1.3.1 第1课时 有理数的加法法则
七年级数学人教版(上册)【知识讲解】第1课时有理数的加法法则
易错点 对异号两数相加的法则理解不透彻而致错 10.计算:(-3.16)+2.08. 解:原式=-(3.16-2.08)=-1.08.
11.在 1,-2,-1 这三个数中,任意两个数之和的最大值为( B )
A.1
B.0
C.-1
D.-3
12.【关注数学文化】中国人最先使用负数.魏晋时期的数学家 刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具) 正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观 察图①,可推算图②中所得数值为 -3 .
(4)-8.75+(-314). 解:原式=-(8.75+314)=-12. (5)(-12)+(-15). 解:原式=-170.
知识点 3 有理数加法的应用
8.温度由-3 ℃上升 6 ℃是( A )
A.3 ℃
B.-9 ℃
C.-3 ℃
D.9 ℃
9.已知 A 地的海拔为-53 m,而 B 地比 A 地高 30 m,则 B 地 的海拔为 -23 m.
A.-2
B.-1
C.0
D.1
6.如果两个数的和为正数,那么这两个数( D )
A.都是正数
B.都是负数
C.是一正一负
D.至少有一个为正数
【变式】 若两个有理数的和为 0,则这两个数( D ) A.都是 0 B.至少有一个是 0 C.一个是正数,一个是负数 D.互为相反数
7.计算: (1)-5+5. 解:原式=0. (2)7.2+(-2.6). 解:原式=+(7.2-2.6)=4.6. (3)-1013+313. 解:原式=-(1013-313)=-7.
知识点 2 利用有理数的加法法则进行计算
3.(2021·陕西)计算:5+(-7)=( B )
1 第1课时 有理数的加法法则 精品教案(大赛一等奖作品)
第一章有理数1.3 有理数的加减法1.3.1 有理数的加法第1课时有理数的加法法则学习目标:1、探索有理数加法法则,理解有理数的加法法则;2、能运用有理数加法法则,正确进行有理数加法运算;3、经历探索有理数加法法则的过程,体验数学来源于实践并为实践服务的思想,同时培养学生探究性学习的能力.学习难点:师生共同合作探索有理数加法法则的过程及和的符号的确定.课堂活动:一、有理数加法的探索1.汽车在公路上行驶,规定向东为正,向西为负,据下列情况,分别列算式,并回答:汽车两次运动后方向怎样?离出发点多远?(1)向东行驶5千米后,又向东行驶2千米,(2)向西行驶5千米后,又向西行驶2千米,(3)向东行驶5千米后,又向西行驶2千米,(4)向西行驶5千米后,又向东行驶2千米,(5)向东行驶5千米后,又向西行驶5千米,(6)向西行驶5千米后,静止不动,2. 足球队甲、乙两队比赛,主场甲队4:1胜乙队,赢了3球,客场甲队1:3负乙队,输了2球,甲队两场比赛累计净胜球1个,你能把这个结果用算式表示出来吗?议一议:比赛中胜负难料,两场比赛的结果还可能哪些情况呢?动动手填表:你还能举出一些应用有理数加法的实际例子吗?请同学们积极思考.二、有理数加法的归纳探索:两个有理数相加,和的符号及绝对值怎样确定?你能找到有理数相加的一般方法吗?说一说:两个有理数相加有多少种不同的情形?议一议:在各种情形下,如何进行有理数的加法运算?归纳:有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数与0相加,仍得这个数.三、实践应用问题1.计算(1)(+8)+(+5) (2)(-8)+(-5) (3)(+8)+(-5)(4)(-8)+(+5) (5)(-8)+(+8) (6)(+8)+0;问题2.(单位:万元)(1) 该公司前两年盈利了多少万元?(2)该公司三年共盈利多少万元?问题3.判断(1)两个有理数相加,和一定比加数大. ( )(2)绝对值相等的两个数的和为0.( )(3)若两个有理数的和为负数,则这两个数中至少有一个是负数.( )四、课堂反馈:1.一个正数与一个负数的和是( )A 、正数B 、负数C 、零D 、以上三种情况都有可能2.两个有理数的和( )A 、一定大于其中的一个加数B 、一定小于其中的一个加数C 、大小由两个加数符号决定D 、大小由两个加数的符号及绝对值而决定3.计算 (1)(+10)+(-4) (2)(-15)+(-32) (3)(-9)+ 0(4)43+(-34) (5)(-10.5)+(+1.3) (6)(-21)+31知识巩固一、选择题 1.若两数的和为负数,则这两个数一定( )A .两数同负B .两数一正一负C .两数中一个为0D .以上情况都有可能2.两个有理数相加,若它们的和小于每一个加数,则这两个数( )A.都是正数B.都是负数C.互为相反数D.符号不同3.如果两个有理数的和是正数,那么这两个数( )A.都是正数B.都是负数C.都是非负数D.