获取的牌不能放回.(1)若每人随机取手中的一张牌进行比较,请列举出所有情况;(2)并求学生乙本局获胜的概率.21. 如图,在△ABC中,DE∥BC,分别交AB、AC于点D、E,若AD=3,DB=2,BC=6,求DE 的长.22. 已知二次函数y=2x2﹣4x+1(1)用配方法化为y=a(x﹣h)2+k的形式;(2)写出该函数的顶点坐标;(3)当0≤x≤3时,求函数y的最大值.23. 如图,CD是圆O的弦,AB是直径,且CD⊥AB,垂足为P.(1)求证:PC2=PA•PB;(2)PA=6,PC=3,求圆O的直径.24. 已知AB为⊙O的直径,OC⊥AB,弦DC与OB交于点F,在直线AB上有一点E,连接ED,且有ED=EF.(1)如图1,求证:ED为⊙O的切线;(2)如图2,直线ED与切线AG相交于G,且OF=1,⊙O的半径为3,求AG的长.四、填空题25. 如图,抛物线(m>0)交y轴于点C,CA⊥y轴,交抛物线于点A,点B在抛物线上,且在第一象限内,BE⊥y轴,交y轴于点E,交AO的延长线于点D,BE=2AC.(1)用含m的代数式表示BE的长.(2)当m=时,判断点D是否落在抛物线上,并说明理由.(3)若AG∥y轴,交OB于点F,交BD于点G.①若△DOE与△BGF的面积相等,求m的值.②连结AE,交OB于点M,若△AMF与△BGF的面积相等,则m的值是.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】。

天津市河西区2019-2020学年中考数学模拟试题(4)含解析

天津市河西区2019-2020学年中考数学模拟试题(4)含解析

天津市河西区2019-2020学年中考数学模拟试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<12.某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛. 其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的(). A.众数B.中位数C.平均数D.方差3.把不等式组24030xx-≥⎧⎨->⎩的解集表示在数轴上,正确的是()A.B.C.D.4.(2016福建省莆田市)如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的选项是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD5.函数y=4x和y=1x在第一象限内的图象如图,点P是y=4x的图象上一动点,PC⊥x轴于点C,交y=1x的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=13AP.其中所有正确结论的序号是()A .①②③B .②③④C .①③④D .①②④6.已知点A 、B 、C 是直径为6cm 的⊙O 上的点,且AB=3cm ,AC=32 cm ,则∠BAC 的度数为( ) A .15° B .75°或15°C .105°或15°D .75°或105°7.如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,若△CED 的周长为6,则▱ABCD 的周长为( )A .6B .12C .18D .248.如图,在边长为的等边三角形ABC 中,过点C 垂直于BC 的直线交∠ABC 的平分线于点P ,则点P 到边AB 所在直线的距离为( )A .B .C .D .19.对于点A (x 1,y 1),B (x 2,y 2),定义一种运算:()()1212A B x x y y ⊕=+++.例如,A (-5,4),B (2,﹣3),()()A B 52432⊕=-++-=-.若互不重合的四点C ,D ,E ,F ,满足C D D E E F F D ⊕=⊕=⊕=⊕,则C ,D ,E ,F 四点【 】A .在同一条直线上B .在同一条抛物线上C .在同一反比例函数图象上D .是同一个正方形的四个顶点 10.对于反比例函数2y x=,下列说法不正确的是( ) A .点(﹣2,﹣1)在它的图象上B .它的图象在第一、三象限C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小11.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4 B.3 C.2 D.112.下列图形中,可以看作中心对称图形的是( )A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:(13)0﹣38=_____.14.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=15米,那么该古城墙的高度CD是_____米.15.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC 相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于______.16.如图,点A为函数y=9x(x>0)图象上一点,连接OA,交函数y=1x(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为______.17.如图所示,矩形ABCD的顶点D在反比例函数kyx(x<0)的图象上,顶点B,C在x轴上,对角线AC的延长线交y轴于点E,连接BE,△BCE的面积是6,则k=_____.18.已知一元二次方程x2-4x-3=0的两根为m,n,则2m-mn+2n= .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为看丰富学生课余文化生活,某中学组织学生进行才艺比赛,每人只能从以下五个项目中选报一项:A.书法比赛,B.绘画比赛,C.乐器比赛,D.象棋比赛,E.围棋比赛根据学生报名的统计结果,绘制了如下尚不完整的统计图:图1 各项报名人数扇形统计图:图2 各项报名人数条形统计图:根据以上信息解答下列问题:(1)学生报名总人数为人;(2)如图1项目D所在扇形的圆心角等于;(3)请将图2的条形统计图补充完整;(4)学校准备从书法比赛一等奖获得者甲、乙、丙、丁四名同学中任意选取两名同学去参加全市的书法比赛,求恰好选中甲、乙两名同学的概率.20.(6分)某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级(2)班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:八年级(2)班参加球类活动人数情况统计表项目篮球足球乒乓球排球羽毛球人数 a 6 5 7 6八年级(2)班学生参加球类活动人数情况扇形统计图根据图中提供的信息,解答下列问题:a=,b=.该校八年级学生共有600人,则该年级参加足球活动的人数约人;该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.21.(6分)如图,已知点A,C在EF上,AD∥BC,DE∥BF,AE=CF.(1)求证:四边形ABCD是平行四边形;(2)直接写出图中所有相等的线段(AE=CF除外).22.(8分)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.23.(8分)如图,在Rt△ABC中,∠ACB=90°,CD 是斜边AB上的高(1)△ACD与△ABC相似吗?为什么?(2)AC2=AB•AD 成立吗?为什么?24.(10分)已知反比例函数的图象过点A(3,2).(1)试求该反比例函数的表达式;(2)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.25.(10分)武汉市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷词查的结果分为“非常了解“、“比较了解”、“只听说过”,“不了解”四个等级,划分等级后的数据整理如下表:等级非常了解比较了解只听说过不了解频数40 120 36 4频率0.2 m 0.18 0.02(1)本次问卷调查取样的样本容量为,表中的m值为;(2)在扇形图中完善数据,写出等级及其百分比;根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数;(3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?26.(12分)列方程或方程组解应用题:去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度.27.(12分)如图,已知抛物线213(0)22y x x n n =-->与x 轴交于,A B 两点(A 点在B 点的左边),与y 轴交于点C .(1)如图1,若△ABC 为直角三角形,求n 的值;(2)如图1,在(1)的条件下,点P 在抛物线上,点Q 在抛物线的对称轴上,若以BC 为边,以点B 、C 、P 、Q 为顶点的四边形是平行四边形,求P 点的坐标;(3)如图2,过点A 作直线BC 的平行线交抛物线于另一点D ,交y 轴于点E ,若AE ﹕ED =1﹕1. 求n 的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】试题分析:当x >1时,x+b >kx+4, 即不等式x+b >kx+4的解集为x >1. 故选C .考点:一次函数与一元一次不等式. 2.B 【解析】分析:由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可. 详解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数, 故只要知道自己的成绩和中位数就可以知道是否进入决赛了. 故选B .点睛:本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数 3.A【解析】 【分析】分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可. 【详解】2x 4030x -≥⎧⎨-⎩①>②由①,得x≥2, 由②,得x <1,所以不等式组的解集是:2≤x <1. 不等式组的解集在数轴上表示为:.故选A . 【点睛】本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 4.D 【解析】试题分析:对于A ,由PC ⊥OA ,PD ⊥OB 得出∠PCO=∠PDO=90°,根据AAS 判定定理可以判定△POC ≌△POD ;对于B OC=OD ,根据SAS 判定定理可以判定△POC ≌△POD ;对于C ,∠OPC=∠OPD ,根据ASA 判定定理可以判定△POC ≌△POD ;,对于D ,PC=PD ,无法判定△POC ≌△POD ,故选D . 考点:角平分线的性质;全等三角形的判定. 5.C 【解析】解:∵A 、B 是反比函数1y x =上的点,∴S △OBD =S △OAC =12,故①正确; 当P 的横纵坐标相等时PA=PB ,故②错误; ∵P 是4y x =的图象上一动点,∴S 矩形PDOC =4,∴S 四边形PAOB =S 矩形PDOC ﹣S △ODB ﹣﹣S △OAC =4﹣12﹣12=3,故③正确;连接OP ,212POC OAC S PC S AC∆∆===4,∴AC=14PC ,PA=34PC ,∴PA AC =3,∴AC=13AP ;故④正确; 综上所述,正确的结论有①③④.故选C .点睛:本题考查的是反比例函数综合题,熟知反比例函数中系数k的几何意义是解答此题的关键.6.C【解析】解:如图1.∵AD为直径,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,AC=32,∠CAD=45°,则∠BAC=105°;如图2,.∵AD为直径,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,AC=32,∠CAD=45°,则∠BAC=15°.故选C.点睛:本题考查的是圆周角定理和锐角三角函数的知识,掌握直径所对的圆周角是直径和熟记特殊角的三角函数值是解题的关键,注意分情况讨论思想的运用.7.B【解析】∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD的周长=2×6=12,故选B.8.D【解析】试题分析:∵△ABC为等边三角形,BP平分∠ABC,∴∠PBC=∠ABC=30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,PC=BC•tan∠PBC==1,∴点P到边AB所在直线的距离为1,故选D.考点:1.角平分线的性质;2.等边三角形的性质;3.含30度角的直角三角形;4.勾股定理. 9.A 。

2020-2020学年天津市河西区九年级结课考数学试题有答案

2020-2020学年天津市河西区九年级结课考数学试题有答案

2020-2020 河西区九年级结课考数学试卷一、选择题(3×12=36)1.2sin45°的值是( ) A.22 B.33 C.2 D.3 2.下列图案中,可以看做是中心对称图形的有( )A.1个B.2个C.3个D.4个 3.已知一个反比例函数的图像经过点A(3,-4),那么不在这个函数图像上的点是( )A.(-3,-4)B.(-3,4)C.(2,-6)D.(22,-122) 4.如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是( )5.估计10的值在( )A.2到3之间B.3到4之间C.2到3之间或-3到-2之间D.3到4之间或-4到-3之间 6.在Rt △ABC 中,∠C=90°,当∠A 的度数不断增大时,cosA 的值的变化情况是( )A.不断变大B.不断减小C.不变D.不能确定7.如图是几个相同的小立方块组成的三视图,小立方块的个数是( )A.3B.4C.5D.68.一次函数y=2x-1与反比例函数y=-x 1的图像的交点的情况为( ) A.只有一个交点B.有两个交点C.没有交点D.不能确定9.已知圆的半径为R ,这个圆的内接正六边形的面积为( )A.2433RB.2233RC.6R 2D.1.5R 210.在平面直角坐标系中,点A 的坐标为(-1,2),点B 的坐标为(5,4),则线段AB 的中点坐标为( )A.(2,3)B.(2,2.5)C.(3,3)D.(3,2.5)11.如图,直线l 1过原点,直线l 2解析式为y=-33x+2,且直线l 1和l 2互相垂直,那么直线l 1解析式为( ) A.y=31x B.y=33x C.y=23x D.y=3x 12.已知二次函数y=-(x-h )2+1(为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的 最大值为-5,则h 的值为( ) A.3-6或1+6 B.3-6或3+6 C.3+6或1-6 D.1-6或1+6 二、填空题(3×6=18)13.写出一个反比例函数,使得它的图像位于第二、四象限14.如图,在△ABC 中,DE//BC ,且AD=2,BD=3,则BCDE 的值为15.在反比例函数y 上有两点A (x 1,y 1),B (x 2,y 2),当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是16.如图,是一个物体的展开图(单位:cm ),那么这个物体的体积为17.如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知折痕AE=55cm ,且tan ∠EFC=43,则矩形ABCD 的周长为18.如图,在平面内5×5的正方形网格中,每个小正方形的边长为1,则途中阴影部分的面积为三、解答题(共66分)19.(8分)如图,在△ABC 中,∠C=90°,∠B=37°,若BC=3.求:AC 、AB 的长(结果保留小数点后一位). 参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.20.(8分)如图△OPQ 是边长为2的等边三角形,若反比例函数y=xk 的图像过点P. (I )求点P 的坐标和k 的值;(II )若在这个反比例函数的图像上有两个点(x 1,y 1)(x 2,y 2),且x 1<x 2<0,请比较y 1与y 2的大小.21.(10分)如图,直立于地面上的电线杆AB ,在阳光下落在水平地面和坡面上的影子分别是BC 、CD ,测得 BC=6米,CD=4米,∠BCD=150°,在D 处测得电线杆顶端A 的仰角为30°,试求电线杆的高度(结果保留根号).22.某汽车油箱的容积为70升,小王把油箱注满油后准备驾驶汽车从县城到300千米外的省城接待客人,在接 到客人后立即按原路返回,请回答下列问题:(I )油箱注满油后,汽车能够行驶的总路程y (单位:千米)与平均耗油量x (单位:升/千米)之间有怎样的函数关系?(II )如果小王以平均每千米耗油0.1升的速度驾驶汽车到达省城,在返程时由于下雨,小王降低了车速,此时 每行驶1千米的耗油量增加了一倍,如果小王一直以此速度行驶,油箱里的油是否够回到县城?如果不够用,至 少还需加多少油?23.(10分)如图,AB是⊙O的直径,C、P是弧AB上两点,AB=13,AC=5.(I)如图①,若点P是弧AB的中点,求PA的长;(II)如图②,若点P是弧BC的中点,求PA的长.24.(10分)如图①,将边长为2的正方形OABC如图①放置,O为原点.(I)若将正方形OABC绕点O逆时针旋转60°时,如图②,求点A的坐标;(II)如图③,若将图①中的正方形OABC绕点O逆时针旋转75°时,求点B的坐标.25.(10分)如图,在平面直角坐标系中,O为坐标系原点,抛物线y=ax2+2ax+c经过A(-4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(I)求抛物线的解析式;(II)点P是第二象限抛物线上的一个动点,连接EP,过点E做EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F做FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(III)在(II)的条件下,过点E做EH⊥ED交MF 的延长线于点H,连接DH,点G为DH 的中点,当直线PG 经过AC的中点Q时,求点F的坐标.参考答案1.C2.B3.C4.D5.B6.B7.B8.C9.B 10.A 11.D 12.A 13.y=-x 1;14.0.4; 15.m<0.5; 16.500 cm 2; 17.36; 18.60107. 19.BC=2.25;AB=3.75.20.(1)设反比例函数为:(k ≠0),∵反比例函数的图象过点P ,∴k=.∴所求解析式为:.(2)y 1>y 2.21.【解答】解:延长AD 交BC 的延长线于E ,作DF ⊥BE 于F ,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,CF==2,由题意得∠E=30°,∴EF==2,∴BE=BC+CF+EF=6+4,∴AB=BE ×tanE=(6+4)×=(2+4)米,答:电线杆的高度为(2+4)米.22.(1)由题意得;(2)不够用,理由如下:∵0.1×300=30(升),0.2×300=60(升)∴30+60>70 故不够用30+60-70=20(升)答:不够用,到县城至少需要20升油。

2019-2020学年九年级上学期期末数学试题及答案解析(天津市)

2019-2020学年九年级上学期期末数学试题及答案解析(天津市)

