文献翻译原文-模具的历史发展

合集下载

塑料模具发展中英文对照外文翻译文献

塑料模具发展中英文对照外文翻译文献

中英文对照外文翻译文献(文档含英文原文和中文翻译)外文:The development of plastic mouldChina's industrial plastic moulds from the start to now, after more than half a century, there has been great development, mold levels have been greatly enhanced. Mould has been at large can produce 48-inchbig-screen color TV Molded Case injection mold, 6.5 kg capacity washing machine full of plastic molds, as well as the overall car bumpers and dashboards, and other plastic mould precision plastic molds, the camera is capable of producing plastic mould , multi-cavity mold small modulus gear and molding mold. --Such as Tianjin and Yantai daysElectrical Co., Ltd Polaris IK Co. manufactured multi-cavity mold VCD and DVD gear, the gear production of such size precision plastic parts, coaxial, beating requirements have reached a similar foreign the level of product, but also the application of the latest gear design software to correct contraction as a result of the molding profile error to the standard involute requirements. Production can only 0.08 mm thickness of atwo-cavity mold and the air Cup difficulty of plastic doors and windows out of high modulus, and so on. Model cavity injection molding manufacturing accuracy of 0.02 to 0.05 mm, surface roughness Ra0.2 μ m, mold quality, and significantly increase life expectancy,non-hardening steel mould life up to 10~ 30 million, hardening steel form up to 50 ~ 10 million times, shorten the delivery time than before, but still higher than abroad,and the gap between a specific data table.Process, the multi-material plastic molding die, efficient multicolor injection mould, inserts exchange structure and core pulling Stripping the innovative design has also made great progress. Gas-assisted injection molding, the use of more mature technologies, such as Qingdao Hisense Co., Ltd., Tianjin factorycommunications and broadcasting companies, such as moldmanufacturers succeeded in 29 ~ 34-inch TV thick-walled shell, as well as some parts on the use of gas-assisted mould technology Some manufacturers also use the C-MOLD gas-assisted software and achieved better results. Prescott, such as Shanghai, such as the newcompany will provide users with gas-assisted molding equipment and technology. Began promoting hot runner mold, and some plants use rate of more than 20 percent, the general heat-thermal hot runner, or device, a small number of units with the world's advanced level of rigorous hot runner-needle device, a small number of units with World advanced level of rigorous needle-hot runner mould. However, the use of hot runner overall rate of less than 10%, with overseas compared to 50 ~ 80%, the gap larger. In the manufacturing technology, CAD / CAM / CAE technology on the level of application of a new level to the enterprise for the production of household appliances representatives have introduced a considerable number of CAD / CAM systems, such as the United States EDS UG Ⅱ, the United States Parametric Technology Pro / Engineer, the United States CV CADS5 company, the British company DOCT5 Deltacam, HZS's CRADE Japan, the company's Cimatron Israel, the United States AC-C-Tech Mold Company and Australia's MPA Mold flow Mold analysis software, and so on. These systems and the introduction of the software, although a lot of money spent, but in our country die industry, and achieving a CAD / CAM integration, and to support CAE technology to forming processes such as molding and cooling, such as computer simulation, and achieved certain The technical and economic benefits, promote and facilitate China's CAD / CAM technology. In recent years, China's own development of the plasticmould CAD / CAM system has achieved significant development, the main guarantor Software Engineering Institute, is the development of CAXA, Huazhong University of Science HSC5.0 development of the system and injection mold CAE software, and so on, these Die of domestic software with the specific circumstances in the application of computer and lower prices, and other characteristics, in order to further universal CAD / CAM technology has created good conditions.In recent years, China has been more extensive use of some new plastic mold steel, such as: P20, 3Cr2Mo, PMS, SM Ⅰ, SM Ⅱ, and the quality of life of mold has a direct significant impact on the overall use of the still less . Plastic Moulds standard model planes, such as standard putter and spring has given more applications, and there have been some of the commercialization of domestic hot runner system components. However, at present China Die level of standardization and commercialization in the general level of below 30 percent and foreign advanced industrial countries has reached 70 percent compared to 80 percent, still a large gap. Table 1, at home and abroad plastic mould technology comparison table? Domestic projects abroad cavity injection model mm0.02 accuracy of 0.005 ~ 0.01 ~ 0.05mm cavity surface roughness Ra0.01 ~ 0.05 μ mRa0.20 μ m non-hardened steel die life 10 to 60 million 10 ~ 30 million hardened steel die life 160 ~ 300 million of 50 ~ 100 million hot runner mould overall utilization rate of more than 80per cent less than 10 per cent level of standardization of 70 ~ 80% less than 30% of medium-sized plastic mould production cycle about a month 2 ~ 4 months in the mold industry in the amount of 30 to 40% 25 to 30% According to the parties concerned forecast, the market's overall vigorous mold is a smooth upward, in the next Die market, the development of plastic mould faster than the other Die, die in the proportion of industry will gradually improve. With the continuous development of the plastics industry, put on the plastic mold growing demands is a normal, and so sophisticated, large-scale, complex, long-life plastic mould development will be higher than the overall pace of development. At the same time, imports in recent years because of the mold, precision, large, complex, long-life die in the majority, therefore, reduce imports, increase Guochanhualu: perspective, in the mold of such high-end market share will gradually increase. The rapid development of theconstruction industry so that the various Profile Extrusion Die, PVC plastic pipe fittings Die Die market become a new economic growth point, the rapid development of highways, car tires also put a higher demand, radial tire Die, Die particularly active pace of development will also be higher than the overall average level of the plastic and wood, plastic and metal to make plastic molds in the automotive, motorcycle industry in the demand for huge household appliances industry in the "10th Five-Year Plan" period have greater development, especially refrigerators,air-conditionersand microwave ovens, and other parts of the great demand for plastic moulds, and electronics and communications products, in addition to audio-video products, such as color televisions, laptop computers and set-top boxes will be given a wider network development, which are Plastic Mold market is the growth point. Second, China's industrial and technological plastic mould the future direction of the major developments will include:1, raising large, sophisticated, complex, long-life mold design and manufacturing standards and proportion. This is due to the molding plastic mould products increasingly large, complex and high-precision requirements, as well as requirements for high productivity and the development of a multi-mode due.2, in the design and manufacture of plastic mould fully promote the use of CAD / CAM / CAE technology. CAD / CAM technology has developed into a relatively mature technology common in recent years CAD / CAM technology hardware and software prices has been reduced to SMEs generally acceptable level of popularity for further create good conditions; based on network CAD / CAM / CAE system integration structure the initial signs of emerging, and it will solve the traditional mixed CAD / CAM system can not meet the actual production process requirements of the division of collaboration; CAD / CAM software will gradually improve intelligence plastic parts and the 3-D mold design andprototyping process 3-D analysis will be in our plastic mould industries play an increasingly important role.3, promote the use of hot runner technology, gas-assisted injection molding technology and high-pressure injection molding technology. Using hot runner mould technology can improve the productivity and quality of parts and plastic parts can be substantial savings of raw materials and energy conservation, extensive application of this technology is a big plastic mould changes. Hot Runner components formulate national standards, and actively produce cheap high-quality components, the development of hot runner mold is the key. Gas-assisted injection molding product quality can be guaranteed under the premise of substantially lower cost. Currently in the automotive and appliance industries gradually promote the use of the Chiang Kai-shek. Gas-assisted injection molding of the ordinary than the traditional injection of more parameters need to identify and control, and its more commonly used in large, complex products, mold design and control more difficult, therefore, the development of gas-assisted molding flow analysis software It seems very important. On the other hand in order to ensure precision plastic parts to continue to study the development of technology and high-pressure injection molding and injection-compression molding mould and die technology is also very important.4, the development of new plastics molding technology and rapid economic mold. To adapt to more variety, less volume of production.5, and improve standardization of plastic mould standard parts usage. China's mold and die level of standard parts standardization still low, the gap between the large and foreign, to a certain extent constraining the development of industries in our country die, die to improve quality and reduce manufacturing costs Die, Die standard parts to vigorously promote the application. To this end, first of all, to formulate a unified national standards, and in strict accordance with the standards of production, secondly it is necessary to gradually scale production, to improve the commercialization of the standard of quality, and reduce costs; again it is necessary to further increase the standard specifications of varieties.6, Die application quality materials and advanced surface treatment technology for improving the quality of life and mold it is necessary.7, research and application of high-speed die measurement technology and reverse engineering. CMM-use 3D scanner or reverse engineering is the realization of plastic moulds CAD / CAM one of the key technologies.Research and Application of diversity, adjustment, cheap detection equipment is to achieve the necessary precondition for reverse engineering.译文:塑料模具的发展我国塑料模工业从起步到现在,历经半个多世纪,有了很大发展,模具水平有了较大提高。

模具外文文献和翻译

模具外文文献和翻译

模具设计与制造模具是制造业的重要工艺基础,在我国模具制造属于专用设备制造业。

中国虽然很早就开始制造模具和使用模具,但长期未形成产业。

直到20世纪80年代后期,中国模具工业才驶入发展的快车道。

近年,不仅国有模具企业有了很大发展,三资企业、乡镇(个体)模具企业的发展也相当迅速。

虽然中国模具工业发展迅速,但与需求相比,显然供不应求,其主要缺口集中于精密、大型、复杂、长寿命模具领域。

由于在模具精度、寿命、制造周期及生产能力等方面,中国与国际平均水平和发达国家仍有较大差距,因此,每年需要大量进口模具。

中国模具产业除了要继续提高生产能力,今后更要着重于行业内部结构的调整和技术发展水平的提高。

结构调整方面,主要是企业结构向专业化调整,产品结构向着中高档模具发展,向进出口结构的改进,中高档汽车覆盖件模具成形分析及结构改进、多功能复合模具和复合加工及激光技术在模具设计制造上的应用、高速切削、超精加工及抛光技术、信息化方向发展。

近年,模具行业结构调整和体制改革步伐加大,主要表现在,大型、精密、复杂、长寿命、中高档模具及模具标准件发展速度高于一般模具产品;塑料模和压铸模比例增大;专业模具厂数量及其生产能力增加;“三资”及私营企业发展迅速;股份制改造步伐加快等。

从地区分布来看,以珠江三角洲和长江三角洲为中心的东南沿海地区发展快于中西部地区,南方的发展快于北方。

目前发展最快、模具生产最为集中的省份是广东和浙江,江苏、上海、安徽和山东等地近几年也有较大发展。

虽然我国模具总量目前已达到相当规模,模具水平也有很大提高,但设计制造水平总体上落后于德、美、日、法、意等工业发达国家许多。

当前存在的问题和差距主要表现在以下几方面:(1)总量供不应求,国内模具自配率只有70%左右。

其中低档模具供过于求,中高档模具自配率只有50%左右。

(2)企业组织结构、产品结构、技术结构和进出口结构均不合理。

我国模具生产厂中多数是自产自配的工模具车间(分厂),自产自配比例高达60%左右,而国外模具超过70%属商品模具。

模具制造中英文翻译

模具制造中英文翻译

Modern mold makingI.The stamping die development history and status of technologyIn 1953, the Changchun First Automobile Works in China for the first time established a die shop, the car plant in 1958 began manufacturing automotive panel die. 60 years of the 20th century began producing fine blanking dies. Come a long road of development, China has formed about 300 billion (not including Hong Kong, Macao and Taiwan statistics.) Production capacity of various types of stamping dies. Formed, such as Ningbo and Zhejiang HUANGYAN region "Die village"; Guangdong Corporation and some large rapid rise of township enterprises, K el o n, M id e a, K on ka and other groups have established their own mold manufacturing center; joint ventures and wholly foreign-owned the mold companies now have thousands. With the pace with international standards continues to accelerate, increasing market competition, production and design of the mold has been growing recognition that product quality, cost, and new product development capacities. Mold manufacturing technology to measure a country's manufacturing sector has become an important indicator of the level, and largely determine the survival space. At present, China stamping die, whether in quantity or in quality, technology and other capabilities have made significant progress, but with national needs and the world advanced level, the gap is still great. In the international competition situation, I had the mold industry has rapidly developed, many specialized research centers continue to die set up, mold steel of the structure and made significant achievements, but there is still a big gap. First, imports of high-tech mold most of the large precision molds, mold and exports most of the lower middle and low-tech die, so high-tech high-grade die stamping die market, the overall satisfaction rate is lower than satisfaction rate, which mold development has lagged behind the production of stamping parts, and low-technology market to meet the rate of middle and low die stamping die is higher than the overall market to meet the rate; second is due to the price of the mold is much lower than international market prices, has some competition force, so its prospects in the international market; third in recent years, Hong Kong-and Taiwan-owned, foreign-funded enterprises in China developed rapidly in a large number of these enterprises stamping dies produced for own use no precise statistics, it is not included in the figures being.II. Modern mold manufacturing technology developmentThe development of modern technology should die mold products to meet the "short delivery time", "high precision", "good quality", "low price" request for service. Urgent need to develop to meet this requirement as a number of(1) to comprehensively promote universal DBD / DBM / DBE technologyDie DBD / DBM / DBE technology is the development direction of mold design and manufacturing. With the computer software development and progress, universal DBD / DBM / DBE technology, conditions are ripe, the businesses will increase DBD / DBM technical training and technical service efforts; further expand the scope ofDBE technology. The development of computers and networks are making DBD / DBM / DBE technology trans-regional, cross-enterprise, campus-wide in the industry as possible to promote and achieve re-integration of technical resources to enable virtual manufacturing possible.(2) High-speed millingThe development of foreign high-speed milling process in recent years, significantly improve the processing efficiency, and to get a high surface finish. In addition, the module can also be processed with high hardness, but also with low temperature rise, thermal deformation and so on. High-speed milling technology, automotive, home appliance manufacturing industry in the large cavity mold injected new vitality. It currently has more agile, intelligent, integrated direction.(3) die scanning and digitizing systemHigh-speed scanner provides scanning system and mold from the model or in kind to the processing of the scanned model of the desired number of features required, greatly reducing the manufacturing cycle in the development of mold. Some quick scan system can be quickly installed in existing CNC milling machine and machining center, for fast data acquisition, automatic generation of a variety of CNC machining process, the DBD data in different formats, for mold manufacturing "reverse engineering . "(4) the degree of standardization to improve dieDegree of standardization of the mold is increasing, estimates that the current use of standard mold coverage has reached about 30%. Developed countries is generally about 80%.(5) high-quality materials and advanced surface treatment technologyApplication of high quality steel and the corresponding surface treatment technology to improve the life of the mold it is very necessary. Mold heat treatment and surface treatment can fully mold steel material properties play a key part. Direction of development of mold heat treatment is the use of vacuum heat treatment. In addition to the mold surface should improve the development of advanced technologies such as laser surface treatment.(6) Mold PolishingAutomation, intelligent mold surface quality of mold life, the appearance of quality parts and so have a greater impact of automation and intelligence of the grinding and polishing methods replace the existing manual in order to improve the quality of the mold surface is important trends.(7) die development of automatic processing systemThis is our long-term development goals mold industry. Automatic mold machine processing system should be more than the rational combination; with accompanying plate positioning fixture or positioning; a complete equipment, tool CNC database; a complete CNC flexible synchronization system; a quality monitoringand control system. Of course, as the user to choose the right equipment, if the selection properly, not only can not make money but make the machine work into the bitter situation.III. Modern mold manufacturing technology trendsDie technology is mainly towards the future development trend of information technology, high-speed high-precision production and development. Therefore, the design technology, the development focus is to promote DBD / DBE / DBM technology, and continue to improve efficiency, especially in sheet metal forming process of the computer simulation analysis. Die DBD, DBE technology should be declared human, integration, intelligence and network direction, and improve the mold DBD, DBM system-specific level. To improve the DBD, DBE, DBM technology, establish a complete database and development of the mold expert systems and improve software usability is very important.From the processing technology, the development focused on high-speed processing and precision machining. At present, the development of highly processed high-speed milling, high speed polishing and high-speed electronic processing and rapid tooling technologies. At present, the development of precision machining parts precision mold and the surface roughness of less 1μm Pa ≤ 0.1μm variety of precision machining.IV.the modern mold manufacturing1.CAD/CAE/CAM computer-aided design, simulation, manufacturing integration CAD / CAE / CAM integration, integration technology is the most advanced modern mold making the most reasonable mode of production. Use of computer-aided design, support engineering and manufacturing systems, according to the respective mold parts designed to prepare the NC machining of parts from design to manufacturing process is an inevitable process, which is from CAD / CAE / CAM system carried out, The processing line cable input directly from the processing machine, can be used in the preparation of procedures of processing the system analog functions, will be part tool, tool holder, fixture, platform and tool speed, path, etc. are displayed, to check the program prepared correctness. In short the CAD / CAE / CAM system development and simulation of processing can not fully understand the problems identified, resulting in processing prior to prepare the complete set of processing change work, which for the efficient and accurate processing of the mold has a very important part .2. Advanced equipment in the modern mold making roleThe inevitable trend of modern mold making, machining is possible to replace the manual process, especially now that CNC lathes, multi-axis machine tools, CNC mold engraving machine, EDM machine, CNC precision grinding machines, coordinate measuring machines, scanners and other modern equipment widely used in factories, but most of these devices are basically the application of the procedures used CAD / CAE / CAM system to produce, the operator of work procedures in accordance with the provisions of work piece clamping, with a cutting tool and operation of the machine will be able to automatically complete the processing tasks,and created the ideal mold parts or complete the processing operation for the next part.3. Die materials and surface treatment technologyDue to improper selection and use of materials, resulting in premature failure of the mold, which accounts for more than 45% die failure. Price structure throughout the mold, the materials, the proportion of small, generally 20% to 30%, therefore, the choice of high quality steel and application of surface treatment technology to improve the life of the mold it is very necessary. For tool steel, the ESR technique to be used, such as the use of powder metallurgy high speed steel powders manufactured. Variety of different specifications tool steel, refined products, products of, try to shorten the delivery time is also an important trend.Mold heat treatment of the main trends: the infiltration of a single element to the multi-element penetration, complex permeability (such as TD method) development; by the general spread of the CVD, PVD, PCVD, ion penetration, ion implantation and other direction; addition, the current laser enhanced glow plasma technology and electroplating (plating) and other anti-corrosion technology to strengthen more and more attention.V.reverse engineeringReverse engineering is the first of the parts (the processing of the product) to scan the CAD data generated in multiple formats, and then in the other CAD / CAE / CAM software in the modified design, the technology is the most popular modern mold manufacturing mold manufacturing technology. mold manufacturing company dedicated to development and production of the scanning system, it can be successfully applied to reverse engineering, mold manufacturing, it can not only improve the performance of CNC machine tools, expanding the function of CNC machine tools, CNC machine tools but also improve efficiency., Renscan200, Cyclone high-speed scanner has been Qingdao H a I e r, Jinan Q I n g q i, national mold center and other units started.VI. Summary and OutlookWith the development and progress of computer software, CAD / CAE / CAM technology is getting more mature, and its application in the modern mold will become more widespread. Can be expected in the near future, mold manufacturing to separate from the machine manufacturing industry, and independent national economy to become an indispensable pillar industries, while also further promote the integration of the mold manufacturing technology, intelligence, beneficiary , efficient direction.现代模具制造一.冲压模具发展历史和技术水平状况1953年,长春第一汽车制造厂在中国首次建立了冲模车间,该汽车厂于1958年开始制造汽车覆盖件模具。