至少有一个正数4.使等式x x +=+66成立的有理数x 是 ( )A.任意一个整数B.任意一个非负数C.任意一个非正数D.任意一个有理数5.对于任意的两个有理数,下列结论中成立的是 ( )A.若,0=+b a 则b a -=B.若,0>+b a 则0,0>>b aC.若,0<+b a 则0<<b aD.若,0<+b a 则0<a6.下列说法正确的是 ( )A.两数之和大于每一个加数B.两数之和一定大于两数绝对值的和C.两数之和一定小于两数绝对值的和D.两数之和一定不大于两数绝对值的和二、判断1.若某数比-5大3,则这个数的绝对值为3.( )2.若a>0,b<0,则a+b>0.( )3.若a+b<0,则a ,b 两数可能有一个正数.( )4.若x+y=0,则︱x ︱=︱y ︱.( )5.有理数中所有的奇数之和大于0.( )三、填空1.(+5)+(+7)=_______; (-3)+(-8)=________;(+3)+(-8)=________; (-3)+(-15)=________;0+(-5)=________; (-7)+(+7)=________.2.一个数为-5,另一个数比它的相反数大4,这两数的和为________.3.(-5)+______=-8; ______+(+4)=-9._______+(+2)=+11; ______+(+2)=-11;5. 如果,5,2-=-=b a 则=+b a ,=+b a四、计算(1)(+21)+(-31) (2)(-3.125)+(+318) (3)(-13)+(+12)(4)(-313)+0.3 (5)(-22 914)+0 (6)│-7│+│-9715│五、土星表面夜间的平均气温为-150℃,白天的平均气温比夜间高27℃,那么白天的平均气温是多少?六、一位同学在一条由东向西的跑道上,先向东走了20米,又向西走了30米,能否确定他现在位于原来的哪个方向,与原来位置相距多少米?七、潜水员原来在水下15米处,后来上浮了8米,又下潜了20米,这时他在什么位置?要求用加法解答。
人教版数学七年级上册1.3.1《有理数的加法》(第1课时)教学设计
人教版数学七年级上册1.3.1《有理数的加法》(第1课时)教学设计一. 教材分析《有理数的加法》是人教版数学七年级上册第一章第三节的第一课时,本节课主要介绍有理数的加法运算。
学生在学习这一节之前,已经掌握了有理数的概念、加法运算的法则,以及绝对值的概念。
本节课的内容为学生以后学习更高级的数学知识打下基础。
二. 学情分析面对刚从小学升入初中的学生,他们对数学知识有一定的了解,但还需要进一步的引导和培养。
在学习本节课之前,学生已经掌握了有理数的概念和加法运算的法则,但可能对有理数加法的实质理解不够深入,需要通过实例和练习来进一步巩固。
三. 教学目标1.让学生掌握有理数的加法运算方法,理解有理数加法的实质。
2.培养学生运用有理数加法解决实际问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.教学重点:有理数的加法运算方法,有理数加法的实质。
2.教学难点:有理数加法在实际问题中的应用。
五. 教学方法1.采用讲授法,讲解有理数加法的运算方法和实质。
2.采用案例分析法,分析实际问题中有理数加法的应用。
3.采用小组讨论法,培养学生的团队合作能力和逻辑思维能力。
六. 教学准备1.准备相关的教学案例和练习题,用于讲解和巩固有理数加法知识。
2.准备教学PPT,用于展示和讲解有理数加法的运算方法和实质。
3.准备黑板,用于板书和展示例题。
七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生复习有理数的概念和加法运算的法则,为新课的学习做好铺垫。
2.呈现(10分钟)讲解有理数加法的运算方法和实质,结合PPT和板书,让学生清晰地理解有理数加法的运算过程。
3.操练(10分钟)让学生进行一些有关有理数加法的练习题,巩固所学知识。
教师在这个过程中要引导学生正确进行运算,并及时给予反馈。
4.巩固(10分钟)通过一些实际问题,让学生运用有理数加法知识解决问题。
教师要引导学生将所学知识与实际问题相结合,提高学生的应用能力。
1.3.1 第1课时 有理数的加法法则
第一章 有理数
1.3 1.3.1 第1课时 有理数的加法法则
学习指南
知识管理
归类探究
当堂测评
分层作业
课件目录
首页
末页
第1课时 有理数的加法法则
学习指南
教学目标 理解有理数加法的意义,初步掌握有理数的加法法则,并能准确地进行 有理数的加法运算. 情景问题引入 (多媒体展示)回答下列问题:
课件目录
首页
末页
第1课时 有理数的加法法则
9.规定一种新的运算:a⊗b=1a+1b,那么(-2)⊗(-3)= -56 . 10.已知|a|=8,|b|=2. (1)当 a,b 同号时,求 a+b 的值; (2)当 a,b 异号时,求 a+b 的值.