2019-2020学年九年级(上)期末数学试卷一.选择题(共12小题)1.下列方程中有一个根为﹣1的方程是()A. x2+2x=0B. x2+2x﹣3=0C. x2﹣5x+4=0D. x2﹣3x﹣4=02.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.下列成语描述的事件为随机事件的是()A. 守株待兔B. 水中捞月C. 瓮中捉鳖D. 水涨船高4.将二次函数y=2x2﹣4x+5的右边进行配方,正确的结果是()A y=2(x﹣1)2﹣3 B. y=2(x﹣2)2﹣3C. y=2(x﹣1)2+3D. y=2(x﹣2)2+35.已知⊙O中最长的弦为8cm,则⊙O的半径为()cm.A. 2B. 4C. 8D. 166. ⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙ ⊙A. “⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙”⊙⊙⊙⊙⊙B. “⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙”⊙⊙⊙⊙⊙C. “⊙⊙⊙0.0001⊙⊙⊙”⊙⊙⊙⊙⊙⊙D. ⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙10⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙5⊙7.如图,已知AB、AC都是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M,N,若MNBC等于().A. 5B.C. D.8.下列方程没有实数根的是( )A. x 2﹣x ﹣1=0B. x 2﹣6x +5=0C. x 2﹣+3=0D. x 2+x +1=09.一个不透明的袋子中装有10个只有颜色不同的小球,其中2个红球,3个黄球,5个绿球,从袋子中任意摸出一个球,则摸出的球是绿球的概率为( ) A.15B.310C.13D.1210.边长为2的正六边形的面积为( ) A.B.C. 6D.11.共享单车为市民出行带来了方便,某单车公司第一季度投放1万辆单车,计划第三季度投放单车的数量比第一季度多4400辆,设该公司第二、三季度投放单车数量的平均增长率均为x ,则所列方程正确的是( ) A. 2(1)4400x += B. 2(1) 1.44x += C. 210000(1)4400x +=D. 10000(12)14400x +=12.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,现给出下列结论:①0abc >;②930a b c ++=;③248b ac a -<;④50a b c ++>.其中正确结论的个数是( )A. 1B. 2C. 3D. 4二.填空题(共6小题)13.一元二次方程(x﹣5)(x﹣7)=0的解为_____.14.抛掷一枚质地均匀的硬币一次,正面朝上的概率是_____.15.已知点A⊙a⊙1)与点A′⊙5⊙b)是关于原点对称,则a+b =________⊙16.某种商品每件进价为10元,调查表明:在某段时间内若以每件x元(10≤x≤20且x为整数)出售,可卖出(20﹣x)件,若使利润最大,则每件商品的售价应为_____元.17.一个扇形的弧长是83π,它的面积是163π,这个扇形的圆心角度数是_____.18.如图,在半径为2⊙O中,弦AB⊥直径CD,垂足为E,∠ACD=30°,点P为⊙O上一动点,CF⊥AP 于点F.①弦AB的长度为_____;②点P在⊙O上运动的过程中,线段OF长度的最小值为_____.三.解答题(共7小题)19.已知抛物线y=x2+bx+c的图像过A⊙⊙1⊙0⊙⊙B⊙3⊙0)两点.求抛物线的解析式和顶点坐标.20.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(2,5),C(4,2)(每个方格的边长均为1个单位长度)(1)将△ABC平移,使点A移动到点A1,请画出△A1B1C1;(2)作出△ABC关于O点成中心对称的△A2B2C2,并直接写出A2,B2,C2的坐标;(3)△A1B1C1与△A2B2C2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.的21.现有A ,B ,C ,D 四张不透明卡片,除正面上的图案不同外,其他均相同.将这4张卡片背面向上洗匀后放在桌面上.(⊙)从中随机取出1张卡片,卡片上的图案是中心对称图形的概率是_____;(⊙)若从中随机抽取一张卡片,不放回,再从剩下的3张中随机抽取1张卡片,请用画树形图或列表的方法,求两次抽取的卡片都是轴对称图形的概率.22.已知AB 是⊙O 的直径,C ,D 是⊙O 上AB 同侧两点,∠BAC =26°. (⊙)如图1,若OD ⊥AB ,求∠ABC 和∠ODC 的大小;(⊙)如图2,过点C 作⊙O 切线,交AB 的延长线于点E ,若OD ∥EC ,求∠ACD 的大小.的23.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用32m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,BC 两边),设AB =xm . (⊙)若花园的面积是252m 2,求AB 的长;(⊙)当AB 的长是多少时,花园面积最大?最大面积是多少?24.在Rt △ABC 中,∠ABC =90°,∠BAC =30°,将△ABC 绕点A 顺时针旋转一定的角度α得到△AED ,点B 、C 的对应点分别是E 、D .(1)如图1,当点E 恰好在AC 上时,求∠CDE 的度数;(2)如图2,若α=60°时,点F 边AC 中点,求证:四边形BFDE 是平行四边形.25.在平面直角坐标系中,已知抛物线y =x 2﹣2ax +4a +2(a 是常数), (⊙)若该抛物线与x 轴的一个交点为(﹣1,0),求a 的值及该抛物线与x 轴另一交点坐标; (⊙)不论a 取何实数,该抛物线都经过定点H . ①求点H 的坐标;②证明点H 是所有抛物线顶点中纵坐标最大的点.是2019-2020学年九年级(上)期末数学试卷一.选择题(共12小题)1.下列方程中有一个根为﹣1的方程是()A. x2+2x=0B. x2+2x﹣3=0C. x2﹣5x+4=0D. x2﹣3x﹣4=0【答案】D【解析】【分析】利用一元二次方程解的定义对各选项分别进行判断.【详解】解:A、当x=﹣1时,x2+2x=1﹣2=﹣1,所以x=﹣1不是方程x2+2x=0的解;B、当x=﹣1时,x2+2x﹣3=1﹣2﹣3=﹣4,所以x=﹣1不是方程x2+2x﹣3=0的解;C、当x=﹣1时,x2﹣5x+4=1+5+4=10,所以x=﹣1不是方程x2﹣5x+4=0的解;D、当x=﹣1时,x2﹣3x﹣4=1+3﹣4=0,所以x=﹣1是方程x2﹣3x﹣4=0的解.故选:D.【点睛】本题考查一元二次方程的解即能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.2.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】B【解析】【分析】由题意根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意.故选:B.【点睛】本题主要考查轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.下列成语描述的事件为随机事件的是()A. 守株待兔B. 水中捞月C. 瓮中捉鳖D. 水涨船高【答案】A【解析】【分析】根据事件发生可能性大小判断相应事件的类型即可.【详解】解:A.守株待兔是随机事件,故A符合题意;的B.水中捞月是不可能事件,故B不符合题意;C.瓮中捉鳖是必然事件,故C不符合题意;D.水涨船高是必然事件,故D不符合题意;故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.将二次函数y=2x2﹣4x+5的右边进行配方,正确的结果是()A. y=2(x﹣1)2﹣3B. y=2(x﹣2)2﹣3C. y=2(x﹣1)2+3D. y=2(x﹣2)2+3【答案】C【解析】【分析】先提出二次项系数,再加上一次项系数一半的平方,即得出顶点式的形式.【详解】解:提出二次项系数得,y=2(x2﹣2x)+5,配方得,y=2(x2﹣2x+1)+5﹣2,即y=2(x﹣1)2+3.故选:C.【点睛】本题考查二次函数的三种形式,一般式:y=ax2+bx +c ,顶点式:y=a(x -h)2+k ;两根式:y=()12).a x x x x --(5.已知⊙O 中最长弦为8cm ,则⊙O 的半径为( )cm . A. 2 B. 4C. 8D. 16【答案】B 【解析】 【分析】⊙O 最长的弦就是直径从而不难求得半径的长.【详解】⊙⊙O 中最长的弦为8cm ,即直径为8cm⊙ ⊙⊙O 的半径为4cm⊙ 故选B.【点睛】本题考查弦,直径等知识,记住圆中的最长的弦就是直径是解题的关键. 6. 下列说法中正确的是( )A. “任意画出一个等边三角形,它是轴对称图形”是随机事件B. “任意画出一个平行四边形,它是中心对称图形”是必然事件C. “概率为0.0001的事件”是不可能事件D. 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次 【答案】B 【解析】试题分析:A .“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误; B .“任意画出一个平行四边形,它是中心对称图形”是必然事件,选项正确; C .“概率为0.0001的事件”是随机事件,选项错误;D .任意掷一枚质地均匀的硬币10次,正面向上的可能是5次,选项错误. 故选B .考点:随机事件.7.如图,已知AB 、AC 都是⊙O 的弦,OM ⊥AB ,ON ⊥AC ,垂足分别为M ,N ,若MNBC 等的于()A. 5B.C.D.【答案】C【解析】【分析】先根据垂径定理得出M、N分别是AB与AC的中点,故MN是△ABC的中位线,由三角形的中位线定理即可得出结论.【详解】解:⊙OM⊙AB,ON⊙AC,垂足分别为M、N,⊙M、N分别是AB与AC的中点,⊙MN是⊙ABC的中位线,⊙BC=2MN=故选:C.【点睛】本题考查垂径定理、三角形中位线定理;熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.8.下列方程没有实数根的是()A. x2﹣x﹣1=0B. x2﹣6x+5=0C. x2﹣x+3=0D. x2+x+1=0【答案】D【解析】【分析】首先根据题意判断上述四个方程的根的情况,只要看根的判别式△= 2b-4ac的值的符号即可.【详解】解:A、⊙⊙=b2﹣4ac=1+4=5>0,⊙方程有两个不相等的实数根,故本选项错误;B、⊙⊙=b2﹣4ac=36﹣20=16>0,⊙方程有两个不相等的实数根,故本选项错误;C 、⊙⊙=b 2﹣4ac =12﹣12=0,⊙方程有两个相等的实数根,故本选项错误;D 、⊙⊙=b 2﹣4ac =1﹣4=﹣3<0,⊙方程没有实数根,故本选项正确. 故选:D .【点睛】本题考查根的判别式.一元二次方程2+00ax bx c a +=≠()的根与⊙= 2b -4ac 有如下关系:(1) ⊙>0⊙方程有两个不相等的实数根;(2) ⊙=0⊙方程有两个相等的实数根;(3) ⊙<0⊙方程没有实数根. 9.一个不透明的袋子中装有10个只有颜色不同的小球,其中2个红球,3个黄球,5个绿球,从袋子中任意摸出一个球,则摸出的球是绿球的概率为( ) A.15B.310C.13D.12【答案】D 【解析】 【分析】随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数. 【详解】解:绿球的概率:P =510=12, 故选:D .【点睛】本题考查概率相关概念,熟练运用概率公式计算是解题的关键. 10.边长为2的正六边形的面积为( )A. B.C. 6【答案】A 【解析】 【分析】首先根据题意作出图形,然后可得△OBC 是等边三角形,然后由三角函数的性质,求得OH 的长,继而求得正六边形的面积.【详解】解:如图,连接OB ,OC ,过点O 作OH⊙BC 于H , ⊙六边形ABCDEF 是正六边形, ⊙⊙BOC =16×360°=60°, ⊙OB =0C ,⊙⊙OBC 是等边三角形,⊙BC =OB =OC =2,⊙它的半径为2,边长为2;⊙在Rt⊙OBH 中,OH =OB•sin60°=2×2,⊙⊙S 正六边形ABCDEF =6S ⊙OBC =6×12 故选:A .【点睛】本题考查圆的内接正六边形的性质、正多边形的内角和、等边三角形的判定与性质以及三角函数等知识.此题难度不大,注意掌握数形结合思想的应用.11.共享单车为市民出行带来了方便,某单车公司第一季度投放1万辆单车,计划第三季度投放单车的数量比第一季度多4400辆,设该公司第二、三季度投放单车数量的平均增长率均为x ,则所列方程正确的是( )A. 2(1)4400x +=B. 2(1) 1.44x += C. 210000(1)4400x +=D. 10000(12)14400x += 【答案】B【解析】【分析】直接根据题意得出第三季度投放单车的数量为:(1+x )2=1+0.44,进而得出答案.【详解】解:设该公司第二、三季度投放单车数量的平均增长率为x ,根据题意可得:(1+x )2=1.44.故选:B .【点睛】此题主要考查了根据实际问题抽象出一元二次方程,求平均变化率的方法为:若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .12.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,现给出下列结论:①0abc >;②930a b c ++=;③248b ac a -<;④50a b c ++>.其中正确结论的个数是( )A. 1B. 2C. 3D. 4【答案】C【解析】分析】 根据图象可直接判断a 、c 的符号,再结合对称轴的位置可判断b 的符号,进而可判断①;抛物线的图象过点(3,0),代入抛物线的解析式可判断②;根据抛物线顶点的位置可知:顶点的纵坐标小于-2,整理后可判断③;根据图象可知顶点的横坐标大于1,整理后再结合③的结论即可判断④.【详解】解:①由图象可知:0a >,0c <,由于对称轴02b a ->,∴0b <,∴0abc >,故①正确; ②∵抛物线过(3,0),∴3x =时,930y a b c =++=,故②正确; ③顶点坐标为:24,24b ac b a a ⎛⎫-- ⎪⎝⎭.由图象可知:2424ac b a -<-,∵0a >,∴248ac b a -<-,即248b ac a ->,故③错误; ④由图象可知:12b a ->,0a >,∴20a b +<, ∵930a b c ++=,∴93c a b =--,∴5593422(2)0a b c a b a b a b a b ++=+--=--=-+>,故④正确; 故选C .【点睛】本题考查了抛物线的图象与性质和抛物线的图象与其系数的关系,熟练掌握抛物线的图象与性质、【灵活运用数形结合的思想方法是解题的关键.二.填空题(共6小题)13.一元二次方程(x﹣5)(x﹣7)=0的解为_____.【答案】x1=5,x2=7【解析】【分析】根据题意利用ab=0得到a=0或b=0,求出解即可.【详解】解:方程(x﹣5)(x﹣7)=0,可得x﹣5=0或x﹣7=0,解得:x1=5,x2=7,故答案为:x1=5,x2=7.【点睛】本题考查解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.14.抛掷一枚质地均匀的硬币一次,正面朝上的概率是_____.【答案】1 2【解析】【分析】抛掷一枚质地均匀的硬币,其等可能的情况有2个,求出正面朝上的概率即可.【详解】抛掷一枚质地均匀的硬币,等可能的情况有:正面朝上,反面朝上,则P(正面朝上)=12.故答案为12.【点睛】本题考查了概率公式,概率=发生的情况数÷所有等可能情况数.15.已知点A⊙a⊙1)与点A′⊙5⊙b)是关于原点对称,则a+b =________⊙【答案】-6【解析】试题分析:根据关于原点对称的两点的横纵坐标分别互为相反数可知a=-5,b=-1,所以a+b=(-5)+(-1)=-6,故答案为-6.16.某种商品每件进价为10元,调查表明:在某段时间内若以每件x元(10≤x≤20且x为整数)出售,可卖出(20﹣x)件,若使利润最大,则每件商品的售价应为_____元.【答案】15【解析】【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.【详解】解:设利润为w元,则w=(20﹣x)(x﹣10)=﹣(x﹣15)2+25,∵10≤x≤20,∴当x=15时,二次函数有最大值25,故答案是:15.【点睛】本题考查了二次函数的应用,此题为数学建模题,借助二次函数解决实际问题.17.一个扇形的弧长是83π,它的面积是163π,这个扇形的圆心角度数是_____.【答案】120°【解析】【分析】设扇形的半径为r,圆心角为n°.利用扇形面积公式求出r,再利用弧长公式求出圆心角即可.【详解】设扇形的半径为r,圆心角为n°.由题意:1816··233rππ=,∴r=4,∴2416 3603 nππ=∴n=120,故答案为120°【点睛】本题考查扇形的面积的计算,弧长公式等知识,解题的关键是掌握基本知识.18.如图,在半径为2的⊙O中,弦AB⊥直径CD,垂足为E,∠ACD=30°,点P为⊙O上一动点,CF⊥AP 于点F.①弦AB的长度为_____;②点P在⊙O上运动的过程中,线段OF长度的最小值为_____.【答案】(1). (2). -1【解析】【分析】①在Rt△AOE中,解直角三角形求出AE即可解决问题.OF≤,由此即可解②取AC的中点H,连接OH,OF,HF,求出OH,FH,根据OF≥FH-OH,即1决问题.【详解】解:⊙如图,连接OA.⊙OA=OC=2,⊙⊙OCA=⊙OAC=30°,⊙⊙AOE=⊙OAC+⊙ACO=60°,⊙AE=OA•sin60°,⊙OE⊙AB,⊙AE=EB⊙AB=2AE=,故答案为⊙取AC的中点H,连接OH,OF,HF,⊙OA=OC,AH=HC,⊙OH⊙AC,⊙⊙AHO=90°,⊙⊙COH=30°,⊙OH=12OC=1,HCAC=⊙CF⊙AP,⊙⊙AFC=90°,⊙HF=12 AC⊙OF≥FH﹣OH,即1,⊙OF﹣1.1.【点睛】本题考查轨迹,圆周角定理,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题.三.解答题(共7小题)19.已知抛物线y=x2+bx+c的图像过A⊙⊙1⊙0⊙⊙B⊙3⊙0)两点.求抛物线的解析式和顶点坐标.【答案】y=x2-2x-3⊙顶点坐标为(1⊙-4⊙.【解析】【分析】把A、B两点坐标代入抛物线解析式,利用待定系数法可求得其解析式,再化为顶点式即可求得其顶点坐标. 【详解】∵抛物线经过A⊙-1⊙0⊙⊙B⊙3⊙0)两点,∴10 930b cb c-+⎧⎨++⎩==⊙解得b= -2⊙c= -3⊙⊙ 抛物线解析式为y=x2-2x-3 ⊙⊙ y=x2-2x-3=⊙x-1⊙2-4⊙∴抛物线的顶点坐标为(1⊙-4⊙.【点睛】本题考查了待定系数法、二次函数的性质.20.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(2,5),C(4,2)(每个方格的边长均为1个单位长度)(1)将△ABC平移,使点A移动到点A1,请画出△A1B1C1;(2)作出△ABC关于O点成中心对称的△A2B2C2,并直接写出A2,B2,C2的坐标;(3)△A1B1C1与△A2B2C2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.【答案】(1)见解析;(2)见解析,点A2,B2,C2的坐标分别为(﹣1,﹣3),(﹣2,﹣5),(﹣4,﹣2);(3)是,对称中心的坐标的坐标为(﹣2,﹣1).【解析】【分析】(1)利用点A和1A坐标的关系确定平移的方向与距离,关于利用此平移规律写出B1、C1的坐标,然后描点即可;(2)利用关于点对称的点的坐标特征写出A2,B2,C2的坐标,然后描点即可;(3)连接A1 A2,B1 B2,C1 C2,它们都经过点P,从而可判断△A1B1C1与△A2B2C2关于点P中心对称,再写出P点坐标即可.【详解】解:(1)如图,⊙A1B1C1为所作;(2)如图,⊙A2B2C2为所作;点A2,B2,C2的坐标分别为(﹣1,﹣3),(﹣2,﹣5),(﹣4,﹣2);(3)⊙A1B1C1与⊙A2B2C2关于点P中心对称,如图,对称中心的坐标的坐标为(﹣2,﹣1).【点睛】本题考查作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21.现有A,B,C,D四张不透明的卡片,除正面上的图案不同外,其他均相同.将这4张卡片背面向上洗匀后放在桌面上.(⊙)从中随机取出1张卡片,卡片上的图案是中心对称图形的概率是_____;(⊙)若从中随机抽取一张卡片,不放回,再从剩下的3张中随机抽取1张卡片,请用画树形图或列表的方法,求两次抽取的卡片都是轴对称图形的概率.【答案】(⊙)14;(⊙)12【解析】【分析】(⊙)根据题意,直接利用概率公式求解可得;(⊙)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】解:(⊙)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为14,故答案为:14;(⊙)画树状图如下:由树状图知,共有12种等可能结果,其中两次所抽取的卡片恰好都是轴对称图形的有6种结果,则两次所抽取的卡片恰好都是轴对称图形的概率为612=12.【点睛】本题考查列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.22.已知AB是⊙O的直径,C,D是⊙O上AB同侧两点,∠BAC=26°.(⊙)如图1,若OD⊥AB,求∠ABC和∠ODC的大小;(⊙)如图2,过点C作⊙O的切线,交AB的延长线于点E,若OD∥EC,求∠ACD的大小.【答案】(⊙)∠ABC=64°,∠ODC=71°;(⊙)∠ACD=19°.【解析】【分析】(I)连接OC,根据圆周角定理得到∠ACB=90°,根据三角形的内角和得到∠ABC=65°,由等腰三角形的性质得到∠OCD=∠OCA+∠ACD=70°,于是得到结论;(II)如图2,连接OC,根据圆周角定理和切线性质即可得到结论.【详解】解:(⊙)连接OC,⊙AB是⊙O的直径,⊙⊙ACB=90°,⊙⊙BAC=26°,⊙⊙ABC=64°,⊙OD⊙AB,⊙⊙AOD=90°,⊙⊙ACD=12⊙AOD=12×90°=45°,⊙OA=OC,⊙⊙OAC=⊙OCA=26°,⊙⊙OCD=⊙OCA+⊙ACD=71°,⊙OD=OC,⊙⊙ODC=⊙OCD=71°;(⊙)如图2,连接OC,⊙⊙BAC=26°,⊙⊙EOC=2⊙A=52°,⊙CE是⊙O的切线,⊙⊙OCE=90°,⊙⊙E=38°,⊙OD⊙CE,⊙⊙AOD=⊙E=38°,⊙⊙ACD=12AOD=19°.【点睛】本题考查切线的性质,圆周角定理,直角三角形的性质,正确的作出辅助线是解题的关键.23.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用32m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,BC 两边),设AB =xm .(⊙)若花园的面积是252m 2,求AB 的长;(⊙)当AB 的长是多少时,花园面积最大?最大面积是多少?【答案】(⊙)13m 或19m ;(⊙)当AB =16时,S 最大,最大值为:256.【解析】【分析】(⊙)根据题意得出长×宽=252列出方程,进一步解方程得出答案即可;(⊙)设花园的面积为S ,根据矩形的面积公式得到S=x (28-x)=- 2x +28x=–()214x -+196,于是得到结果.【详解】解:(⊙)⊙AB =xm ,则BC =(32﹣x )m ,⊙x (32﹣x )=252,解得:x 1=13,x 2=19,答:x 的值为13m 或19m ;(⊙)设花园的面积为S ,由题意得:S =x (32﹣x )=﹣x 2+32x =﹣(x ﹣16)2+256,⊙a =﹣1<0,⊙当x=16时,S最大,最大值为:256.【点睛】本题主要考查二次函数的应用以及二次函数最值求法,得出S与x的函数关系式是解题关键.24.在Rt△ABC中,∠ABC=90°,∠BAC=30°,将△ABC绕点A顺时针旋转一定的角度α得到△AED,点B、C的对应点分别是E、D.(1)如图1,当点E恰好在AC上时,求∠CDE的度数;(2)如图2,若α=60°时,点F是边AC中点,求证:四边形BFDE是平行四边形.【答案】(1)15°;(2)证明见解析.【解析】【分析】(1)如图1,利用旋转的性质得CA=DA,∠CAD=∠BAC=30°,∠DEA=∠ABC=90°,再根据等腰三角形的性质求出∠ADC,从而计算出∠CDE的度数;(2)如图2,利用直角三角形斜边上的中线性质得到BF=12AC,利用含30度的直角三角形三边的关系得到BC=12AC,则BF=BC,再根据旋转的性质得到∠BAE=∠CAD=60°,AB=AE,AC=AD ,DE=BC,从而得到DE=BF,△ACD和△BAE为等边三角形,接着由△AFD≌△CBA得到DF=BA,然后根据平行四边形的判定方法得到结论.【详解】解:(1)如图1,∵△ABC绕点A顺时针旋转α得到△AED,点E恰好在AC上,∴CA=CD,∠CAD=∠BAC=30°,∠DEA=∠ABC=90°,∵CA=DA,∴∠ACD=∠ADC=12(180°−30°)=75°,∠ADE=90°-30°=60°,∴∠CDE=75°−60°=15°;(2)证明:如图2,∵点F是边AC中点,∴BF=12 AC,∵∠BAC=30°,∴BC=12 AC,∴BF=BC,∵△ABC绕点A顺时针旋转60°得到△AED,∴∠BAE=∠CAD=60°,AB=AE,AC=AD,DE=BC,∴DE=BF,△ACD和△BAE为等边三角形,∴BE=AB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△AFD≌△CBA,∴DF=BA,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行四边形的判定.25.在平面直角坐标系中,已知抛物线y=x2﹣2ax+4a+2(a是常数),(⊙)若该抛物线与x轴的一个交点为(﹣1,0),求a的值及该抛物线与x轴另一交点坐标;(⊙)不论a取何实数,该抛物线都经过定点H.①求点H的坐标;②证明点H是所有抛物线顶点中纵坐标最大的点.【答案】(⊙)a=﹣12,抛物线与x轴另一交点坐标是(0,0);(⊙)①点H的坐标为(2,6);②证明见解析.【解析】【分析】(I)根据该抛物线与x轴的一个交点为(-1,0),可以求得的值及该抛物线与x轴另一交点坐标;(II)①根据题目中的函数解析式可以求得点H的坐标;②将题目中的函数解析式化为顶点式,然后根据二次函数的性质即可证明点H是所有抛物线顶点中纵坐标最大的点.【详解】(⊙)⊙抛物线y=x2﹣2ax+4a+2与x轴一个交点为(﹣1,0),⊙0=(﹣1)2﹣2a×(﹣1)+4a+2,解得,a=﹣12,⊙y=x2+x=x(x+1),当y=0时,得x1=0,x2=﹣1,即抛物线与x轴另一交点坐标是(0,0);(⊙)⊙⊙抛物线y=x2﹣2ax+4a+2=x2+2﹣2a(x﹣2),⊙不论a取何实数,该抛物线都经过定点(2,6),即点H的坐标为(2,6);⊙证明:⊙抛物线y=x2﹣2ax+4a+2=(x﹣a)2﹣(a﹣2)2+6,⊙该抛物线的顶点坐标为(a,﹣(a﹣2)2+6),则当a=2时,﹣(a﹣2)2+6取得最大值6,即点H是所有抛物线顶点中纵坐标最大的点.【点睛】本题考查抛物线与x轴的交点、二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.的。

天津市河西区2019-2020学年人教版第二学期 九年级数学线上结课检测试卷

天津市河西区2019-2020学年人教版第二学期 九年级数学线上结课检测试卷

九年级数学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。

试卷满分120分。

考试时间100分钟。

祝你考试顺利!第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将对应题目所选的答案标号填入下面的表格中) 1.计算()32+-的结果等于( ) A .1 B .1- C .5D .5-2.cos30︒的值等于( ) A .12 B .22C .32D .13.下列倡导节约的图案中,可以看作是轴对称图形的是( )A .B .C .D .4.北京故宫的占地面积约为2720000m .将720000用科学记数法表示应为( ) A .60.7210⨯ B .57.210⨯ C .47210⨯D .372010⨯5.估计19的值在( ) A .1和2之间 B .2和3之间 C .3和4之间D .4和5之间6.下图是一个由5个相同的正方体组成的立体图形,它的三视图是( )A .B .C .D .7.计算211x xx x +-++的结果为( ) A .1B .2C .21x +D .21xx + 8.方程组8,210x y x y +=⎧⎨+=⎩的解是( )A .6,2x y =⎧⎨=⎩B .2,6x y =⎧⎨=⎩C .3,4x y =⎧⎨=⎩D .4,2x y =⎧⎨=⎩9.若点()11,A y -,()21,B y ,()32,C y 都在反比例函数2y x=的图象上,则1y ,2y ,3y 的大小关系为( ) A .132y y y << B .123y y y << C .321y y y <<D .312y y y <<10.一元二次方程2420x x -+=根的情况是( )A .无实数根B .有一个正根,一个负根C .有两个正根,且都小于3D .有两个正根,且有一根大于311.如图,将ABC △绕顶点A 逆时针旋转一定角度,得到ADE △.若65CAE ∠=︒,70E ∠=︒,且AD BC ⊥,则BAC ∠的度数为( )A .60°B .75°C .85°D .90°12.已知二次函数22233y ax ax a =+++(a 为常数,且0a ≠),当2x ≥时,y 随x 的增大而增大,且21x -≤≤时,y 的最大值为9,则a 的值为( )A .1B .2C .2-或1D .2-或2第Ⅱ卷注意事项:1.请用黑色字迹的签字笔作答(作图可用2B 铅笔)。