文献翻译-模具的历史发展

文献翻译-模具的历史发展

附录A英文参考资料1 Die position in industrial productionMold is a high-volume products with the shape tool, is the main process of indust production equipment.采用模具生产零部件,具有生产效率高、质量好、成本低、节约能源和原材料等一系列优点,用模具生产制件所具备的高精度、高复杂程度、高一致性、高生产率和低消耗,是其他加工制造方法所不能比 With mold components, w ith high efficiency,good quality, low cost, saving energy and raw materials and a series of advantagehighthe mold workpieces p ossess h igh accuracy, high complexity, high consistency,productivity and low consumption , other manufacturing methods can not match.已成为当代工业生产的重要手段和工艺发展方向。

Have already become an important means现代经济的基础工The basis ofof industrial production and technological development.the m odern industrialeconomy. 现代工业品的发展和技术水平的提高,很大程度上取决于模具工业的发展水平,因此模具工业对国民经济和社会发展将起越来越大的作用。

The development o f modern industriallevel depends largely on theand technologicaldevelopment die, s o die industry to national economic and sociallevel o f industrialdevelopment will play an increasing role. 1989年 3 月国务院颁布的《关于当前产业政策要点的决定》中,把模具列为机械工业技术改造序列的第一位、生产和基本建设序列的第二位 ( 仅次于大型发电设备及相应的输变电设备 ) ,确立模具工业在国民经济中的重要地位。

文献翻译译文-模具的历史发展

文献翻译译文-模具的历史发展

1 模具的历史发展David O.Kazmer.Injection mold design engineering.Hanser Gardner Publications,2007.模具的出现可以追溯到几千年前的陶器和青铜器铸造,但其大规模使用却是随着现代工业的掘起而发展起来的。

19世纪,随着军火工业(枪炮的弹壳)、钟表工业、无线电工业的发展,冲模得到广泛使用。

二次大战后,随着世界经济的飞速发展,它又成了大量生产家用电器、汽车、电子仪器、照相机、钟表等零件的最佳方式。

从世界范围看,当时美国的冲压技术走在前列——许多模具先进技术,如简易模具、高效率模具、高寿命模具和冲压自动化技术等,其大多起源于美国;而瑞士的精冲、德国的冷挤压技术、苏联对塑性加工的研究也处于世界先进行列。

50年代,模具行业工作重点是根据用户的要求,制作能满足产品要求的模具。

模具设计多凭经验,参考已有图纸和感性认识,对所设计模具零件的机能缺乏真切了解。

从1955年到1965年,是冲压工业的探索和开发时代——对模具主要零部件的机能和受力状态进行了数学分桥,并把这些知识不断应用于现场实际,使得冲压技术在各方面有飞跃的发展。

其结果是总结出了模具的设计原则,并使得压力机械、冲压材料、加工方法、模具结构、模具材料、模具制造方法、自动化装置等领域更新换代,并向实用化的方向前进,从而使冲压加工进入生产优良产品的第一阶段。

进入70年代,模具进入高速化、机械化、精密化、安全化发展的第二阶段。

在这个过程中不断涌现各种高效率、高寿命、高精度、多功能的自动化模具。

其代表是多个工位的级进模和十几个工位的多工位传递模。

在此基础上又发展出既有连续冲压工位又有多滑块成形工位的压力机—弯曲机。

在此期间,日本站到了世界最前列——其模具加工精度进入了微米级,模具寿命,合金钢制造的模具达到了几千万次,硬质合金钢制造的模具达到了几亿次。

在冲压模具中,每分钟冲压次数,小型压力机通常为200至300次,最高为1200次至1500次。

文献翻译-模具工业

文献翻译-模具工业

模具工业是国民经济的基础工业,是国际上公认的关键工业,工业发达国家称之为“工业之母”。

模具成型具有效率高,质量好,节省原材料,降低产品成本等优点。

采用模具制造产品零件已成为当今工业的重要工艺手段。

模具在机械,电子,轻工,纺织,航空,航天等工业领域里,已成为使用最广泛的工业化生产的主要工艺装备,它承担了这些工业领域中60%--80%产品零件,组件和部件的加工生产。

“模具就是产品质量”,“模具就是经济效益”的观念已被越来越多的人所认识和接受。

在中国,人们已经认识到模具在制造业中的重要基础地位,认识更新换代的速度,新产品的开发能力,进而决定企业的应变能力和市场竞争能力。

在目前用薄钢板制造发动机罩盖的传统还是会持续相当一段时间,所以有必要在钢板的基础上通过利用计算机软件的功能分析零件的工艺性能(结构合理,受力,是否容易冲出破面、、、),发现现有零件的不足之处,讨论并确定改进这些不足之处,进而改善模具的设计,改良冲裁方式;最终实现产品的改良,改善产品的力学性能,外观,使用效果,和造价等等。

冲压加工是通过模具来实现的,从模具角度来看,模具生产技术水平的高低,已成为衡量一个国家产品制造水平高低的重要标志,因为模具在很大程度上决定着产品的质量、效益和新产品的开发能力。