课件目录
首页
末页
第1课时 有理数的加法法则
解:(1)因为|a|=8,|b|=2,且 a,b 同号, 所以 a=8,b=2 或 a=-8,b=-2, 所以 a+b=10 或 a+b=-10. (2)因为|a|=8,|b|=2,且 a,b 异号, 所以 a=8,b=-2 或 a=-8,b=2, 所以 a+b=6 或 a+b=-6.
合适吗?请说明理由.
课件目录
首页
末页
第1课时 有理数的加法法则
解:(1)8+1=9,所以东京时间为上午 9:00. (2)不合适.15-13=2,也就是说纽约时间正好是凌晨 2:00,正在睡觉, 所以不合适.
课件目录
首页
末页
第1课时 有理数的加法法则
分层作业
点击进入word链接
课件目录
首页
末页
第1课时 有理数的加法法则
课件目录
首页
末页
1.3.1有理数的加法 课时1 教案
教学准备:
PPT课件和微课等。
教学过程
一、温故知新、引入新课
1、比较下列各数的大小:
7______4 7____-4 -7_____4 -7_____-4
2、如果向东走5米记作+5米,那么向西走3米记作_________.
3、已知a=-5,b=+3,︱a︳+︱b︱=_______
三、巩固训练、深化提高
1、计算下列各式(1)(-11)+(-9)(2)(-3.5)+(+7)
(3)(-1.08)+0(4)(+)+(说明理由
(如果认为结论不成立,请举例说明)
(1)若两个数的和是0,则这两个数都是0.
(2)任意的两个数相加,和不小于任何一个加数.
(3)(—5 )+0;(4)(+2 )+(—2.2);
【拓展应用】
3.(1)a+|a|=0,a是什么数?(2)若|a+1|=2,那么a=?
教学反思:
本节课基本上能采用以建构主义为依据,以学生为学习主体教师为主导的方式进行合作探究的教学方法。通过创设问题情境,提供开展自主、合作、交流的学习的背景;整个探究新知的教学过程基本上由5个问题统领,在教师引导下,学生能对有理数的加法法则进行探究。学生积极思考问题大部分主动参与讨论,敢于发表自己的见解.学生能多样化理解有理数的加法法则,并运用类比、数形结合、游戏等手段形象具体地理解有理数的加法法则。以问题为主线,能减少教师占用课堂时间,把主要时间交还给学生去探索新知识,避免教师“讲得太多”。
【让学生经历观察、猜测、验证思考的过程,放手让学生去探索有理数加法法则。给学生充分的动手操作,合作交流的时间和空间,让学获得丰富的活动经验,进行数形结合思想的渗透。】
【人教版 七年级数学 上册 第一章】1.3.1 第1课时《 有理数的加法法则》教学设计1
【人教版七年级数学上册第一章】1.3.1 第1课时《有理数的加法法则》教学设计1一. 教材分析人教版七年级数学上册第一章1.3.1节主要介绍了有理数的加法法则。
这部分内容是有理数运算的基础,对于学生理解和掌握有理数的概念、性质以及运算规律具有重要意义。
本节课的内容将为后续的乘法、除法、减法运算打下基础。
二. 学情分析七年级的学生已经初步掌握了有理数的概念和性质,对加法运算有一定的了解。
但学生在运算过程中,可能对符号的判断和运算顺序的掌握还不够熟练。
因此,在教学过程中,需要帮助学生巩固有理数的概念,提高运算速度和准确性。
三. 教学目标1.理解有理数的加法法则,能够熟练地进行有理数的加法运算。
2.培养学生的运算能力,提高学生解决实际问题的能力。
3.培养学生的合作交流意识,提高学生的逻辑思维能力。
四. 教学重难点1.教学重点:掌握有理数的加法法则,能熟练进行有理数的加法运算。
2.教学难点:符号的判断和运算顺序的掌握。
五. 教学方法采用情境教学法、合作学习法和激励评价法进行教学。
通过设置生活情境,激发学生的学习兴趣;学生进行小组讨论,培养学生的合作交流意识;运用激励评价,提高学生的自信心和积极性。
六. 教学准备1.准备教学课件,包括例题、练习题等。
2.准备黑板、粉笔等教学工具。
3.准备相关的生活情境案例。
七. 教学过程1.导入(5分钟)利用生活情境案例,引入本节课的主题。
例如,小红购买了3个苹果,小蓝购买了2个苹果,他们一共购买了多少个苹果?让学生思考并回答,引出有理数的加法运算。
2.呈现(10分钟)通过课件呈现有理数的加法法则,引导学生观察和思考。
讲解加法法则的内涵,让学生理解并掌握加法运算的规律。
3.操练(10分钟)让学生进行有理数的加法运算练习,教师及时给予指导和反馈。
可设置一些具有挑战性的题目,激发学生的学习兴趣。
4.巩固(10分钟)学生进行小组讨论,分享各自的解题心得。
教师引导学生总结加法运算的注意事项,巩固所学知识。
1.3.1 第1课时 有理数的加法法则
C.(-3)+0=-3
D.3+(-2)=5
有理数的加法运算 【例题】 计算:(1)(-12)+(-3);
(2)(-4.5)+(+6.3);
(3)(-99)+0;
(4)
+
2 5
+
-
2 5
;
(5)
-5
1 4
+3.5.