天津市河西区2019-2020学年中考数学一模试卷含解析

天津市河西区2019-2020学年中考数学一模试卷含解析

天津市河西区2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2011贵州安顺,4,3分)我市某一周的最高气温统计如下表:最高气温(℃)25 26 2728天数 11 2 3则这组数据的中位数与众数分别是()A.27,28 B.27.5,28 C.28,27 D.26.5,272.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=5,AC=5 ,则∠B 的度数是()A.30°B.45°C.50°D.60°3.如图所示的几何体的俯视图是()A.B.C.D.4.如图,已知点A、B、C、D在⊙O上,圆心O在∠D内部,四边形ABCO为平行四边形,则∠DAO 与∠DCO的度数和是()A.60°B.45°C.35°D.30°5.下列函数中,y随着x的增大而减小的是()A.y=3x B.y=﹣3x C.3yx=D.3yx=-6.下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图①中有5个棋子,图②中有10个棋子,图③中有16个棋子,…,则图⑥________中有个棋子( )A .31B .35C .40D .507.如图,圆O 是等边三角形内切圆,则∠BOC 的度数是( )A .60°B .100°C .110°D .120°8.一元二次方程x 2﹣2x =0的根是( )A .x =2B .x =0C .x 1=0,x 2=2D .x 1=0,x 2=﹣29.下列计算正确的是( )A .326⨯=B .3+25=C .()222-=-D .2+2=210.实数a ,b ,c 在数轴上对应点的位置如图所示,则下列结论中正确的是( )A .a+c >0B .b+c >0C .ac >bcD .a ﹣c >b ﹣c11.下列分式是最简分式的是( )A .223a a bB .23a a a -C .22a b a b ++D .222a ab a b-- 12.不等式组1240x x >⎧⎨-≤⎩的解集在数轴上可表示为( ) A . B . C . D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.抛物线y=﹣x 2+bx+c 的部分图象如图所示,若y >0,则x 的取值范围是_____.14.如图,在菱形纸片ABCD 中,2AB =,60A ∠=︒,将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,点F ,G 分别在边AB ,AD 上,则cos EFG ∠的值为________.15.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高_____________米(结果保留根号).16.七巧板是我们祖先的一项创造,被誉为“东方魔板”,如图所示是一副七巧板,若已知S△BIC=1,据七巧板制作过程的认识,求出平行四边形EFGH_____.17.抛物线y=﹣x2+bx+c的部分图象如图所示,则关于x的一元二次方程﹣x2+bx+c=0的解为_____.18.Rt△ABC中,AD为斜边BC上的高,若, 则ABBC.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系xOy中,将抛物线y=x2平移,使平移后的抛物线经过点A(–3,0)、B(1,0).(1)求平移后的抛物线的表达式.(2)设平移后的抛物线交y轴于点C,在平移后的抛物线的对称轴上有一动点P,当BP与CP之和最小时,P点坐标是多少?(3)若y=x2与平移后的抛物线对称轴交于D点,那么,在平移后的抛物线的对称轴上,是否存在一点M,使得以M、O、D为顶点的三角形△BOD相似?若存在,求点M坐标;若不存在,说明理由.20.(6分)石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.设每件童装降价x 元时,每天可销售______ 件,每件盈利______ 元;(用x 的代数式表示)每件童装降价多少元时,平均每天赢利1200元.要想平均每天赢利2000元,可能吗?请说明理由.21.(6分)如图所示,在Rt ABC △中,90ACB ∠=︒,用尺规在边BC 上求作一点P ,使PA PB =;(不写作法,保留作图痕迹)连接AP 当B Ð为多少度时,AP 平分CAB ∠.22.(8分)解方程组:113311x x y x x y ⎧+=⎪+⎪⎨⎪-=⎪+⎩23.(8分)如图,已知反比例函数y =k x的图象与一次函数y =x+b 的图象交于点A(1,4),点B(﹣4,n).求n 和b 的值;求△OAB 的面积;直接写出一次函数值大于反比例函数值的自变量x 的取值范围.24.(10分)在平面直角坐标系中,已知直线y =﹣x+4和点M(3,2)(1)判断点M 是否在直线y =﹣x+4上,并说明理由;(2)将直线y =﹣x+4沿y 轴平移,当它经过M 关于坐标轴的对称点时,求平移的距离;(3)另一条直线y =kx+b 经过点M 且与直线y =﹣x+4交点的横坐标为n ,当y =kx+b 随x 的增大而增大时,则n 取值范围是_____.25.(10分)解不等式组2102323x xx +>⎧⎪-+⎨≥⎪⎩并在数轴上表示解集. 26.(12分)如图,直线y 1=﹣x+4,y 2=34x+b 都与双曲线y=k x 交于点A (1,m ),这两条直线分别与x 轴交于B ,C 两点.(1)求y 与x 之间的函数关系式;(2)直接写出当x >0时,不等式34x+b >k x 的解集; (3)若点P 在x 轴上,连接AP 把△ABC 的面积分成1:3两部分,求此时点P 的坐标.27.(12分)如图,在四边形ABCD 中,∠ABC =90°,AB =3,BC =4,CD =10,DA =55,求BD 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】根据表格可知:数据25出现1次,26出现1次,27出现2次,28出现3次,∴众数是28,这组数据从小到大排列为:25,26,27,27,28,28,28∴中位数是27∴这周最高气温的中位数与众数分别是27,28故选A.2.D【解析】根据圆周角定理的推论,得∠B=∠D.根据直径所对的圆周角是直角,得∠ACD=90°.在直角三角形ACD中求出∠D.则sinD=∠D=60°∠B=∠D=60°.故选D.“点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边.3.D【解析】【分析】找到从上面看所得到的图形即可,注意所有看到的棱都应表现在俯视图中.【详解】从上往下看,该几何体的俯视图与选项D所示视图一致.故选D.【点睛】本题考查了简单组合体三视图的知识,俯视图是从物体的上面看得到的视图.4.A【解析】试题解析:连接OD,∵四边形ABCO 为平行四边形,∴∠B=∠AOC ,∵点A. B. C.D 在⊙O 上,180B ADC ∴∠+∠=o ,由圆周角定理得, 12ADC AOC ∠=∠, 2180ADC ADC ∴∠+∠=o ,解得, 60ADC ∠=o ,∵OA=OD ,OD=OC ,∴∠DAO=∠ODA ,∠ODC=∠DCO ,60.DAO DCO ∴∠+∠=o 故选A.点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.5.B【解析】试题分析:A 、y=3x ,y 随着x 的增大而增大,故此选项错误;B 、y=﹣3x ,y 随着x 的增大而减小,正确;C 、3y x=,每个象限内,y 随着x 的增大而减小,故此选项错误; D 、3y x=-,每个象限内,y 随着x 的增大而增大,故此选项错误; 故选B . 考点:反比例函数的性质;正比例函数的性质.6.C【解析】【分析】根据题意得出第n 个图形中棋子数为1+2+3+…+n+1+2n ,据此可得.【详解】解:∵图1中棋子有5=1+2+1×2个, 图2中棋子有10=1+2+3+2×2个, 图3中棋子有16=1+2+3+4+3×2个, …∴图6中棋子有1+2+3+4+5+6+7+6×2=40个,故选C .本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.7.D【解析】【分析】由三角形内切定义可知OB、OC是∠ABC、∠ACB的角平分线,所以可得到关系式∠OBC+∠OCB=1 2(∠ABC+∠ACB),把对应数值代入即可求得∠BOC的值.【详解】解:∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵圆O是等边三角形内切圆,∴OB、OC是∠ABC、∠ACB的角平分线,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°﹣60°)=60°,∴∠BOC=180°﹣60=120°,故选D.【点睛】此题主要考查了三角形的内切圆与内心以及切线的性质.关键是要知道关系式∠OBC+∠OCB=1 2(∠ABC+∠ACB).8.C【解析】【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x1=1.故选C.【点睛】考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.9.A【解析】原式各项计算得到结果,即可做出判断.【详解】A、原式,正确;B、原式不能合并,错误;=,错误;C、原式2D、原式故选A.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.10.D【解析】>>,据此逐项判定即可.分析:根据图示,可得:c<b<0<a,c a b详解:∵c<0<a,|c|>|a|,∴a+c<0,∴选项A不符合题意;∵c<b<0,∴b+c<0,∴选项B不符合题意;∵c<b<0<a,c<0,∴ac<0,bc>0,∴ac<bc,∴选项C不符合题意;∵a>b,∴a﹣c>b﹣c,∴选项D符合题意.故选D.点睛:此题考查了数轴,考查了有理数的大小比较关系,考查了不等关系与不等式.熟记有理数大小比较法则,即正数大于0,负数小于0,正数大于一切负数.11.C【解析】解:A .22233a a b ab =,故本选项错误; B .2133a a a a =--,故本选项错误; C .22a b a b ++,不能约分,故本选项正确; D .222()()()a ab a a b a a b a b a b a b--==-+-+,故本选项错误. 故选C .点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键.12.A【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解:1240x x >⎧⎨-≤⎩①② ∵不等式①得:x >1,解不等式②得:x≤2,∴不等式组的解集为1<x≤2,在数轴上表示为:, 故选A.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-3<x <1【解析】试题分析:根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y >0时,x 的范围.解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y >0时,x 的取值范围是﹣3<x <1.故答案为﹣3<x <1.考点:二次函数的图象.14.217【解析】【分析】过点A 作AP CD ⊥,交CD 延长线于P ,连接AE ,交FG 于O ,根据折叠的性质可得AFG EFG ∠=∠,FG AE ⊥,根据同角的余角相等可得PAE AFG ∠=∠,可得EFG APE ∠=∠,由平行线的性质可得PDA 60∠=︒,根据PDA ∠的三角函数值可求出PD 、AP 的长,根据E 为CD 中点即可求出PE 的长,根据余弦的定义cos APE ∠的值即可得答案.【详解】过点A 作AP CD ⊥,交CD 延长线于P ,连接AE ,交FG 于O ,∵四边形ABCD 是菱形,∴AD AB 2==,∵将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,∴AFG EFG ∠=∠,FG AE ⊥,∵CD //AB ,AP CD ⊥,∴AP AB ⊥,∴PAE EAF 90∠+=︒∠,∵EAF AFG 90∠+=︒∠,∴PAE AFG ∠=∠,∴EFG APE ∠=∠,∵CD //AB ,DAB 60∠=︒,∴PDA 60∠=︒,∴3AP AD sin 6023=⋅︒==1PD AD cos60212=⋅︒=⨯=, ∵E 为CD 中点,∴1DE AD 12==,∴PE DE PD 2=+=, ∴22AE AP PE 7=+=, ∴AP 3cos EFG cos PAE AE 7====∠∠217. 故答案为217【点睛】 本题考查了折叠的性质、菱形的性质及三角函数的定义,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,熟练掌握三角函数的定义并熟记特殊角的三角函数值是解题关键.15.43【解析】设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可.解:如图所示,在RtABC 中,tan ∠ACB=AB BC,∴BC=0tan tan 60AB x ACB =∠, 同理:BD=0tan 30x , ∵两次测量的影长相差8米,∴00tan 30tan 60x x -=8, ∴3故答案为3.“点睛”本题考查了平行投影的应用,太阳光线下物体影子的长短不仅与物体有关,而且与时间有关,不同时间随着光线方向的变化,影子的方向也在变化,解此类题,一定要看清方向.解题关键是根据三角函数的几何意义得出各线段的比例关系,从而得出答案.16.1【解析】【分析】根据七巧板的性质可得BI=IC=CH=HE ,因为S △BIC =1,∠BIC=90°,可求得2,BC=1,在求得点G到EF sin45°,根据平行四边形的面积即可求解. 【详解】由七巧板性质可知,BI=IC=CH=HE.又∵S△BIC=1,∠BIC=90°,∴12BI•IC=1,∴,∴,∵EF=BC=1,,∴点G到EF2,∴平行四边形EFGH的面积×2=1.故答案为1【点睛】本题考查了七巧板的性质、等腰直角三角形的性质及平行四边形的面积公式,熟知七巧板的性质是解决问题的关键.17.x1=1,x2=﹣1.【解析】【分析】直接观察图象,抛物线与x轴交于1,对称轴是x=﹣1,所以根据抛物线的对称性可以求得抛物线与x轴的另一交点坐标,从而求得关于x的一元二次方程﹣x2+bx+c=0的解.【详解】解:观察图象可知,抛物线y=﹣x2+bx+c与x轴的一个交点为(1,0),对称轴为x=﹣1,∴抛物线与x轴的另一交点坐标为(﹣1,0),∴一元二次方程﹣x2+bx+c=0的解为x1=1,x2=﹣1.故本题答案为:x1=1,x2=﹣1.【点睛】本题考查了二次函数与一元二次方程的关系.一元二次方程-x2+bx+c=0的解实质上是抛物线y=-x2+bx+c 与x轴交点的横坐标的值.18.1 2【解析】【分析】利用直角三角形的性质,判定三角形相似,进一步利用相似三角形的面积比等于相似比的性质解决问题.【详解】如图,∵∠CAB=90°,且AD⊥BC,∴∠ADB=90°,∴∠CAB=∠ADB,且∠B=∠B,∴△CAB∽△ADB,∴(AB:BC)1=△ADB:△CAB,又∵S△ABC=4S△ABD,则S△ABD:S△ABC=1:4,∴AB:BC=1:1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=x2+2x﹣3;(2)点P坐标为(﹣1,﹣2);(3)点M坐标为(﹣1,3)或(﹣1,2).【解析】【分析】(1)设平移后抛物线的表达式为y=a(x+3)(x-1).由题意可知平后抛物线的二次项系数与原抛物线的二次项系数相同,从而可求得a的值,于是可求得平移后抛物线的表达式;(2)先根据平移后抛物线解析式求得其对称轴,从而得出点C关于对称轴的对称点C′坐标,连接BC′,与对称轴交点即为所求点P,再求得直线BC′解析式,联立方程组求解可得;(3)先求得点D的坐标,由点O、B、E、D的坐标可求得OB、OE、DE、BD的长,从而可得到△EDO为等腰三角直角三角形,从而可得到∠MDO=∠BOD=135°,故此当DM ODDO OB=或DM OBDO OD=时,以M、O、D为顶点的三角形与△BOD相似.由比例式可求得MD的长,于是可求得点M的坐标.【详解】(1)设平移后抛物线的表达式为y=a(x+3)(x﹣1),∵由平移的性质可知原抛物线与平移后抛物线的开口大小与方向都相同,∴平移后抛物线的二次项系数与原抛物线的二次项系数相同,∴平移后抛物线的二次项系数为1,即a=1,∴平移后抛物线的表达式为y=(x+3)(x﹣1),整理得:y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线对称轴为直线x=﹣1,与y轴的交点C(0,﹣3),则点C关于直线x=﹣1的对称点C′(﹣2,﹣3),如图1,连接B,C′,与直线x=﹣1的交点即为所求点P,由B(1,0),C′(﹣2,﹣3)可得直线BC′解析式为y=x﹣1,则1 {1y xx=-=-,解得12 xy=-⎧⎨=-⎩,所以点P坐标为(﹣1,﹣2);(3)如图2,由2{1y xx==-得11xy=-=⎧⎨⎩,即D(﹣1,1),则DE=OD=1,∴△DOE 为等腰直角三角形,∴∠DOE=∠ODE=45°,∠BOD=135°,,∵BO=1,∴∵∠BOD=135°,∴点M 只能在点D 上方,∵∠BOD=∠ODM=135°, ∴当DM OD DO OB =或DM OB DO OD=时,以M 、O 、D 为顶点的三角形△BOD 相似,①若DM ODDO OB =1=,解得DM=2, 此时点M 坐标为(﹣1,3); ②若DM OBDO OD==,解得DM=1, 此时点M 坐标为(﹣1,2);综上,点M 坐标为(﹣1,3)或(﹣1,2).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了平移的性质、翻折的性质、二次函数的图象和性质、待定系数法求二次函数的解析式、等腰直角三角形的性质、相似三角形的判定,证得∠ODM=∠BOD=135°是解题的关键.20.(1)(20+2x ),(40﹣x );(2)每件童装降价20元或10元,平均每天赢利1200元;(3)不可能做到平均每天盈利2000元.【解析】【分析】(1)、根据销售量=原销售量+因价格下降而增加的数量;每件利润=原售价-进价-降价,列式即可;(2)、根据总利润=单件利润×数量,列出方程即可;(3)、根据(2)中的相关关系方程,判断方程是否有实数根即可.【详解】(1)、设每件童装降价x 元时,每天可销售20+2x 件,每件盈利40-x 元,故答案为(20+2x ),(40-x );(2)、根据题意可得:(20+2x)(40-x)=1200,解得:121020x x ==,,即每件童装降价10元或20元时,平均每天盈利1200元;(3)、(20+2x)(40-x)=2000, 230x 6000x -+=,∵此方程无解,∴不可能盈利2000元.【点睛】本题主要考查的是一元二次方程的实际应用问题,属于中等难度题型.解决这个问题的关键就是要根据题意列出方程.21.(1)详见解析;(2)30°.【解析】【分析】(1)根据线段垂直平分线的作法作出AB 的垂直平分线即可;(2)连接PA ,根据等腰三角形的性质可得PAB B ∠=∠,由角平分线的定义可得PAB PAC ∠=∠,根据直角三角形两锐角互余的性质即可得∠B 的度数,可得答案.【详解】(1)如图所示:分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧相交于点E 、F ,作直线EF ,交BC 于点P ,∵EF 为AB 的垂直平分线,∴PA=PB ,∴点P 即为所求.(2)如图,连接AP ,∵PA PB =,∴PAB B ∠=∠,∵AP 是角平分线,∴PAB PAC ∠=∠,∴PAB PAC B ∠=∠=∠,∵90ACB ∠=︒,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴当30B ∠=︒时,AP 平分CAB ∠.【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.22.10.5 xy=⎧⎨=-⎩【解析】【分析】设1x=a,1x y+=b,则原方程组化为331a ba b+=⎧⎨-=⎩①②,求出方程组的解,再求出原方程组的解即可.【详解】设1x=a,1x y+=b,则原方程组化为:331a ba b+=⎧⎨-=⎩①②,①+②得:4a=4,解得:a=1,把a=1代入①得:1+b=3,解得:b=2,即1112 xx y⎧=⎪⎪⎨⎪=+⎪⎩,解得:10.5 xy=⎧⎨=-⎩,经检验10.5xy=⎧⎨=-⎩是原方程组的解,所以原方程组的解是10.5 xy=⎧⎨=-⎩.【点睛】此题考查利用换元法解方程组,注意要根据方程组的特点灵活选用合适的方法. 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.23.(1)-1;(2)52;(3)x>1或﹣4<x<0.【解析】【分析】(1)把A点坐标分别代入反比例函数与一次函数解析式,求出k和b的值,把B点坐标代入反比例函数解析式求出n的值即可;(2)设直线y=x+3与y轴的交点为C,由S△AOB=S△AOC+S△BOC,根据A、B两点坐标及C点坐标,利用三角形面积公式即可得答案;(3)利用函数图像,根据A、B两点坐标即可得答案.【详解】(1)把A点(1,4)分别代入反比例函数y=kx,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=4x的图象上,∴n=44=﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=12×3×1+12×3×4=7.5,(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.【点睛】本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y=kx中k的几何意义,这里体现了数形结合的思想.24.(1)点M(1,2)不在直线y=﹣x+4上,理由见解析;(2)平移的距离为1或2;(1)2<n<1.【解析】【分析】(1)将x=1代入y=-x+4,求出y=-1+4=1≠2,即可判断点M(1,2)不在直线y=-x+4上;(2)设直线y=-x+4沿y轴平移后的解析式为y=-x+4+b.分两种情况进行讨论:①点M(1,2)关于x 轴的对称点为点M1(1,-2);②点M(1,2)关于y轴的对称点为点M2(-1,2).分别求出b的值,得到平移的距离;(1)由直线y=kx+b经过点M(1,2),得到b=2-1k.由直线y=kx+b与直线y=-x+4交点的横坐标为n,得出y=kn+b=-n+4,k=23nn-+-.根据y=kx+b随x的增大而增大,得到k>0,即23nn-+->0,那么①2030nn-+⎧⎨-⎩>>,或②2030nn-+⎧⎨-⎩<<,分别解不等式组即可求出n的取值范围.【详解】(1)点M不在直线y=﹣x+4上,理由如下:∵当x=1时,y=﹣1+4=1≠2,∴点M(1,2)不在直线y=﹣x+4上;(2)设直线y=﹣x+4沿y轴平移后的解析式为y=﹣x+4+b.①点M(1,2)关于x轴的对称点为点M1(1,﹣2),∵点M1(1,﹣2)在直线y=﹣x+4+b上,∴﹣2=﹣1+4+b,∴b=﹣1,即平移的距离为1;②点M(1,2)关于y轴的对称点为点M2(﹣1,2),∵点M2(﹣1,2)在直线y=﹣x+4+b上,∴2=1+4+b,∴b=﹣2,即平移的距离为2.综上所述,平移的距离为1或2;(1)∵直线y=kx+b经过点M(1,2),∴2=1k+b,b=2﹣1k.∵直线y=kx+b与直线y=﹣x+4交点的横坐标为n,∴y=kn+b=﹣n+4,∴kn+2﹣1k=﹣n+4,∴k=23nn-+-.∵y=kx+b随x的增大而增大,∴k>0,即23 nn-+->0,∴①2030nn-+⎧⎨-⎩>>,或②2030nn-+⎧⎨-⎩<<,不等式组①无解,不等式组②的解集为2<n<1.∴n的取值范围是2<n<1.故答案为2<n<1.【点睛】本题考查了一次函数图象与几何变换,一次函数图象上点的坐标特征,一次函数的性质,解一元一次不等式组,都是基础知识,需熟练掌握.25.﹣12<x≤0,不等式组的解集表示在数轴上见解析.【解析】【分析】先求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解不等式2x+1>0,得:x>﹣12,解不等式2323x x-+≥,得:x≤0,则不等式组的解集为﹣12<x≤0,将不等式组的解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式组,解题的关键是掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”.26.(1)3yx=;(2)x>1;(3)P(﹣54,0)或(94,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入双曲线y=kx,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x>0时,不等式34x+b>kx的解集为x>1;(3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=14BC=74,或BP=14BC=74,即可得到OP=3﹣74=54,或OP=4﹣74=94,进而得出点P的坐标.详解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=kx,可得k=1×3=3,∴y与x之间的函数关系式为:y=3x;(2)∵A(1,3),∴当x>0时,不等式34x+b>kx的解集为:x>1;(3)y1=﹣x+4,令y=0,则x=4,∴点B的坐标为(4,0),把A(1,3)代入y2=34x+b,可得3=34+b,∴b=94,∴y2=34x+94,令y2=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面积分成1:3两部分,∴CP=14BC=74,或BP=14BC=74∴OP=3﹣74=54,或OP=4﹣74=94,∴P(﹣54,0)或(94,0).点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.27.BD=.【解析】【分析】作DM⊥BC,交BC延长线于M,连接AC,由勾股定理得出AC2=AB2+BC2=25,求出AC2+CD2=AD2,由勾股定理的逆定理得出△ACD是直角三角形,∠ACD=90°,证出∠ACB=∠CDM,得出△ABC∽△CMD,由相似三角形的对应边成比例求出CM=2AB=6,DM=2BC=8,得出BM=BC+CM=10,再由勾股定理求出BD即可.【详解】作DM⊥BC,交BC延长线于M,连接AC,如图所示:则∠M=90°,∴∠DCM+∠CDM =90°,∵∠ABC =90°,AB =3,BC =4,∴AC 2=AB 2+BC 2=25,∵CD =10,AD =55 , ∴AC 2+CD 2=AD 2,∴△ACD 是直角三角形,∠ACD =90°,∴∠ACB+∠DCM =90°,∴∠ACB =∠CDM ,∵∠ABC =∠M =90°,∴△ABC ∽△CMD ,∴12AB CM =, ∴CM =2AB =6,DM =2BC =8,∴BM =BC+CM =10,∴BD =22BM DM +=22108+=241,【点睛】本题考查了相似三角形的判定与性质、勾股定理、勾股定理的逆定理;熟练掌握相似三角形的判定与性质,证明由勾股定理的逆定理证出△ACD 是直角三角形是解决问题的关键.。