“模具是工业生产的基础工艺装备”也已经取得了共识。

据统计,在电子、汽车、电机、电器、仪器、仪表、家电和通信等产品中,60%~80%的零部件都要依靠模具成形。

用模具生产制件所具备的高精度、高复杂程度、高一致性、高生产率和低消耗,是其他加工制造方法所不能比拟的。

同时,冲压加工也创造了巨大的价值增值,模具是“效益放大器”,用模具生产的最终产品的价值,往往是模具自身价值的几十倍、上百倍。

目前全世界模具年产值约为600亿美元,日、美等工业发达国家的模具工业产值已超过机床工业,从1997年开始,我国模具工业产值也超过了机床工业产值。

其中冲压模具在所有模具(锻造模、压铸模、注塑模等)中,无论从数量、重量或者是从价值上都位居榜首。

模具发展历程毕业课程设计外文文献翻译

模具发展历程毕业课程设计外文文献翻译

Die historyMeorice WilkesAbstract Functional parts are needed for design verification testing, field trials, customer evaluation, and production planning. By eliminating multiple steps, the creation of the injec-tion mold directly by a rapid prototyping (RP) process holds the best promise of reducing the time and cost needed to mold low-volume quantities of parts. The potential of this integration of injection molding with RP has been demonstrated many times. What is missing is the fundamental understandi ng of how the modifications to the mold material and RP manufacturing process impact both the mold design and the injection molding process. In addition, numerical simulation techniques have now become helpful tools of mold designers and process engineers for traditional injection molding. But all current simulation packages for conventional injection molding are no longer applicable to this new type of injection molds, mainly because the property of the mold material changes greatly. In this paper, an integrated approach to accomplish a numerical simulation of injection molding into rapid-prototyped molds is established and a corresponding simulation system is developed. Comparisons with experimental results are employed for verification, which show that the present scheme is well suited to handle RP fabricated stereolithography (SL) molds. Keywords Injection molding Numerical simulation Rapid prototyping IntroductionIn injection molding, the polymer melt at high temperature is injected into the mold under high pressure [1]. Thus, the mold material needs to have thermal and mechanical properties capable of withstanding the temperatures and pressures of the molding cycle. The focus of many studies has been to create theinjection mold directly by a rapid prototyping (RP) process. By eliminating multiple steps, this method of tooling holds the best promise of reducing the time and cost needed to create low-volume quantities of parts in a production material. The potential of integrating injection molding with RP technologies has been demonstrated many times. The properties of RP molds are very different from those of traditional metal molds. The key differences are the properties of thermal conductivity and elastic modulus (rigidity). For example, the polymers used in RP-fabricated stereolithography (SL) molds have a thermal conductivity that is less than one thousandth that of an aluminum tool. In using RP technologies to create molds, the entire mold design and injection-molding process parameters need to be modified and optimized from traditional methodologies due to the completely different tool material. However, there is still not a fundamen tal understanding of how the modifications to the mold tooling method and material impact both the mold design and the injection molding processparameters. One cannot obtain reasonable results by simply changing a few material properties in current models. Also, using traditional approaches when making actual parts may be generating sub-optimal results. So there is a dire need to study the interaction between the rapid tooling (RT) process and material and injection molding, so as to establish the mold design criteria and techniques for an RT-oriented injection molding process.In addition, computer simulation is an effective approach for predicting the quality of molded parts. Commercially available simulation packages of the traditional injection molding process have now become routine tools of the mold designer and process engineer [2]. Unfortunately, current simulation programs for conventional injection molding are no longer applicable to RP molds, because of the dramatically dissimilar tool material. For instance, in using the existing simulation software with aluminum and SL molds and comparing with experimental results, though the simulation values of part distortion are reasonable for the aluminum mold, results are unacceptable, with the error exceeding 50%. The distortion during injection molding is due to shrinkage and warpage of the plastic part, as well as the mold. For ordinarily molds, the main factor is the shrinkage and warpage of the plastic part, which is modeled accurately in current simulations. But for RP molds, the distortion of the mold has potentially more influence, which have been ne glected in current models. For instance, [3] used a simple three-step simulation process to consider the mold distortion, which had too much deviation.In this paper, based on the above analysis, a new simulation system for RP molds is developed. The proposed system focuses on predicting part distortion, which is dominating defect in RP-molded parts. The developed simulation can be applied as an evaluation tool for RP mold design and process opti mization. Our simulation system is verified by an experimental example.Although many materials are available for use in RP technologies, we concentrate on using stereolithography (SL), the original RP technology, to create polymer molds. The SL process uses photopolymer and laser energy to build a part layer by layer. Using SL takes advantage of both the commercial dominance of SL in the RP industry and the subsequent expertise base that has been developed for creating accurate, high-quality parts. Until recently, SL was primarily used to create physical models for visual inspection and form-fit studies with very limited functional applications. However, the newer generation stereolithographic photopolymers have improved dimensional, mechanical and thermal properties making it possible to use them for actual functional molds.1 Die position in industrial productionMold is a high-volume products with the shape tool, is the main process of industrial production equipment.With mold components, with high efficiency, good quality, low cost, saving energy and raw materials and a series of advantages, with the mold workpieces possess high accuracy, high complexity, high consistency, high productivity and low consumption , other manufacturing methods can not match. Have already become an important means of industrial production and technological development. The basis of the modern industrial economy.The development of modern industrial and technological level depends largely on the level of industrial development die, so die industry to national economic and social development will play an increasing role. March 1989 the State Council promulgated "on the current industrial policy decision points" in the mold as the machinery industry transformation sequence of the first, production and capital construction of the second sequence (after the large-scale power generation equipment and the corresponding power transmission equipment), establish tooling industry in an important position in the national economy. Since 1997, they have to mold and its processing technology and equipment included in the "current national focus on encouraging the development of industries, products and technologies catalog" and "to encourage foreign investment industry directory." Approved by the State Council, from 1997 to 2000, more than 80 professional mold factory owned 70% VAT refund of preferential policies to support mold industry. All these have fully demonstrated the development of the State Council and state departments tooling industry attention and support. Mold around the world about the current annual output of 60 billion U.S. dollars, Japan, the United States and other industrialized countries die of industrial output value of more than machine tool industry, beginning in 1997, China's industrial output value has exceeded the mold machine tool industry output.According to statistics, home appliances, toys and other light industries, nearly 90% of the parts are integrated with production of chopsticks; in aircraft, automobiles, agricultural machinery and radio industries, the proportion exceeded 60%. Such as aircraft manufacturing, the use of a certain type of fighter dies more than 30,000 units, of which the host 8000 sets, 2000 sets of engines, auxiliary 20 000 sets. From the output of view, since the 80's, the United States, Japan and other industrialized countries die industry output value has exceeded the machine tool industry, and there are still rising. Production technology, according to the International Association predicts that in 2000, the product best pieces of rough 75%, 50% will be finished mold completed; metals, plastics, ceramics, rubber, buildingmaterials and other industrial products, most of the mold will be completed in more than 50% metal plates, more than 80% of all plastic products, especially through the mold into.2 The historical development of moldThe emergence of mold can be traced back thousands of years ago, pottery and bronze foundry, but the large-scale use is with the rise of modern industry and developed.The 19th century, with the arms industry (gun's shell), watch industry, radio industry, dies are widely used. After World War II, with the rapid development of world economy, it became a mass production of household appliances, automobiles, electronic equipment, cameras, watches and other parts the best way. From a global perspective, when the United States in the forefront of stamping technology - many die of advanced technologies, such as simple mold, high efficiency, mold, die and stamping the high life automation, mostly originated in the United States; and Switzerland, fine blanking, cold in Germany extrusion technology, plastic processing of the Soviet Union are at the world advanced. 50's, mold industry focus is based on subscriber demand, production can meet the product requirements of the mold. Multi-die design rule of thumb, reference has been drawing and perceptual knowledge, on the design of mold parts of a lack of real understanding of function. From 1955 to 1965, is the pressure processing of exploration and development of the times - the main components of the mold and the stress state of the function of a mathematical sub-bridge, and to continue to apply to on-site practical knowledge to make stamping technology in all aspects of a leap in development. The result is summarized mold design principles, and makes the pressure machine, stamping materials, processing methods, plum with a structure, mold materials, mold manufacturing method, the field of automation devices, a new look to the practical direction of advance, so that pressing processing apparatus capable of producing quality products from the first stage.Into the 70's to high speed, launch technology, precision, security, development of the second stage. Continue to emerge in this process a variety of high efficiency, business life, high-precision multi-functional automatic school to help with. Represented by the number of working places as much as other progressive die and dozens of multi-station transfer station module. On this basis, has developed both a continuous pressing station there are more slide forming station of the press - bending machine. In the meantime, the Japanese stand to the world's largest - the mold into the micron-level precision, die life, alloy tool steel mold has reached tens of millions of times, carbide steel mold to each of hundreds of millions of times p minutes for stamping the number of small presses usually 200 to 300, up to 1200 times to 1500 times. In the meantime, in order to meet product updates quickly, with the short duration (such as cars modified, refurbished toys, etc.) need a variety of economic-typemold, such as zinc alloy die down, polyurethane rubber mold, die steel skin, also has been very great development.From the mid-70s so far can be said that computer-aided design, supporting the continuous development of manufacturing technology of the times. With the precision and complexity of mold rising, accelerating the production cycle, the mold industry, the quality of equipment and personnel are required to improve. Rely on common processing equipment, their experience and skills can not meet the needs of mold. Since the 90's, mechanical and electronic technologies in close connection with the development of NC machine tools, such as CNC wire cutting machine, CNC EDM, CNC milling, CNC coordinate grinding machine and so on. The use of computer automatic programming, control CNC machine tools to improve the efficiency in the use and scope. In recent years, has developed a computer to time-sharing by the way a group of direct management and control of CNC machine tools NNC system.With the development of computer technology, computers have gradually into the mold in all areas, including design, manufacturing and management. International Association for the Study of production forecasts to 2000, as a means of links between design and manufacturing drawings will lose its primary role. Automatic Design of die most fundamental point is to establish the mold standard and design standards. To get rid of the people of the past, and practical experience to judge the composition of the design center, we must take past experiences and ways of thinking, for series, numerical value, the number of type-based, as the design criteria to the computer store. Components are dry because of mold constitutes a million other differences, to come up with a can adapt to various parts of the design software almost impossible. But some products do not change the shape of parts, mold structure has certain rules, can be summed up for the automatic design of software. If a Japanese company's CDM system for progressive die design and manufacturing, including the importation of parts of the figure, rough start, strip layout, determine the size and standard templates, assembly drawing and parts, the output NC program (for CNC machining Center and line cutting program), etc., used in 20% of the time by hand, reduce their working hours to 35 hours; from Japan in the early 80s will be three-dimensional cad / cam system for automotive panel die. Currently, the physical parts scanning input, map lines and data input, geometric form, display, graphics, annotations and the data is automatically programmed, resulting in effective control machine tool control system of post-processing documents have reached a high level; computer Simulation (CAE) technology has made some achievements. At high levels, CAD / CAM / CAE integration, that data is integrated, can transmitinformation directly with each other. Achieve network. Present. Only a few foreign manufacturers can do it.3 China's mold industry and its development trendDie & Mould Industry StatusDue to historical reasons for the formation of closed, "big and complete" enterprise features, most enterprises in China are equipped with mold workshop, in factory matching status since the late 70s have a mold the concept of industrialization and specialization of production. Production efficiency is not high, poor economic returns. Mold production industry is small and scattered, cross-industry, capital-intensive, professional, commercial and technical management level are relatively low.According to incomplete statistics, there are now specialized in manufacturing mold, the product supporting mold factory workshop (factory) near 17 000, about 600 000 employees, annual output value reached 20 billion yuan mold. However, the existing capacity of the mold and die industry can only meet the demand of 60%, still can not meet the needs of national economic development. At present, the domestic needs of large, sophisticated, complex and long life of the mold also rely mainly on imports. According to customs statistics, in 1997 630 million U.S. dollars worth of imports mold, not including the import of mold together with the equipment; in 1997 only 78 million U.S. dollars export mold. At present the technological level of China Die & Mould Industry and manufacturing capacity, China's national economy in the weak links and bottlenecks constraining sustainable economic development.3.1 Research on the Structure of industrial products moldIn accordance with the division of China Mould Industry Association, China mold is divided into 10 basic categories, which, stamping die and plastic molding two categories accounted for the main part. Calculated by output, present, China accounts for about 50% die stamping, plastic molding die about 20%, Wire Drawing Die (Tool) about 10% of the world's advanced industrial countries and regions, the proportion of plastic forming die die general of the total output value 40%.Most of our stamping die mold for the simple, single-process mode and meet the molds, precision die, precision multi-position progressive die is also one of the few, die less than 100 million times the average life of the mold reached 100 million times the maximum life of more than accuracy 3 ~ 5um, more than 50 progressive station, and the international life ofthe die 600 million times the highest average life of the die 50 million times compared to the mid 80s at the international advanced level.China's plastic molding mold design, production technology started relatively late, the overall level of low. Currently a single cavity, a simple mold cavity 70%, and still dominant.A sophisticated multi-cavity mold plastic injection mold, plastic injection mold has been able to multi-color preliminary design and manufacturing. Mould is about 80 million times the average life span is about, the main difference is the large deformation of mold components, excess burr side of a large, poor surface quality, erosion and corrosion serious mold cavity, the mold cavity exhaust poor and vulnerable such as, injection mold 5um accuracy has reached below the highest life expectancy has exceeded 20 million times, the number has more than 100 chamber cavity, reaching the mid 80s to early 90s the international advanced level.3.2 mold Present Status of TechnologyTechnical level of China's mold industry currently uneven, with wide disparities. Generally speaking, with the developed industrial countries, Hong Kong and Taiwan advanced level, there is a large gap.The use of CAD / CAM / CAE / CAPP and other technical design and manufacture molds, both wide application, or technical level, there is a big gap between both. In the application of CAD technology design molds, only about 10% of the mold used in the design of CAD, aside from drawing board still has a long way to go; in the application of CAE design and analysis of mold calculation, it was just started, most of the game is still in trial stages and animation; in the application of CAM technology manufacturing molds, first, the lack of advanced manufacturing equipment, and second, the existing process equipment (including the last 10 years the introduction of advanced equipment) or computer standard (IBM PC and compatibles, HP workstations, etc.) different, or because of differences in bytes, processing speed differences, differences in resistance to electromagnetic interference, networking is low, only about 5% of the mold manufacturing equipment of recent work in this task; in the application process planning CAPP technology, basically a blank state, based on the need for a lot of standardization work; in the mold common technology, such as mold rapid prototyping technology, polishing, electroforming technologies, surface treatment technology aspects of CAD / CAM technology in China has just started. Computer-aided technology, software development, is still at low level, the accumulation of knowledge and experience required. Most of our mold factory, mold processing equipment shop old, long in the length of civilian service, accuracy, low efficiency, still use the ordinary forging, turning,milling, planing, drilling, grinding and processing equipment, mold, heat treatment is still in use salt bath, box-type furnace, operating with the experience of workers, poorly equipped, high energy consumption. Renewal of equipment is slow, technological innovation, technological progress is not much intensity. Although in recent years introduced many advanced mold processing equipment, but are too scattered, or not complete, only about 25% utilization, equipment, some of the advanced functions are not given full play.Lack of technology of high-quality mold design, manufacturing technology and skilled workers, especially the lack of knowledge and breadth, knowledge structure, high levels of compound talents. China's mold industry and technical personnel, only 8% of employees 12%, and the technical personnel and skilled workers and lower the overall skill level. Before 1980, practitioners of technical personnel and skilled workers, the aging of knowledge, knowledge structure can not meet the current needs; and staff employed after 80 years, expertise, experience lack of hands-on ability, not ease, do not want to learn technology. In recent years, the brain drain caused by personnel not only decrease the quantity and quality levels, and personnel structure of the emergence of new faults, lean, make mold design, manufacturing difficult to raise the technical level.3.3 mold industry supporting materials, standard parts of present conditionOver the past 10 years, especially the "Eighth Five-Year", the State organization of the ministries have repeatedly Material Research Institute, universities and steel enterprises, research and development of special series of die steel, molds and other mold-specific carbide special tools, auxiliary materials, and some promotion. However, due to the quality is not stable enough, the lack of the necessary test conditions and test data, specifications and varieties less, large molds and special mold steel and specifications are required for the gap. In the steel supply, settlement amount and sporadic users of mass-produced steel supply and demand contradiction, yet to be effectively addressed. In addition, in recent years have foreign steel mold set up sales outlets in China, but poor channels, technical services support the weak and prices are high, foreign exchange settlement system and other factors, promote the use of much current.Mold supporting materials and special techniques in recent years despite the popularization and application, but failed to mature production technology, most still also in the exploratory stage tests, such as die coating technology, surface treatment technology mold, mold guide lubrication technology Die sensing technology and lubrication technology, mold to stress technology, mold and other anti-fatigue and anti-corrosion technology productivity has notyet fully formed, towards commercialization. Some key, important technologies also lack the protection of intellectual property.China's mold standard parts production, the formation of the early 80s only small-scale production, standardization and standard mold parts using the coverage of about 20%, from the market can be assigned to, is just about 30 varieties, and limited to small and medium size. Standard punch, hot runner components and other supplies just the beginning, mold and parts production and supply channels for poor, poor accuracy and quality.3.4 Die & Mould Industry Structure in Industrial OrganizationChina's mold industry is relatively backward and still could not be called an independent industry. Mold manufacturer in China currently can be divided into four categories: professional mold factory, professional production outside for mold; products factory mold factory or workshop, in order to supply the product works as the main tasks needed to die; die-funded enterprises branch, the organizational model and professional mold factory is similar to small but the main; township mold business, and professional mold factory is similar. Of which the largest number of first-class, mold production accounts for about 70% of total output. China's mold industry, decentralized management system. There are 19 major industry sectors manufacture and use of mold, there is no unified management of the department. Only by China Die & Mould Industry Association, overall planning, focus on research, cross-sectoral, inter-departmental management difficulties are many.Mold is suitable for small and medium enterprises organize production, and our technical transformation investment tilted to large and medium enterprises, small and medium enterprise investment mold can not be guaranteed. Including product factory mold shop, factory, including, after the transformation can not quickly recover its investment, or debt-laden, affecting development.Although most products factory mold shop, factory technical force is strong, good equipment conditions, the production of mold levels higher, but equipment utilization rate. Price has long been China's mold inconsistent with their value, resulting in mold industry "own little economic benefit, social benefit big" phenomenon. "Dry as dry mold mold standard parts, standard parts dry as dry mold with pieces of production. Dry with parts manufactured products than with the mold" of the class of anomalies exist.4 Die trend4.1 mold CAD / CAE / CAM being integrated, three-dimensional, intelligent and network direction(1) mold software features integratedDie software features of integrated software modules required relatively complete, while the function module using the same data model, in order to achieve Syndicated news management and sharing of information to support the mold design, manufacture, assembly, inspection, testing and production management of the entire process to achieve optimal benefits. Series such as the UK Delcam's software will include a surface / solid geometric modeling, engineering drawing complex geometry, advanced rendering industrial design, plastic mold design expert system, complex physical CAM, artistic design and sculpture automatic programming system, reverse engineering and complex systems physical line measurement systems. A higher degree of integration of the software includes: Pro / ENGINEER, UG and CATIA, etc.. Shanghai Jiaotong University, China with finite element analysis of metal plastic forming systems and Die CAD / CAM systems; Beijing Beihang Haier Software Ltd. CAXA Series software; Jilin Gold Grid Engineering Research Center of the stamping die mold CAD / CAE / CAM systems .(2) mold design, analysis and manufacture of three-dimensionalTwo-dimensional mold of traditional structural design can no longer meet modern technical requirements of production and integration. Mold design, analysis, manufacturing three-dimensional technology, paperless software required to mold a new generation of three-dimensional, intuitive sense to design the mold, using three-dimensional digital model can be easily used in the product structure of CAE analysis, tooling manufacturability evaluation and CNC machining, forming process simulation and information management and sharing. Such as Pro / ENGINEER, UG and CATIA software such as with parametric, feature-based, all relevant characteristics, so that mold concurrent engineering possible. In addition, Cimatran company Moldexpert, Delcam's Ps-mold and Hitachi Shipbuilding of Space-E/mold are professional injection mold 3D design software, interactive 3D cavity, core design, mold base design configuration and typical structure . Australian company Moldflow realistic three-dimensional flow simulation software MoldflowAdvisers been widely praised by users and applications. China Huazhong University of Science have developed similar software HSC3D4.5F and Zhengzhou University, Z-mold software. For manufacturing, knowledge-based intelligent software function is a measure of die important sign of advanced and practical one. Such as injection molding experts Cimatron's software。

【机械类文献翻译】模具设计与制造

【机械类文献翻译】模具设计与制造

Mold design and manufactureThe mold is the manufacturing industry important craft foundation,in our country,the mold manufacture belongs to the special purpose equipment manufacturing industry.China although very already starts to make the mold and the use mold,but long-term has not formed the industry.Straight stabs0 centuries80's later periods,the Chinese mold industry only then drives into the development speedway.Recent years,not only the state-owned mold enterprise had the very big development,the three investments enterprise,the villages and towns(individual)the mold enterprise's development also quite rapid.Although the Chinese mold industrial development rapid,but compares with the demand,obviously falls short of demand,its main gap concentrates precisely to,large-scale,is complex,the long life mold domain.As a result of in aspect and so on mold precision,life,manufacture cycle and productivity, China and the international average horizontal and the developed country still had a bigger disparity,therefore,needed massively to import the mold every year.The Chinese mold industry except must continue to sharpen the productivity,from now on will have emphatically to the profession internal structure adjustment and the state-of-art enhancement.The structure adjustment aspect,mainly is the enterprise structure to the specialized adjustment,the product structure to center the upscale mold development,to the import and export structure improvement,center the upscale automobile cover mold forming analysis and the structure improvement,themulti-purpose compound mold and the compound processing and the laser technology in the mold design manufacture application,the high-speed cutting,the superfinishing and polished the technology,the information direction develops.The recent years,the mold profession structure adjustment and the organizational reform step enlarges,mainly displayed in,large-scale,precise, was complex,the long life,center the upscale mold and the mold standard letter development speed is higher than the common mold product;The plastic mold and the compression casting mold proportion increases; Specialized mold factory quantity and its productivity increase;"The three investments"and the private enterprise develops rapidly;The joint stock system transformation step speeds up and so on.Distributes from the area looked,take Zhujiang Delta and Yangtze River delta as central southeast coastal area development quickly to mid-west area,south development quickly to north.At present develops quickest,the mold produces the most centralized province is Guangdong and Zhejiang,places such as Jiangsu, Shanghai,Anhui and Shandong also has a bigger development in recent years.Although our country mold total quantity had at present achieved the suitable scale,the mold level also has the very big enhancement,after but design manufacture horizontal overall rise and fall industry developed country and so on Yu De,America,date,France,Italy many.The current existence question and the disparity mainly display in following several aspects:(1)the total quantity falls short of demanddomestic mold assembling oneself rate only,about70%.Low-grade mold, center upscale mold assembling oneself rate only has50%about.(2)the enterprise organizational structure,the product structure,the technical structure and the import and export structure does not gatherin our country mold production factory to be most is from the labor mold workshop which produces assembles oneself(branch factory),from produces assembles oneself the proportion to reach as high as about60%,but the overseas mold ultra70%is the commodity mold.The specialized mold factory mostly is"large and complete","small and entire"organization form, but overseas mostly is"small but","is specially small and fine".Domesticlarge-scale,precise,complex,the long life mold accounts for the total quantity proportion to be insufficient30%,but overseas in50%above2004 years,ratio of the mold import and export is3.7:1,the import and export balances the after net import volume to amount to1.32billion US dollars,is world mold net import quantity biggest country.(3)the mold product level greatly is lower than the international standard the production cycle actually is higher than the international water broad product level low mainly to display in the mold precision,cavity aspect and so on surface roughness,life and structure.(4)develops the ability badly,economic efficiency unsatisfactory our country mold enterprise technical personnel proportion lowthe level is lower,also does not take the product development,frequently is in the passive position in the market.Our country each mold staff average year creation output value approximately,ten thousand US dollars,overseas mold industry developed country mostly15to10,000US dollars,some reach as high as25to10,000US dollars,relative is our country quite part of molds enterprises also continues to use the workshop type management with it,truly realizes the enterprise which the modernized enterprise manages fewTo create the above disparity the reason to be very many,the moldlong-term has not obtained the value besides the history in as the product which should have,as well as the most state-owned enterprises mechanism cannot adapt the market economy,but also has the following several reasons:.(1)country to mold industry policy support dynamics also insufficiently although the country already was clear about has promulgated the mold profession industrial policy,but necessary policy few,carried out dynamics to be weak.At present enjoyed the mold product increment duty enterprise nation185,the majority enterprise still the tax burden is only overweight.The mold enterprise carries on the technological transformations introduction equipment to have to pay the considerable amount the tax money,affects thetechnology advancement,moreover privately operated enterprise loan extremely difficult.(2)talented person serious insufficient,the scientific research development and the technical attack investment too urinemold profession is the technology,the fund,the work crowded industry, along with the time progress and the technical development,grasps the talented person which and skilled utilizes the new technology exceptionally short,the high-quality mold fitter and the enterprise management talent extremely is also anxious.Because the mold enterprise benefit unsatisfactory and takes insufficiently the scientific research development and the technical attack,the scientific research unit and the universities,colleges and institutes eye stares at is creating income,causes the mold profession invests too few in the scientific research development and the technical attack aspect,causes the mold technological development step not to be big,progresses not quick. (3)the craft equipment level to be low,also necessary is not good,the use factor lowrecent years our country engine bed profession progressed quickly,has been able to provide the quite complete precision work equipment,but compared with the overseas equipment,still had a bigger disparity.Although the domestic many enterprises have introduced many overseas advanced equipment,but the overall equipment level low are very more than the overseas many enterprises.As a result of aspect the and so on system and fund reason,introduces the equipment not not necessary,the equipment and the appendix not necessary phenomenon are extremely common,the equipment utilization rate low question cannot obtain the comparatively properly solution for a long time.(4)specialization,standardization,commercialized degree low,the cooperation abilitybecause receives"large and complete""small and entire"the influence since long ago,mold specialization level low,the specialized labor division isnot careful,the commercialized degree is low.At present domestic every year produces mold,commodity mold minister40%About,other for from produce uses for oneself.Between the mold enterprise cooperates impeded,completes the comparatively large-scale mold complete task with difficulty.Mold standardization level low,mold standard letter use cave rare is low also to the mold quality,the cost has a more tremendous influence,specially has very tremendous influence.(5)to the mold manufacture cycle)the mold material and the mold correlation technology fallsthe mold material performance,the quality and the variety question often can affect the mold quality,the life and the cost,the domestically produced molding tool steel and overseas imports the steel products to compare has a bigger disparity.Plastic,plate,equipment energy balance,also direct influence mold level enhancement.At present,our country economy still was at the high speed development phase,on the international economical globalization development tendency is day by day obvious,this has provided the good condition and the opportunity for the our country mold industry high speed development.On the one hand, the domestic mold market will continue high speed to develop,on the other hand,the mold manufacture also gradually will shift as well as the transnational group to our country carries on the mold purchase trend to our country extremely to be also obvious.Therefore,will take a broad view the future,international,the domestic mold market overall development tendency prospect will favor,estimated the Chinese mold will obtain the high speed development under the good market environment,our country not only can become the mold great nation,moreover certainly gradually will make the powerful nation to the mold the ranks to make great strides forward."15" period,the Chinese mold industry level not only has the very big enhancement in the quantity and the archery target aspect,moreover the profession structure,the product level,the development innovation ability,enterprise's system and the mechanism as well as the technology advancement aspect also can obtain a bigger development.The mold technology has gathered the machinery,the electron,chemistry, optics,the material,the computer,the precise monitor and the information network and so on many disciplines,is a comprehensive naturemulti-disciplinary systems engineering.The mold technology development tendency mainly is the mold product to larger-scale,preciser,more complex and a more economical direction develops,the mold product technical content unceasingly enhances,the mold manufacture cycle unceasingly reduces,the mold production faces the information,is not having the chart,is fine,the automated direction develops,the mold enterprise to the technical integration, the equipment excellent,is producing approves the brand,the management information,the management internationalization direction develops.Our country mold profession still will have to enhance from now on the general character technology had:(1)to establish in the CAD/CAE platform the advanced mold design technology,enhances modernization which the mold designed,information, intellectualization,standardized level.(2)establishes in the CAM/CAPP foundation the advanced mold processing technology and the advanced manufacture technology unifies, raises the automated level and the production efficiency which the mold processes.(3)the mold production enterprise's information management technology. For example PDM(product data management),ERP(enterprise resource management),MIS(mold manufacture management information system)and information network technology the and so on INTERMET platform application,the promotion and the development.(4)are high speed,Gao Jing,the compound mold processing technology research and the application.For example the ultra fine ramming moldmanufacture technology,the precise plastic and the compression casting mold manufacture technology and so on.(5)enhances the mold production efficiency,reduces the cost and reduces the mold production cycle each kind of fast economical mold manufacture technology.(6)the advanced manufacture technology application.For example hot technology and so on flow channel technology,gas auxiliary technology, hypothesized technology,nanotechnology,rapid scanning technology, reversion project,parallel project in the mold research,the development,the processing process application.(7)the raw material the simulation technology which forms in the mold.(8)the advanced mold processing and the appropriation equipment research and the development.(9)the mold and the mold standard letter,the important auxiliary standardized technology.(10)the mold and its the product examination technology.(11)high quality,the new mold material research and the development and its the correct application.(12)the mold production enterprise's modern management technology□Mold profession in"十15"period needs to solve the key essential technology should be the mold information,the digitized technology and precise,ultra fine,high speed,the highly effective manufacture technology aspect breakthroughAlong with the national economy total quantity and the industry product technology unceasing development,all the various trades and occupations to the mold demand quantity more and more big,the specification more and more is also high.Although mold type many,but its development should be with emphasis both can meet the massive needs,and has the comparatively high-tech content, specially at present domestic still could not be self-sufficient,needs themassive imports the mold and can represent the development directionlarge-scale,precise,is complex,the long life mold.The mold standard letter type,the quantity,the level,the production a and so on have the significant influence to the entire mold profession development.Therefore,some important mold standard letters also must the prioritize,moreover its development speed should quickly to the mold development speed,like this be able unceasingly to raise our country mold standardization level,thus improves the mold quality,reduces the mold production cycle,reduces the cost.Because our country mold product holds the bigger price superiority in the international market,therefore regarding the exportation prospect good mold product also should take key develops.According to the above required quantity big,the technical content is high,represents the development direction,the export prospect good principle choice prioritize product, moreover chooses the product to have at present to have the certain technology base,belongs has the condition,has the product which the possibility develops.According to"十15"the mold profession development plan,"十15"the period mold product development mainly has following several kind of the automobile cover mold(1)ramming mold to occupythe mold total quantity dish with emphasis above40%.Automobile cover mold mainly for automobile necessary,also includes for the agriculture with the vehicle,the project machinery and the farm machinery necessary cover mold,it has the very big representation in the ramming mold,the mold mostly is large and middle scale,structure complex,the specification is high.For the passenger vehicle necessary cover mold,the request is in particular higher, may represent the ramming mold the level.This kind of mold our country had the certain technology base,already for middle-grade passenger vehicle necessary,but the level is not high,the ability is insufficient,at present satisfying rate only has one about the half.Center the upscale passengervehicle cover mold main dependence import,has become the bottleneck which the automobile develops,enormous influence vehicle type development.(2)the precise ramming moldmulti-locations level was entering the mold and fine represents the ramming mold development direction,the precision request life request has been extremely high,mainly for the electronics industry,the automobile,the instrument measuring appliance,the electrical machinery electric appliance and so on formed a complete set.These two kind of molds,domestic had the suitable foundation,and has introduced the overseas technology and the equipment,the individual enterprise produces the product has achieved the world level,but the majority of enterprises still had a bigger disparity,the supply total quantity insufficient,the import were very many(3)the large-scale precise plastic moldplastic mold accounts for the mold total quantity10%,moreover this proportion also is rising.In the plastic mold necessary large-scale casts the mold for the automobile and the electrical appliances,necessary models for the integrated circuit seals the mold,for the electronic information industry and the machinery and the packing necessary multilayer,the multi-cavities, the multi-material qualities,the multicolor precise note,and saves water the agricultural necessary plastic different molding for the new building materials to squeeze out the mold and the pipeline and the nozzle mold and so on,at present although had the suitable technology base and fast is developing,but the technical level and overseas still had a bigger disparity,the total quantity falls short of demand,Every year import amount reaches several hundred million US dollar.(4)the main mold standard to imitateeat present domestically to have an greater output the mold standard letter mainly is the mold frame,the guidance,the throwout lever pushes the tube, the elastic part and so on.These products not only the domestic necessarymassive need,the exportation prospect very is also good,should continue vigorously to develop.The nitrogen cylinder and the hot flow channel part main dependence import,should raise the level in the existing foundation, forms the standard and organization scale production.(5)the other high-tech content moldsoccupiesin the mold total quantity green8%compression casting mold, large-scale thin wall precise compression casting technology content high,the difficulty is big.The magnesium alloy compression casting mold at present although just started,but the prospects for development were good,have the representation.The meridian rubber tire mold also is the development direction,detachable mold technology difficulty is biggest.With fast takes shape some fast pattern making technologies and the corresponding fast economical mold which the technology unifies has the very good prospects for development.These high-tech content molds in"十15"period also should the prioritize.模具设计与制造模具是制造业的重要工艺基础,在我国,模具制造属于专用设备制造业。