分析:利用有理数的加法法则进行计算,一般先确定符号,再计算
第1课时 有理数的加法法则
学前温故 新课早知
1.如果电梯上升5层记为+5,那么电梯下降2层应记为( B )
A.+2 B.-2 C.+5 D.-5
2.计算:
(1)3+2= 5
;(2)(+5)+0= 5
;
(3)1.3+2.6= 3.9
;(4)23 + 16=
5 6
.
学前温故 新课早知
1.有理数的加法法则: (1)同号两数相加,取 相同 的符号,并把 绝对值 相加. (2)绝对值不相等的异号两数相加,取绝对值较 大 的加数的符号, 并用较 大 的绝对值减去较 小 的绝对值.互为相反数的两个数相 加得 0 . (3)一个数同 0 相加,仍得 这个数 . 2.下列计算结果错误的是( D ) A.(+5)+(-6)=-1
5.
如图,数轴上A,B两点所表示的有理数的和是 -1
.
解析: (-3)+(+2)=-(3-2)=-1.
6.计算:
(1)(-3.5)+(+2.8);
(2)
人教版七年级数学上册课件:1.3.1有理数的加法法则
(+5)+(-3)=+2
-5 -4 -3 -2 -1 0 1 2 3 4 5
-5 -4 -3 -2 -1 0 1 2 3 4 5
如果小球先向右运动了3米,又向左运动了5米,两次运动后小球从起点向___运动了____米.
+3
-5
-2
左
2
(+3)+(-5)=-2
从以上两个算式中你发现了什么?
异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.
-5 -4 -3 -2 -1 0 1 2 3 4 5
4.若│x│= 3,│y│= 2,且x>y,则x+y的值为( )
C
D
(1)(-0.6)+(-2.7); (2)3.7+(-8.4); (3)3.22+1.78; (4)7+(-3.3).
5.计算
答案:(1)-3.3 (2)-4.7 (3)5 (4)3.7
一个数同零相加,仍得这个数。
有理数加法的分类 5 + 3 = 8 (-5)+(-3) = -8 5 + (-3) = 2 3 + (-5) = -2 5 + (-5) = 0 (-5) + 5 = 0 5 + 0 = 5 (-5) + 0 = -5
1.3 有理数的加减法
第一章 有理数
第1课时 有理数的加法法则
1.3.1 有理数的加法
1、下列各组数中,哪一个数的绝对值大? (1) 5和3;(2) -5和3;(3) 5和-3;(4) -5和-3。 2、小兰第一次前进了5米,接着按同一方向 又前进了-2米;小兰两次一共前进了几米? 你能列出算式吗?