天津市河西区2019-2020学年中考数学三模试卷含解析

天津市河西区2019-2020学年中考数学三模试卷含解析

天津市河西区2019-2020学年中考数学三模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列二次根式中,是最简二次根式的是()A.48B.22x yC.15D.0.32.1.桌面上放置的几何体中,主视图与左视图可能不同的是( )A.圆柱B.正方体C.球D.直立圆锥3.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75°B.60°C.55°D.45°4.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:班级参加人数平均数中位数方差甲55 135 149 191乙55 135 151 110某同学分析上表后得出如下结论:①甲、乙两班学生的平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论中,正确的是()A.①②B.②③C.①③D.①②③5.为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()中位数众数平均数方差9.2 9.3 9.1 0.3A.中位数B.众数C.平均数D.方差6.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A .310B .925C .920D .357.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )A .B .C .D .8.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a ,b 对应的密文为a +2b ,2a -b ,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是( ) A .3,-1B .1,-3C .-3,1D .-1,39.下列图形中,既是轴对称图形又是中心对称图形的是( ) A .等边三角形B .菱形C .平行四边形D .正五边形10.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为()A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元 11.二次函数y=ax 2+bx+c(a≠0)的图象如图,a ,b ,c 的取值范围( )A .a<0,b<0,c<0B .a<0,b>0,c<0C .a>0,b>0,c<0D .a>0,b<0,c<0 12.关于的一元二次方程有两个不相等的实数根,则的取值范围为( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.⊙O 的半径为10cm ,AB,CD 是⊙O 的两条弦,且AB ∥CD ,AB=16cm,CD=12cm .则AB 与CD 之间的距离是 cm .14.如图,矩形纸片ABCD 中,AB=3,AD=5,点P 是边BC 上的动点,现将纸片折叠使点A 与点P 重合,折痕与矩形边的交点分别为E ,F ,要使折痕始终与边AB ,AD 有交点,BP 的取值范围是_____.15.如图,Y ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE的周长为.16.计算2(252)-的结果等于__________.17.如图,点P 是边长为2的正方形ABCD 的对角线BD 上的动点,过点P 分别作PE ⊥BC 于点E ,PF ⊥DC 于点F ,连接AP 并延长,交射线BC 于点H ,交射线DC 于点M ,连接EF 交AH 于点G ,当点P 在BD 上运动时(不包括B 、D 两点),以下结论:①MF=MC ;②AH ⊥EF ;③AP 2=PM•PH ; ④EF 的最小值是2.其中正确的是________.(把你认为正确结论的序号都填上)18.如果一个正多边形的中心角为72°,那么这个正多边形的边数是 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)阅读与应用:阅读1:a 、b 为实数,且a >0,b >0,因为20a b≥,所以20a ab b -≥,从而2a b ab+≥(当a =b 时取等号). 阅读2:函数my x x=+(常数m >0,x >0),由阅读1结论可知: 2m m x x x x +≥⋅m =m x x =即x m =my x x=+的最小值为2m 阅读理解上述内容,解答下列问题:问题1:已知一个矩形的面积为4,其中一边长为x ,则另一边长为4x ,周长为42x x ⎛⎫+ ⎪⎝⎭,求当x =__________时,周长的最小值为__________.问题2:已知函数y 1=x +1(x >-1)与函数y 2=x 2+2x +17(x >-1),当x =__________时, 21y y 的最小值为__________.问题3:某民办学习每天的支出总费用包含以下三个部分:一是教职工工资6400元;二是学生生活费每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.1.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数) 20.(6分)如图,在平面直角坐标系中,一次函数()10y kx b k =+≠与反比例函数()20my m x=≠的图像交于点()3,1A 和点B ,且经过点()0,2C -.求反比例函数和一次函数的表达式;求当12y y >时自变量x 的取值范围.21.(6分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m ,平行于墙的边的费用为200元/m ,垂直于墙的边的费用为150元/m ,设平行于墙的边长为x m 设垂直于墙的一边长为y m ,直接写出y 与x 之间的函数关系式;若菜园面积为384m 2,求x 的值;求菜园的最大面积.22.(8分)关于x 的一元二次方程()23220x k x k -+++=.求证:方程总有两个实数根;若方程有一根小于1,求k 的取值范围.23.(8分)如图,AB 为☉O 的直径,CD 与☉O 相切于点E ,交AB 的延长线于点D ,连接BE ,过点O 作OC ∥BE ,交☉O 于点F ,交切线于点C ,连接AC.(1)求证:AC 是☉O 的切线;(2)连接EF ,当∠D= °时,四边形FOBE 是菱形. 24.(10分)已知点O 是正方形ABCD 对角线BD 的中点.(1)如图1,若点E 是OD 的中点,点F 是AB 上一点,且使得∠CEF=90°,过点E 作ME ∥AD ,交AB 于点M ,交CD 于点N .①∠AEM=∠FEM ; ②点F 是AB 的中点;(2)如图2,若点E是OD上一点,点F是AB上一点,且使,请判断△EFC的形状,并说明理由;(3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当时,请猜想的值(请直接写出结论).25.(10分)某初中学校组织200位同学参加义务植树活动.甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表1和表2:表1:甲调查九年级30位同学植树情况每人植树棵数7 8 9 10人数 3 6 15 6表2:乙调查三个年级各10位同学植树情况每人植树棵6 7 8 9 10数人数 3 6 3 12 6根据以上材料回答下列问题:(1)关于于植树棵数,表1中的中位数是棵;表2中的众数是棵;(2)你认为同学(填“甲”或“乙”)所抽取的样本能更好反映此次植树活动情况;(3)在问题(2)的基础上估计本次活动200位同学一共植树多少棵?26.(12分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.27.(12分)如图,已知矩形 OABC 的顶点A 、C 分别在 x 轴的正半轴上与y 轴的负半轴上,二次函数228255y x x =--的图像经过点B 和点C .(1)求点 A 的坐标;(2)结合函数的图象,求当 y<0 时,x 的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】 【分析】根据最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式判断即可. 【详解】A 48 3,不符合题意;B 22x y +是最简二次根式,符合题意;C,不符合题意;D,不符合题意;故选B.【点睛】本题考查最简二次根式的定义.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.B【解析】试题分析:根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,正方体主视图与左视图可能不同,故选B.考点:简单几何体的三视图.3.B【解析】【分析】由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和定理得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.【详解】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=12(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.4.D【解析】分析:根据平均数、中位数、方差的定义即可判断;详解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;根据方差可知,甲班成绩的波动比乙班大.故①②③正确,故选D.点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.A【解析】【分析】根据中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案.【详解】如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数.故选A.点睛:本题主要考查了中位数,关键是掌握中位数定义.6.A【解析】【分析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【详解】列表如下:绿(红,绿)(红,绿)(红,绿)(绿,绿)﹣﹣﹣∵所有等可能的情况数为20种,其中两次都为红球的情况有6种,∴63P2010==两次红,故选A.7.C【解析】试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯视图都是,故选C.8.A【解析】【分析】根据题意可得方程组2127a ba b+=⎧⎨-=⎩,再解方程组即可.【详解】由题意得:21 27 a ba b+=⎧⎨-=⎩,解得:31 ab=⎧⎨=-⎩,故选A.9.B【解析】【分析】在平面内,如果一个图形沿一条直线对折,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内一个图形绕某个点旋转180°,如果旋转前后的图形能互相重合,那么这个图形叫做中心对称图形,分别判断各选项即可解答.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;B、菱形是轴对称图形,也是中心对称图形,故此选项正确;C、平行四边形不是轴对称图形,是中心对称图形,故此选项错误;D、正五边形是轴对称图形,不是中心对称图形,故此选项错误.故选:B.【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握是解题的关键.10.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.D【解析】试题分析:根据二次函数的图象依次分析各项即可。

天津市河西区2019-2020学年九年级上学期期中数学试卷 (含答案解析)

天津市河西区2019-2020学年九年级上学期期中数学试卷 (含答案解析)

天津市河西区2019-2020学年九年级上学期期中数学试卷一、选择题(本大题共12小题,共36.0分)1.在时刻9:30时,时钟上的时针与分针间的夹角是()A. 75°B. 90°C. 105°D. 120°2.下列图形不是轴对称图形的是()A. 线段B. 等腰三角形C. 角D. 有一个内角为60°的直角三角形3.已知点(a,8)在抛物线y=x2上,则a值为()A. 2B. −2C. ±2D. ±2√24.二次函数y=x2+2x−3的顶点坐标是()A. (−1,−3)B. (1,−4)C. (−1,−2)D. (−1,−4)5.如图,四边形ABCD内接于⊙O,它的一个外角∠EBC=55°,分别连接AC、BD,若AC=AD,则∠DBC的度数为()A. 50°B. 60°C. 65°D. 70°6.如图,⊙O是△ABC的外接圆,∠A=50°,则∠BOC的度数为()A. 50°B. 80°C. 90°D. 100°7.用配方法解下列方程,配方正确的是()A. 2y2−4y−4=0可化为(y−1)2=4B. x2−2x−9=0可化为(x−1)2=8C. x2+8x−9=0可化为(x+4)2=16D. x2−4x=0可化为(x−2)2=48.抛物线y=3x2+2x−1向上平移3个单位长度后的函数解析式为:()A. y=3x2+2x−4B. y=3x2+2x−4C. y=3x2+2x+2D. y=3x2+2x+39.等边△ABC如图放置,A(1,1),B(3,1),等边三角形的中心是点D,若将点D绕点A旋转90°后得到点D′,则D′的坐标()A. (1+√33,0) B. (1−√33,0)或(1+√33,2)C. (1+√33,0)或(1−√33,2) D. (2+√33,0)或(2−√33,0)10.如图,一边靠校园围墙,其他三边用总长为80米的铁栏杆围成一个矩形花圃,设矩形ABCD的边AB为x米,面积为S平方米,要使矩形ABCD面积最大,则x的长为()A. 40米B. 30米C. 20米D. 10米11.如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是()A. AD=DCB. AD⏜=DC⏜C. ∠ADB=∠ACBD. ∠DAB=∠CBA12.关于二次函数y=ax2−4ax−5(a≠0)的三个结论:①对任意实数m,都有x1=2+m与x2=2−m对应的函数值相等;②若3≤x≤4,对应的y的整数值有4个,则−43<a≤−1或1≤a<43;③若抛物线与x轴交于不同两点A,B,且AB≤6,则a<−54或a≥1.其中正确的结论是()A. ①②B. ①③C. ②③D. ①②③二、填空题(本大题共6小题,共18.0分)13.已知点M与点N(−1,3)关于原点对称,则M的坐标是______.14.请写出一个开口向上,且与y轴交于(0,−1)的二次函数的解析式______.15.将二次函数y=12x2+3x−52化为y=a(x−ℎ)2+k的形式,其结果是______.16.如图,⊙O的半径为13,弦AB的长为24,ON⊥AB,垂足为N,则ON的长为______.17.如图,在△ABC中,AB=AC,∠C=72°,△ABC绕点B逆时针旋转,当点C的对应点C1落在边AC上时,设AC的对应边A1C1与AB的交点为E,则∠BEC1=______°.18.如图,∠A=90°,∠BFE=90°,AF=3,EF=12,正方形BCDE的面积为169,则AB=________.三、计算题(本大题共1小题,共8.0分)19.已知抛物线y=x2+4x+k−1.(1)若抛物线与x轴有两个不同的交点,求k的取值范围.(2)若抛物线的顶点在x轴上,求k的值.四、解答题(本大题共6小题,共58.0分)20.画出将△ABC绕点O按顺时针方向旋转180°后的对应△A′B′C′.21.如图,在△ABC中,以AB为直径的⊙O分别交AC,BC于点D,E.连接ED ,若.(1)求证:AB=AC;(2)填空:①若AB=6,CD=4,则BC=______ ;②连接OD,当∠A的度数为______ 时,四边形ODEB是菱形.22.如图,AB是⊙O的直径,弦CD⊥AB于E,∠A=15°,AB=4.求弦CD的长.23.某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?24.如图:△ABC绕点A逆时针方向旋转得到△ADE,其中∠B=50°,∠C=60°.(1)若AD平分∠BAC时,求∠BAD的度数.(2)若AC⊥DE时,AC与DE交于点F,求旋转角的度数.25.已知抛物线y=ax2+bx经过点A(−4,−4)和点B(m,0),且m≠0.(1)若该抛物线的对称轴经过点A,如图,请根据观察图象说明此时y的最小值及m的值;(2)若m=4,求抛物线的解析式(也称关系式),并判断抛物线的开口方向.-------- 答案与解析 --------1.答案:C解析:本题考查了钟面角,利用了时针的旋转角减去分针的旋转的角等于时针与分针的夹角.根据时针旋转的速度乘以时针旋转的时间,可得时针的旋转角,根据分针旋转的速度成分针旋转的时间,等于分针旋转的角度;再根据时针的角减去分针旋转的角等于时针与分针的夹角,可得答案.−6×30°=105°,解:9:30时,时钟上的时针与分针间的夹角9×30°+30°×12故选:C.2.答案:D解析:本题考查了中心对称图形的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.根据轴对称图形的概念结合各图形的特点求解.解:A、是轴对称图形,不符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、不是轴对称图形,符合题意.故选:D.3.答案:D解析:解:∵点(a,8)在抛物线y=x2上,∴8=a2,解得a=±2√2,故选D.把点的坐标代入抛物线解析式可得到关于a的方程,可求得a的值.本题主要考查二次函数图象上点的坐标特征,掌握函数图象上的点的坐标满足函数解析式是解题的关键.4.答案:D解析:解:∵y=x2+2x−3=(x+1)2−4,∴抛物线顶点坐标为(−1,−4),故选D.把二次函数化为顶点式可求得答案.本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−ℎ)2+k中,对称轴为x=ℎ,顶点坐标为(ℎ,k).5.答案:D解析:解:∵四边形ABCD内接于⊙O,∴∠ADC=∠EBC=55°,∵AC=AD,∴∠ACD=∠ADC=55°,∴∠DAC=70°,由圆周角定理得,∠DBC=∠DAC=70°,故选:D.根据圆内接四边形的性质求出∠ADC,根据等腰三角形的性质、圆周角定理计算即可.本题考查的是圆内接四边形、圆周角定理,掌握圆内接四边形的任意一个外角等于它的内对角是解题的关键.6.答案:D解析:解:∵⊙O是△ABC的外接圆,∠A=50°,∴∠BOC=2∠A=100°.故选:D.由⊙O是△ABC的外接圆,∠A=50°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BOC的度数.此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.7.答案:D解析:解:A、2y2−4y−4=0可化为(y−1)2=3,故选项错误;B、x2−2x−9=0可化为(x−1)2=10,故选项错误;C、x2+8x−9=0可化为(x+4)2=25,故选项错误;D、x2−4x=0可化为(x−2)2=4,故选项正确.故选:D.利用完全平方公式的结构特点判断即可得到结果.此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.8.答案:C解析:本题考查了二次函数的图象与几何变换,熟练掌握平移规律是解本题的关键.利用平移规律“上加下减”,即可确定出平移后解析式.解:抛物线y=3x2+2x−1向上平移3个单位长度的函数解析式为y=3x2+2x−1+3=3x2+ 2x+2,故选C.9.答案:C解析:本题考查坐标与图形的性质、等边三角形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.如图作D′H⊥AB于H.DE⊥AB于E,构造全等三角形即可解决问题即可.解;如图作DE⊥AB于E,D′H⊥AB于H.在Rt△ADE中,∵∠DAE=30°,AE=1,∴DE=√3,3∵AD=AD′,∠DAE=∠D′,∠AED=∠D′HA=90°,∴△ADE≌△D′AH,∴AH=DE=√3,D′H=1,3∵A(1,1),,0),∴D′(1+√33,2)同法当逆时针旋转时,D′(1−√33故选:C.10.答案:C解析:本题考查二次函数的应用,解题的关键是学会构建二次函数,学会利用二次函数的性质解决问题,属于中考常考题型.根据矩形的面积公式,即可构建二次函数解决问题.解:设矩形ABCD的边AB为x米,则宽为(80−2x)米,S=(80−2x)x=−2x2+80x=−2(x−20)2+800,∵−2<0,S有最大值,且0<x<40,∴x=20时,矩形ABCD面积最大,即x的长为20米.故选C.11.答案:D解析:解:∵弦BD平分∠ABC,∴∠DBC=∠ABD,∴AD⏜=DC⏜,AD=DC,故A、B正确;∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,故C正确;∵无法确定∠DAB=∠CBA,故D错误,符合题意.故选:D.根据圆周角定理,圆心角、弧、弦的关系对各选项进行逐一分析即可.本题考查的是圆周角定理及圆心角、弧、弦的关系,熟知直径所对的圆周角是直角是解答此题的关键.12.答案:D=2,解析:解:∵二次函数y=ax2−4ax−5的对称轴为直线x=−4a2a∴x1=2+m与x2=2−m关于直线x=2对称,∴对任意实数m,都有x1=2+m与x2=2−m对应的函数值相等;故①正确;当x=3时,y=−3a−5,当x=4时,y=−5,若a>0时,当3≤x≤4时,−3a−5<y≤−5,∵当3≤x≤4时,对应的y的整数值有4个,∴1≤a<4,3若a<0时,当3≤x≤4时,−5≤y<−3a−5,∵当3≤x≤4时,对应的y的整数值有4个,<a≤−1,∴−43故②正确;若a>0,抛物线与x轴交于不同两点A,B,且AB≤6,∴△>0,25a−20a−5≥0,∴{16a2+20a>05a−5≥0,∴a≥1,若a<0,抛物线与x轴交于不同两点A,B,且AB≤6,∴△>0,25a−20a−5≥0,∴{16a2+20a>05a−5≤0,∴a<−5,4或a≥1时,抛物线与x轴交于不同两点A,B,且AB≤6.综上所述:当a<−54故选:D.=2,由对称性可判断①;分a>0或由题意可求次函数y=ax2−4ax−5的对称轴为直线x=−4a2aa<0两种情况讨论,由题意列出不等式,可求解,可判断②;分a>0或a<0两种情况讨论,由题意列出不等式组,可求解,可判断③;即可求解.本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数图象与x轴的交点等知识,理解题意列出不等式(组)是本题的关键.13.答案:(1,−3)解析:解:∵点M与点N(−1,3)关于原点对称,∴M的坐标是:(1,−3).故答案为:(1,−3).两点关于原点对称,则两点的横、纵坐标都是互为相反数,因而点Q(a,b)关于原点对称的点是(−a,−b),可得答案.本题考查了关于原点对称的点的坐标,利用两点关于原点对称,则两点的横、纵坐标都是互为相反数,因而点Q(a,b)关于原点对称的点是(−a,−b)是解题关键.14.答案:y=x2+2x−1解析:根据题意写出满足题意二次函数解析式即可.此题考查了待定系数法求二次函数解析式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键.解:根据题意得:y=x2+2x−1,故答案为:y=x2+2x−1(答案不唯一)(x+3)2−715.答案:y=12解析:此题主要考查了二次函数的三种形式,正确运用配方法是解题关键.直接利用配方法表示出二次函数的顶点坐标进而得出答案.解:y=12x2+3x−52=12(x2+6x)−52=12(x+3)2−92−52=12(x+3)2−7.故答案为:y=12(x+3)2−7.16.答案:5解析:解:∵ON⊥AB,∴AN=BN=12AB,∵AB=24,∴AN=BN=12,在Rt△OAN中,ON2+AN2=OA2,∴ON=√OA2−AN2=√132−122=5,故答案为:5根据垂径定理得出AN=BN=12AB,利用勾股定理得出ON即可.本题考查了垂径定理,掌握垂径定理和勾股定理是解题的关键.17.答案:72解析:本题主要考查了等腰三角形的性质,以及旋转的性质,正确确定旋转角,找到旋转前后的相等线段,是解题的关键.根据等腰三角形的性质得到∠ABC=∠C=72°,根据旋转的性质得到BC=BC1,从而得出∠BC1C=∠C,根据三角形的内角和得到∠CBC1的度数,求得∠EBC1的度数,根据旋转的性质得到∠A1C1B=∠C=72°,最后利用三角形内角和进行计算得到结论.解:∵AB=AC,∠C=72°,∴∠ABC=∠C=72°,∵△ABC绕点B逆时针旋转得到△A1BC1,∴BC=BC1,∴∠BC1C=∠C=72°,∴∠CBC1=180°−∠BC1C−∠C=180°−72°−72°=36°,∴∠EBC1=∠ABC−∠CBC1=72°−36°=36°,∵△ABC绕点B逆时针旋转得到△A1BC1,∴∠A1C1B=∠C=72°,∴∠BEC1=180°−∠A1C1B−∠EBC1=180°−72°−36°=72°,故答案为72.18.答案:4解析:本题考查了正方形的性质和勾股定理.利用正方形的性质得BE=13,再利用勾股定理计算得结论.解:如图:因为正方形BCDE的面积为169,所以BE=13.在Rt△BFE中,EF=12,所以BF=√BE2−EF2=5.在Rt△AFB中,AF=3,所以AB=2−AF2=4.故答案为4.19.答案:解:(1)∵二次函数y=x2+4x+k−1的图象与x轴有两个交点,∴b2−4ac=42−4×1×(k−1)=20−4k>0,∴k<5,则k的取值范围为k<5;(2)根据题意得:b2−4ac=42−4×1×(k−1)=20−4k=0,解得k=5.解析:此题主要考查了二次函数y=ax2+bx+c的图象与x轴交点的个数的判断以及图象顶点在坐标轴上的性质,熟练掌握其性质是解题关键.(1)根据抛物线y=x2+4x+k−1与x轴有两个不同的交点,得出b2−4ac>0,进而求出k的取值范围.(2)根据顶点在x轴上,所以抛物线与x轴只有1个交点,据此求出即可.20.答案:解:如图所示,图中△A′B′C′即为所求.解析:三角形的各顶点都绕点O顺时针旋转180°后得到对应点,顺次连接即可.本题主要考查了旋转变换作图,解题的关键是准确找出对应点的位置,属于中考常考题型.21.答案:(1)证明:∵ED=EC,∴∠EDC=∠C,∵∠EDC=∠B,∴∠B=∠C,∴AB=AC;(2)4√3;60°解析:本题考查了圆周角定理,等腰三角形的判定和性质,勾股定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.(1)由等腰三角形的性质得到∠EDC=∠C,由圆内接四边形的性质得到∠EDC=∠B,由此推得∠B=∠C,由等腰三角形的判定即可证得结论;(2)连接AE,由AB为直径,可证得AE⊥BC,由(1)知AB=AC,证明△CDE∽△CBA后即可求得BC 的长;(3)根据等边三角形的性质得到∠BAE=30°,根据直角三角形的性质得到BE=12AB=BO,由菱形的判定定理即可得到结论.(1)见答案;(2)解:①连接AE,∵AB为直径,∴AE⊥BC,由(1)知AB=AC=6,∵∠C=∠C,∠CDE=∠B,∴△CDE∽△CBA,∴CDCB =CEAC,∴4BC =12BC6,∴BC=4√3,故答案为:4√3;②当∠A=60°时,四边形ODEB是菱形,∵∠A=60°,∴∠BAE=30°,AB=AC=BC,∵∠AEB=90°,∴BE=12AB=BO=12BC=EC=ED,∴BE=DE=OB=OD,∴四边形ODEB是菱形,故答案为:60°.22.答案:解:∵∠A=15°,∴∠COB=30°.∵AB=4,∴OC=2.∵弦CD⊥AB于E,∴CE=12CD.在Rt△OCE中,∠CEO=90°,∠COB=30°,OC=2,∴CE=1.∴CD=2.解析:根据∠A=15°,求出∠COB的度数,再求出CE的长.根据垂径定理即可求出CD的长.此题考查了垂径定理和圆周角定,熟练掌握垂径定理和圆周角定理是本题的关键.23.答案:(1)0≤x<20;(2)降价2.5元时,最大利润是6125元.解析:[分析](1)根据“总利润=单件利润×销售量”列出函数解析式,由“确保盈利”可得x的取值范围;(2)将所得函数解析式配方成顶点式可得最大值.[详解]解:(1)根据题意得y=(70−x−50)(300+20x)=−20x2+100x+6000,∵70−x−50>0,且x≥0,∴0≤x<20.(2)∵y=−20x2+100x+6000=−20(x−2.5)2+6125,∴当x=2.5时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.[点睛]本题考查的知识点是二次函数的应用,解题的关键是熟练的掌握二次函数的应用.24.答案:解:(1)∵∠B=50°,∠C=60°,∴∠BAC=180°−50°−60°=70°,∵AD平分∠BAC,∠BAC=35°;∴∠BAD=12(2)∵△ABC旋转得到△ADE,∠C=60°,∴∠E=∠C=60°,∵AC⊥DE,∴∠AFE=90°,∴∠CAE=90°−∠E=90°−60°=30°,∵∠CAE是旋转角,∴旋转角的度数为30°.解析:本题主要考查三角形的内角和定理,角平分线的定义及旋转的性质.(1)可利用三角求出形的内角和定理求出∠BAC的度数,再利用角平分线的定义即可求解;(2)根据旋转的性质可求∠E得度数,再利用直角三角形的性质可求解∠CAE,即为所求的旋转角的度数.25.答案:解:(1)∵该抛物线的对称轴经过点A,∴点A(−4,−4)为抛物线的顶点,对称轴为直线x=−4,∴此时y的最小值为−4;∵点B和原点为抛物线的对称点,∴B(−8,0),∴m=−8;(2)当m=4时,即B(4,0),设抛物线解析式为y=ax(x−4),把A(−4,−4)代入得−4=a×(−4)×(−4−4),解得a=−18,∴抛物线解析式为y=−18x(x−4),即y=−18x2+12x,∵a<0,∴抛物线开口向下.解析:(1)根据二次函数的性质得此时y的最小值,利用对称性得到B(−8,0),从而确定m的值;(2)设交点式y=ax(x−4),再把A(−4,−4)代入求得a=−18,从而得到抛物线解析式,利用二次函数的性质确定抛物线开口方向.本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.也考查了二次函数的性质.。