文献翻译-模具发展历程

文献翻译-模具发展历程

编号:毕业设计(论文)外文翻译(译文)院(系):国防生学院专业:机械设计制造及其自动化学生姓名:学号:指导教师单位:姓名:职称:2014年 3 月9 日模具发展历程威尔克斯.莫赖斯摘要功能性零部件都需要设计验证测试,车间试验,客户评价,以及生产计划。

在小批量生产零件的时候,通过消除多重步骤,建立了有快速成型形成的注塑模具,这种方法可以保证缩短时间和节约成本。

这种潜在的一体化由快速成型形成注塑模具的方法已经被多次证明是可行的。

无论是模具设计还是注塑成型的过程中,缺少的是对如何修改这个模具材料和快速成型制造过程的影响有最根本的认识。

此外,数字模拟技术现在已经成为模具设计工程师和工艺工程师开注塑模具的有用的工具。

但目前所有的做常规注塑模具的模拟包已经不再适合这种新型的注塑模具,这主要是因为模具材料的成本变化很大。

在本文中,以完成特定的数字模拟注塑液塑造成快速成型模具的综合方法已经发明出来了,而且还建立了相应的模拟系统。

通过实验结果表明,目前这个方法非常适合处理快速成型模具中的问题。

关键词:注塑成型;数字模拟;快速成型。

引言在注塑成型中,聚合物熔体在高温和高压下进入模具中。

因此,模具的材料需要有足够的热性能和机械性能来经受高温和高压的塑造循环。

许多研究的焦点都是直接有快速成型形成注塑模具的过程。

在生产小批量零件的时候,通过消除多重步骤,直接由快速成型形成的注塑模具可以保证缩短时间和节约成本。

这种潜在的有快速成型形成注塑模具的方法已经被证明成功了。

快速成型模具在性能上是有别与传统的金属模具。

主要差异是导热性能和弹性模量(刚性)。

举例来说,在立体光照成型模具中的聚合物的导热率小于铝制的工具的千分之一。

在用快速成型技术来制造铸模时,整个模具设计和注塑成型工艺参数都需要修改和优化,传统的方法是改变彻底的刀具材料.不过,目前还没有对如何修改这个模具材料的方法有根本的了解.在当前的模具中,仅仅改变一些材料的性能是不能得到一个合理的结果的。