人教版数学七年级上册1.3.1第1课时有理数的加法法则优秀教学案例
3.引导学生积极参与小组讨论,培养学生的团队意识和沟通能力。
4.及时对小组活动进行评价,给予肯定和鼓励,提高学生的积极性。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,总结自己的优点和不足,提高学生的自我认知能力。
2.采用多元化的评价方式,关注学生的知识掌握程度、能力培养和情感态度等方面。
本节课的内容与学生的日常生活紧密相连,使得学生在学习过程中能够感受到数学的实用性和趣味性,进一步激发学生学习数学的兴趣和积极性。通过本节课的学习,学生不仅掌握了有理数的加法法则,还培养了良好的学习习惯和团队合作能力。
二、教学目标
(一)知识与技能
1.让学生掌握有理数的加法法则,并能够运用这些法则解决实际问题。
(二)问题导向
1.提出具有挑战性的问题,引导学生独立思考,培养学生解决问题的能力。
2.引导学生通过观察、分析、归纳等方法,自主探索并解决问题。
3.在学生解决问题过程中,适时给予提示和指导,帮助学生克服困难。
4.鼓励学生相互交流、讨论,促进学生思维的碰撞,提高学生的合作能力。
(三)小组合作
1.将学生分成若干小组,鼓励学生分工合作,共同完成任务。
3.设计具有启发性的问题,引导学生主动思考,激发学生的求知欲。
4.教师以轻松愉快的方式与学生交流,营造良好的学习氛围,使学生愿意积极参与课堂活动。
(二)讲授新知
1.引导学生观察实际问题,提出问题,激发学生的思考。
2.教师通过讲解、示范等方法,引导学生理解并掌握有理数的加法法则。
3.在讲解过程中,注意运用数学语言,准确表达概念和规则,让学生清晰理解知识点。
3.鼓励学生相互评价、互相学习,培养学生的批判性思维和评价能力。
最新人教版七年级数学上册1.3.1_第1课时_有理数的加法法则1教案(精品教学设计)
1.3 有理数的加减法1.3.1 有理数的加法第1课时有理数的加法法则1.理解有理数加法的意义;2.初步掌握有理数加法法则;3.能准确地进行有理数的加法运算,并能运用其解决简单的实际问题.一、情境导入我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围.例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数.本章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球.于是红队的净胜球为4+(-2),黄队的净胜球为1+(-1).这里用到正数与负数的加法.二、合作探究探究点一:有理数的加法法则计算:(1)(-0.9)+(-0.87);(2)(+456)+(-312); (3)(-5.25)+514; (4)(-89)+0.解析:利用有理数加法法则,首先判断这两个数是同号两数、异号两数还是同0相加,然后根据相应法则来确定和的符号和绝对值.解:(1)(-0.9)+(-0.87)=-1.77;(2)(+456)+(-312)=113; (3)(-5.25)+514=0; (4)(-89)+0=-89.方法总结:两数相加时,应先判断两数的类型,然后根据所对应的法则来确定和的符号与绝对值.探究点二:有理数加法的应用【类型一】 有理数加法在实际生活中的应用1000股,下表为本周内每日该股票的涨跌情况:(1)(2)本周内每股最高价多少元?最低价多少元?解析:(1)用买进的价格加上周一、周二、周三的涨跌价格,然后根据有理数加法运算法则进行计算即可求解;(2)分别求出这五天的价格,然后即可得解.解:(1)67+(+4)+(+4.5)+(-1)=74.5(元),故星期三收盘时,每股74.5元;(2)周一:67+4=71元,周二:71+4.5=75.5元,周三:75.5+(-1)=74.5元,周四:74.5+(-2.5)=72元,周五:72+(-6)=66元,∴本周内每股最高价为75.5元,最低价66元.方法总结:股票每天的涨跌都是在前一天的基础上进行的,不要理解为每天都是在67元的基础上涨跌.另外熟记运算法则并根据题意准确列出算式也是解题的关键.【类型二】 和有理数性质有关的计算问题已知________.解析:因为|a|=5,所以a =-5或5,因为b 的相反数为4,所以b=-4,则a +b =-9或1.解:-9或1方法总结:本题涉及绝对值和相反数的定义,在解决绝对值问题时要注意考虑全面,避免造成漏解.三、板书设计加法法则⎩⎪⎪⎨⎪⎪⎧(1)同号两数相加,取相同的符号,并把绝对值 相加.(2)绝对值不相等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小 的绝对值.(3)互为相反数的两数相加得0.(4)一个数同0相加,仍得这个数.本课时利用情境教学、解决问题等方法进行教学,使学生在情境中提出问题,并寻找解决问题的途径,因此不知不觉地进入学习氛围,使学生从被动学习变为主动探究.在本节教学中,要坚持以学生为主体,教师为主导,致力联系学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中.。
1.3.1 第1课时 有理数的加法法则
+(7-6)=1
0
-18
巩固练习
2.计算:
1.计算:(1)10+(-4) (2)(+9)+7(3)(-15)+(-32) (4)(-9)+0(5)100+(-199) (6)(-0.5)+4.4(7)(-1.5)+(1.25) (8)
(1) (-3)+(- 9)
(4)(-4.7)+ 3.9
= -(3+9)= -12
=-(4.7-3.9)= -0.8
(2) 10 + (-6)
(3) +(- )
= +(10-6) = 4
(1) (-3)+(-9)
(2) 10 + (-6)
(3) +(- )
解:
(4)(-4.7)+ 3.9
想一想
如果小狗先向西行走2米,再继续向西行走1米,则小狗两次一共向哪个方向行走了多少米?