天津市河西区2019-2020学年中考第四次模拟数学试题含解析

天津市河西区2019-2020学年中考第四次模拟数学试题含解析

天津市河西区2019-2020学年中考第四次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>1 B.x≥1C.x>3 D.x≥32.下列命题中,错误的是()A.三角形的两边之和大于第三边B.三角形的外角和等于360°C.等边三角形既是轴对称图形,又是中心对称图形D.三角形的一条中线能将三角形分成面积相等的两部分3.如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠DEA=()A.40°B.110°C.70°D.140°4.在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2∶1,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是()A.0.2 B.0.25 C.0.4 D.0.56.如图,两个等直径圆柱构成如图所示的T形管道,则其俯视图正确的是()A.B.C.D.7.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是( )A.q<16 B.q>16C.q≤4D.q≥48.一元二次方程210x x--=的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断9.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>1;②b+c+1=1;③3b+c+6=1;④当1<x<3时,x2+(b﹣1)x+c<1.其中正确的个数为A.1 B.2 C.3 D.410.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF 的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD11.下列说法中正确的是()A.检测一批灯泡的使用寿命适宜用普查.B.抛掷一枚均匀的硬币,正面朝上的概率是12,如果抛掷10次,就一定有5次正面朝上.C.“367人中有两人是同月同日生”为必然事件.D.“多边形内角和与外角和相等”是不可能事件.12.(2016福建省莆田市)如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的选项是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某篮球架的侧面示意图如图所示,现测得如下数据:底部支架AB的长为1.74m,后拉杆AE的倾斜角∠EAB=53°,篮板MN到立柱BC的水平距离BH=1.74m,在篮板MN另一侧,与篮球架横伸臂DG等高度处安装篮筐,已知篮筐到地面的距离GH的标准高度为3.05m.则篮球架横伸臂DG的长约为_____m(结果保留一位小数,参考数据:sin53°≈45,cos53°≈35,tan53°≈43).14.如图,AB∥CD,∠1=62°,FG平分∠EFD,则∠2= .15.已知a2+1=3a,则代数式a+1a的值为.16.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是.17.已知x1,x2是方程x2-3x-1=0的两根,则1211x x+=______.18.在实数﹣2、0、﹣1、2、2-中,最小的是_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,-3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.分别求出直线AB 和这条抛物线的解析式.若点P 在第四象限,连接AM 、BM ,当线段PM 最长时,求△ABM 的面积.是否存在这样的点P ,使得以点P 、M 、B 、O 为顶点的四边形为平行四边形?若存在,请直接写出点P 的横坐标;若不存在,请说明理由.20.(6分)解下列不等式组:6152(43){2112323x x x x ++-≥->①② 21.(6分)如图,在△ABC 中,∠ABC=90°.(1)作∠ACB 的平分线交AB 边于点O ,再以点O 为圆心,OB 的长为半径作⊙O ;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC 与⊙O 的位置关系,直接写出结果.22.(8分)如图,一位测量人员,要测量池塘的宽度 AB 的长,他过 A B 、 两点画两条相交于点 O 的射线,在射线上取两点 D E 、 ,使 13OD OE OB OA == ,若测得 37.2DE = 米,他能求出 A B 、 之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.23.(8分)如图,已知抛物线y =ax 2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x 轴的另一个交点为C ,顶点为D ,连结CD .求该抛物线的表达式;点P 为该抛物线上一动点(与点B 、C 不重合),设点P 的横坐标为t .①当点P 在直线BC 的下方运动时,求△PBC 的面积的最大值;②该抛物线上是否存在点P ,使得∠PBC =∠BCD ?若存在,求出所有点P 的坐标;若不存在,请说明理由.24.(10分)如图,某中学数学课外学习小组想测量教学楼DC 的高度,组员小方在A 处仰望教学楼顶端D 处,测得DAC α∠=,小方接着向教学楼方向前进到B 处,测得2DBC α∠=,已知90DCA ∠=︒,24AC m =,1tan 2α=.(1)求教学楼DC 的高度;(2)求cos DBC ∠的值.25.(10分)如图,在平面直角坐标系中有Rt △ABC ,∠A=90°,AB=AC ,A (﹣2,0),B (0,1). (1)求点C 的坐标;(2)将△ABC 沿x 轴的正方向平移,在第一象限内B 、C 两点的对应点B'、C'正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B'C'的解析式.(3)若把上一问中的反比例函数记为y 1,点B′,C′所在的直线记为y 2,请直接写出在第一象限内当y 1<y 2时x 的取值范围.26.(12分)如图,现有一块钢板余料ABCED ,它是矩形缺了一角,90,6,10,A B D AB dm AD dm ∠=∠=∠=︒==4,2BC dm ED dm ==.王师傅准备从这块余料中裁出一个矩形AFPQ (P 为线段CE 上一动点).设AF x =,矩形AFPQ 的面积为y .(1)求y 与x 之间的函数关系式,并注明x 的取值范围;(2)x 为何值时,y 取最大值?最大值是多少?27.(12分)已知:如图,梯形ABCD,DC∥AB,对角线AC平分∠BCD,点E在边CB的延长线上,EA⊥AC,垂足为点A.(1)求证:B是EC的中点;(2)分别延长CD、EA相交于点F,若AC2=DC•EC,求证:AD:AF=AC:FC.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题解析:一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x>1.故选C.考点:在数轴上表示不等式的解集.2.C【解析】【分析】根据三角形的性质即可作出判断.【详解】解:A、正确,符合三角形三边关系;B、正确;三角形外角和定理;C、错误,等边三角形既是轴对称图形,不是中心对称图形;D、三角形的一条中线能将三角形分成面积相等的两部分,正确.故选:C.【点睛】本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.3.B【解析】【分析】先由平行线性质得出∠ACD与∠BAC互补,并根据已知∠ACD=40°计算出∠BAC的度数,再根据角平分线性质求出∠BAE的度数,进而得到∠DEA的度数.【详解】∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=12∠BAC=12×140°=70°,∴∠DEA=180°﹣∠BAE=110°,故选B.【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是熟练掌握两直线平行,同旁内角互补.4.C【解析】【分析】根据轴对称图形和中心对称图形的定义进行分析即可.【详解】A、不是轴对称图形,也不是中心对称图形.故此选项错误;B、不是轴对称图形,也不是中心对称图形.故此选项错误;C、是轴对称图形,也是中心对称图形.故此选项正确;D、是轴对称图形,但不是中心对称图形.故此选项错误.故选C.【点睛】考点:1、中心对称图形;2、轴对称图形5.B【解析】【分析】设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1.【详解】解:设大正方形边长为2,则小正方形边长为1,因为面积比是相似比的平方,所以大正方形面积为4,小正方形面积为1, 则针孔扎到小正方形(阴影部分)的概率是10.254=; 故选:B .【点睛】本题考查了概率公式:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()m P A n=. 6.B【解析】试题分析:三视图就是主视图(正视图)、俯视图、左视图的总称.从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.故选B 考点:三视图7.A【解析】∵关于x 的一元二次方程x 2+8x+q=0有两个不相等的实数根,∴△>0,即82-4q>0,∴q<16,故选 A.8.A【解析】【分析】把a=1,b=-1,c=-1,代入24b ac ∆=-,然后计算∆,最后根据计算结果判断方程根的情况.【详解】21,1,14145a b c b ac ==-=-∴∆-=+=Q∴方程有两个不相等的实数根.故选A.【点睛】本题考查根的判别式,把a=1,b=-1,c=-1,代入24b ac ∆=-计算是解题的突破口.9.B【解析】分析:∵函数y=x 2+bx+c 与x 轴无交点,∴b 2﹣4c <1;故①错误。

2019-2020学年天津市河西区九年级(上)期末数学试卷

2019-2020学年天津市河西区九年级(上)期末数学试卷

2019-2020学年天津市河西区九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)已知⊙O的半径为6cm,点P到圆心O的距离为6cm,则点P和⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定2.(3分)下列图形中,可以看作是中心对称图形的是()A.B.C.D.3.(3分)半径为3的圆中,30°的圆心角所对的弧的长度为()A.2πB.πC.πD.π4.(3分)同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率是()A.B.C.D.5.(3分)如图,△ABC与△DEF是位似图形,相似比为2:3,已知AB=3,则DE的长为()A.B.C.D.6.(3分)如图,AB为⊙O的直径,C,D为⊙O上的两点,且C为的中点,若∠BAD=20°,则∠ACO的度数为()A.30°B.45°C.55°D.60°7.(3分)如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()A.B.C.D.8.(3分)直线y=﹣4x+1与抛物线y=x2+2x+k只有一个交点,则k的值为()A.0B.2C.6D.109.(3分)如图,已知在Rt△ABC中,∠ACB=90°,CD⊥AB于D,则下列结论错误的是()A.CD•AC=AB•BC B.AC2=AD•ABC.BC2=BD•AB D.AC•BC=AB•CD10.(3分)顺次连接边长为6cm的正六边形的不相邻的三边的中点,又形成一个新的正三角形,则这个新的正三角形的面积等于()A.cm2B.36cm2C.18cm2D.cm211.(3分)如图,将△ABC绕点A逆时针旋转,旋转角为α(0°<α<180°),得到△ADE,这时点B,C,D恰好在同一直线上,下列结论一定正确的是()A.AB=ED B.EA⊥BCC.∠B=90°﹣D.∠EAC=90°+12.(3分)如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是()A.B.C.D.二、填空题(本大题共6小題,每小题3分,共18分)13.(3分)从一副没有“大小王”的扑克牌中随机抽取一张,点数为“6”的概率是.14.(3分)如图所示,写出一个能判定△ABC∽△DAC的条件.15.(3分)如图,在△ABC中,DE∥BC,且DE把△ABC分成面积相等的两部分.若AD=4,则DB的长为.16.(3分)已知:如图,P A,PB,DC分别切⊙O于A,B,E点,若P A=l0cm,则△PCD的周长为.17.(3分)二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如表,则m的值为.18.(3分)如图,在边长为1的正方形ABCD中,将射线AC绕点A按顺时针方向旋转α度(0<α≤360°),得到射线AE,点M是点D关于射线AE的对称点,则线段CM长度的最小值为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(8分)解方程:x2﹣7x﹣30=0.20.(8分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸取一个小球.利用树形图或列表求下列事件的概率:(1)两次取出的小球的标号相同;(2)两次取出的小球标号的和等于4.21.(10分)在△ABC中,∠C=90°,以边AB上一点O为圆心,OA为半径的圆与BC相切于点D,分别交AB,AC于点E,F.(1)如图①,连接AD,若∠CAD=25°,求∠B的大小;(2)如图②,若点F为的中点,⊙O的半径为2,求AB的长.22.(10分)如图①,E是平行四边形ABCD的边AD上的一点,且=,CE交BD于点F.(Ⅰ)若BF=15,求DF的长;(Ⅱ)如图②,若延长BA和CE交于点P,AB=8,能否求出AP的长?若能,求出AP的长;若不能,说明理由.23.(10分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤AM,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20米,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)若a=70米,求矩形菜园ABCD面积的最大值.24.(10分)在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合).(1)求证:△ABE∽△DCA;(2)在旋转过程中,试判断等式BD2+CE2=DE2是否始终成立,若成立,请证明;若不成立,请说明理由.25.(10分)在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y =kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求PE+P A的最小值.2019-2020学年天津市河西区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中只有一项是符合题目要求的)1.【解答】解:∵⊙O的半径为6cm,P到圆心O的距离为6cm,即OP=6,∴点P在⊙O上.故选:B.2.【解答】解:A、不是中心对称图形,故本选项不合题意;B、是中心对称图形,故本选项符合题意;C、不中心对称图形,故本选项不合题意;D、不中心对称图形,故本选项不合题意.故选:B.3.【解答】解:弧长==,故选:D.4.【解答】解:列表如下:共有6×6=36种等可能的结果数,其中向上一面的两个骰子的点数相同的占6种,所以向上一面的两个骰子的点数相同的概率==.故选:D.5.【解答】解:∵△ABC与△DEF是位似图形,相似比为2:3,∴△ABC∽△DEF,∴=,即=,解得,DE=,故选:B.6.【解答】解:∵AB为⊙O的直径,C为的中点,∴OC⊥AD,∵∠BAD=20°,∴∠AOC=90°﹣∠BAD=70°,∵OA=OC,∴∠ACO=∠CAO===55°,故选:C.7.【解答】解:根据题意得:AB==,AC=2,BC==,∴BC:AC:AB=1::,A、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;B、三边之比:2:3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选:A.8.【解答】解:根据题意得:x2+2x+k=﹣4x+1,即x2+6x+(k﹣1)=0,则△=36﹣4(k﹣1)=0,解得:k=10.故选:D.9.【解答】解:由三角形的面积公式可知,CD•AB=AC•BC,A错误,符合题意,D正确,不符合题意;∵Rt△ABC中,∠ACB=90°,CD⊥AB,∴AC2=AD•AB,BC2=BD•AB,B、C正确,不符合题意;故选:A.10.【解答】解:如图所示:作AP⊥GH于P,BQ⊥GH于Q,如图所示:∵△GHM是等边三角形,∴∠MGH=∠GHM=60°,∵六边形ABCDEF是正六边形,∴∠BAF=∠ABC=120°,正六边形ABCDEF是轴对称图形,∵G、H、M分别为AF、BC、DE的中点,△GHM是等边三角形,∴AG=BH=3cm,∠MGH=∠GHM=60°,∠AGH=∠FGM=60°,∴∠BAF+∠AGH=180°,∴AB∥GH,∵作AP⊥GH于P,BQ⊥GH于Q,∴PQ=AB=6cm,∠P AG=90°﹣60°=30°,∴PG=AG=cm,同理:QH=cm,∴GH=PG+PQ+QH=9cm,∴△GHM的面积=GH2=cm2;故选:A.11.【解答】解:∵将△ABC绕点A逆时针旋转,旋转角为α,∴AB=AD,∠BAD=α,∴∠B==90°﹣,故选:C.12.【解答】解:当0≤t≤2时,S==,即S与t是二次函数关系,有最小值(0,0),开口向上,当2<t≤4时,S=﹣=,即S与t是二次函数关系,开口向下,由上可得,选项C符合题意,故选:C.二、填空题(本大题共6小題,每小题3分,共18分)13.【解答】解:∵没有大小王的扑克牌共52张,其中点数为6的扑克牌4张,∴随机抽取一张点数为8的扑克,其概率是,故答案为.14.【解答】解:已知△ABC和△DCA中,∠ACD=∠BAC;如果△ABC∽△DAC,需满足的条件有:①∠DAC=∠B或∠ADC=∠BAC;②AC2=DC•BC;故答案为:AC2=DC•BC(答案不唯一).15.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵DE把△ABC分成面积相等的两部分,∴S△ADE=S四边形DBCE,∴=,∴=,∵AD=4,∴AB=4.∴DB=AB﹣AD=4﹣4.故答案为:4﹣4.16.【解答】解:∵P A、PB分别切⊙O于A、B,∴PB=P A=10cm,∵CA与CE为⊙的切线,∴CA=CE,同理得到DE=DB,∴△PDC的周长=PD+DC+PC=PD+DB+CA+PC∴△PDC的周长=P A+PB=20cm,故答案为20cm.17.【解答】解:根据图表可以得到,点(﹣2,7)与(4,7)是对称点,点(﹣1,2)与(3,2)是对称点,∴函数的对称轴是:x=1,∴横坐标是2的点与(0,﹣1)是对称点,∴m=﹣1.18.【解答】解:如图所示:连接AM.∵四边形ABCD为正方形,∴AC===.∵点D与点M关于AE对称,∴AM=AD=1.∴点M在以A为圆心,以AD长为半径的圆上.如图所示,当点A、M、C在一条直线上时,CM有最小值.∴CM的最小值=AC﹣AM′=﹣1,故答案为:﹣1.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.【解答】解:x2﹣7x﹣30=0,(x﹣10)(x+3)=0,x﹣10=0,x+3=0,x1=10,x2=﹣3.20.【解答】解:(1)如图,随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号相同的有4种,所有两次摸出的小球标号相同的概率为=;(2)因为两次取出的小球标号的和等于4的有3种,所以其概率为.21.【解答】解:(1)连接OD,∵OA为半径的圆与BC相切于点D,∴OD⊥BC,∴∠ODB=90°,∵在△ABC中,∠C=90°,∴∠ODB=∠C,∴OD∥AC,∴∠CAD=∠ADO=25°,∵OA=OD,∴∠OAD=∠ODA=25°,∴∠BOD=2∠OAD=50°,∴∠B=90°﹣∠BOD=40°;(2)连接OF,OD,由(1)得:OD∥AC,∴∠AFO=∠FOD,∵OA=OF,点F为的中点,∴∠A=∠AFO,∠AOF=∠FOD,∴∠A=∠AFO=∠AOF=60°,∴∠B=90°﹣∠A=30°,∵OA=OD=2,∴OB=2OD=4,∴AB=OA+OB=6.22.【解答】解:(Ⅰ)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵,∴,又∵BF=15,∴,∴;(Ⅱ)解:能.∵四边形ABCD是平行四边形,∴PB∥DC,AB=DC=8,∴,∴,∴P A=.23.【解答】解:(1)设AB=xm,则BC=(100﹣2x)m,由题意得:x(100﹣2x)=450解得:x1=5,x2=45当x=5时,100﹣2x=90>20,不合题意舍去;当x=45时,100﹣2x=10<20答:AD的长为10m;(2)设AB=xm,则S=x(100﹣x)=﹣(x﹣50)2+1250,(0<x≤70)∴x=50时,S的最大值是1250.答:当x=50时,矩形菜园ABCD面积的最大值为1250.24.【解答】(1)证明:∵∠BAE=∠BAD+45°,∠CDA=∠BAD+45°,∴∠BAE=∠CDA,又∠B=∠C=45°,∴△ABE∽△DCA;(2)解:成立.如图,将△ACE绕点A顺时针旋转90°至△ABH位置,则CE=BH,AE=AH,∠ABH=∠C=45°,旋转角∠EAH=90°.连接HD,在△EAD和△HAD中,,∴△EAD≌△HAD(SAS).∴DH=DE.又∠HBD=∠ABH+∠ABD=90°,∴BD2+BH2=HD2,即BD2+CE2=DE2.25.【解答】解:(1)将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为y=a(x﹣1)2﹣2,∵OA=1,∴点A的坐标为(﹣1,0),代入抛物线的解析式得,4a﹣2=0,∴,∴抛物线的解析式为y=,即y=.令y=0,解得x1=﹣1,x2=3,∴B(3,0),∴AB=OA+OB=4,∵△ABD的面积为5,∴=5,∴y D=,代入抛物线解析式得,,解得x1=﹣2,x2=4,∴D(4,),设直线AD的解析式为y=kx+b,∴,解得:,∴直线AD的解析式为y=.(2)过点E作EM∥y轴交AD于M,如图,设E(a,),则M(a,),∴=,∴S△ACE=S△AME﹣S△CME===,=,∴当a=时,△ACE的面积有最大值,最大值是,此时E点坐标为().(3)作E关于x轴的对称点F,连接EF交x轴于点G,过点F作FH⊥AE于点H,交x轴于点P,∵E(),OA=1,∴AG=1+=,EG=,∴,∵∠AGE=∠AHP=90°∴sin,∴,∵E、F关于x轴对称,∴PE=PF,∴PE+AP=FP+HP=FH,此时FH最小,∵EF=,∠AEG=∠HEF,∴=,∴.∴PE+P A的最小值是3.。