模具 外文翻译 英文文献 模具的发展与趋势

模具 外文翻译  英文文献 模具的发展与趋势

一、Die history and die trend1、Die position in industrial productionWith mold components, with high efficiency, good quality, low cost, saving energy and raw materials and a series of advantages, with the mold workpieces possess high accuracy, high complexity, high consistency, high productivity and low consumption , other manufacturing methods can not match. Have already become an important means of industrial production and technological development. The basis of the modern industrial economy.Mold is a high-volume products with the shape tool, is the main process of industrial production equipment.The development of modern industrial and technological level depends largely on the level of industrial development die, so die industry to national economic and social development will play an increasing role. March 1989 the State Council promulgated "on the current industrial policy decision points" in the mold as the machinery industry transformation sequence of the first, production and capital construction of the second sequence (after the large-scale power generation equipment and the corresponding power transmission equipment), establish tooling industry in an important position in the national economy. Since 1997, they have to mold and its processing technology and equipment included in the "current national focus on encouraging the development of industries, products and technologies catalog" and "to encourage foreign investment industry directory." Approved by the State Council, from 1997 to 2000, more than 80 professional mold factory owned 70% VAT refund of preferential policies to support mold industry. All these have fully demonstrated the development of the State Council and state departments tooling industry attention and support. Mold around the world about the current annual output of 60 billion U.S. dollars, Japan, the United States and other industrialized countries die of industrial output value of more than machine tool industry, beginning in 1997, China's industrial output value has exceeded the mold machine tool industry output.According to statistics, home appliances, toys and other light industries, nearly 90% of the parts are integrated with production of chopsticks; in aircraft, automobiles, agricultural machinery and radio industries, the proportion exceeded 60%. Such as aircraft manufacturing, the use of a certain type of fighter dies more than 30,000 units, of which the host 8000 sets, 2000 sets of engines, auxiliary 20 000 sets. From the output of view, since the 80's, the United States, Japan and other industrialized countries die industry output value has exceeded the machine tool industry, and there are still rising. Production technology, according to the International Association predicts that in 2000, the product best pieces of rough 75%, 50% will be finished mold completed; metals, plastics, ceramics, rubber, building materials and other industrial products, most of the mold will be completed in more than 50% metal plates, more than 80% of all plastic products, especially through the mold into.2、The historical development of moldThe emergence of mold can be traced back thousands of years ago, pottery and bronze foundry, but the large-scale use is with the rise of modern industry and developed.The 19th century, with the arms industry (gun's shell), watch industry, radio industry, dies are widely used. After World War II, with the rapid development of world economy, it became a mass production of household appliances, automobiles, electronic equipment, cameras, watches and other parts the best way. From a global perspective, when the United States in the forefront of stamping technology - many die of advanced technologies, such as simple mold, high efficiency, mold, die and stamping the high life automation, mostly originated in the United States; and Switzerland, fine blanking, cold in Germany extrusion technology, plastic processing of the Soviet Union are at the world advanced. 50's, mold industry focus is based on subscriber demand, production can meet the product requirements of the mold. Multi-die design rule of thumb, reference has been drawing and perceptual knowledge, on the design of mold parts of a lack of real understanding of function. From 1955 to 1965, is the pressure processing of exploration and development of the times - the main components of the mold and the stress state of the function of a mathematicalsub-bridge, and to continue to apply to on-site practical knowledge to make stamping technology in all aspects of a leap in development. The result is summarized mold design principles, and makes the pressure machine, stamping materials, processing methods, plum with a structure, mold materials, mold manufacturing method, the field of automation devices, a new look to the practical direction of advance, so that pressing processing apparatus capable of producing quality products from the first stage.Into the 70's to high speed, launch technology, precision, security, development of the second stage. Continue to emerge in this process a variety of high efficiency, business life, high-precision multi-functional automatic school to help with. Represented by the number of working places as much as other progressive die and dozens of multi-station transfer station module. On this basis, has developed both a continuous pressing station there are more slide forming station of the press - bending machine. In the meantime, the Japanese stand to the world's largest - the mold into the micron-level precision, die life, alloy tool steel mold has reached tens of millions of times, carbide steel mold to each of hundreds of millions of times p minutes for stamping the number of small presses usually 200 to 300, up to 1200 times to 1500 times. In the meantime, in order to meet product updates quickly, with the short duration (such as cars modified, refurbished toys, etc.) need a variety of economic-type mold, such as zinc alloy die down, polyurethane rubber mold, die steel skin, also has been very great development.From the mid-70s so far can be said that computer-aided design, supporting the continuous development of manufacturing technology of the times. With the precision and complexity of mold rising, accelerating the production cycle, the mold industry, the quality of equipment and personnel are required to improve. Rely on common processing equipment, their experience and skills can not meet the needs of mold. Since the 90's, mechanical and electronic technologies in close connection with the development of NC machine tools, such as CNC wire cutting machine, CNC EDM, CNC milling, CNC coordinate grinding machine and so on. The use of computer automatic programming, control CNC machine tools to improve theefficiency in the use and scope. In recent years, has developed a computer to time-sharing by the way a group of direct management and control of CNC machine tools NNC system.With the development of computer technology, computers have gradually into the mold in all areas, including design, manufacturing and management. International Association for the Study of production forecasts to 2000, as a means of links between design and manufacturing drawings will lose its primary role. Automatic Design of die most fundamental point is to establish the mold standard and design standards. To get rid of the people of the past, and practical experience to judge the composition of the design center, we must take past experiences and ways of thinking, for series, numerical value, the number of type-based, as the design criteria to the computer store. Components are dry because of mold constitutes a million other differences, to come up with a can adapt to various parts of the design software almost impossible. But some products do not change the shape of parts, mold structure has certain rules, can be summed up for the automatic design of software. If a Japanese company's CDM system for progressive die design and manufacturing, including the importation of parts of the figure, rough start, strip layout, determine the size and standard templates, assembly drawing and parts, the output NC program (for CNC machining Center and line cutting program), etc., used in 20% of the time by hand, reduce their working hours to 35 hours; from Japan in the early 80s will be three-dimensional cad / cam system for automotive panel die. Currently, the physical parts scanning input, map lines and data input, geometric form, display, graphics, annotations and the data is automatically programmed, resulting in effective control machine tool control system of post-processing documents have reached a high level; computer Simulation (CAE) technology has made some achievements. At high levels, CAD / CAM / CAE integration, that data is integrated, can transmit information directly with each other. Achieve network. Present. Only a few foreign manufacturers can do it.3、The trend of the die(1) mold software features integratedDie software features of integrated software modules required relatively complete, while the function module using the same data model, in order to achieve Syndicated news management and sharing of information to support the mold design, manufacture, assembly, inspection, testing and production management of the entire process to achieve optimal benefits. Series such as the UK Delcam's software will include a surface / solid geometric modeling, engineering drawing complex geometry, advanced rendering industrial design, plastic mold design expert system, complex physical CAM, artistic design and sculpture automatic programming system, reverse engineering and complex systems physical line measurement systems. A higher degree of integration of the software includes: Pro / ENGINEER, UG and CATIA, etc.. Shanghai Jiaotong University, China with finite element analysis of metal plastic forming systems and Die CAD / CAM systems; Beijing Beihang Haier Software Ltd. CAXA Series software; Jilin Gold Grid Engineering Research Center of the stamping die mold CAD / CAE / CAM systems .(2) mold design, analysis and manufacture of three-dimensionalTwo-dimensional mold of traditional structural design can no longer meet modern technical requirements of production and integration. Mold design, analysis, manufacturing three-dimensional technology, paperless software required to mold a new generation of three-dimensional, intuitive sense to design the mold, using three-dimensional digital model can be easily used in the product structure of CAE analysis, tooling manufacturability evaluation and CNC machining, forming process simulation and information management and sharing. Such as Pro / ENGINEER, UG and CATIA software such as with parametric, feature-based, all relevant characteristics, so that mold concurrent engineering possible. In addition, Cimatran company Moldexpert, Delcam's Ps-mold and Hitachi Shipbuilding of Space-E/mold are professional injection mold 3D design software, interactive 3D cavity, core design, mold base design configuration and typical structure . Australian company Moldflow realistic three-dimensional flow simulation software MoldflowAdvisers been widely praised by users and applications. China Huazhong University of Science have developed similar software HSC3D4.5F and Zhengzhou University,Z-mold software. For manufacturing, knowledge-based intelligent software function is a measure of die important sign of advanced and practical one. Such as injection molding experts Cimatron's software can automatically generate parting direction based parting line and parting surface, generate products corresponding to the core and cavity, implementation of all relevant parts mold, and for automatically generated BOM Form NC drilling process, and can intelligently process parameter setting, calibration and other processing results.(3) mold software applications, networking trendWith the mold in the enterprise competition, cooperation, production and management, globalization, internationalization, and the rapid development of computer hardware and software technology, the Internet has made in the mold industry, virtual design, agile manufacturing technology both necessary and possible. The United States in its "21st Century Manufacturing Enterprise Strategy" that the auto industry by 2006 to achieve agile manufacturing / virtual engineering solutions to automotive development cycle shortened from 40 months to 4 months.二、The injection and Compression MoldingInjection molding si principally used for the production of the thermoplastic parts, although some progress has been made in developing a method for injection molding some thermosetting materials. The problem of injecting a melted plastic into a mold cavity form a reservoir of melted material has been extremely difficult to solve for thermosetting plastics which cure and harden under such conditions within a few minutes. The principle of injection molding is quite similar to that of die-casting. The process consists of feeding a plastic compound in powdered or granular form from a hopper through metering and melting stages and then injecting it into a mold. After a brief coolling period, the mold is opened and the solidified part ejected. Injection-molding machines can be arranged for manual operation, automatic single-cucle operation, and full automatic operation. The advantage of injection molding are:(i) a high molding speed adapted for mass production is possible;(ii)there is a wide choice of thermoplastic materials providing a variety of usefull properties;(iii)it is possible to mold threads, undercuts, side holes, and large thin sections.Several methods are used to force or inject the melted plastic into the mold. The most commonly used system in the larger machines is the in-line reciprocating screw.The screw acts as a combination and plasticizing unit.As the plastic is fed to the rotating screw,it passes through three zones as shown: feed,compression, and metering. After the feed zone, the screw-flight depth is gradually reduced,forcing the plastic to compress. The work is converted to heat by shearing the plastic, making it a semifluid mass. In the metering zone, additional heat is applied by conduction from the barrel surface. As the chamber in front of the screw becomes filled, it forces thescrew back, tripping a limit switch that activates a hydraulic cylinder that forces the screw forward and injects the fluid plastic into the closed mold.An antiflowback valve prevents plastic under pressure from escaping back into the screw flights.The clamping force that a machine is capable of exerting is part of the size designation and is measured in tons. A rule-of-thumb can be used to determine the tonnage required for a particular job. It is based on two tons of clamp force per square inch of projected area. If the flow pattern is difficult and the parts are thin,this may have to go to three or four tons.Many reciprocating - screw machines are capable of handing thermosetting plastic materials.Previously these materials were handled by compression or transfer molding.Thermosetting materials cure or polymerize in the mold and are ejected hot in the range of 375℃~410℃.Thermoplastic parts must be allowed to cool in the mold in order to remove them without distortion.Thus thermosetting cycles can be faster.Of course the mold must be heated rather than chilled,as with thermoplastics.The importance of Injecting the mold are :⑴、Plastics have the density small, the quality light, the specific tenacity big, theinsulating property good, the dielectric loss low, the chemical stability strong, the formation productivity high and the price inexpensive and so on the merits,obtained day by day the widespread application in the national economy andpeople's daily life each domain, as early as in the beginning of 1990s, the plastic annual output already surpassed the steel and iron and the non-ferrous metalannual output sum total according to the volume computation.In mechanical and electrical (for example so-called black electrical appliances), domains and so on measuring appliance, chemical, the automobile and astronautics aviation, theplastic has become the metal the good substitution material, had the metalmaterial plastic tendency.⑵、Take the automobile industry as the example , as a result of the automobilelightweight, the low energy consumption development request, the automobile spare part material constitution occurred obviously has modelled the band steelthe change, at present our country automobile plastic accounts for 5% which the automobile was self-possessed to 6%, but overseas has reached 13%, forecast according to the expert, the automobile plastic bicycle amount used will also be able further to increase.On modern vehicles, regardless of is outside installs the assorted items, the internal installation assorted items, the function and the structural element, all may use the plastic material, outside installs the assorted items to have the bumper, the fender, the wheel hub cap, the air deflector and so on; After the internal installation assorted items have in the display board, thevehicle door the board, the vice-display board, the sundry goods box lid, the chair, the guard shield and so on; The function and the structural element have the fuel tank, the radiator header, the spatial filter hood, the fan blade and so on.Statistics have indicated, our country in 2000 automobile output more than 200 tenthousand, the vehicle amounted to 1,380,000 tons with the plastic.Looked from the domestic and foreign automobile plastic application situation that, theautomobile plastic amount used already became one of weight automobileproduction technical level symbols.⑶、Injection of a molding formation as plastic workpiece most effective formationmethods because may by one time take shape each kind of structure complex, the size precise and has the metal to inlay a product, and the formation cycle isshort, may by mold multi-cavities, the productivity be high, when massproductions the cost isvery inexpensive, easy to realize the automatedproduction, therefore holds the extremely important status in the plasticprocessing profession.Statistics have indicated, plastic mold composition allmolds (including metal pattern) 38.2%, the plastic product gross weight about 32% is uses in injecting the formation, 80% above engineering plasticsproduct all must use the injection formation way production. 4. counts according to the customs, our country in 2000 altogether imported mold 977,000,000 US dollars, in which plastic molding forms altogether 550,000,000 US dollars, occupied for 56.3%,2001 years altogether to import mold 1,112,000,000 US dollars, in which plastic molding forms altogether 616,000,000 US dollars,accounted for 55.4%.From the variety, the import volume biggest is the plastic molding forms.⑷、Counts according to the customs, our country in 2000 altogether importedmold 977,000,000 US dollars, in which plastic molding forms altogether550,000,000 US dollars, occupied for 56.3%, 2001 years altogether to import mold 1,112,000,000 US dollars, in which plastic molding forms altogether616,000,000 US dollars, accounted for 55.4%.From the variety, the import volume biggest is the plastic molding forms.In compression molding the palstic material as powder or preforms is placed into a heated steel mold cavity,Since the parting surface is in a horizontal plane ,the upper half of the mold descends vertically.It closes the mold cavity and pressures for a predetermined period.A pressure of from 2 to 3 tons square inch and a temperaure at approximately 350F converts the plastic to a semiliquid which flows to all parts of the mold ually from 1 to 15 minutes is required for curing,altough a recently developed alkyd plastic will cure in less than 25 secends. The mold is then opended and the molded part removed.If metal insers are desired in the parts,they should be placed in the mold cavity on pins or in the holes before the plastic is loaded.Also, the preforms should be preheated before loading into the mold cavity to eliminate gases,inprove flow,and decrease curing time.Dieletric heating is a convenient method of heating the preforms.Since the plastic material is placed directly into the mold cavity,the mold itself can be simpler than those used for other molding precesses.Gates and sprues are unnecessary.This also results in a saving in material,because trimmed-off gates and sprues would be a complete loss of the thermosetting plastic.The press require the full attention of one operator.However,several smaller presses can be operated by one operator. The presses are conveniently located so the operator can easilymove from one to the next.By the time he gets around to a particular press again,that mold will be ready to open.the thermosetting plastics which harden under heat and pressure are suitable for compression molding and transfer molding.It is not practical to moid shermoplastic materials by these methods,since the molds would have to bealternately heated and cooled.In order to harden and eject thermoplastic parts form the mold,cooling would be necessary.Types of molds for compression molding.The molds used for compression molding are classified into four basic types, namely ,positive molds,landed positive mold,flash-type molds,and semipositive molds.In a positive mold the plunger on the upper mold enters the lower mold cavity.since there are no lands or stops on the lower die ,the plunger completely trap the plastic material and descends with full pressure on the charge.A dense part with good electrical and physical properties is produced.The amount of plastic placed in the die cavity must be accurately measured,since it determines the thickness of the part .A landed positive mold is similar to a positive mold except that lands are added to stop the travel of the plunger at predetermined point.In this case,the lands absorb some of the pressure that should be exerted on the parts.The thickness of the parts will be accurately controlled,but the density may vary cansideraby.In a flash-type mold,flash redges are added ti the top and bottom molds.As the upper mold exerts pressure on the plastic,excess material is forced out between the flash ridges where it forms flash.This flash is further compressed.becomes hardened,and finally stops the downard thavel of the upper mold.A slight excess of the plastic material is always chared to ensure sufficient pressurs to produce a dense molded part.This type of mold is widely used because it is comparatively easy to construct and it controls thickness and density within colse limits.The semipositive mold is a combination od the flash type and landed posive molds.In addition to the flash ridges,a land is employed to restrict the travel of the upper mold.三、The latheThe lathe is one of the most useful and versatile machines in the workshop, and capable of carrying out a wide variety of machining operations. The main components of the lathe are the headstock and tailstock at opposite ends of a bed , and a tool-post between them which holds the cutting tool. The tool-post stands on a cross-slide which enables it to move sidewards across the saddle or carriage as well as along it , depending on the kind of job it is doing .The ordinary centre lathe can accommendate only one tool at a time on the tool-post , but a burret lathe is capable of holding five or more tools on the revolving turret . The lathe bed must be very solid to prevent the machine from bending or twisting under stress.The headstock incorporates the driving and gear mechanism, and a spindle which holds the workpiece and causes it to rotate at a speed which depends largely on the diameter of the workpiece. A bar of large diameter should naturally rotate more slowly than a very thin bar , the cutting feed-shaft from the headstock drives the tool-post along the saddle , either forwards or backwards , at a fixed and uniform speed. This enables rotation of the shaft, and therefore the forward or backward movement of the tool-post. The gear which the operator will select depends on the type of metal which he is cutting and the amount of metal he has to cut off. For a deep or roughing cut the forward movement of the tool should be less than for a finishing cut.Centres are not suitable for every job on the lathe . The operator can replace them by various types of chucks, which hold the work between jaws, or by a front-plate, depending on the shape of work and the particular cutting operation. He will use a chuck, for example, to hold a short piece of work , or work for drilling , boring or screw-cutting .A transverse movement of the tool-post across the saddle enables the tool to cut across the face of the workpiece and give it a flat surface. For screw-cutting , the operator engages the leadscrew, a long screwed shaft which runs along in front of the bed and which rotates with the spindle. The lead-screw drives the tool-post forward along the carriage at the correct speed, and this ensures that the threads on the screw are of exactly the right pitch. The operator can select different gear speeds , and this will alter the ratio of spindle and laedscrew speeds and therefore alter the pitch of the threads. A reversing lever on the headstock enables him to reverse the movement of the carriage and so bring the tool back to its original position.The purpose of any machine tool is to remove metal. Each machine tool removes metal in a different way. For example , in one type (the lathe )metal is removed by a single point tool as the work is rotated , whereas in another type(the milling machine) a cutter is rotated and metal is removed as the work is progressed beneath it .Which machine tool is to be used for a particular job depends to a large extent upon the type of machining required . There is , however, a certain amount of overlapping and some machine tools can be utilized for several different operations but it must not be assumed that the particular machine tool is restricted to the operation shown.The machine tools which will be found in the modern toolroom are as follow:⑴Lathes for turning ,boring and screwcutting, ect. The primary purpose of the latheis to machine cylindrical forms. The contour is generated by rotating the work with respect to a single-point cutting tool.⑵Cylindrical grinding machines for the production of precision cylindrical surfaces.The cylindrical grinding machine is used for precision grinding cylindrical mould parts. Metal is removed by the action of abrasive grinding wheel which is broughtinto contact with a contra-rotating workpiece.⑶Shaping and planning machines for the reduction of steel blocks and plates to therequired thick ness and for ‘squaring up’these plates .As the primary purpose of a shaping machine is to produce flat blocks. The workpiece is mounted on a table and a reciprocating single-point tool removes metal in a series of straight cuts.⑷Surface grinding machines for the production of precision flat surfaces . Anexcellent surface finish combined with accuracy can be achieved on hard or soft steel with the surface grinding machine. The workpiece is mounted on a table which is reciprocated beneath a rotating abrasive grinding wheel and metal is removed in a series of straight cuts.⑸Milling machines for the rapid removal of metal , for machining slots, recesses,boring holes, machining splines, etc. Milling is an operation in which metal is removed from a workpiece by a rotating milling cutter. The workpiece can be moved in three directions at right angles to each other with respect to the cutter.The three directions are longitudinal, transverse and vertical, respectively.⑹Tracer-controlled milling machines for the accurate reproduction of complexcavity and core forms.The principle of tracer-controlled milling machine is similar to that of the vertical milling machine in that an end mill cutter is used to remove metal in a series of cuts. With tracer-controlled milling, however , the required form is generated by causing a tracer, directly coupled to a cutting head , to followa template or a model.In addition to the above list of major machine tools there is, of course, ancillary equipment without which no toolroom would be complete. This includes power saws , drilling machines, toolpost grinders, hardening and polishing facilities, ect.四、Electric discharge machiningElectric discharge machining is the latest process being used extensively in the moldmaking field. It can be applied to soft and hard metals, and it exters no mechanical forces that might be detrimental to frail parts. The process is constantly being improved not only in terms of new machines being capable of producing better。

我国模具的发展史外文

我国模具的发展史外文

The history of our country mouldFirst of all, overviewDie material is mould processing work basis. With Chinas national economic development and improvement of people s living standard, people to product aesthetics, values and also enhances unceasingly,什ius to each kind of work, mould product, whether internal quality and appearance etc are becoming more demanding pure manager.to, trapped this certainly will kick mould material in number, series and quality are put forward on the more high demand. China's mould material increasing, but from a limited amount, until now, whether from the steel grade or from the specifications, standardization and serialization, etc, are all accompanied by the development of the mould manufacturing・Second, 50 in the 1960s and 1970s (blank stage)In these three decades, because our country implementing the plan the pattern of economic and industrial structure in accordance with the former Soviet union mode of production and mould manufacturing enterprise is attached to a fittings processing workshop・ Moreover, because of the industrial development is slow and economic closed, and the people's standard of living is in a very low level of consumption of factors, restrain the mould manufacturing industrialization, socialization and commercialization. Which generates the mold manufacturing to its of materials with low requirements or even no demands, supply and demand relation is in what use something unreasonable chaos・Three, the eighties (stage of development)With the opening and reform and national economic growth, to a great extent by the development of die and mould industry. Mould manufacture already out of the enterprise imprison state, ten years, our country s generic foreign new steel grade.these steel at the same time, still in colleges and universities, research institutes and various steel cooperation, developed by a group of suitable for Chinas national conditions of mould new material. Not only improve the machining capability, but also greatlyimprove the service life of the die.Generic D2 steel instead of Crl2MoV manufacturing stamping dies, use P20 steel instead of 45 steel manufacturing plastic model, make the mold cavity cores, smooth finish and life expectancy has greatly improved・ Use H13 steel instead of overseas has eliminated 3CW8V manufacturing forging die and die-casting die. In cold die, developed 65Nb, O12A, CG - 2, LM1-2, LD, GD, GM, DS steel etc varieties. Among them 65Nb, LD, GD and DS steel for good impact resistance and more suitable for cold mound and material cutting the punch・ GM steel for good wearability particularly suitable for thread rolling, compared with Crl2MoV wire wheel, life can improve ten times more.Besides the above-mentioned alloy steel outside, still developed GT35 DT etc brand of steel-boned cemented carbide as YG series of tungsten and cobalt alloy to satisfy the high class hard life requirement, with high speed punch mould manufacturing. In plastic mold steels, developed free cutting class 5NiCa, 06Ni, SM2 SMI, and PMS, such as steel, PCY CPR, some are good processing, use of performance fine steel grade.these steel, and using on users receive the recognition. In ReZuo steel aspects Y4, Y10, HM - L ER8 GR, development and application of new thoroughly changed the ReZuo mould decades outputs 3Cr2W8V skillfulness situation・Four and 1990s (competitive stage)Along with the economic development in China and the upgrading of products, our country has become a mold and die material production superpower. According to statistics, Chinas 1997 annual consumption of mould materiaL including 13 million tons of 4-year tertiary backgroud 4.5 tons. This shows mould of this special products in nearly a decade from planned economy under the condition of spare parts gradually developed into under the condition of market economy goods, and is increasingly being mould manufacturer in its quality and brand on get attention. But as an industrial development, product update alternately increasingly fast paced countries, the mould development also further by products manufacturer attention・Therefore, a batch of the past have been successfully developed the series of can adapt different working conditions and product manufacturing requirements of mould material development, trial and production becomes each big steel factory competition, launch and competition of the market hot. But, mould material because of its manyspecifications with same specification single demand less, market real-time purchasing wait for a characteristic, make the domestic large-scale production equipment cannot suit. Therefore in looking for the right agents to calculate the scale effect. However, many agents though hand holds thick endowment, but to mold working condition, the material properties and the related problems such as heat treatment didn't know, remain in the 4-year tertiary backgroud of vengeance of competition.In addition, foreign senior agencies and the famous steel mills in recent years Chinas heavily boffins organization to mould material market・ Such as: Sweden s NUDDEHOLM, ASSAB, and German thyssen, saesee te, Japan's big equally companies in Shanghai and set up all over the country, but the banner of optimal special because of their overpriced, has gradually appear failing to expand the scale sales, even at present in China is reputable foreign companies in China for fine quality and low price of mould material・。