东
想一想
解:两次行走后,小狗向西走了(2+1)米.用算式表示:
(- 2)+(- 1)= -(2 + 1)(米)
你从上面两个式子中发现了什么?
比一比
同号两数相加,取相同的符号,并把绝对值相加.
相加
相减
结果是0
仍是这个数
有理数的加法法则:
一个数同0相加,仍得这个数.
有理数加法法则
(1)同号两数相加,结果取相同符号,并把绝对值相加.(2)异号两数相加,结果取绝对值较大的加数的符号,并将较大的绝对值减较小的绝对值.互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数.
1.3.1 第1课时 有理数的加法法则
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
1.3.1有理数的加法第1课时有理数的加法法则1.[2018·滨州二模]计算-(+1)+|-1|的结果为()A.-2 B.2C.1 D.02.[2018·高阳县一模]我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图1-3-1①表示的是计算3+(-4)的过程.按照这种方法,图1-3-1②表示的过程应是在计算()图1-3-1A.(-5)+(-2) B.(-5)+2C.5+(-2) D.5+23.两个数相加,如果和小于每一个加数,那么( ) A .这两个加数同为正数 B .这两个加数同为负数 C .这两个加数的符号不同 D .这两个加数中有一个为04.313的相反数与-223的绝对值的和为________.5.计算:(1)(-6)+(-8); (2)(-4)+2.5;(3)(-7)+(+7); (4)(-7)+(+4);(5)(+2.5)+(-1.5); (6)0+(-2);(7)-3+2; (8)(+3)+(+2).6.列式并计算:(1)求+1.2的相反数与-1.3的绝对值的和.(2)423与-212的和的相反数是多少?7.一艘潜水艇所在的高度是-50 m ,一条鲨鱼在潜水艇上方10 m 处,鲨鱼所在的高度是多少?8.a,b,c三个数在数轴上的位置如图1-3-2,则下列结论不正确的是()图1-3-2A.a+b<0 B.b+c<0C.b+a>0 D.a+c>09.规定一种新的运算:a⊗b=1a+1b,那么(-2)⊗(-3)=________.10.已知|a|=8,|b|=2.(1)当a,b同号时,求a+b的值;(2)当a,b异号时,求a+b的值.11.[2017·隆昌期中]下表列出了国外几个大城市与北京的时差(带“+”的数表示同一时刻比北京时间早的小时数).(1)(2)如果小强在北京时间下午15:00打电话给远在纽约的姑姑,你认为合适吗?请说明理由.参考答案1.D 2.C 3.B4.-23 5.(1)-14 (2)-1.5 (3)0 (4)-3(5)1 (6)-2 (7)-1 (8)5 7.(1)0.1 (2)-216.8.鲨鱼所在的高度是-40 m.9.C 10.-56 11.(1)10或-10 (2)6或-612.(1)东京时间为上午9:00 (2)不合适.理由略关闭Word 文档返回原板块。
1 第1课时 有理数的加法法则2 精品教案(大赛一等奖作品)
1.3.1 有理数的加法第1课时有理数的加法法则教学目标:经历探索有理数的加法法则,理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.教学重点:有理数的加法法则的理解和运用.教学难点:异号两数相加.教与学互动设计:(一)合作交流,解读探究活动一我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围,例如,在本章引言中,把收入记作正数、支出记作负数,在求“结余”时,需要计算8.5+(-4.5),4+(-5.2)等.这里用到正数与负数的加法.活动二看下面的问题:问题:一个物体作左右方向的运动,我们规定向左为负,向右为正,向右运动5 m记作+5 m,向左运动5 m记作-5 m.1.如果物体先向右运动5 m,再向右运动3 m,那么两次运动后的结果是什么?两次运动后物体从起点向右运动了8 m,写成算式就是5+3=8 ①.2.如果物体先向左运动5 m,再向左运动3 m,那么两次运动后的结果是什么?两次运动后物体从起点向左运动了8 m,写出算式就是(-5)+(-3)=-8 ②.这个运算也可以用数轴表示,其中假设原点为运动起点(见课本P17图1.3-2).活动三1.如果物体先向右运动5 m,再向左运动3 m,那么两次运动后物体从起点向右运动了2 m,写成算式就是5+(-3)=2③.这个运算也可以用数轴表示,其中假设原点为运动起点,你能用数轴表示吗?2.