2019—2020学年天津市河西区九年级(上)期末数学试卷

2019—2020学年天津市河西区九年级(上)期末数学试卷

2019—2020学年天津市河西区九年级(上)期末数学试卷一、选择题(共12小题;每小题3分;满分36分;每小题只有一个选项符合题意)1.(3分)下列各点中关于原点对称的两个点是()A.(﹣5;0)和(0;5) B.(2;﹣1)和(1;﹣2)C.(5;0)和(0;﹣5)D.(﹣2;﹣1)和(2;1)2.(3分)如图由圆形组成的四个图形中;可以看做是中心对称图形的有()A.4个B.3个C.2个D.1个3.(3分)已知抛物线y=x2﹣x;它与x轴的两个交点间的距离为()A.0 B.1 C.2 D.44.(3分)如图;DE∥BC;且AD=4;DB=2;DE=3.5;则BC的长度为()A.5.5 B.5.25 C.6.5 D.75.(3分)如图;P是⊙O直径AB延长线上的一点;PC与⊙O相切于点C;若∠P=20°;则∠A的度数为()A.40°B.35°C.30°D.25°6.(3分)从一副扑克牌中随机抽取一张;它恰好是Q的概率为()A.B.C.D.7.(3分)下列叙述正确的是()A.任意两个正方形一定是相似的B.任意两个矩形一定是相似的C.任意两个菱形一定是相似的D.任意两个等腰梯形一定是相似的8.(3分)观察下列两个三位数的特点;猜想其中积的结果最大的是()A.901×999 B.922×978 C.950×950 D.961×9399.(3分)正六边形的周长为6mm;则它的面积为()A.mm2B.mm2C.3mm2D.6mm210.(3分)数学课上;老师让学生尺规作图画Rt△ABC;使其斜边AB=c;一条直角边BC=a;小明的作法如图所示;你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.勾股定理是逆定理C.直径所对的圆周角是直角D.90°的圆周角所对的弦是直径11.(3分)75°的圆心角所对的弧长是2.5πcm;则此弧所在圆的半径是()A.6cm B.7cm C.8cm D.9cm12.(3分)如图;抛物线y=﹣x 2+2x+m+1交x轴于点A(a;0)和B(b;0);交y轴于点C;抛物线的顶点为D;下列三个判断中;①当x>0时;y>0;②若a=﹣1;则b=4;③抛物线上有两点P(x1;y1)和Q(x2;y2);若x1<1<x2;且x1+x2>2;则y1>y2;正确的是()A.①B.②C.③D.①②③都不对二、填空题(共6小题;每小题3分;满分18分)13.(3分)已知⊙O的直径为10cm;若直线AB与⊙O相切.那么点O到直统AB的距离是.14.(3分)将点P(3;4)绕原点逆时针旋转90°;得到的点P的对应点的坐标为.15.(3分)如图;△ABC与△DEF是位似图形;位似比为2:3;已知AB=4;则DE的长为.16.(3分)已知二次函数y=x2+bx+5(b为常数);若在函数值y=1的情况下;只有一个自变量x的值与其对应;则此时b的值为.17.(3分)如图;AB与CD相交于点O;且∠OAD=∠OCB;延长AD、CB交于点P;那么图中的相似三角形的对数为.18.(3分)如图;在每个小正方形的边长为1的网格中;点A;B均在格点上;即AB=4;点E为线段AB上的动点.若使得BE=;则的值为;请你在网格中;用无刻度的直尺;找到点E的位置;并简要说明此位置是如何找到的(不要求证明).三、解答题(共7小题;满分66分)19.(8分)已知抛物线y=x2﹣2x+1.(1)求它的对称轴和顶点坐标;(2)根据图象;确定当x>2时;y的取值范围.20.(8分)在一个不透明的盒子里;装有三个分别写有数字6;﹣2;7的小球;它们的形状、大小、质地等完全相同;先从盒子里随机取出一个小球;记下数字后放回盒子;摇匀后再随机取出一个小球;记下数字.请你用画树形图或列表的方法;求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于10的概率.21.(10分)如图;Rt△ABC中;∠C=90°;AB=10;AC=8;E是AC上一点;AE=5;ED ⊥AB于D.(1)求证:△ACB∽△ADE;(2)求AD的长度.22.(10分)如图;在矩形ABCD中;AB=8;AD=12;过点A;D两点的⊙O与BC边相切于点E;求⊙O的半径.23.(10分)某商品现在的售价为每件35元.每天可卖出50件.市场调查反映:如果调整价格.每降价1元;每天可多卖出2件.请你帮助分析;当每件商品降价多少元时;可使每天的销售额最大;最大销售额是多少?设每件商品降价x元.每天的销售额为y元.24.(10分)在平面直角坐标系中;己知O为坐标原点;点A(3;0);B(0;4);以点A 为旋转中心;把△ABO顺时针旋转;得△ACD.记旋转角为α.∠ABO为β.(Ⅰ)如图①;当旋转后点D恰好落在AB边上时;求点D的坐标;(Ⅱ)如图②;当旋转后满足BC∥x轴时;求α与β之间的数量关系:(Ⅲ)当旋转后满足∠AOD=β时;求直线CD的解析式(直接写出结果即可).25.(10分)如图;已知Rt△ABC中;∠C=90°;AC=8.BC=6;点P以每秒1个单位的速度从A向C运动;同时点Q以每秒2个单位的速度从A→B→C方向运动;它们到C点后都停止运动;设点P、Q运动的时间为t秒.(Ⅰ)在运动过程中;请你用t表示P、Q两点间的距离;并求出P、Q两点间的距离的最大值;(Ⅱ)经过t秒的运动;求△ABC被直线PQ扫过的面积S与时间t的函数关系式.2015-2016学年天津市河西区九年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题;每小题3分;满分36分;每小题只有一个选项符合题意)1.(3分)(2015秋•河西区期末)下列各点中关于原点对称的两个点是()A.(﹣5;0)和(0;5) B.(2;﹣1)和(1;﹣2)C.(5;0)和(0;﹣5)D.(﹣2;﹣1)和(2;1)【分析】根据关于原点对称的点的横坐标互为相反数;纵坐标互为相反数;可得答案.【解答】解:A、关于原点对称的点的横坐标互为相反数;纵坐标互为相反数;故A错误;B、关于原点对称的点的横坐标互为相反数;纵坐标互为相反数;故B错误;C、关于原点对称的点的横坐标互为相反数;纵坐标互为相反数;故C错误;D、关于原点对称的点的横坐标互为相反数;纵坐标互为相反数;故D正确;故选:D.【点评】本题考查了关于原点对称的点的坐标;关于原点对称的点的横坐标互为相反数;纵坐标互为相反数.2.(3分)(2015秋•河西区期末)如图由圆形组成的四个图形中;可以看做是中心对称图形的有()A.4个B.3个C.2个D.1个【分析】根据中心对称图形定义:把一个图形绕某一点旋转180°;如果旋转后的图形能够与原来的图形重合;那么这个图形就叫做中心对称图形;这个点叫做对称中心进行分析即可.【解答】解:第一、二、四个图形是中心对称图形;共3个;故选:B.【点评】此题主要考查了中心对称图形;中心对称图形是要寻找对称中心;旋转180度后与原图重合.3.(3分)(2015秋•河西区期末)已知抛物线y=x2﹣x;它与x轴的两个交点间的距离为()A.0 B.1 C.2 D.4【分析】根据解方程x2﹣x=0抛物线与x轴的两交点坐标;然后利用两点间的距离公式求出两交点间的距离.【解答】解:当y=0时;x2﹣x=0;解得x1=0;x2=2;则抛物线与x轴的两交点坐标为(0;0);(2;0);所以抛物线与x轴的两个交点间的距离为2.故选C.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a;b;c是常数;a≠0)与x轴的交点坐标转化为解关于x的一元二次方程.4.(3分)(2015秋•河西区期末)如图;DE∥BC;且AD=4;DB=2;DE=3.5;则BC的长度为()A.5.5 B.5.25 C.6.5 D.7【分析】根据相似三角形的判定得出△ADE∽△ABC;得出比例式;代入求出即可.【解答】解:∵DE∥BC;∴△ADE∽△ABC;∴=;∵AD=4;DB=2;DE=3.5;∴=;∴BC=5.25;故选B.【点评】本题考查了相似三角形的性质和判定的应用;能求出△ADE∽△ABC是解此题的关键.5.(3分)(2015秋•河西区期末)如图;P是⊙O直径AB延长线上的一点;PC与⊙O相切于点C;若∠P=20°;则∠A的度数为()A.40°B.35°C.30°D.25°【分析】根据题意;可知∠COB=70°;OA=OC;即可推出∠A=35°.【解答】解:∵PC与⊙O相切于点C;∴OC⊥CP;∵∠P=20°;∴∠COB=70°;∵OA=OC;∴∠A=35°.故选B.【点评】本题主要考查了切线性质、三角形外角的性质、等腰三角形的性质;解题的关键在于确定OC⊥CP;OA=OC.6.(3分)(2015秋•河西区期末)从一副扑克牌中随机抽取一张;它恰好是Q的概率为()A.B.C.D.【分析】根据概率的求法;找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:一副扑克牌共有54张;其中只有4张Q;∴从一副扑克牌中随机抽出一张牌;得到Q的概率是=;故选B.【点评】本题考查概率的求法:如果一个事件有n种可能;而且这些事件的可能性相同;其中事件A出现m种结果;那么事件A的概率P(A)=.7.(3分)(2015秋•河西区期末)下列叙述正确的是()A.任意两个正方形一定是相似的B.任意两个矩形一定是相似的C.任意两个菱形一定是相似的D.任意两个等腰梯形一定是相似的【分析】根据对应边成比例;对应角相等的图形是相似图形;对各选项分析判断后利用排除法求解.【解答】解:A、任意两个正方形;对应边成比例;对应角都是直角;一定相等;所以一定相似;故本选项正确;B、任意两个矩形;对应边不一定成比例;对应角都是直角;一定相等;所以也不一定相似;故本选项错误;C、任意两个菱形;对应边成比例;但对应角不一定相等;所以不一定相似;故本选项错误;D、任意两个等腰梯形;对应边不一定成比例;对应角不一定相等;所以不一定相似;故本选项错误.故选A.【点评】本题主要考查了相似图形的定义;注意从对应边与对应角两个方面考虑解答.8.(3分)(2015秋•河西区期末)观察下列两个三位数的特点;猜想其中积的结果最大的是()A.901×999 B.922×978 C.950×950 D.961×939【分析】根据平方差公式计算即可判断.【解答】解:∵901×999=(950﹣49)(950+49))=9502﹣49;922×978=(950﹣28)(950+28)=9502﹣282;950×950=9502;961×939=(950+11)(950﹣11)=9502﹣112;∴950×950最大;故选C.【点评】本题考查平方差公式;解题的关键是利用平方差公式简便运算;记住(a+b)(a ﹣b)=a2﹣b2;运算基础题;中考常考题型.9.(3分)(2015•河西区二模)正六边形的周长为6mm;则它的面积为()A.mm2B.mm2C.3mm2D.6mm2【分析】首先根据题意画出图形;即可得△OBC是等边三角形;又由正六边形ABCDEF的周长为6mm;即可求得BC的长;继而求得△OBC的面积;则可求得该六边形的面积.【解答】解:如图;连接OB;OC;过O作OM⊥BC于M;∴∠BOC=×360°=60°;∵OB=OC;∴△OBC是等边三角形;∵正六边形ABCDEF的周长为6mm;∴BC=6÷6=1mm;∴OB=BC=1mm;∴BM=BC=mm;∴OM==mm;∴S△OBC=×BC×OM=×1×=mm2;∴该六边形的面积为:×6=mm2;故选B.【点评】此题主要考查了圆的内接六边形的性质与等边三角形的判定与性质;注意掌握数形结合思想是解答此题的关键.10.(3分)(2015秋•河西区期末)数学课上;老师让学生尺规作图画Rt△ABC;使其斜边AB=c;一条直角边BC=a;小明的作法如图所示;你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.勾股定理是逆定理C.直径所对的圆周角是直角D.90°的圆周角所对的弦是直径【分析】由AB是直径;根据直径所对的圆周角是直角即可判定∠ACB是直角.【解答】解:∵AB是直径;∴∠ACB是直角.则∠ACB是直角的依据是:直径所对的圆周角是直角.故选C.【点评】此题考查了圆周角定理.注意掌握直径所对的圆周角是直角定理的应用是解此题的关键.11.(3分)(2015秋•抚顺县期末)75°的圆心角所对的弧长是2.5πcm;则此弧所在圆的半径是()A.6cm B.7cm C.8cm D.9cm【分析】根据弧长公式L=;将n=75;L=2.5π;代入即可求得半径长.【解答】解:∵75°的圆心角所对的弧长是2.5πcm;由L=;∴2.5π=;解得:r=6;故选:A.【点评】此题主要考查了弧长公式的应用;熟练掌握弧长公式:L=才能准确的解题.12.(3分)(2015秋•河西区期末)如图;抛物线y=﹣x2+2x+m+1交x轴于点A(a;0)和B (b;0);交y轴于点C;抛物线的顶点为D;下列三个判断中;①当x>0时;y>0;②若a=﹣1;则b=4;③抛物线上有两点P(x1;y1)和Q(x2;y2);若x1<1<x2;且x1+x2>2;则y1>y2;正确的是()A.①B.②C.③D.①②③都不对【分析】观察函数图象可直接得到抛物线在x轴上方所对应的自变量的范围;从而可对①进行判断;把A点坐标代入y=﹣x2+2x+m+1中求出m;确定抛物线解析式;再通过解方程﹣x2 +2x+3=0得到B点坐标;从而可对②进行判断;先确定抛物线的对称轴为直线x=1;则点P和点Q在对称轴两侧;所以点P到直线x=1的距离为1﹣x1;点Q到直线x=1的距离为x2﹣1;然后比较点Q点对称轴的距离和点P点对称轴的距离的大小;再根据二次函数的性质可对③进行判断.【解答】解:当a<x<b时;y>0;所以①错误;当a=﹣1时;A点坐标为(﹣1;0);把A(﹣1;0)代入y=﹣x2+2x+m+1得﹣1﹣2+m+1=0;解得m=2;则抛物线解析式为y=﹣x2+2x+3;解方程﹣x2+2x+3=0得x1=﹣1;x2=3;则B(3;0);即b=3;所以②错误;抛物线的对称轴为直线x=﹣=1;因为x1<1<x2;所以点P和点Q在对称轴两侧;点P到直线x=1的距离为1﹣x1;点Q到直线x=1的距离为x 2﹣1;则x2﹣1﹣(1﹣x1)=x2+x1﹣2;而x1+x2>2;所以x2﹣1﹣(1﹣x1)>0;所以点Q到对称轴的距离比点P到对称轴的距离要大;所以y1>y2;所以③正确.故选C.【点评】本题考查了抛物线与x轴的交点问题:把求二次函数y=ax2+bx+c(a;b;c是常数;a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.判断点P、点Q到对称轴的距离的大小是判断命题③的真假的关键.二、填空题(共6小题;每小题3分;满分18分)13.(3分)(2015秋•河西区期末)已知⊙O的直径为10cm;若直线AB与⊙O相切.那么点O到直统AB的距离是 5 .【分析】根据圆的切线的性质:圆心到切线的距离等于圆的半径;求出圆的半径即可.【解答】解:∵⊙O的直径是10;∴⊙O的半径是5;∵直线AB与⊙O相切;∴点O到AB的距离等于圆的半径;是5.故答案为:5.【点评】本题考查了切线的性质和直线与圆的位置关系的理解和运用;关键是理解圆的切线的定义;题目比较典型;难度不大.14.(3分)(2015秋•河西区期末)将点P(3;4)绕原点逆时针旋转90°;得到的点P的对应点的坐标为(﹣4;3).【分析】作出图形;过点P作PA⊥x轴于点A;作PB⊥y轴于点B;过点P′作PA′⊥y轴于点A′;作PB′⊥x轴于点B′;根据点A的坐标求出PA、PB的长度;根据旋转变换只改把图形的位置;不改变图形的形状与大小求出P′A′、P′B′的长度;即可得解.【解答】解:如图;过点P作PA⊥x轴于点A;作PB⊥y轴于点B;过点P′作PA′⊥y轴于点A′;作PB′⊥x轴于点B′;∵点P(3;4);∴PA=4;PB=3;∵点P(3;4)绕坐标原点逆时针旋转90°得到点P′;∴P′A′=PA=4;P′B′=PB=3;∴点P′的坐标是(﹣4;3).故答案为:(﹣4;3).【点评】本题考查了坐标与图形的变化﹣旋转;熟练掌握旋转变换的性质是解题的关键;作出图形更形象直观.15.(3分)(2009•宁德)如图;△ABC与△DEF是位似图形;位似比为2:3;已知AB=4;则DE的长为 6 .【分析】位似图形就是特殊的相似图形位似比等于相似比.利用相似三角形的性质即可求解.【解答】解:∵△ABC与△DEF是位似图形;位似比为2:3;∴AB:DE=2:3;∴DE=6.故答案为:6.【点评】本题主要考查位似的定义.解题的关键是掌握位似图形是相似图形的特殊形式;位似比等于相似比的特点.16.(3分)(2015秋•河西区期末)已知二次函数y=x2+bx+5(b为常数);若在函数值y=1的情况下;只有一个自变量x的值与其对应;则此时b的值为±4 .【分析】根据在函数值y=l的情况下;只有一个自变量x的值与其对应;得到x2+bx+5=1有两个相等的实数根;求此时b的值即可.【解答】解:由题意得;x2+bx+5=1有两个相等的实数根;所以△=b2﹣16=0;解得;b=±4.故答案为±4.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣;);对称轴是直线x=﹣;当a>0时;抛物线在对称轴左侧;y随x的增大而减少;在对称轴右侧;y随x的增大而增大;因为图象有最低点;所以函数有最小值;当x=﹣时;y=;当a<0时;抛物线在对称轴左侧;y随x的增大而增大;在对称轴右侧;y随x的增大而减少;因为图象有最高点;所以函数有最大值;当x=﹣时;y=.17.(3分)(2015秋•河西区期末)如图;AB与CD相交于点O;且∠OAD=∠OCB;延长AD、CB交于点P;那么图中的相似三角形的对数为 2 .【分析】利用两角法推知图中的相似三角形即可.【解答】解:如图;∵在△ABP与△CDP中;∠BAP=∠DCP;∠APB=∠CPD;∴△ABP∽△CDP;∴∠ABP=∠CDP;∴∠ADO=∠CBO;又∵∠OAD=∠OCB;∴△OAD∽△OCB;综上所述;图中的相似三角形有2对:△ABP∽△CDP;△OAD∽△OCB.故答案是:2.【点评】本题考查了相似三角形的判定.①有两个对应角相等的三角形相似;②有两个对应边的比相等;且其夹角相等;则两个三角形相似;③三组对应边的比相等;则两个三角形相似.18.(3分)(2015秋•河西区期末)如图;在每个小正方形的边长为1的网格中;点A;B 均在格点上;即AB=4;点E为线段AB上的动点.若使得BE=;则的值为;请你在网格中;用无刻度的直尺;找到点E的位置;并简要说明此位置是如何找到的(不要求证明)在B所在横线的上边第9条线上找到格点F;连接BF;BF交F下距离是5的横线与BF的交点是G;过G作GE∥AF交AB于点E;点E就是所求..【分析】首先求得AE的长;即可求得的值;根据平行线分线段成比例定理即可作出E的位置.【解答】解:AE=AB﹣BE=4﹣=;则===.找到E的方法:在B所在横线的上边第9条线上找到格点F;连接BF;BF交F下距离是5的横线与BF的交点是G;过G作GE∥AF交AB于点E;点E就是所求.【点评】本题考查了线段的比值;以及平行线分线段成比例定理;正确理解利用平行线分线段成比例定理是关键.三、解答题(共7小题;满分66分)19.(8分)(2015秋•河西区期末)已知抛物线y=x2﹣2x+1.(1)求它的对称轴和顶点坐标;(2)根据图象;确定当x>2时;y的取值范围.【分析】(1)把抛物线解析式化为顶点式即可得出对称轴和顶点坐标;(2)利用描点法画出图象;根据图象利用数形结合的方法确定当x>2时;y的取值范围即可.【解答】解:(1)y=x2﹣2x+1=(x﹣1)2;对称轴为直线x=1;顶点坐标为(1;0);(2)抛物线图象如下图所示:由图象可知当x>2时;y的取值范围是y>1.【点评】本题考查了二次函数的性质;解题的关键是确定对称轴及顶点坐标并作出图象.20.(8分)(2009•吉林)在一个不透明的盒子里;装有三个分别写有数字6;﹣2;7的小球;它们的形状、大小、质地等完全相同;先从盒子里随机取出一个小球;记下数字后放回盒子;摇匀后再随机取出一个小球;记下数字.请你用画树形图或列表的方法;求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于10的概率.【分析】解此题的关键是准确列表或画树形图;找出所有的可能情况;即可求得概率.【解答】解:(2分)(1)P(两数相同)=.(3分)(2)P(两数和大于10)=.(5分)【点评】此题可以采用列表法或者采用树状图法;列表法可以不重复不遗漏的列出所有可能的结果;适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21.(10分)(2015秋•中山区期末)如图;Rt△ABC中;∠C=90°;AB=10;AC=8;E是AC上一点;AE=5;ED⊥AB于D.(1)求证:△ACB∽△ADE;(2)求AD的长度.【分析】(1)求出∠EDA=∠C=90°;根据相似三角形的判定得出相似即可;(2)根据相似得出比例式;代入求出即可.【解答】(1)证明:∵DE⊥AB;∠C=90°;∴∠EDA=∠C=90°;∵∠A=∠A;∴△ACB∽△ADE;(2)解:∵△ACB∽△ADE;∴=;∴=;∴AD=4.【点评】本题考查了相似三角形的性质和判定的应用;能推出△ACB∽△ADE是解此题的关键.22.(10分)(2015秋•河西区期末)如图;在矩形ABCD中;AB=8;AD=12;过点A;D 两点的⊙O与BC边相切于点E;求⊙O的半径.【分析】首先连接OE;并反向延长交AD于点F;连接OA;由在矩形ABCD中;过A;D两点的⊙O与BC边相切于点E;易得四边形CDFE是矩形;由垂径定理可求得AF的长;然后设⊙O的半径为x;则OE=EF﹣OE=8﹣x;利用勾股定理即可得:(8﹣x)2+36=x2;继而求得答案.【解答】解:连接OE;并反向延长交AD于点F;连接OA;∵BC是切线;∴OE⊥BC;∴∠OEC=90°;∵四边形ABCD是矩形;∴∠C=∠D=90°;∴四边形CDFE是矩形;∴EF=CD=AB=8;OF⊥AD;∴AF=AD=×12=6;设⊙O的半径为x;则OE=EF﹣OE=8﹣x;在Rt△OAF中;OF2+AF2=OA2;则(8﹣x)2+36=x2;解得:x=6.25;∴⊙O的半径为:6.25.【点评】此题考查了切线的性质、垂径定理、矩形的性质以及勾股定理.注意准确作出辅助线是解此题的关键.23.(10分)(2012•河北模拟)某商品现在的售价为每件35元.每天可卖出50件.市场调查反映:如果调整价格.每降价1元;每天可多卖出2件.请你帮助分析;当每件商品降价多少元时;可使每天的销售额最大;最大销售额是多少?设每件商品降价x元.每天的销售额为y元.【分析】(I)现在的售价为每件35元;则每件商品降价x元;每件售价为(35﹣x)元;多买2x件;即每天售量为(50+2x)件;(Ⅱ)每天的销售额=每件售价×每天售量;即y=(35﹣x)(50+2x);配方后得到y=﹣2(x﹣5)2+1800;根据二次函数的性质得到当x=5时;y取得最大值1800.【解答】解:(Ⅰ)35﹣x;50+2x;(Ⅱ)根据题意;每天的销售额y=(35﹣x)(50+2x);(0<x<35)配方得y=﹣2(x﹣5)2+1800;∵a<0;∴当x=5时;y取得最大值1800.答:当每件商品降价5元时;可使每天的销售额最大;最大销售额为l 800元.【点评】本题考查了二次函数的应用:根据题意构建二次函数关系式;再利用配方法配成顶点式;然后根据二次函数的性质讨论函数的最大值或最小值.24.(10分)(2011•天津)在平面直角坐标系中;己知O为坐标原点;点A(3;0);B(0;4);以点A为旋转中心;把△ABO顺时针旋转;得△ACD.记旋转角为α.∠ABO为β.(Ⅰ)如图①;当旋转后点D恰好落在AB边上时;求点D的坐标;(Ⅱ)如图②;当旋转后满足BC∥x轴时;求α与β之间的数量关系:(Ⅲ)当旋转后满足∠AOD=β时;求直线CD的解析式(直接写出结果即可).【分析】(1)过点D作DM⊥x轴于点M;求证△ADM∽△ABO;根据相似比求AM的长度;推出OM和MD的长度即可;(2)根据等腰三角形的性质;推出α=180°﹣2∠ABC;结合已知条件推出∠ABC=90°﹣∠ABO=90°﹣β;即α=2β;(3)做过点D作DM⊥x轴于点M;根据勾股定理和△OAB∽△OMD;推出D点的横坐标和纵坐标;然后求出C点坐标;就很容易得到CD的解析式了.【解答】解:(1)∵点A(3;0);B(0;4);得OA=3;OB=4;∴在Rt△AOB中;由勾股定理;得AB==5;根据题意;有DA=OA=3.如图①;过点D作DM⊥x轴于点M;则MD∥OB;∴△ADM∽△ABO.有;得;∴OM=;∴;∴点D的坐标为(;).(2)如图②;由已知;得∠CAB=α;AC=AB;∴∠ABC=∠ACB;∴在△ABC中;∴α=180°﹣2∠ABC;∵BC∥x轴;得∠OBC=90°;∴∠ABC=90°﹣∠ABO=90°﹣β;∴α=2β;(3)若顺时针旋转;如图;过点D作DE⊥OA于E;过点C作CF⊥OA于F;∵∠AOD=∠ABO=β;∴tan∠AOD==;设DE=3x;OE=4x;则AE=4x﹣3;在Rt△ADE中;AD2=AE2+DE2;∴9=9x2+(4x﹣3)2;∴x=;∴D(;);∴直线AD的解析式为:y=x﹣;∵直线CD与直线AD垂直;且过点D;∴设y=﹣x+b;把D(;)代入得;=﹣×+b;解得b=4;∵互相垂直的两条直线的斜率的积等于﹣1;∴直线CD的解析式为y=﹣4.同理可得直线CD的另一个解析式为y=x﹣4.【点评】本题主要考查了相似三角形的判定和性质、勾股定理、待定系数法求一次函数解释式等知识点;本题关键在于结合图形找到相似三角形;求相关线段的长度和有关点的坐标.25.(10分)(2015秋•河西区期末)如图;已知Rt△ABC中;∠C=90°;AC=8.BC=6;点P以每秒1个单位的速度从A向C运动;同时点Q以每秒2个单位的速度从A→B→C方向运动;它们到C点后都停止运动;设点P、Q运动的时间为t秒.(Ⅰ)在运动过程中;请你用t表示P、Q两点间的距离;并求出P、Q两点间的距离的最大值;(Ⅱ)经过t秒的运动;求△ABC被直线PQ扫过的面积S与时间t的函数关系式.【分析】(Ⅰ)分Q在AB边上与Q在BC边上;分别如图1和图2所示;表示出PQ的长;当Q与B重合时;PQ取得最大值;求出即可;(Ⅱ)分两种情况考虑:当Q在AB边上时;如图1;△ABC被直线PQ扫过的面积为S△AQP;当Q在BC边上时;△ABC被直线PQ扫过的面积为S四边形ABQP;分别表示出S与t的函数关系式即可.【解答】解:(Ⅰ)分两种情况考虑:当Q在AB边上时;过Q作QE⊥AC;交AC于点E;连接PQ;如图1所示:∵∠C=90°;∴QE∥BC;∴△ABC∽△AQE;∴==;在Rt△ABC中;AC=8;BC=6;根据勾股定理得:AB=10;∵AQ=2t;AP=t;∴==;整理得:PE=t;QE=t;根据勾股定理得:PQ2=QE2+PE2;整理得:PQ=t;当Q在BC边上时;连接PQ;如图2所示:由AB+BQ=2t;AB=10;得到BQ=2t﹣10;CQ=BC﹣BQ=6﹣(2t﹣10)=16﹣2t;由AP=t;AC=8;得到PC=8﹣t;根据勾股定理得:PQ==;当Q与B重合时;PQ的值最大;则当t=5时;PQ最大值为3;(Ⅱ)分两种情况考虑:当Q在AB边上时;如图1;△ABC被直线PQ扫过的面积为S△AQP;此时S=AP•QE=t•t=t2(0<t≤5);当Q在BC边上时;△ABC被直线PQ扫过的面积为S四边形ABQP;此时S=S△ABC﹣S△PQC=×8×6﹣(8﹣t)(16﹣2t)=﹣t2+16t﹣40(5<t≤8).综上;经过t秒的运动;△ABC被直线PQ扫过的面积S与时间t的函数关系式为.【点评】此题考查了动点问题的函数图象;涉及的知识有:相似三角形的判定与性质;勾股定理;以及三角形面积求法;利用了分类讨论的思想;分类讨论时考虑问题要全面;做到不重不漏.参与本试卷答题和审题的老师有:2300680618;sd2011;gsls;zjx111;守拙;lantin;HJJ ;弯弯的小河;fangcao;zcx;王学峰;蓝月梦;zhjh;nhx600;lf2-9;ZHAOJJ;sks(排名不分先后)菁优网2016年11月8日。