塑料模具外文文献

塑料模具外文文献

附录二附录二 外文翻译外文翻译Treating and the modern mould make high speed One, summarizes 1 the present situation that the mould makes at present and trend The The mould mould mould is is is important important important handicraft handicraft handicraft equipment equipment equipment , , , occupies occupies occupies decisive decisive decisive position position position in in in industrid industrid industrid departments departments departments such such such as as consumer consumer goods goods goods , , , electrical electrical electrical equipment equipment equipment electron electron electron , , , automobile automobile automobile , , , aircraft aircraft aircraft fabrication. fabrication. fabrication. The The The mould mould mould is is is important important handicraft handicraft equipment equipment equipment , , , occupies occupies occupies decisive decisive decisive position position position in in in industrid industrid industrid departments departments departments such such such as as as consumer consumer consumer goods goods goods , , , electrical electrical equipment equipment electron electron electron , , , automobile automobile automobile , , , aircraft aircraft aircraft fabrication. fabrication. fabrication. Industrial Industrial Industrial product product product part part part rough rough rough process process process 75%, 75%, 75%, the the the finish finish machining machining 50% 50% 50% and and and plastic plastic plastic part part part 90% 90% 90% will will will be be be completed completed completed from from from the the the mould. mould. mould. The The The Chinese Chinese Chinese mould mould mould market market market demand demand already already reaches reaches reaches scale scale scale of of of 500 500 500 hundred hundred hundred million million million yuan yuan yuan at at at present. present. present. The The The automobile automobile automobile mould mould mould , , , the the the annual annual annual growth growth growth rate rate covering piece of mould especially will exceed 20 %; Also prompt building material mould development , various heterotype material the mould , wall surface and floor mould become new mould growth point , plastic doors and windows and plastic drain-pipe increase to exceeding 30 by in the upcoming several years %; The home appliance mould annual growth rate will exceed 10 %; The IT industry year increases % speed equally exceeding 20 , the need need to to to the the the mould mould mould accounts accounts accounts for for for 20 20 20 of of of mould mould mould marketplace marketplace marketplace %.2004 %.2004 %.2004 annual annual annual Chinese Chinese Chinese machine machine machine tools tools tools implements implements industry output value will continue to increase. Our country mould fabrication market potential is enormous. The basis data counts , in recent years, our country mould year gross output value reaches 3 billion U. S. dollar , entrance exceeds 1 billion U. S. dollar, exceed 100 million U. S. dollar outlet. Increase by from 25% to increase to 2005 50% of 1995. The expert foretells that abroad: Asia portion being occupied by in mould fabrication in the whole world, will from 25% to increase to 2005 50% of 1995. Chinese mould industry has been expanding by leaps and bounds , has formed east China and two big South China bases, and has expanded gradually arriving at other province. In 2002 (Shandong , Anhui , Sichuan) in 1996 ~, mould manufacturing industry output value annual average growth 14% , grows by 25% in 2003. In 2003 our country country mould mould mould output output output value value value is is is 45 45 45 billion billion billion RMB. RMB. RMB. The The The gross gross gross product product product place place place occupies occupies occupies the the the world world world the the the 3rd, 3rd, 3rd, exports exports exports a a mould increases 33.5% compared to last year 336,800,000 U. S. dollar. But, contents low our country technology moulds moulds already already already pile pile pile up up up in in in excess excess excess of of of requirement requirement requirement , , , very very very most most most support support support of of of accurate accurate accurate , complicated , complicated top top grade grade grade mould mould imports. Every year the entrance mould exceeds 1 billion U. S. dollar. Exceed 100 million U. S. dollar outlet. Precise mould accuracy requires that 3 mu ms , large-scale moulds require that 8000 satisfied kN agree well with model force injection machine request in 2 ~; The minitype mould needs the request satisfying the diameter 1 mm silent stock tube. At present, adopt quick-cutting to produce a mould already becoming the general trend that the mould makes, a few moulds have produced a manufacturer in abroad , high-speed machine tool large area has substituted the electric spark machine tool , quick-cutting has improved the mould efficacy greatly. Machine tool enterprise enterprise aims aims aims at at at mould mould mould manufacturing manufacturing manufacturing enterprises enterprises enterprises , , , some some some treating treating treating centres centres centres 60% 60% 60% all all all above above above of of of the the the machine machine machine tool tool producing a factory sells treating enterprise to a mould. The mould fabrication enterprise substituting the electric spark finish machining mould gradually in abroad has adopt quick-cutting already commonly , quick-cutting has produced a mould already becoming the general trend that the mould makes gradually , has improved the mould efficacy and mass greatly. Adopt quick-cutting to replace electric spark producing a mould , can get on the stick obviously , improves mould accuracy , life time growing. 2 high speed processes application in making in the mould 2.1 quick-cutting merit: 1) cutter high rotation rate and the machine tool height enter be given to and high acceleration , improve metal excision rate greatly; 2) quick-cutting diminutions cut a force; 3) quick-cutting heat major part generate heat from the cuttings entrainment , workpiece being short; 4) quick-cutting cut down vibration , improve treating mass; 2.2 high speed treating apply to the beneficial result that the mould processes 1) fleetness rough process and half finish machining, improve treating efficiency; 2) high speed high-accuracy finish machining replace only entire the height processing , indicating mass , form accuracy rise , 50%, cuts down repair a mill by hand than EDM processes a potentiation; 3) cuts the surface processing final molding stiffly , improve surface mass , form accuracy, the treating (not only being that surface harshness is low, and the surface radiance is high) , being used for complicated surface has more advantage; 4) the surface loss that EDM treating produces , improve mould life-span 20%; 5) 5) processes processes processes an an an electrode electrode electrode rapidly rapidly rapidly combining combining combining with with with the the the CAD/CAM CAD/CAM CAD/CAM technology technology technology , , , especially, especially, the the form form form is is complicated , thin-wall is similar to an electrode. 3 adopt quick-cutting to process a mould needing the problem solving In in the homeland, since the aspect cause such as fund , technology , the quick-cutting applying produce a mould be in the initial stage stage. Return the machine tool , cutter , handicraft back to existence as well as some problem of aspect needs to proceed orderly other solve. The shortcoming is that finished cost is high, correct cutter sigmatism have comparatively high demand, can not have used big cutters , need to have the complicated computer programming technology to be used for support , equipment running cost height. Two, the high speed processing a mould's processes a machine tool Mould finish machining and hard cutting treating require that the numerical control high-speed machine tool , form form board board board , , , model model model put put put up up up the the the precision precision precision processing processing processing need need need , , , high-effect high-effect high-effect numerical numerical numerical control control control machine machine machine tool tool tool etc.The etc.The mould aiming at produces a lot of machine tool enterprise , some treating centres 60% all above of the machine tool producing a factory sells enterprise to a mould. The The fixed assets fixed assets having having 5 5 billion billion yuan yuan yuan without without without exception exception exception in in in the the the upcoming upcoming upcoming several several several years years years throws throws throws into into into mould mould industry , 80% is the machine tool buying a mould process equipment , just saying every year having 4 billion yuan of RMB to buy Jinqie among them. At At present present present average average average our our our country country country numerical numerical numerical control control control machine machine machine tool tool tool utilization utilization utilization ratio ratio ratio approximately approximately approximately 20%, 20%, 20%, the the high-speed machine tool utilization ratio 3 ~ 5%. Also, mould enterprise has the unit suitable to buy a high-speed machine tool , complies with 6000 ~ 40000 rmp's to have. 1 high-speed machine tool technology parameter demands Process Process centre centre centre chief chief chief axis axis axis high-power high-power high-power , , , high high high rotation rotation rotation rate rate rate , , , satisfied satisfied satisfied rude rude rude finish finish finish machining; machining; machining; The The The finish finish machining mould wants to need to reach 15000 ~ 20000 rmp like the cutter , the machine tool with minor diameter. Generally, the chief axis rotation rate machine tool under 10000 rpm can carry out rough process and half finish machining , cannot reach the finish machining accuracy; Have no way to reach 400 the above m/min cutting speed. 2 five scrolls of machine tools application increases a trend 1) treating route is nimble , the surface form is complicated; 2) treating range is big , the various type mould suitable processes; 3) cuts life-span of condition easy to cut down cutter wear , to raise a cutter,; 3 the softwares buying CAD/CAM and high-speed machine tools assort On the grounds of the machine tool , major part counting , having several billions U. S. dollar to be used to enter port every year, the electromachining machine tool and the high-speed machine tool need to import. Three, quick-cutting mould cutter technology Quick-cutting processes the cutter needing allocating proper quick-cutting. Progressing processing cutter material's in high speed has urged development of high speed treating. The cutter , knife edge headquarter and high tenacity base gathering crystal strengthening the ceramics cutter being able to be used giving consideration to high hardness experience and observe carbide alloy coating becoming possibility. Gather the crystal cube nitriding boron (PCBN) (PCBN) bit, bit, bit, whose whose whose hardness hardness hardness may may may amount amount amount to to to 3500 3500 3500 ~ ~ ~ 4500 4500 4500 HV HV HV. . . Gather Gather Gather crystal crystal crystal miamond miamond miamond (PCD) (PCD) (PCD) it's it's it's hardness hardness hardness but but amount to 6000 ~ 10000 HV . Germany SCS , Japan Mitsubishi (magical steel) and Sumitomo , Switzerland Switzerland Shanteweike Shanteweike Shanteweike , , , USA USA USA Kenna Kenna Kenna are are are in in in recent recent recent years years years swiftly swiftly swiftly large large large wait wait wait for for for the the the famous famous famous abroad abroad abroad cutter cutter company company to to to successively successively successively have have have debuted debuted debuted the the the respective respective respective quick-cutting quick-cutting quick-cutting cutter, cutter, cutter, not not not only only only cutter cutter cutter having having average structural steel of quick-cutting, the ceramics cutter still still having having direct direct quick-cutting quick-cutting of of energy energy quenching hard steel is waiting for an effect to surpass the hard cutter, especially the coating cutter appears all of a sudden sudden , , , bringing bringing bringing into into into play play play in in in quenching quenching quenching half half half finish finish finish machining machining machining and and and finish finish finish machining machining machining of of of hard hard hard steel. steel. steel. New New New cutter cutter material and cutter technology appearing already make the bottleneck problem that high speed has processed no longer be able to appear on the cutter. But, expensive entrance cutter price also blocks quick-cutting mould key factor. Above to come to saying the cutter and the cutter holder acceleration reach 3 gs the sort, the cutter circular runout needs to be smaller than 0.015 mm, but the knife length is unable greater than 4 times cutters diameter. The reality according to SANDVIK company has counted , the carbide alloy has stood on in the entirety using carbon nitriding nitriding titanium titanium titanium (TICN) (TICN) (TICN) coating coating coating when when when milling milling milling cutters cutters cutters (58 (58 (58 HRC) HRC) HRC) carry carry carry out out out high high high speed speed speed bright bright bright metal metal metal chopping chopping chopping , , rough process cutter linear speed has been 100 m/min about , whose linear speed has exceeded but 280 m/min when finish machining and microstoning. Such demands to cutter material (include the hardness , tenacity , red hardness keep the form (include row of crumbs function , surface accuracy , dynamic balance sex etc. (cutting the function) , the cutter under high temperature state)) as well as cutter life-span all has very highly. Experience according to in the homeland mould high speed finish machining, linear speed has exceeded 400 ~ 800 800 m/min m/min m/min when when when adopt adopt adopt the the the young young young diameter diameter diameter ball ball ball head head head milling milling milling cutter cutter cutter to to to carry carry carry out out out mould mould mould finish finish finish machining. machining. machining. The The machine tool choosing sufficient high-speed's cuts mould finish machining stiffly. Delcam adopt 0.8 mm diameter cutter to process the narrow slot , rotation rate 40000 rpm , 0.1 mm depth, feed speed 30 m/min. 1 chooses the cutter parameter , the cutter waits if shouldering an anterior angle. The cutter requires that the ability processing request shock resistance tenacity more highly , requiring that heat resistance pounds than average is strong; 2 adopts various method improving cutter life-span , reduces cutter cost. 3 adopt the high speed hilt , HSK hilt , heat pressing applying the most being at present to pretend to grip a 3 adopt the high speed hilt , HSK hilt , heat pressing applying the most being at present to pretend to grip a cutter. Pay attention to a cutter pretend to grip overall in the day afer tomorrow dynamic balance; 4current cutter enterprise has already done many jobs in the field of the technology resolving the quick-cutting cutter cutter , , , serving serving serving facing facing facing the the the cutter cutter cutter processing processing processing may may may help help help to to to solve solve solve much much much problem problem problem , , , the the the cutter cutter cutter has has has produced produced produced a a manufacturer manufacturer becoming becoming becoming the the the main main main body body body , , , the the the reference reference reference cutter cutter cutter has has has produced produced produced the the the technology technology technology parameter parameter parameter that that that the the manufacturer provides. Four, improve quick-cutting mould efficiency technology 1 cutter diameter and the length choice 2 HSM and the EDM choice 3 does cutting and the lubricating cooling 4 feeds choice: Move forward generally giving amounts <milling cutter diameters 10% , move forward giving a a width width width <milling <milling <milling cutter cutter cutter diameter diameter diameter 40%. 40%. 40%. According According According to to to material, material, material, condition condition condition chooses chooses chooses the the the parameter parameter parameter processing processing handicraft rationally High speed bright metal cuts the mass processing part material abroad fairly good, material quality level is identical , the treating function comparison is stable; But, the cutter that the company produces abroad is also that the the standard standard standard makes makes makes an an an experiment experiment experiment with with with their their their material; material; material; The The The treating treating treating being being being recommended recommended recommended by by by is is is suitable suitable suitable to to to their their standard standard comparatively comparatively comparatively like like like the the the parameter parameter parameter , , , material material material quality quality quality has has has the the the certain certain certain difference difference difference with with with domestic domestic domestic part part part , , , this this difference difference shows shows shows comparatively comparatively comparatively obviously obviously obviously , , , some some some parameters parameters parameters can can can apply apply directly, directly, but but but some some effect dispatches right away comparatively during the period of high speed bright metal chops if using their cutter. But select and use part material quality in the homeland like enterprise having the certain standard, what be put into use part material, can use the part material quality that high speed processes especially , the general meeting is limited in some part material range inner, that this applies the high speed processing technology to us has also provided advantageous condition , has been able to apply to less treating material within range. Being needing to emphasize that here, must choose the treating technological parameter optimizing out a set of capital suitable enterprise on these material , is brought into company standard and. The technology selecting and using the domestic cutter , seldom having the bright metal recommending high speed to chop parametric , is necessary making an experiment, get the comparatively satisfied parameter , produce a manufacturer had better to select and use the fixed cutter , cut down the number of times testing that , the standard forming forming a a a processing processing processing technology, technology, technology, such such such can can can improve improve improve effective effective effective utilization utilization utilization ratio ratio ratio of of of equipment equipment equipment , , , lowers lowers lowers production production costs , can get the fairly good economic effect. Five, quick-cutting route processing a cutter and programming 1) flat surface feeds the route choice 2) 2) outlines process the route choice 3) Keep cutting loading stable 4) keeps relatively stable moving forward giving amounts and feed speed 5) keeps the garden corner in flat surface cutting 6) chooses the finish machining margin rationally Programming demand of HSC finish machining to CAM: 1) the bright metal avoiding a corner to the full cuts motion; 2) tries one's best to avoid external feed of workpiece and enter next depth return knife motion , direct from the outline. Or adopt a helical line or being sure enter slanting to moving forward; 3) constant each edge feed , improve the quality, prolongs cutter life-span; 4) outline treating are kept waiting in level surface. Quick-cutting CAM software: Several years ago will have started quick-cutting processing programming technology research, the Delcam company company , , , has has has developed developed developed the the the quick-cutting quick-cutting quick-cutting automation automation automation programming programming programming software software software module; module; module; Lately, Lately, Lately, the the the MasterCAM MasterCAM company has also developed the quick-cutting automation programming software module; You also are in in the homeland north navigation developing the quick-cutting automation programming software module; Six, high-speed machine tool numerical control system characteristic 1) high speed data is processed 2) corner forecasts are handled 3) NURBS are not justified appearance strip runin curve treating Seven, safe quick-cutting mould problem 1) Monitoring wearing a cutter away and destroying; 2) Intensity that the bit links; 3) Strict with the machine tool and the cutter examination is very important and before the average machine tool processing diversity , safety protects and starts up. Eight, there exists problem in our country at present in adopt high speed to process the mould technology 1 machine tool: 1) domestic high-speed machine tool overall function still has the gap , the function component function to be able to not satisfy a request. Power and rotation rate including the electricity chief axis, entrance machine tool price is high; 2)Under the machine tool high speed, the dynamic behaviour studies the function being not enough to affect a complete machine as a result,; 3)The five scroll of machine tool is not enough mature , entrance machine tool price is very high; 4) supporting technology and equipment are fairly incomplete 2 cutters: 1) domestic cutter is not able to adapt to the quick-cutting application , high speed cuts only entire treating is to affect quick-cutting processing a key especially stiffly. Entrance cutter price is high. The cutter technology factor of mould. 2) supporting technologies are not enough to include hilt , online dynamic balance in complete set etc.. 3 high speed moulds process the technology and the experiment 1) Be short of the accumulation applying experience since high speed processes the mould history comparatively shortly,; 2)The comparison studying comparison stops throwing into lack, sets up a project to quick-cutting handicraft is difficult; 3) Be short of the quick-cutting data base or the handbook , is still blank space at present; 4) moulds produce the manufacturer cognition lack to quick-cutting , the analysis contrast being short of long range beneficial result; 4 Be short of the quick-cutting automation programming software; 5 Be short of a five scroll of gear quick-cutting automation programming CAM software. Concluding remark The mould marketplace has the intense need, but technology to be unable to keep abreast with to high speed treating. Starting is late , the basis is relatively poor , overall engineering level not being taller than , develops slowlyRequire that one by one, aspect coordinated growth , the product mimic inkstone throwing into combining with enlarging, each comprehensive utilization aspect strengths drive quick-cutting application in making in the mould.. Our hope , effort passing every aspect, before the market demand push go down , pass technological progress, look like automobile , machine tool , home appliance , before long, not only our country being going to become a mould producing Great Power, and be going to become a mould producing the powerful country. References1, Jin Diecheng , Song Fangzhi. The modern mould makes the technology , Beijing: Mechanical industry press, 2001. 2, Xu Hefeng, The digitization mould makes the technology , Beijing: Chemical industry press, 2001. 3,Zhao Bo ,High speed processes the forward position technology that the mould processes. Mould technology , 2000 , (2) 4,Zhang Haiou,The fleetness mould makes the technology current situation and their developing trend. Mould technology , 2000 , (6) 5,Guo Dongming,Wang Xiaoming,Be geared to the needs of the particular kind processing technology that the fleetness creates. Chinese mechanical engineering , 2000 , (11) 高速加工和现代模具制造一、概述一、概述1.目前模具制造的发展现状和趋势.目前模具制造的发展现状和趋势模具作为重要的工艺装备,在消费品、电器电子、汽车、飞机制造等工业部门中,占有举足轻重的地位。