探究:利用数轴,求以下情况时物体两次运动的结果:(1)先向右运动3m,再向左运动5m,物体从起点向运动了m;(2)先向右运动5m,再向左运动5m,物体从起点向运动了m;(3)先向左运动5m,再向右运动5m,物体从起点向运动了m.活动四你能从算式中发现有理数加法的运算法则吗?有理数加法法则:(1)同号两数相加,取相同符号,并把绝对值相加.(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数.(二)应用迁移,巩固提高【例1】计算:(1)(-4)+(-6)= ;(2)(+15)+(-17)= ;(3)(-6)+│-10│+(-4)= ;(4)(-37)+22= ;(5)-3+3= .【例2】甲地海拔高度是-28 m,乙地比甲地高32m,乙地的海拔高度是m.【例3】一个数是11,另一个数比11的相反数大2,那么这两个数的和为()A.24B.-24C.2D.-2【例4】下面结论中正确的有()①两个有理数相加,和一定大于每一个加数;②一个正数与一个负数相加得正数;③两个负数和的绝对值一定等于它们绝对值的和;④两个正数相加,和为正数;⑤两个负数相加,绝对值相减;⑥正数加负数,其和一定等于0.A.0个B.1个C.2个D.3个(三)总结反思,拓展升华有理数的加法法则:进行有理数加法运算时,首先应先判断加数类型,然后确定和的符号,最后计算和的绝对值.特别是绝对值不等的异号两数相加,和的符号与绝对值较大的加数符号相同,并把绝对值相减.(四)课堂跟踪反馈夯实基础1.填空题(1)绝对值不小于3且小于5的所有整数的和为;(2)①若a>0,b>0,则a+b 0;②若a<0,b<0,则a+b 0;③若a>0,b<0,且│a│>│b│,则a+b 0;④若a>0,b<0,且│a│<│b│,则a+b 0.提升能力2.列式计算(1)求3的相反数与-2的绝对值的和;(2)某市一天上午的气温是10℃,下午上升2℃,半夜又下降15℃,则半夜的气温是多少?3.若a<0,b>0,且a+b<0,试比较a、b、-a、-b的大小,并用“<”把它们连接起来.第八章 8.2.2消元——解二元一次方程组(一)知识点1:加减消元法两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程.这种方法叫做加减消元法,简称加减法.知识点2:列二元一次方程组解实际应用题的步骤列二元一次方程组解应用题与列一元一次方程解应用题的思路基本相似,也是审题、设元、列方程、检验、作答几个步骤.其中与列一元一次方程解应用题不同的是,列一元一次方程解应用题的时候,我们需要考虑设哪个未知量为x,运用哪个相等关系来列方程,而列二元一次方程组解应用题时,如果题目有两个未知量,两个相等关系,我们直接将未知量设为x和y,两个相等关系都用来列方程.考点1:先化简再求方程组的解【例1】解方程组解:原方程组可化为②×5-①,得26y=104,解得y=4.把y=4代入②,得x+20=28,解得x=8.所以原方程组的解为点拨∶对于比较复杂的二元一次方程组,首先将两个方程化简成ax+by=c的形式,然后再使用代入消元法或加减消元法求解.考点2:换元法解方程组【例2】解方程组解:设a=,b=,则原方程组可变形为解得∴解得点拨:仔细观察方程组,我们不难发现两个方程中均出现和,我们可将和分别看作两个未知数a,b,这个复杂的方程组就可以转化成一个简单的方程组来解决了,这种方法叫做换元法.考点3:轮对称的二元一次方程组的求解策略【例3】解方程组解:①+②,得27x+27y=81,化简得x+y=3.③①-②,得-x+y=-1.④③+④,得2y=2,解得y=1.③-④,得2x=4,解得x=2.∴原方程组的解是点拨:呈现形式的方程组称为轮对称方程组.考点4:一个二元一次方程组与一个二元一次方程同解的问题【例4】若关于x,y的方程组的解也是方程3x+2y=17的解,求m的值.解法一:①-②,得3y=-6m,即y=-2m.把y=-2m代入①,得x-4m=3m,解得x=7m.把x=7m,y=-2m代入3x+2y=17,得21m-4m=17,解得m=1.解法二:①×3-②,得2x+7y=0.根据题意可得:解这个方程组,得把代入①,得7-4=3m,解得m=1.点拨:解法一:把m看作已知数,用含m的代数式表示x,y,然后把x,y的值代入3x+2y=17中,得到一个关于m的一元一次方程,解这个一元一次方程即可求出m的值.解法二:由原方程组消去m,得到一个关于x,y的二元一次方程,这个二元一次方程和3x+2y=17组成一个方程组,解出x,y的值,然后代入原方程组中任意一个方程求出m的值.3.2 解一元一次方程(一)——合并同类项与移项第1课时用合并同类项的方法解一元一次方程教学目标:1.经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.2.学会合并同类项,会解“ax+bx=c”类型的一元一次方程.3.