2019--2020第一学期九年级数学期末考试及答案

2019--2020第一学期九年级数学期末考试及答案

2019-2020学年度第一学期期末调研考试九年级数学试卷注意:本试卷共8页,三道大题,26小题。

总分120分。

时间120分钟。

题号 一 二 20 21 22 23 24 25 26 总分 得分一、 选择题(本题共16小题,总分42分。

1~10小题,每题3分;11~16小题,每题2分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

请将正确选项的代号填写在下面的表格中)题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 答案1.“抛一枚均匀硬币,落地后正面朝上”这一事件是( ) A .必然事件 B .随机事件 C .确定事件D .不可能事件2. 如图,该图形围绕自己的旋转中心,按下列角度旋转后,不能与自身重合的是( ) A .72° B .108° C .144° D .216° 3.反比例函数ky x=的图象经过点P(-1,2),则这个函数的图象位于( ) A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限4.用配方法将方程0142=--x x 变形为m x =-2)2(,则m 的值是( )A. 4B. 5C. 6D. 75. 在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.6. 一元二次方程220200x +=的根的情况是( )A .有两个相等的实根B .有两个不等的实根C .只有一个实根D .无实数根 7. 如图,在正方形网格上有两个相似三角形△ABC 和△EDF ,则∠BAC 的度数为( )得分 评卷人A .105°B .115°C .125°D .135°8. 已知三角形面积一定,则它的底边a 上的高h 与底边a 之间的函数关系图象是( )9. 下列对二次函数2y x x =-图象的描述,正确的是( )A .开口向下B .对称轴是y 轴C .经过原点D .在对称轴右侧部分是下降的 10. 参加一次聚会的每两人都握了一次手,所有人共握手10次。

天津市河西区20192020学年度九年级上期中数学试题含

天津市河西区20192020学年度九年级上期中数学试题含

天津市河西区2021-2021学年度九年级上期中数学试题含答案一选择题 (3 ×12=36)1. 以下各点,不在二次函数y=x2的图像上的是〔〕A.(1,-1)B.(1,1)C.(-2 , 4)D.(3,9)2. 以下图案中,可以看做是中心对称图形的有〔〕个个个个3. 平行四边形ABCD的四个顶点都在圆0 上,那么四边形ABCD一定是〔〕A.正方形B.矩形C.菱形D.以上都不对4. 如图,四边形ABCD 内接于圆O,假设∠ BOD=138,那么它的一个外角∠DCE 的度数为〔〕00005.在以下 4 个不同的情境中,两个变量所满足的函数关系属于二欢函数关系的有〔〕①设正方那的边长为x 面积为 y, 那么 y 与 x 有函数关系 ;② x 个球队参加比赛,每两个队之间比赛一场,那么比赛的场次数y 与 x 之间有函数关系③设正方形的梭长为x,外表积为y,那么 y 与 x 有函数关系④假设一辆汽车以120km/h 的速度匀速行驶,那么汽车行驶的里程y(km) 与行驶时间x(h) 有函数关系个个个1 / 9D.4 个6. 以下二次函数的图象中,开口最大的是〔〕A.y=x 2B.y=2x 2C.y= 1 x2100D.y=-x 27. 抛物线 y=x2-8x 的顶点坐标为〔〕A.(4 , 16)B.(-4 , 16)C.(4 , -16)D.(-4 , -16)8. 以原点为中心,把点P(1 , 3) 顺时针旋转900,得到的点 P/的坐标为〔〕A.(3 , -1)B.(-3 , 1)C.(1 , -3)D.(-1 , -3)9. 用 60m 长的篱笆围成矩形场地,矩形的面积S 随着矩形的一边长L 的变化而变化,要使矩形的面积最大,L 的长度应为〔〕A. 6 3 mD. 10 3 m10. 二次函数 y=ax 2+bx+c(a ≠ 0) 和正比例函数 y 2x 的图象如图所示,那么方程3ax 2 (b 2 )x c 0 (a ≠ 0) 的根的情况〔〕3A. 两根都大于0B. 两根都等于 0C. 两根都小于 0D. 一根大于 0,一根小于 011. 如图,将边长为 2 的等边三角形ABC绕点 C 旋转 1200,得到△ DCE,连接 BD,那么 BD的长为()32 / 912. 假设抛物线2不动 . 将平面直角坐标系xOy 先沿水平方向向右平移一个单位, 再沿y=x -2x+3铅直方向向上平移三个单位,那么原抛物线的解析式应变为()A.y=(x-2) 2+3B.y=(x-2) 2+5C.y=x 2-1D.y=x 2+4二填空题〔 3 ×6=18 〕13. 一个正三角形绕着它的中心至少旋转度,才能和原来的图形重合 .14. 二次函数 y=x(x-6) 的图象的对称轴为.15. 如图, AB 是圆 O 的直径,弧 BC=弧 CD=弧 DE,∠COD=480,那么∠ AOE的度数为.16. 如图,在圆O 中,弦CD 垂直于直径AB, 垂足为H,CD= 2 2 ,BD= 3 , 那么 AB 的长为.为 BO:OA=1: 3 , 将△ BOC 17. 如图,等腰直角△ ABC中, AC=BC,∠ ACB=90,点 O 分斜边 AB绕 C 点顺时针方向旋转到△AQC的位置,那么∠ AQC的度数为.18. 三条互相平行的直线a、 b、 c,请问能否做出一个等边△ABC,使其三个顶点A、 B、C 分别在直线a、 b、 c 上?〔用“能〞或“不能〞填空〕。

天津市河西区2019-2020学年第三次中考模拟考试数学试卷含解析

天津市河西区2019-2020学年第三次中考模拟考试数学试卷含解析

天津市河西区2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个2.如果两圆只有两条公切线,那么这两圆的位置关系是( )A.内切B.外切C.相交D.外离3.多项式ax2﹣4ax﹣12a因式分解正确的是()A.a(x﹣6)(x+2)B.a(x﹣3)(x+4)C.a(x2﹣4x﹣12)D.a(x+6)(x﹣2)4.计算(﹣5)﹣(﹣3)的结果等于()A.﹣8 B.8 C.﹣2 D.25.下列式子一定成立的是()A.2a+3a=6a B.x8÷x2=x4C.12aaD.(﹣a﹣2)3=﹣61a6.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于()A.20 B.15 C.10 D.57.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为()A.2πB.4πC.5πD.6π8.如果(x-2)(x+3)=x2+px+q,那么p、q的值是()A.p=5,q=6 B.p=1,q=-6 C.p=1,q=6 D.p=5,q=-69.下列图形中,不是轴对称图形的是()A .B .C .D .10.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22ky (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC V 的面积为4,则12k k -的值为()A .8B .8-C .4D .4-11.若点A (2,1y ),B (-3,2y ),C (-1,3y )三点在抛物线24y x x m =--的图象上,则1y 、2y 、3y 的大小关系是( )A .123y y y >>B .213y y y >>C .231y y y >>D .312y y y >>12.方程组2121x y a x y a -=+⎧⎨+=-⎩的解x 、y 满足不等式2x ﹣y >1,则a 的取值范围为( )A .a≥12B .a >13C .a≤23D .a >32二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在矩形ABCD 中,AB=4,AD=6,E 是AB 边的中点,F 是线段BC 边上的动点,将△EBF 沿EF 所在直线折叠得到△EB′F ,连接B′D ,则B′D 的最小值是______.14.如图, ⊙O 是△ABC 的外接圆,∠AOB=70°,AB=AC,则∠ABC=__.15.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD 相交于点O,BE与CD相交于点G,且OE=OD,则AP的长为__________.16.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=()A.﹣1 B.4 C.﹣4 D.117.若代数式x2﹣6x+b可化为(x+a)2﹣5,则a+b的值为____.18.若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第_____象限.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)请根据图中提供的信息,回答下列问题:一个水瓶与一个水杯分别是多少元?甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)20.(6分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.(1)求一次至少购买多少只计算器,才能以最低价购买?(2)求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?21.(6分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:收集数据:30 60 81 50 40 110 130 146 90 10060 81 120 140 70 81 10 20 100 81整理数据:课外阅读平均时间0≤x<40 40≤x<80 80≤x<120 120≤x<160x(min)等级 D C B A人数 3 a 8 b分析数据:平均数中位数众数80 m n请根据以上提供的信息,解答下列问题:(1)填空:a=,b=;m=,n=;(2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;(3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?22.(8分)如图,在▱ABCD中,AE⊥BC交边BC于点E,点F为边CD上一点,且DF=BE.过点F 作FG⊥CD,交边AD于点G.求证:DG=DC.23.(8分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C 点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.24.(10分)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m ,200m ,400m(分别用1A 、2A 、3A 表示);田赛项目:跳远,跳高(分别用1B 、2B 表示).()1该同学从5个项目中任选一个,恰好是田赛项目的概率为______;()2该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.25.(10分)某地区教育部门为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价.检测小组随机抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均不完整).请根据统计图中的信息解答下列问题:本次抽查的样本容量是 ;在扇形统计图中,“主动质疑”对应的圆心角为 度;将条形统计图补充完整;如果该地区初中学生共有60000名,那么在课堂中能“独立思考”的学生约有多少人?26.(12分)如图,在菱形ABCD 中,作⊥BE AD 于E ,BF ⊥CD 于F ,求证:AE CF =.27.(12分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C ,再在笔直的车道l 上确定点D ,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30︒,∠CBD=60︒.(1)求AB的长(精确到0.1米,参考数据:3 1.732 1.41,);≈≈(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】解:第一个图是轴对称图形,又是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个.故选B.2.C【解析】【分析】两圆内含时,无公切线;两圆内切时,只有一条公切线;两圆外离时,有4条公切线;两圆外切时,有3条公切线;两圆相交时,有2条公切线.【详解】根据两圆相交时才有2条公切线.故选C.【点睛】本题考查了圆与圆的位置关系.熟悉两圆的不同位置关系中的外公切线和内公切线的条数.3.A【解析】试题分析:首先提取公因式a ,进而利用十字相乘法分解因式得出即可. 解:ax 2﹣4ax ﹣12a =a (x 2﹣4x ﹣12) =a (x ﹣6)(x+2). 故答案为a (x ﹣6)(x+2).点评:此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键. 4.C【解析】分析:减去一个数,等于加上这个数的相反数. 依此计算即可求解. 详解:(-5)-(-3)=-1. 故选:C .点睛:考查了有理数的减法,方法指引:①在进行减法运算时,首先弄清减数的符号; ②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数). 5.D 【解析】 【分析】根据合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则进行计算即可. 【详解】解:A :2a+3a=(2+3)a=5a ,故A 错误; B :x 8÷x 2=x 8-2=x 6,故B 错误;C :12a C 错误; D :(-a -2)3=-a -6=-61a ,故D 正确. 故选D. 【点睛】本题考查了合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则.其中指数为分数的情况在初中阶段很少出现. 6.B 【解析】∵ABCD 是菱形,∠BCD=120°,∴∠B=60°,BA=BC . ∴△ABC 是等边三角形.∴△ABC 的周长=3AB=1.故选B 7.B 【解析】 【分析】连接OA 、OC ,然后根据圆周角定理求得∠AOC 的度数,最后根据弧长公式求解. 【详解】 连接OA 、OC , ∵∠ADC=60°,∴∠AOC=2∠ADC=120°, 则劣弧AC 的长为: =4π.故选B .【点睛】本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式180n rl π= . 8.B 【解析】 【分析】先根据多项式乘以多项式的法则,将(x-2)(x+3)展开,再根据两个多项式相等的条件即可确定p 、q 的值. 【详解】解:∵(x-2)(x+3)=x 2+x-1, 又∵(x-2)(x+3)=x 2+px+q , ∴x 2+px+q=x 2+x-1, ∴p=1,q=-1. 故选:B . 【点睛】本题主要考查多项式乘以多项式的法则及两个多项式相等的条件.多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.两个多项式相等时,它们同类项的系数对应相等. 9.A 【解析】 【分析】观察四个选项图形,根据轴对称图形的概念即可得出结论.【详解】根据轴对称图形的概念,可知:选项A 中的图形不是轴对称图形. 故选A . 【点睛】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合. 10.A 【解析】【分析】设()A a,h ,()B b,h ,根据反比例函数图象上点的坐标特征得出1ah k =,2bh k .=根据三角形的面积公式得到()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V ,即可求出12k k 8-=. 【详解】AB//x Q 轴,A ∴,B 两点纵坐标相同,设()A a,h ,()B b,h ,则1ah k =,2bh k =,()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V Q , 12k k 8∴-=,故选A .【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.11.C 【解析】首先求出二次函数24y x x m =--的图象的对称轴x=2ba-=2,且由a=1>0,可知其开口向上,然后由A (2,1y )中x=2,知1y 最小,再由B (-3,2y ),C (-1,3y )都在对称轴的左侧,而在对称轴的左侧,y 随x 得增大而减小,所以23y y >.总结可得231y y y >>. 故选C .点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数20y ax bx c a =++≠()的图象性质.12.B 【解析】 【分析】方程组两方程相加表示出2x ﹣y ,代入已知不等式即可求出a 的范围. 【详解】2121x y a x y a -=+⎧⎨+=-⎩①②①+②得:2-31x y a =>,解得:13a >.故选:B . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知 数的值.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.110﹣1 【解析】 【分析】如图所示点B′在以E 为圆心EA 为半径的圆上运动,当D 、B′、E 共线时时,此时B′D 的值最小,根据勾股定理求出DE ,根据折叠的性质可知B′E=BE=1,即可求出B′D . 【详解】如图所示点B′在以E 为圆心EA 为半径的圆上运动,当D 、B′、E 共线时时,此时B′D 的值最小, 根据折叠的性质,△EBF ≌△EB′F , ∴EB′⊥B′F , ∴EB′=EB ,∵E 是AB 边的中点,AB=4, ∴AE=EB′=1, ∵AD=6,∴DE=2262210+=, ∴B′D=110﹣1.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用;确定点B′在何位置时,B′D 的值最小是解题的关键. 14.35° 【解析】试题分析:∵∠AOB=70°,∴∠C=12∠AOB=35°.∵AB=AC,∴∠ABC=∠C=35°.故答案为35°.考点:圆周角定理.15.4.1【解析】解:如图所示:∵四边形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1,根据题意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=1,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,设AP=EP=x,则PD=GE=6﹣x,DG=x,∴CG=1﹣x,BG=1﹣(6﹣x)=2+x,根据勾股定理得:BC2+CG2=BG2,即62+(1﹣x)2=(x+2)2,解得:x=4.1,∴AP=4.1;故答案为4.1.16.1【解析】【分析】据两个点关于原点对称时,它们的坐标符号相反可得a、b的值,然后再计算a+b 即可.【详解】∵点A(a,3)与点B(﹣4,b)关于原点对称,∴a=4,b=﹣3,∴a+b=1,故选D.【点睛】考查关于原点对称的点的坐标特征,横坐标、纵坐标都互为相反数.17.1【解析】【分析】根据题意找到等量关系x2﹣6x+b=(x+a)2﹣5,根据系数相等求出a,b,即可解题.【详解】解:由题可知x2﹣6x+b=(x+a)2﹣5,整理得:x2﹣6x+b= x2+2ax+a2-5,即-6=2a,b= a2-5,解得:a=-3,b=4,∴a+b=1.【点睛】本题考查了配方法的实际应用,属于简单题,找到等量关系求出a,b是解题关键.18.一【解析】∵一元二次方程x2-2x-m=0无实数根,∴△=4+4m<0,解得m<-1,∴m+1<0,m-1<0,∴一次函数y=(m+1)x+m-1的图象经过二三四象限,不经过第一象限.故答案是:一.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)一个水瓶40元,一个水杯是8元;(2)当10<n<25时,选择乙商场购买更合算.当n>25时,选择甲商场购买更合算.【解析】【分析】(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果.【详解】解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意得:3x+4(48﹣x)=152,解得:x=40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(40×5+8n)×80%=160+6.4n乙商场所需费用为5×40+(n﹣5×2)×8=120+8n则∵n>10,且n为整数,∴160+6.4n﹣(120+8n)=40﹣1.6n讨论:当10<n<25时,40﹣1.6n>0,160+0.64n>120+8n,∴选择乙商场购买更合算.当n>25时,40﹣1.6n<0,即160+0.64n<120+8n,∴选择甲商场购买更合算.【点睛】此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解. 20.(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大.【解析】试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;(3)由于根据(1)得到x≤1,又一次销售x(x>10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;(3)首先把函数变为y==,然后可以得到函数的增减性,再结合已知条件即可解决问题.试题解析:(1)设一次购买x只,则30﹣0.1(x﹣10)=16,解得:x=1.答:一次至少买1只,才能以最低价购买;(3)当10<x≤1时,y=[30﹣0.1(x﹣10)﹣13]x=,当x>1时,y=(16﹣13)x=4x;综上所述:;(3)y==,①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.②当45<x≤1时,y随x的增大而减小,即当卖的只数越多时,利润变小.且当x=46时,y1=303.4,当x=1时,y3=3.∴y1>y3.即出现了卖46只赚的钱比卖1只赚的钱多的现象.当x=45时,最低售价为30﹣0.1(45﹣10)=16.5(元),此时利润最大.故店家一次应卖45只,最低售价为16.5元,此时利润最大.考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论.21.(1)a=5,b=4;m=81,n=81;(2)300人;(3)16本【解析】【分析】(1)根据统计表收集数据可求a,b,再根据中位数、众数的定义可求m,n;(2)达标的学生人数=总人数×达标率,依此即可求解;(3)本题需先求出阅读课外书的总时间,再除以平均阅读一本课外书的时间即可得出结果.【详解】解:(1)由统计表收集数据可知a=5,b=4,m=81,n=81;(2)8450030020+⨯=(人).答:估计达标的学生有300人;(3)80×52÷260=16(本).答:估计该校学生每人一年(按52周计算)平均阅读16本课外书.【点睛】本题主要考查统计表以及中位数,众数,估计达标人数等,能够从统计表中获取有效信息是解题的关键. 22.证明见解析.【解析】试题分析:先由平行四边形的性质得到∠B=∠D,AB=CD,再利用垂直的定义得到∠AEB=∠GFD=90°,根据“ASA”判定△AEB≌△GFD,从而得到AB=DC,所以有DG=DC.试题解析:∵四边形ABCD为平行四边形,∴∠B=∠D,AB=CD,∵AE⊥BC,FG⊥CD,∴∠AEB=∠GFD=90°,在△AEB和△GFD中,∵∠B=∠D,BE=DF,∠AEB=∠GFD,∴△AEB≌△GFD,∴AB=DC,∴DG=DC.考点:1.全等三角形的判定与性质;2.平行四边形的性质.23.(1)y=﹣x2+2x+1.(2)当t=2时,点M的坐标为(1,6);当t≠2时,不存在,理由见解析;(1)y=﹣x+1;P点到直线BC的距离的最大值为8,此时点P的坐标为(32,154).【解析】【分析】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t≠2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM 是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t≠2时,不存在,利用平行四边形对角线互相平分结合CE≠PE可得出此时不存在符合题意的点M;(1)①过点P作PF∥y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.【详解】(1)将A(﹣1,0)、B(1,0)代入y=﹣x2+bx+c,得10930b cb c-++=⎧⎨-++=⎩,解得:23bc=⎧⎨=⎩,∴抛物线的表达式为y=﹣x2+2x+1;(2)在图1中,连接PC,交抛物线对称轴l于点E,∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(1,0)两点,∴抛物线的对称轴为直线x=1,当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形,∵抛物线的表达式为y=﹣x2+2x+1,∴点C的坐标为(0,1),点P的坐标为(2,1),∴点M的坐标为(1,6);当t≠2时,不存在,理由如下:若四边形CDPM是平行四边形,则CE=PE,∵点C的横坐标为0,点E的横坐标为0,∴点P的横坐标t=1×2﹣0=2,又∵t≠2,∴不存在;(1)①在图2中,过点P作PF∥y轴,交BC于点F.设直线BC的解析式为y=mx+n(m≠0),将B(1,0)、C(0,1)代入y=mx+n,得303m nn+=⎧⎨=⎩,解得:13mn=-⎧⎨=⎩,∴直线BC的解析式为y=﹣x+1,∵点P的坐标为(t,﹣t2+2t+1),∴点F的坐标为(t,﹣t+1),∴PF=﹣t2+2t+1﹣(﹣t+1)=﹣t2+1t,∴S=12PF•OB=﹣32t2+92t=﹣32(t﹣32)2+278;②∵﹣32<0,∴当t=32时,S取最大值,最大值为278.∵点B的坐标为(1,0),点C的坐标为(0,1),∴线段BC=2232OB OC+=,∴P点到直线BC的距离的最大值为272928832⨯=,此时点P的坐标为(32,154).【点睛】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t≠2两种情况考虑;(1)①利用三角形的面积公式找出S关于t 的函数表达式;②利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值.24.(1)25;(2)35.【解析】【分析】(1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案.【详解】(1)∵5个项目中田赛项目有2个,∴该同学从5个项目中任选一个,恰好是田赛项目的概率为:25.故答案为25;(2)画树状图得:∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的有12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:123205=. 【点睛】 本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.25. (1)560;(2)54;(3)补图见解析;(4)18000人【解析】【详解】(1)本次调查的样本容量为224÷40%=560(人); (2)“主动质疑”所在的扇形的圆心角的度数是:360∘×84560=54º;(3)“讲解题目”的人数是:560−84−168−224=84(人).(4)60000×168560=18000(人), 答:在课堂中能“独立思考”的学生约有18000人.26.见解析【解析】【分析】由菱形的性质可得BA BC =,A C ∠=∠,然后根据角角边判定≅V V ABE CBF ,进而得到AE=CF .【详解】证明:∵菱形ABCD ,∴BA BC =,A C ∠=∠,∵BE AD ⊥,BF CD ⊥,∴90BEA BFC ∠=∠=o ,在ABE △与CBF V 中,BEA BFC A CBA BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴ABE CBF AAS ≅V V (), ∴AE=CF .【点睛】本题考查菱形的性质和全等三角形的判定与性质,根据菱形的性质得到全等条件是解题的关键. 27.(1)24.2米(2) 超速,理由见解析【解析】【分析】(1)分别在Rt △ADC 与Rt △BDC 中,利用正切函数,即可求得AD 与BD 的长,从而求得AB 的长. (2)由从A 到B 用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.【详解】解:(1)由題意得,在Rt △ADC 中,CD AD tan30︒==, 在Rt △BDC中,CD BD tan60===︒, ∴AB=AD -BD=14 1.73=24.2224.2-≈⨯≈(米). (2)∵汽车从A 到B 用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.∵43.56千米/小时大于40千米/小时,∴此校车在AB 路段超速.。