冲压模具技术外文文献翻译中英文

冲压模具技术外文文献翻译中英文

外文文献翻译(含:英文原文及中文译文)英文原文Stamping technologyIntroductionIn the current fierce market competition, the product to market sooner or later is often the key to the success or failure. Mould is a product of high quality, high efficiency production tool, mold development cycle of the main part of the product development cycle. So the customer requirements for mold development cycle shorter, many customers put the mould delivery date in the first place, and then the quality and price. Therefore, how to ensure the quality, control the cost under the premise of processing mould is a problem worthy of serious consideration. Mold processing technology is an advanced manufacturing technology, has become an important development direction, in the aerospace, automotive, machinery and other industries widely used. Mold processing technology, can improve the comprehensive benefit and competitiveness of manufacturing industry. Research and establish mold process database, provide production enterprises urgently need to high speed cutting processing data, to the promotion of high-speed machining technology has very important significance. This article's main goal is to build a stamping die processing, mold manufacturing enterprises in theactual production combined cutting tool, workpiece and machine tool with the actual situation of enterprise itself accumulate to high speed cutting processing instance, process parameters and experience of high speed cutting database selectively to store data, not only can save a lot of manpower and material resources, financial resources, but also can guide the high speed machining production practice, to improve processing efficiency, reduce the tooling cost and obtain higher economic benefits.1. The concept, characteristics and application of stampingStamping is a pressure processing method that uses a mold installed on a press machine (mainly a press) to apply pressure to a material to cause it to separate or plastically deform, thereby obtaining a desired part (commonly referred to as a stamped or stamped part). Stamping is usually cold deformation processing of the material at room temperature, and the main use of sheet metal to form the required parts, it is also called cold stamping or sheet metal stamping. Stamping is one of the main methods of material pressure processing or plastic processing, and is affiliated with material forming engineering.The stamping die is called stamping die, or die. Dies are special tools for the batch processing of materials (metal or non-metallic) into the required stampings. Stamping is critical in stamping. There is no die that meets the requirements. Batch stamping production is difficult. Without advanced stamping, advanced stamping processes cannot be achieved.Stamping processes and dies, stamping equipment, and stamping materials constitute the three elements of stamping. Only when they are combined can stampings be obtained.Compared with other methods of mechanical processing and plastic processing, stamping processing has many unique advantages in both technical and economic aspects, and its main performance is as follows;(1) The stamping process has high production efficiency, easy operation, and easy realization of mechanization and automation. This is because stamping is accomplished by means of die and punching equipment. The number of strokes for ordinary presses can reach several tens of times per minute, and the high-speed pressure can reach hundreds or even thousands of times per minute, and each press stroke is Y ou may get a punch.(2) Since the die ensures the dimensional and shape accuracy of the stamping part during stamping, and generally does not destroy the surface quality of the stamping part, the life of the die is generally longer, so the stamping quality is stable, the interc hangeability is good, and it has “the same” Characteristics.(3) Stamping can process parts with a wide range of sizes and shapes, such as stopwatches as small as clocks, as large as automobile longitudinal beams, coverings, etc., plus the cold deformation hardening effect of materials during stamping, the strength of stamping and Thestiffness is high.(4) Stamping generally does not generate scraps, material consumption is less, and no other heating equipment is required. Therefore, it is a material-saving and energy-saving processing method, and the cost of stamping parts is low.However, the molds used for stamping are generally specialized, and sometimes a complex part requires several sets of molds for forming, and the precision of the mold manufacturing is high and the technical requirements are high. It is a technology-intensive product. Therefore, the advantages of stamping can only be fully realized in the case of large production volume of stamping parts, so as to obtain better economic benefits.Stamping is widely used in modern industrial production, especially in mass production. A considerable number of industrial sectors are increasingly using punching to process product components such as automobiles, agricultural machinery, instruments, meters, electronics, aerospace, aerospace, home appliances, and light industry. In these industrial sectors, the proportion of stamped parts is quite large, at least 60% or more, and more than 90%. Many of the parts that were manufactured in the past using forging = casting and cutting processes are now mostly replaced by light-weight, rigid stampings. Therefore, it can be said that if the stamping process cannot be adopted in production, it isdifficult for many industrial departments to increase the production efficiency and product quality, reduce the production cost, and quickly replace the product.2. Basic process and mould for stampingDue to the wide variety of stamped parts and the different shapes, sizes, and precision requirements of various parts, the stamping process used in production is also varied. Summarized, can be divided into two major categories of separation processes and forming processes; Separation process is to make the blank along a certain contour line to obtain a certain shape, size and section quality stamping (commonly referred to as blanking parts) of the process; forming process refers to The process of producing a stamped part of a certain shape and size by plastic deformation of the blank without breaking.The above two types of processes can be divided into four basic processes: blanking, bending, deep drawing and forming according to different basic deformation modes. Each basic process also includes multiple single processes.In actual production, when the production volume of the stamped part is large, the size is small and the tolerance requirement is small, it is not economical or even difficult to achieve the requirement if the stamping is performed in a single process. At this time, a centralized scheme is mostly used in the process, that is, two or more singleprocesses are concentrated in a single mold. Different methods are called combinations, and they can be divided into compound-graded and compound- Progressive three combinations.Composite stamping - A combination of two or more different single steps at the same station on the die in one press stroke.Progressive stamping - a combination of two or more different single steps on a single work station in the same mold at a single working stroke on the press.Composite - Progressive - On a die combination process consisting of composite and progressive two ways.There are many types of die structure. According to the process nature, it can be divided into blanking die, bending die, drawing die and forming die, etc.; the combination of processes can be divided into single-step die, compound die and progressive die. However, regardless of the type of die, it can be regarded as consisting of two parts: the upper die and the lower die. The upper die is fixed on the press table or the backing plate and is a fixed part of the die. During work, the blanks are positioned on the lower die surface by positioning parts, and the press sliders push the upper die downwards. The blanks are separated or plastically deformed under the action of the die working parts (ie, punch and die) to obtain the required Shape and size of punching pieces. When the upper mold is lifted, the unloading and ejecting device of the moldremoves or pushes and ejects the punching or scrap from the male and female molds for the next punching cycle.3. Current status and development direction of stamping technologyWith the continuous advancement of science and technology and the rapid development of industrial production, many new technologies, new processes, new equipment, and new materials continue to emerge, thus contributing to the constant innovation and development of stamping technology. Its main performance and development direction are as follows:(1) The theory of stamping and the stamping process The study of stamping forming theory is the basis for improving stamping technology. At present, the research on the stamping forming theory at home and abroad attaches great importance, and significant progress has been made in the study of material stamping performance, stress and strain analysis in the stamping process, study of the sheet deformation law, and the interaction between the blank and the mold. . In particular, with the rapid development of computer technology and the further improvement of plastic deformation theory, computer simulation techniques for the plastic forming process have been applied at home and abroad in recent years, namely the use of finite element (FEM) and other valuable analytical methods to simulate the plastic forming process of metals. According to the analysis results, the designer can predict the feasibility and possiblequality problems of a certain process scheme. By selecting and modifying the relevant parameters on the computer, the process and mold design can be optimized. This saves the cost of expensive trials and shortens the cycle time.Research and promotion of various pressing technologies that can increase productivity and product quality, reduce costs, and expand the range of application of stamping processes are also one of the development directions of stamping technology. At present, new precision, high-efficiency, and economical stamping processes, such as precision stamping, soft mold forming, high energy high speed forming, and dieless multi-point forming, have emerged at home and abroad. Among them, precision blanking is an effective method for improving the quality of blanking parts. It expands the scope of stamping processing. The thickness of precision blanking parts can reach 25mm at present, and the precision can reach IT16~17; use liquid, rubber, polyurethane, etc. Flexible die or die soft die forming process can process materials that are difficult to process with ordinary processing methods and parts with complex shapes, have obvious economic effects under specific production conditions, and adopt energy-efficient forming methods such as explosion for processing. This kind of sheet metal parts with complex dimensions, complex shapes, small batches, high strength and high precision has important practical significance; Superplastic forming of metal materialscan be used to replace multiple common stampings with one forming. Forming process, which has outstanding advantages for machining complex shapes and large sheet metal parts; moldless multi-point forming process is an advanced technology for forming sheet metal surfaces by replacing the traditional mold with a group of height adjustable punches. Independently designed and manufactured an international leading-edge moldless multi-point forming equipment, which solves the multi-point press forming method and can therefore be Changing the state of stress and deformation path, improving the forming limit of the material, while repeatedly using the forming technology may eliminate the residual stress within the material, the rebound-free molding. The dieless multi-point forming system takes CAD/CAM/CAE technology as the main means to quickly and economically realize the automated forming of three-dimensional surfaces.(2) Dies are the basic conditions for achieving stamping production. In the design and manufacture of stampings, they are currently developing in the following two aspects: On the one hand, in order to meet the needs of high-volume, automatic, precision, safety and other large-volume modern production, stamping is To develop high-efficiency, high-precision, high-life, multi-station, and multi-function, compared with new mold materials and heat treatment technologies, various high-efficiency, precision, CNC automatic mold processing machine toolsand testing equipment and molds CAD/CAM technology is also rapidly developing; On the other hand, in order to meet the needs of product replacement and trial production or small-batch production, zinc-based alloy die, polyurethane rubber die, sheet die, steel die, combination die and other simple die And its manufacturing technology has also been rapidly developed.Precision, high-efficiency multi-station and multi-function progressive die and large-scale complex automotive panel die represent the technical level of modern die. At present, the precision of the progressive die above 50 stations can reach 2 microns. The multifunctional progressive die can not only complete the stamping process, but also complete welding, assembly and other processes. Our country has been able to design and manufacture its own precision up to the international level of 2 to 5 microns, precision 2 to 3 microns into the distance, the total life of 100 million. China's major automotive mold enterprises have been able to produce complete sets of car cover molds, and have basically reached the international level in terms of design and manufacturing methods and means. However, the manufacturing methods and methods have basically reached the international level. The mold structure and function are also close to international Level, but there is still a certain gap compared with foreign countries in terms of manufacturing quality, accuracy, manufacturing cycle and cost.4. Stamping standardization and professional productionThe standardization and professional production of molds has been widely recognized by the mold industry. Because the die is a single-piece, small-volume production, the die parts have both certain complexity and precision, as well as a certain structural typicality. Therefore, only the standardization of the die can be achieved, so that the production of the die and the die parts can be professionalized and commercialized, thereby reducing the cost of the die, improving the quality of the die and shortening the manufacturing cycle. At present, the standard production of molds in foreign advanced industrial countries has reached 70% to 80%. Mould factories only need to design and manufacture working parts, and most of the mold parts are purchased from standard parts factories, which greatly increases productivity. The more irregular the degree of specialization of the mold manufacturing plant, the more and more detailed division of labor, such as the current mold factory, mandrel factory, heat treatment plant, and even some mold factories only specialize in the manufacture of a certain type of product or die The bending die is more conducive to the improvement of the manufacturing level and the shortening of the manufacturing cycle. China's stamp standardization and specialized production have also witnessed considerable development in recent years. In addition to the increase in the number of standard parts specialized manufacturers, the number ofstandard parts has also expanded, and the accuracy has also improved. However, the overall situation can not meet the requirements of the development of the mold industry, mainly reflected in the standardization level is not high (usually below 40%), the standard parts of the species and specifications are less, most standard parts manufacturers did not form a large-scale production, standard parts There are still many problems with quality. In addition, the sales, supply, and service of standard parts production have yet to be further improved.中文译文冲压模具技术前言在目前激烈的市场竞争中, 产品投入市场的迟早往往是成败的关键。

材料英文文献翻译

材料英文文献翻译

材料英文文献翻译The development of plastic mouldChina's industrial plastic moulds from the start to now, after more than half a century, there has been great development, mold levels have been greatly enhanced. Mould has been at large can produce 48-inch big-screen color TV Molded Case injection mold, 6.5 kg capacity washing machine full of plastic molds, as well as the overall car bumpers and dashboards, and other plastic mould precision plastic molds, the camera is capable of producing plastic mould , multi-cavity mold small modulus gear and molding mold. --Such as Tianjin and Yantai days Electrical Co., Ltd Polaris IK Co. manufactured multi-cavity mold VCD and DVD gear, the gear production of such size precision plastic parts, coaxial, beating requirements have reached a similar foreign the level of product, but also the application of the latest gear design software to correct contraction as a result of the molding profile error to the standard involute requirements. Production can only 0.08 mm thickness of a two-cavity mold and theair Cup difficulty of plastic doors and windows out of high modulus, and so on. Model cavity injection molding manufacturing accuracy of 0.02 to 0.05 mm, surface roughness Ra0.2 μ m, mold quality, and significantly increase life exp ectancy,non-hardening steel mould life up to 10~ 30 million, hardening steel form up to 50 ~ 10 million times, shorten the delivery time than before, but still higher than abroad,and the gap between a specific data table.Process, the multi-material plastic molding die, efficient multicolor injection mould, inserts exchange structure and core pulling Stripping the innovative design has also made great progress. Gas-assisted injection molding, the use of more mature technologies, such as Qingdao Hisense Co., Ltd., Tianjin factory communications and broadcasting companies, such as mold manufacturers succeeded in 29 ~ 34-inch TV thick-walled shell, as well as some parts on the use of gas-assisted mould technology Some manufacturers also use the C-MOLD gas-assisted software and achieved better results. Prescott, such as Shanghai, such as the new company will provide users with gas-assisted molding equipment and technology. Began promoting hot runner mold, and some plants use rate of more than 20 percent, the general heat-thermal hot runner, or device, a small number of units with the world's advanced level of rigorous hot runner-needle device, a small number of units with World advanced level of rigorous needle-hot runner mould. However, the use of hot runner overall rate of less than 10%, with overseas compared to 50 ~ 80%, the gap larger. In the manufacturing technology, CAD / CAM / CAE technology on the level of application of a new level to the enterprise for the production of household appliances representatives have introduced a considerable number of CAD / CAM systems, such as the United States EDS UG Ⅱ,overall pace of development. At the same time, imports in recent years because of the mold, precision, large, complex, long-life die in the majority, therefore, reduce imports perspective, in the mold of such high-end market share will gradually increase. The rapid development of the construction industry so that the various Profile Extrusion Die, PVC plastic pipe fittings Die Die market become a new economic growth point, the rapid development of highways, car tires also put a higher demand, radial tire Die, Die particularly active pace of development will also be higher than the overall average level of the plastic and wood, plastic and metal to make plastic molds in the automotive, motorcycle industry in the demand for huge household appliances industry in the "10th Five-Year Plan" period ave greater development, especially refrigerators,air-conditioners and microwave ovens, and other parts of the great demand for plastic moulds, and electronics and communications products, in addition to audio-video products, such as color televisions, laptop computers and set-top boxes will be given a wider network development, which are Plastic Mold market is the growth point.China's industrial and technological plastic mould the future direction of the major developments will include: 1, raising large, sophisticated, complex, long-life mold design and manufacturing standards and proportion. This is due to the molding plastic mould products increasingly large, complex and high-precision requirements, as well as requirements for high productivity and the development of a multi-mode due. 2, in the design and manufacture of plastic mould fully promote the use of CAD / CAM / CAE technology. CAD / CAM technology has developed into a relatively mature technology common in recent years CAD / CAM technology hardware and software prices has been reduced to SMEs generally acceptable level of popularity for further create good conditions; based on network CAD / CAM / CAE system integration structure the initial signs of emerging, and it will solve the traditional mixed CAD / CAM system can not meet the actual production process requirements of the division of collaboration; CAD / CAM software will gradually improve intelligence plastic parts and the 3-D mold design and prototyping process 3-D analysis will be in our plastic mould industries play an increasingly important role. 3, promote the use of hot runner technology, gas-assisted injection molding technology and high-pressure injection molding technology. Using hot runner mould technology can improve the productivity and quality of parts and plastic parts can be substantial savings of raw materials and energy conservation, extensive application of this technology is a big plastic mould changes. Hot Runner components formulate nationalstandards, and actively produce cheap high-quality components, the development of hot runner mold is the key. Gas-assisted injection molding product quality can be guaranteed under the premise of substantially lower cost. Currently in the automotive and appliance industries gradually promote the use of the Chiang Kai-shek.Gas-assisted injection molding of the ordinary than the traditional injection of more parameters need to identify and control, and its more commonly used in large, complex products, mold design and control more difficult, therefore, the development of gas-assisted molding flow analysis software It seems very important. On the other hand in order to ensure precision plastic parts to continue to study the development of technology and high-pressure injection molding and injection-compression molding mould and die technology is also very important. 4, the development of new plastics molding technology and rapid economic mold. To adapt to more variety, less volume of production. 5, and improve standardization of plastic mould standard parts usage. China's mold and die level of standard parts standardization still low, the gap between the large and foreign, to a certain extent constraining the development of industries in our country die, die to improve quality and reduce manufacturing costs Die, Die standard parts to vigorously promote the application. To this end, first of all, to formulate a unified national standards, and in strict accordance with the standards of production, secondly it is necessary to gradually scale production, to improve the commercialization of the standard of quality, and reduce costs again it is necessary to further increase the standard specifications of varieties. 6, Die application quality materials and advanced surface treatment technology for improving the quality of life and mold it is necessary. 7, research and application of high-speed die measurement technology and reverse engineering. CMM-use 3D scanner or reverse engineering is the realization of plastic moulds CAD / CAM one of the key technologies. Research and Application of diversity, adjustment, cheap detection equipment is to achieve the necessary precondition for reverse engineering.塑料模具的发展中国塑料模工业自从开始到现在,已经经过了半个多世纪,有了非常伟大的发展,模具水平有了很大的提高。