能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程.教学重点:建立方程解决实际问题,会解“ax+bx=c”类型的一元一次方程.教学难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程.教学过程:一、设置情境,提出问题(出示背景资料)约公元820年,中亚细亚的数学家阿尔-花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?通过下面几节课的学习讨论,相信同学们一定能回答这个问题.出示课本P86问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍.前年这个学校购买了多少台计算机?二、探索分析,解决问题引导学生回忆:实际问题一元一次方程设问1:如何列方程?分哪些步骤?师生讨论分析:(1)设未知数:前年这个学校购买计算机x台;(2)找相等关系:前年购买量+去年购买量+今年购买量=140台.(3)列方程:x+2x+4x=140.设问2:怎样解这个方程?如何将这个方程转化为“x=a”的形式?学生观察、思考:根据分配律,可以把含x的项合并,即x+2x+4x=(1+2+4)x=7x老师板演解方程过程:略.为帮助有困难的学生理解,可以在上述过程中标上箭头和框图.设问3:在以上解方程的过程中“合并”起了什么作用?每一步的根据是什么?学生讨论回答,师生共同整理:“合并”是一种恒等变形,它使方程变得简单,更接近“x=a”的形式.三、拓广探索,比较分析学生思考回答:若设去年购买计算机x台,得方程+x+2x=140.若设今年购买计算机x台,得方程++x=140.课本P87例2.问题:①每相邻两个数之间有什么关系?②用x表示其中任意一个数,那么与x相邻的两个数怎样表示?③根据题意列方程解答.四、综合应用,巩固提高1.课本P88练习第1,2题.2.一个黑白足球的表面一共有32个皮块,其中有若干块黑色五边形和白色六边形,黑、白皮块的数目之比为3:5,问黑色皮块有多少?(学生思考、讨论出多种解法,师生共同讲评.)3.有一列数按一定规律排成-1,2,-4,8,-16,32,……,其中某三个相邻数的和是-960.求这三个数.五、课时小结1.你今天学习的解方程有哪些步骤,每一步的依据是什么?2.今天讨论的问题中的相等关系有何共同特点?学生思考后回答、整理:解方程的步骤及依据分别是:合并和系数化为1;总量=各部分量的和.。
人教版七年级数学上册:1.3.1《有理数的加法》教学设计1
人教版七年级数学上册:1.3.1《有理数的加法》教学设计1一. 教材分析《有理数的加法》是人教版七年级数学上册第一章第三节的第一课时,本节课的内容是在学生已经掌握了有理数的概念和运算法则的基础上进行授课的。
有理数的加法是数学中基本的运算之一,它不仅在生活中有广泛的应用,而且是学习更高级数学知识的基础。
本节课的内容主要包括有理数的加法法则、加法的运算律以及加法在实际问题中的应用。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和数学基础,他们对于有理数的概念和运算法则已经有了一定的了解。
但是,学生在进行有理数的加法运算时,可能会对加法的运算律和有理数的加法法则理解不深,导致在实际运算中出现错误。
因此,在教学过程中,需要引导学生通过观察、思考、交流等方式,深入理解加法的运算律和有理数的加法法则,提高他们的运算能力。
三. 教学目标1.知识与技能:使学生掌握有理数的加法法则,理解加法的运算律,能够熟练地进行有理数的加法运算。
2.过程与方法:通过观察、思考、交流等方式,培养学生解决问题的能力和团队合作的精神。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们积极的学习态度和良好的学习习惯。
四. 教学重难点1.重点:有理数的加法法则和加法的运算律。
2.难点:理解有理数的加法法则,能够灵活运用加法的运算律进行运算。
五. 教学方法1.情境教学法:通过生活实例和实际问题,引导学生理解和掌握有理数的加法法则。
2.问题驱动法:通过设置问题,激发学生的思考,培养他们解决问题的能力。
3.合作学习法:通过小组讨论和合作,培养学生的团队合作精神和交流能力。
六. 教学准备1.教学课件:制作课件,内容包括有理数的加法法则、加法的运算律以及实际问题的应用。
2.教学素材:准备一些实际问题,用于引导学生进行加法运算。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用生活实例引入有理数的加法运算,例如:“小明有3个苹果,小红给了小明2个苹果,请问小明现在有多少个苹果?”引导学生进行思考和讨论。