天津市河西区2019-2020学年第五次中考模拟考试数学试卷含解析

天津市河西区2019-2020学年第五次中考模拟考试数学试卷含解析

天津市河西区2019-2020学年第五次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°2.函数的自变量x的取值范围是()A.x>1 B.x<1 C.x≤1D.x≥13.如图,在ABC中,BC边上的高是()A.EC B.BH C.CD D.AF4.如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于12BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,则下列结论正确的是()A.CD+DB=AB B.CD+AD=AB C.CD+AC=AB D.AD+AC=AB5.如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②-1≤a≤-;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n-1有两个不相等的实数根.其中结论正确的个数为( )A.1个B.2个C.3个D.4个6.如图,一段抛物线:y=﹣x(x﹣5)(0≤x≤5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为()A.4 B.﹣4 C.﹣6 D.67.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.215B.8 C.210D.2138.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是()A.两车同时到达乙地B.轿车在行驶过程中进行了提速C.货车出发3小时后,轿车追上货车D.两车在前80千米的速度相等9.如图,Rt△ABC中,∠C=90°,AC=4,3,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为()A.2πB.4πC.6πD.8π10.下列方程中,是一元二次方程的是()A.2x﹣y=3 B.x2+1x=2C.x2+1=x2﹣1 D.x(x﹣1)=011.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.11212.如图,//AB CD,CE交AB于点E,EF平分BEC∠,交CD于F. 若50ECF∠=o,则CFE∠的度数为()A.35o B.45o C.55o D.65o二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME 的面积记为S2;当AB=3时,△AME的面积记为S3;…;当AB=n时,△AME的面积记为S n.当n≥2时,S n﹣S n﹣1=▲ .14.分解因式2242xy xy x++=___________15.一组数据10,10,9,8,x的平均数是9,则这列数据的极差是_____.16.若a﹣3有平方根,则实数a的取值范围是_____.17.如果不等式10xx a-⎧⎨-⎩<>无解,则a的取值范围是________18.如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在平面直角坐标系中,已知点A(2,0),点B(0,23),点O(0,0).△AOB绕着O顺时针旋转,得△A′OB′,点A、B旋转后的对应点为A′、B′,记旋转角为α.(I)如图1,若α=30°,求点B′的坐标;(Ⅱ)如图2,若0°<α<90°,设直线AA′和直线BB′交于点P,求证:AA′⊥BB′;(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).20.(6分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元…15 20 25 …y/件…25 20 15 …已知日销售量y是销售价x的一次函数.求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?21.(6分)如图,儿童游乐场有一项射击游戏.从O处发射小球,将球投入正方形篮筐DABC.正方形篮筐三个顶点为A(2,2),B(3,2),D(2,3).小球按照抛物线y=﹣x2+bx+c 飞行.小球落地点P 坐标(n,0)(1)点C坐标为;(2)求出小球飞行中最高点N的坐标(用含有n的代数式表示);(3)验证:随着n的变化,抛物线的顶点在函数y=x2的图象上运动;(4)若小球发射之后能够直接入篮,球没有接触篮筐,请直接写出n的取值范围.22.(8分)如图,AB 是圆O 的直径,AC 是圆O 的弦,过点C 的切线交AB 的延长线于点D ,若∠A=∠D ,CD=23.(1)求∠A 的度数.(2)求图中阴影部分的面积.23.(8分)计算:|﹣2|++(2017﹣π)0﹣4cos45°24.(10分)如图,一次函数y=k 1x+b(k 1≠0)与反比例函数22 ( 0 )k y k x=≠的图象交于点A(-1,2),B(m ,-1).求一次函数与反比例函数的解析式;在x 轴上是否存在点P(n ,0),使△ABP 为等腰三角形,请你直接写出P 点的坐标.25.(10分)如图,△ABC 和△ADE 分别是以BC ,DE 为底边且顶角相等的等腰三角形,点D 在线段BC 上,AF 平分DE 交BC 于点F ,连接BE ,EF .CD 与BE 相等?若相等,请证明;若不相等,请说明理由;若∠BAC=90°,求证:BF 1+CD 1=FD 1.26.(12分)某市A ,B 两个蔬菜基地得知四川C ,D 两个灾民安置点分别急需蔬菜240t 和260t 的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾区安置点.从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;C D 总计/tA 200B x 300总计/t 240 260 500(2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案;经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.27.(12分)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C.求抛物线y=ax2+2x+c的解析式:;点D为抛物线上对称轴右侧、x轴上方一点,DE⊥x轴于点E,DF∥AC交抛物线对称轴于点F,求DE+DF的最大值;①在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;②点Q在抛物线对称轴上,其纵坐标为t,请直接写出△ACQ为锐角三角形时t的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据两直线平行,内错角相等计算即可.【详解】因为m∥n,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故选D.【点睛】本题主要考查平行线的性质,清楚两直线平行,内错角相等是解答本题的关键.2.C【解析】试题分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.试题解析:根据题意得:1-x≥0,解得:x≤1.故选C.考点:函数自变量的取值范围.3.D【解析】【分析】根据三角形的高线的定义解答.【详解】根据高的定义,AF为△ABC中BC边上的高.故选D.【点睛】本题考查了三角形的高的定义,熟记概念是解题的关键.4.B【解析】【分析】作弧后可知MN⊥CB,且CD=DB.【详解】由题意性质可知MN是BC的垂直平分线,则MN⊥CB,且CD=DB,则CD+AD=AB. 【点睛】了解中垂线的作图规则是解题的关键.5.D【解析】【分析】利用抛物线开口方向得到a<0,再由抛物线的对称轴方程得到b=-2a,则3a+b=a,于是可对①进行判断;利用2≤c≤3和c=-3a可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax2+bx+c与直线y=n-1有两个交点可对④进行判断.【详解】∵抛物线开口向下,∴a<0,而抛物线的对称轴为直线x=-=1,即b=-2a,∴3a+b=3a-2a=a<0,所以①正确;∵2≤c≤3,而c=-3a,∴2≤-3a≤3,∴-1≤a≤-,所以②正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.故选D.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a 与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.6.C【解析】分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值,由2017÷5=403…2,可知点P(2018,m)在此“波浪线”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可.详解:当y=0时,﹣x(x﹣5)=0,解得x1=0,x2=5,则A1(5,0),∴OA1=5,∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…;如此进行下去,得到一“波浪线”,∴A1A2=A2A3=…=OA1=5,∴抛物线C404的解析式为y=(x﹣5×403)(x﹣5×404),即y=(x﹣2015)(x﹣2020),当x=2018时,y=(2018﹣2015)(2018﹣2020)=﹣1,即m=﹣1.故选C.点睛:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键.7.D【解析】∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=1.设⊙O的半径为r,则OC=r-2,在Rt△AOC中,∵AC=1,OC=r-2,∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.∴AE=2r=3.连接BE,∵AE是⊙O的直径,∴∠ABE=90°.在Rt△ABE中,∵AE=3,AB=8,∴2222BE AE AB1086=--=.在Rt△BCE中,∵BE=6,BC=1,∴2222CE BE BC64213=+=+=D.8.B【解析】【分析】①根据函数的图象即可直接得出结论;②求得直线OA和DC的解析式,求得交点坐标即可;③由图象无法求得B的横坐标;④分别进行运算即可得出结论.【详解】由题意和图可得,轿车先到达乙地,故选项A 错误,轿车在行驶过程中进行了提速,故选项B 正确,货车的速度是:300÷5=60千米/时,轿车在BC 段对应的速度是:()80080 2.5 1.213÷-=千米/时,故选项D 错误,设货车对应的函数解析式为y =kx , 5k =300,得k =60,即货车对应的函数解析式为y =60x , 设CD 段轿车对应的函数解析式为y =ax +b ,2.5804.5300a b a b +=⎧⎨+=⎩,得110195a b =⎧⎨=-⎩, 即CD 段轿车对应的函数解析式为y =110x -195, 令60x =110x -195,得x =3.9,即货车出发3.9小时后,轿车追上货车,故选项C 错误, 故选:B . 【点睛】此题考查一次函数的应用,解题的关键在于利用题中信息列出函数解析式 9.B 【解析】 【分析】先依据勾股定理求得AB 的长,从而可求得两圆的半径为4,然后由∠A+∠B=90°可知阴影部分的面积等于一个圆的面积的14. 【详解】在△ABC 中,依据勾股定理可知,∵两等圆⊙A ,⊙B 外切, ∴两圆的半径均为4, ∵∠A+∠B=90°,∴阴影部分的面积=2904360π⨯=4π.故选:B . 【点睛】本题主要考查的是相切两圆的性质、勾股定理的应用、扇形面积的计算,求得两个扇形的半径和圆心角之和是解题的关键.10.D【解析】试题解析:A.含有两个未知数,B.不是整式方程,C 没有二次项.故选D.点睛:一元二次方程需要满足三个条件:()1含有一个未知数,()2未知数的最高次数是2,()3整式方程. 11.C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况, ∴两次都摸到白球的概率是:21126=. 故答案为C .【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.12.D【解析】分析:根据平行线的性质求得∠BEC 的度数,再由角平分线的性质即可求得∠CFE 的度数.详解: 50,//180130ECF AB CDECF BEC BEC ∠=∴∠+∠=∴∠=o o oQ又∵EF 平分∠BEC ,1652CEF BEF BEC o ∴∠=∠=∠=. 故选D. 点睛:本题主要考查了平行线的性质和角平分线的定义,熟知平行线的性质和角平分线的定义是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2n 12- 【解析】连接BE ,∵在线段AC 同侧作正方形ABMN 及正方形BCEF ,∴BE ∥AM .∴△AME 与△AMB 同底等高.∴△AME 的面积=△AMB 的面积.∴当AB=n 时,△AME 的面积为2n 1S n 2=,当AB=n -1时,△AME 的面积为()2n 1S n 12=-. ∴当n≥2时,()()()22n n 11112n 1S S n n 1=n+n 1n n+1=2222---=---- 14.22(1)x y +【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】原式=2x (y 2+2y +1)=2x (y +1)2,故答案为2x (y +1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.1【解析】【分析】先根据平均数求出x ,再根据极差定义可得答案.【详解】由题意知101098x 5++++=9, 解得:x=8,∴这列数据的极差是10-8=1,故答案为1.本题主要考查平均数和极差,熟练掌握平均数的计算得出x的值是解题的关键.16.a≥1.【解析】【分析】根据平方根的定义列出不等式计算即可.【详解】根据题意,得30.a-≥解得: 3.a≥故答案为 3.a≥【点睛】考查平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根. 17.a≥1【解析】【分析】将不等式组解出来,根据不等式组10xx a-⎧⎨-⎩<>无解,求出a的取值范围.【详解】解10xx a-⎧⎨-⎩<>得1xx a<⎧⎨>⎩,∵10xx a-⎧⎨-⎩<>无解,∴a≥1.故答案为a≥1.【点睛】本题考查了解一元一次不等式组,解题的关键是熟练的掌握解一元一次不等式组的运算法则. 18.同位角相等,两直线平行.【解析】试题解析:利用三角板中两个60°相等,可判定平行考点:平行线的判定三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)B',3);(1)见解析;(31.【解析】(1)设A'B'与x轴交于点H,由OA=1,OB=1,∠AOB=90°推出∠ABO=∠B'=30°,由∠BOB'=α=30°推出BO∥A'B',由OB'=OB=1推出OH=OB'=,B'H=3即可得出;(1)证明∠BPA'=90 即可;(3)作AB的中点M(1,),连接MP,由∠APB=90°,推出点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,),所以当PM⊥x轴时,点P纵坐标的最小值为3﹣1.【详解】(Ⅰ)如图1,设A'B'与x轴交于点H,∵OA=1,OB=1,∠AOB=90°,∴∠ABO=∠B'=30°,∵∠BOB'=α=30°,∴BO∥A'B',∵OB'=OB=1,∴OH=OB'=,B'H=3,∴点B'的坐标为(3,3);(Ⅱ)证明:∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴∠OBB'=∠OA'A=(180°﹣α),∵∠BOA'=90°+α,四边形OBPA'的内角和为360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB';(Ⅲ)点P 纵坐标的最小值为. 如图,作AB 的中点M (1,),连接MP ,∵∠APB=90°,∴点P 的轨迹为以点M 为圆心,以MP=AB=1为半径的圆,除去点(1,).∴当PM ⊥x 轴时,点P 31.【点睛】本题考查的知识点是几何变换综合题,解题的关键是熟练的掌握几何变换综合题.20.(1)40y x =-+;(2)此时每天利润为125元.【解析】试题分析:(1) 根据题意用待定系数法即可得解;(2)把x=35代入(1)中的解析式,得到销量,然后再乘以每件的利润即可得. 试题解析:(1)设y kx b =+,将15x =,25y =和20x =,20y =代入,得:25152020k b k b =+⎧⎨=+⎩,解得:140k b =-⎧⎨=⎩,∴40y x =-+;(2)将35x =代入(1)中函数表达式得:35405y =-+=,∴利润()35105125=-⨯=(元),答:此时每天利润为125元.21.(1)(3,3);(2)顶点 N 坐标为(2n ,24n );(3)详见解析;(4)72<n <113 . 【解析】【分析】(1)由正方形的性质及A 、B 、D 三点的坐标求得AD=BC=1即可得;(2)把(0,0)(n ,0)代入y=-x 2+bx+c 求得b=n 、c=0,据此可得函数解析式,配方成顶点式即可得出答案;(3)将点N 的坐标代入y=x 2,看是否符合解析式即可;(4)根据“小球发射之后能够直接入篮,球没有接触篮筐”知:当x=2时y >3,当x=3时y <2,据此列出关于n 的不等式组,解之可得.【详解】(1)∵A (2,2),B (3,2),D (2,3),∴AD =BC =1, 则点 C (3,3),故答案为:(3,3);(2)把(0,0)(n ,0)代入 y =﹣x2+bx+c 得:200c n bn c =⎧⎨-++=⎩, 解得:0b n c =⎧⎨=⎩, ∴抛物线解析式为 y =﹣x 2+nx =﹣(x ﹣2n )2+24n , ∴顶点 N 坐标为(2n ,24n ); (3)由(2)把 x =2n 代入 y =x 2=(2n )2= 24n , ∴抛物线的顶点在函数 y =x 2的图象上运动;(4)根据题意,得:当x=2 时y>3,当x=3 时y<2,即423 932nn-+⎧⎨-+⎩><,解得:7 2<n<113.【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及将实际问题转化为二次函数的问题能力.22.(1) ∠A=30°;(2)2233π-【解析】【分析】(1)连接OC,由过点C的切线交AB的延长线于点D,推出OC⊥CD,推出∠OCD=90°,即∠D+∠COD=90°,由OA=OC,推出∠A=∠ACO,由∠A=∠D,推出∠A=∠ACO=∠D再由∠A+∠ACD+∠D=180°﹣90°=90°即可得出.(2)先求∠COD度数及OC长度,即可求出图中阴影部分的面积.【详解】解:(1)连结OC∵CD为⊙O的切线∴OC⊥CD∴∠OCD=90°又∵OA=OC∴∠A=∠ACO又∵∠A=∠D∴∠A=∠ACO=∠D而∠A+∠ACD+∠D=180°﹣90°=90°∴∠A=30°(2)由(1)知:∠D=∠A=30°∴∠COD=60°又∵CD=2∴OC=2∴S阴影=.【点睛】本题考查的知识点是扇形面积的计算及切线的性质,解题的关键是熟练的掌握扇形面积的计算及切线的性质.23.1.【解析】【分析】直接利用零指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案.【详解】解:原式=2+2+1﹣4×=2+2+1﹣2=1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.24.(1)反比例函数的解析式为2yx=-;一次函数的解析式为y=-x+1;(2)满足条件的P点的坐标为(-1+14,0)或(-1-14,0)或(2+17,0)或(2-17,0)或(0,0).【解析】【分析】(1)将A点代入求出k2,从而求出反比例函数方程,再联立将B点代入即可求出一次函数方程.(2)令PA=PB,求出P.令AP=AB,求P.令BP=BA,求P.根据坐标距离公式计算即可.【详解】(1)把A(-1,2)代入,得到k2=-2,∴反比例函数的解析式为.∵B(m,-1)在上,∴m=2,由题意,解得:,∴一次函数的解析式为y=-x+1.(2)满足条件的P点的坐标为(140)或(14,0)或(17,0)或(17,0)或(0,0).【点睛】本题考查一次函数图像与性质和反比例函数的图像和性质,解题的关键是待定系数法,分三种情况讨论. 25.(1)CD=BE,理由见解析;(1)证明见解析.【解析】【分析】(1)由两个三角形为等腰三角形可得AB=AC,AE=AD,由∠BAC=∠EAD可得∠EAB=∠CAD,根据“SAS”可证得△EAB≌△CAD,即可得出结论;(1)根据(1)中结论和等腰直角三角形的性质得出∠EBF=90°,在Rt△EBF中由勾股定理得出BF1+BE1=EF1,然后证得EF=FD,BE=CD,等量代换即可得出结论.【详解】解:(1)CD=BE,理由如下:∵△ABC和△ADE为等腰三角形,∴AB=AC,AD=AE,∵∠EAD=∠BAC,∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,即∠EAB=∠CAD,在△EAB与△CAD中AE ADEAB CAD AB AC=⎧⎪∠=∠⎨⎪=⎩,∴△EAB≌△CAD,∴BE=CD;(1)∵∠BAC=90°,∴△ABC和△ADE都是等腰直角三角形,∴∠ABF=∠C=45°,∵△EAB≌△CAD,∴∠EBA=∠C,∴∠EBA=45°,∴∠EBF=90°,在Rt△BFE中,BF1+BE1=EF1,∵AF平分DE,AE=AD,∴AF垂直平分DE,∴EF=FD,由(1)可知,BE=CD,∴BF1+CD1=FD1.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,结合题意寻找出三角形全等的条件是解决此题的关键.26.(1)见解析;(2)w=2x+9200,方案见解析;(3)0<m<2时,(2)中调运方案总运费最小;m=2时,在40⩽x⩽240的前提下调运方案的总运费不变;2<m<15时,x=240总运费最小.【解析】【分析】(1)根据题意可得解.(2)w与x之间的函数关系式为:w=20(240−x)+25(x−40)+15x+18(300−x);列不等式组解出40≤x≤240,可由w随x的增大而增大,得出总运费最小的调运方案.(3)根据题意得出w与x之间的函数关系式,然后根据m的取值范围不同分别分析得出总运费最小的调运方案.【详解】解:(1)填表:依题意得:20(240−x)+25(x−40)=15x+18(300−x).解得:x=200.(2)w与x之间的函数关系为:w=20(240−x)+25(x−40)+15x+18(300−x)=2x+9200.依题意得:24004000 3000xxxx-⎧⎪-⎪⎨⎪⎪-⎩…………∴40⩽x⩽240在w=2x+9200中,∵2>0,∴w随x的增大而增大,故当x=40时,总运费最小,此时调运方案为如表.(3)由题意知w=20(240−x)+25(x−40)+(15-m)x+18(300−x)=(2−m)x+9200∴0<m<2时,(2)中调运方案总运费最小;m=2时,在40⩽x⩽240的前提下调运方案的总运费不变;2<m<15时,x=240总运费最小,其调运方案如表二.【点睛】此题考查一次函数的应用,解题关键在于根据题意列出w与x之间的函数关系式,并注意分类讨论思想的应用.27.(1)y=﹣x2+2x+3;(2)DE+DF有最大值为132;(3)①存在,P的坐标为(73,209)或(103,139-);②23-<t<83.【解析】【分析】(1)设抛物线解析式为y=a(x+1)(x﹣3),根据系数的关系,即可解答(2)先求出当x=0时,C的坐标,设直线AC的解析式为y=px+q,把A,C的坐标代入即可求出AC的解析式,过D作DG垂直抛物线对称轴于点G,设D(x,﹣x2+2x+3),得出DE+DF=﹣x210x-1)=﹣x2+(10)10,即可解答(3)①过点C作AC的垂线交抛物线于另一点P1,求出直线PC的解析式,再结合抛物线的解析式可求出P1,过点A作AC的垂线交抛物线于另一点P2,再利用A的坐标求出P2,即可解答②观察函数图象与△ACQ为锐角三角形时的情况,即可解答【详解】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;(2)当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3,如答图1,过D作DG垂直抛物线对称轴于点G,设D(x,﹣x2+2x+3),∵DF∥AC,∴∠DFG=∠ACO,易知抛物线对称轴为x=1,∴DG=x-1,DF=10(x-1),∴DE+DF=﹣x2+2x+3+10(x-1)=﹣x2+(2+10)x+3-10,∴当x=101+,DE+DF有最大值为132;答图1 答图2(3)①存在;如答图2,过点C作AC的垂线交抛物线于另一点P1,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=13-x+m,把C(0,3)代入得m=3,∴直线P1C的解析式为y=13-x+3,解方程组223133y x xy x⎧=-++⎪⎨=-+⎪⎩,解得3xy=⎧⎨=⎩或73209xy⎧=⎪⎪⎨⎪=⎪⎩,则此时P1点坐标为(73,209);过点A作AC的垂线交抛物线于另一点P2,直线AP2的解析式可设为y=13-x+n,把A(﹣1,0)代入得n=13-,∴直线PC的解析式为y=1133x--,解方程组2231133y x xy x⎧=-++⎪⎨=--⎪⎩,解得1xy=-⎧⎨=⎩或103139xy⎧=⎪⎪⎨⎪=-⎪⎩,则此时P2点坐标为(103,139-),综上所述,符合条件的点P的坐标为(73,209)或(103,139-);②23-<t<83.【点睛】此题考查二次函数综合题,解题关键在于把已知点代入解析式求值和作辅助线.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档