塑料模具的发展史800字作文

塑料模具的发展史800字作文

塑料模具的发展史800字作文The development history of plastic molds can be traced back to the late 19th century when the first plastic injection molding machine was patented in 1872 by John Wesley Hyatt. This marked the beginning of a revolutionary change in the manufacturing industry, as plastic molds allowed for the mass production of plastic products at a much lower cost compared to traditional methods. Over the years, plastic molds have continued to evolve and improve, leading to the diverse range of plastic products we see today.One of the key milestones in the development of plastic molds was the invention of thermoplastics in the 1920s. This new type of plastic could be melted and reshaped multiple times, making it ideal for use in injection molding processes. The introduction of thermoplastics opened up a whole new world of possibilities for plastic molds, allowing for greater design flexibility and the production of more complex and intricate parts.Another significant advancement in the history of plastic molds was the development of computer-aided design (CAD) and computer-aided manufacturing (CAM) technologies in the 1970s. These technologies revolutionized the way plastic molds were designed and produced, allowing for greater precision and efficiency in the manufacturing process. CAD/CAM systems also enabled designers to create more intricate and detailed molds, leading to the production of more sophisticated plastic products.The 21st century has seen further advancements in plastic mold technology, with the introduction of 3D printing and additive manufacturing techniques. These technologies have transformed the way plastic molds are prototyped and produced, allowing for rapid and cost-effective manufacturing of custom molds. 3D printing has also opened up new possibilities for the design and production of complex and customized plastic products, further expanding the potential applications of plastic molds.In recent years, there has been a growing focus on sustainability and environmental responsibility in the manufacturing industry. This has led to the development of new eco-friendly materials and processes for plastic molds, such as biodegradable plastics and recycled materials. The use of these sustainable materials in plastic molds is not only beneficial for the environment but also aligns with the increasing demand for environmentally friendly products from consumers.Looking ahead, the future of plastic molds is likely to be shaped by advancements in materials science, digital technologies, and automation. The development of new advanced materials with enhanced properties and performance will open up new opportunities for the design and production of plastic molds. Furthermore, the integration of digital technologies and automation into the manufacturing process will further improve efficiency and precision in the production of plastic molds, leading to faster turnaround times and lower production costs.In conclusion, the development history of plastic moldshas been marked by significant advancements in materials, technologies, and processes. From the invention of thermoplastics to the introduction of 3D printing, plastic molds have undergone a remarkable transformation, enabling the production of a wide range of plastic products. As we look to the future, the continued evolution of plastic mold technology holds great promise for the manufacturing industry, with new materials and digital technologies set to further expand the capabilities and applications of plastic molds.。

我国模具的发展史外文

我国模具的发展史外文

我国模具的发展史外文The Development History of China's Mould IndustryIntroductionThe mould industry in China has witnessed significant growth and development over the years. From humble beginnings, it has emerged as a crucial sector that contributes to the manufacturing and industrialization of the country. This article aims to provide an overview of the development history ofChina's mould industry, highlighting key milestones and advancements.Early DevelopmentPre-liberation EraDuring the pre-liberation era, industrial development in China was limited, and mould making was primarily a manual and labor-intensive process. The techniques and skills were passed down from generation to generation within individual workshops, often within family-owned businesses. Moulds were typically made using basic tools such as chisels, files, and sandpaper.Post-liberation EraFollowing the establishment of the People's Republic of China in 1949, the country embarked on a path of industrialization. The mould industry began to experiencesignificant growth and transformation. The government recognized the importance of mould making in supporting industrial development and established several specialized institutes to train skilled mould makers.In the 1950s and 1960s, China started to introduce advanced mould making technologies and equipment from the Soviet Union and other socialist countries. This resulted in a significant improvement in the precision and quality of Chinese moulds. Additionally, the establishment of state-owned enterprises contributed to the standardization and mass production of moulds.Reform and Opening UpChina's reform and opening up policies in the late 1970s brought about a major shift in the mould industry. The introduction of market-oriented reforms facilitated the integration of China into the global economy. Foreign investment and technology began to flow into the country, providing new opportunities for the mould industry.21st Century DevelopmentsConclusion。

模具设计英文文献

模具设计英文文献

Mold Design and ManufactureThe mold is the manufacturing industry important craft foundation,in our country, the mold manufacture belongs to the special purpose equipment manufacturing industry. China although very already starts to make the mold and the use mold,but long-term has not formed the industry. Straight stabs 0 centuries 80's later periods,the Chinese mold industry only then drives into the development speedway。

Recent years, not only the state—owned mold enterprise had the very big development,the three investments enterprise,the villages and towns (individual)the mold enterprise’s development also quite rapidly.Although the Chinese mold industrial development rapid, but compares with the demand,obviously falls short of demand,its main gap concentrates precisely to, large—scale,is complex, the long life mold domain。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 The historical development of moldDavid O.Kazmer.Injection mold design engineering.Hanser Gardner PublicationsThe emergence of mold can be traced back thousands of years ago, pottery and bronze foundry, but the large-scale use is with the rise of modern industry and developed.The 19th century, with the arms industry (gun's shell), watch industry, radio industry, dies are widely used. After World War II, with the rapid development of world economy, it became a mass production of household appliances, automobiles, electronic equipment, cameras, watches and other parts the best way. From a global perspective, when the United States in the forefront of stamping technology - many die of advanced technologies, such as simple mold, high efficiency, mold, die and stamping the high life automation, mostly originated in the United States; and Switzerland, fine blanking, cold in Germany extrusion technology, plastic processing of the Soviet Union are at the world advanced. 50's, mold industry focus is based on subscriber demand, production can meet the product requirements of the mold. Multi-die design rule of thumb, reference has been drawing and perceptual knowledge, on the design of mold parts of a lack of real understanding of function. From 1955 to 1965, is the pressure processing of exploration and development of the times - the main components of the mold and the stress state of the function of a mathematical sub-bridge, and to continue to apply to on-site practical knowledge to make stamping technology in all aspects of a leap in development. The result is summarized mold design principles, and makes the pressure machine, stamping materials, processing methods, plum with a structure, mold materials, mold manufacturing method, the field of automation devices, a new look to the practical direction of advance, so that pressing processing apparatus capable of producing quality products from the first stage.Into the 70's to high speed, launch technology, precision, security, development of the second stage.Continue to emerge in this process a variety of high efficiency, business life, high-precision multi-functional automatic school to help with. Represented by the number of working places as much as other progressive die and dozens of multi-station transfer station module. On this basis, has developed both a continuous pressing station there are more slide forming station of the press - bending machine. In the meantime, the Japanese stand to the world's largest - the mold into the micron-level precision, die life, alloy tool steel mold has reached tens of millions of times, carbide steel mold to each of hundreds of millionsof times p minutes for stamping the number of small presses usually 200 to 300, up to 1200 times to 1500 times. In the meantime, in order to meet product updates quickly, with the short duration (such as cars modified, refurbished toys, etc.) need a variety of economic-type mold, such as zinc alloy die down, polyurethane rubber mold, die steel skin, also has been very great development.From the mid-70s so far can be said that computer-aided design, supporting the continuous development of manufacturing technology of the times. With the precision and complexity of mold rising, accelerating the production cycle, the mold industry, the quality of equipment and personnel are required to improve. Rely on common processing equipment, their experience and skills can not meet the needs of mold. Since the 90's, mechanical and electronic technologies in close connection with the development of NC machine tools, such as CNC wire cutting machine, CNC EDM, CNC milling, CNC coordinate grinding machine and so on. The use of computer automatic programming, control CNC machine tools to improve the efficiency in the use and scope. In recent years, has developed a computer to time-sharing by the way a group of direct management and control of CNC machine tools NNC system.With the development of computer technology, computers have gradually into the mold in all areas, including design, manufacturing and management. International Association for the Study of production forecasts to 2000, as a means of links between design and manufacturing drawings will lose its primary role. Automatic Design of die most fundamental point is to establish the mold standard and design standards. To get rid of the people of the past, and practical experience to judge the composition of the design center, we must take past experiences and ways of thinking, for series, numerical value, the number of type-based, as the design criteria to the computer store. Components are dry because of mold constitutes a million other differences, to come up with a can adapt to various parts of the design software almost impossible. But some products do not change the shape of parts, mold structure has certain rules, can be summed up for the automatic design of software. If a Japanese company's CDM system for progressive die design and manufacturing, including the importation of parts of the figure, rough start, strip layout, determine the size and standard templates, assembly drawing and parts, the output NC program (for CNC machining Center and line cutting program), etc., used in 20% of the time by hand, reduce their working hours to 35 hours; from Japan in the early 80s will be three-dimensional cad / cam system for automotive panel die. Currently, the physical parts scanning input, map lines and data input,geometric form, display, graphics, annotations and the data is automatically programmed, resulting in effective control machine tool control system of post-processing documents have reached a high level; computer Simulation (CAE) technology has made some achievements. At high levels, CAD / CAM / CAE integration, that data is integrated, can transmit information directly with each other. Achieve network. Present. Only a few foreign manufacturers ca2 StampingStamping is a kind of plastic forming process in which a part is produced by means of the plastic forming of the material under the action of a die.Stamping is usually carried out under cold state, so it is also called cold stamping. Heat stamping is used only when the blank thickness is greater than 8-100mm. The blank material for stamping is usually in the form sheet or strip, and therefore it is also called sheet metal forming. Some non-metal sheets (such as plywood, mica sheet, asbestos, leather) can also be formed by stamping.Stamping is widely used in various metalworking industry, and it plays a crucial role in the industries for manufacturing automobiles, instruments, military parts and household electrical appliances, etc.The process,equipment and die are the three foundational problems that needed to be studied in stamping.The characteristics of the sheet metal forming are as follows:(1) High material utilization.(2) Capacity to produce thin-walled parts of complex shape.(3) Good interchangeability of stamping parts precision in shape and dimension.(4) Parts with lightweight,high strength and fine rigidity can be obtained.(5) High productivity, easy to operate and to realize mechanization and automatization. The manufacture of the stamping die is costly, and therefore it only fits to mass production. For the manufacture of products in small batch and rich variety, the simple stamping die and the new equipment such as a stamping machining center, are usually adopted to meet he market demands.The materials for sheet metal stamping include mild steel, copper, aluminum, magnesium alloy and high-plasticity alloy steel, etc.Stamping equipment includes plate shear and punching press. The former shears plate into strips with a definite width, which would be pressed later. The later can be used both in shearing and forming.There are various processes of stamping forming with different working patterns and names,but these processes are similar to each other in plastic deformation.There are following conspicuous characteristics in stamping:(1) The force per unit area perpendicular to the blank surface is not large but is enough to cause the material plastic deformation. It is much less than the inner stresses on the plate plane directions.In most cases stamping forming can be treated approximately as that of the plane stress state to simplify vastly the theoretical deformation mechanics analysis and the calculation of the process parameters.(2) Due to the small relative thickness,the anti-instability capability of the blank is weak under compressive stress.As a result,the stamping process is difficult to proceed successfully without using the anti-instability device (such as blank holder).Therefore the variety of the stamping processes dominated by tensile stress are more than those dominated by compressive stress.(3) During stamping forming,the inner stress of the blank is equal to or sometimes less than the yield stress of the material.In this point,the stamping is different from the bulk forming. During stamping forming,the influence of the hydrostatic pressure of the stress state in the deformation zone to the forming limit and the deformation resistance is not so important as to the bulk forming.In some circumstances,such influence may be neglected.Even in the case when this influence should be considered,the treating method is also different from that of bulk forming.(4) In stamping forming,the restrain action of the die to the blank is not severe as in the case of the bulk forming(such as die forging).In bulk forming, the constraint forming is proceeded by the die with exactly the same shape of the part.Whereas in stamping,in most cases,the blank has a certain degree of freedom, only one surface of the blank contacts with the die.In some extra cases, such as the forming of the suspended region of sphere or cone,and curling at the end of tube, neither sides of the blank on the deforming zone contact with the die. The deformation in these regions are caused and controlled the die applying an external force to its adjacent area.Due to the characteristics of stamping deformation and mechanics mentioned above,the stamping technique is different from the bulk metal forming:(1) The importance of the strength and rigidity of the die in stamping forming is less than that in bulk forming because the blank can be formed without applying large pressure unit area on its surface.Instead,the techniques of the simple die and the pneumatic and hydraulic forming are developed.(2) Due to the plane stress or simple strain state in comparison with bulk forming,more research on deformation or force and power parameters has been done, stamping forming canbe performed by more reasonable scientific methods.Based on the real time measurement and analysis on the sheet metal properties and stamping parameters, by means of computer and some modem testing apparatus research on the intellectualized control of stamping process is also in proceeding.(3) It is shown that there is a close relationship between stamping forming and raw material. The research on the properties of the stamping forming,that is,forming ability and shape stability, has become a key point in stamping technology. The research on the properties of the sheet metal stamping not only meets the need of the stamping technology development,but also enhances the manufacturing technique of iron and steel industry, and provides a reliable foundation for increasing sheet metal quality.3 China's mold industry and its development trendDue to historical reasons for the formation of closed, "big and complete" enterprise features, most enterprises in China are equipped with mold workshop, in factory matching status since the late 70s have a mold the concept of industrialization and specialization of production. Mold production industry is small and scattered, cross-industry, capital-intensive, professional, commercial and technical management level are relatively low.According to incomplete statistics, there are now specialized in manufacturing mold, the product supporting mold factory workshop (factory) near 17 000, about 600 000 employees, annual output value reached 20 billion yuan mold. However, the existing capacity of the mold and die industry can only meet the demand of 60%, still can not meet the needs of national economic development. At present, the domestic needs of large, sophisticated, complex and long life of the mold also rely mainly on imports. According to customs statistics, in 1997 630 million U.S. dollars worth of imports mold, not including the import of mold together with the equipment; in 1997 only 78 million U.S. dollars export mold. At present the technological level of China Die & Mould Industry and manufacturing capacity, China's national economy in the weak links and bottlenecks constraining sustainable economic development.3.1 Research on the Structure of industrial products moldIn accordance with the division of China Mould Industry Association, China mold is divided into 10 basic categories, which, stamping die and plastic molding two categoriesaccounted for the main part. Calculated by output, present, China accounts for about 50% die stamping, plastic molding die about 20%, Wire Drawing Die (Tool) about 10% of the world's advanced industrial countries and regions, the proportion of plastic forming die die general of the total output value 40%.Most of our stamping die mold for the simple, single-process mode and meet the molds, precision die, precision multi-position progressive die is also one of the few, die less than 100 million times the average life of the mold reached 100 million times the maximum life of more than accuracy 3 ~ 5um, more than 50 progressive station, and the international life of the die 600 million times the highest average life of the die 50 million times compared to the mid 80s at the international advanced level.China's plastic molding mold design, production technology started relatively late, the overall level of low. Currently a single cavity, a simple mold cavity 70%, and still dominant.A sophisticated multi-cavity mold plastic injection mold, plastic injection mold has been able to multi-color preliminary design and manufacturing. Mould is about 80 million times the average life span is about, the main difference is the large deformation of mold components, excess burr side of a large, poor surface quality, erosion and corrosion serious mold cavity, the mold cavity exhaust poor and vulnerable such as, injection mold 5um accuracy has reached below the highest life expectancy has exceeded 20 million times, the number has more than 100 chamber cavity, reaching the mid 80s to early 90s the international advanced level.3.2 mold Present Status of TechnologyTechnical level of China's mold industry currently uneven, with wide disparities. Generally speaking, with the developed industrial countries, Hong Kong and Taiwan advanced level, there is a large gap.The use of CAD / CAM / CAE / CAPP and other technical design and manufacture molds, both wide application, or technical level, there is a big gap between both. In the application of CAD technology design molds, only about 10% of the mold used in the design of CAD, aside from drawing board still has a long way to go; in the application of CAE design and analysis of mold calculation, it was just started, most of the game is still in trial stages and animation; in the application of CAM technology manufacturing molds, first, the lack of advanced manufacturing equipment, and second, the existing process equipment (including the last 10years the introduction of advanced equipment) or computer standard (IBM PC and compatibles, HP workstations, etc.) different, or because of differences in bytes, processing speed differences, differences in resistance to electromagnetic interference, networking is low, only about 5% of the mold manufacturing equipment of recent work in this task; in the application process planning CAPP technology, basically a blank state, based on the need for a lot of standardization work; in the mold common technology, such as mold rapid prototyping technology, polishing, electroforming technologies, surface treatment technology aspects of CAD / CAM technology in China has just started. Computer-aided technology, software development, is still at low level, the accumulation of knowledge and experience required. Most of our mold factory, mold processing equipment shop old, long in the length of civilian service, accuracy, low efficiency, still use the ordinary forging, turning, milling, planing, drilling, grinding and processing equipment, mold, heat treatment is still in use salt bath, box-type furnace, operating with the experience of workers, poorly equipped, high energy consumption. Renewal of equipment is slow, technological innovation, technological progress is not much intensity. Although in recent years introduced many advanced mold processing equipment, but are too scattered, or not complete, only about 25% utilization, equipment, some of the advanced functions are not given full play.Lack of technology of high-quality mold design, manufacturing technology and skilled workers, especially the lack of knowledge and breadth, knowledge structure, high levels of compound talents. China's mold industry and technical personnel, only 8% of employees 12%, and the technical personnel and skilled workers and lower the overall skill level. Before 1980, practitioners of technical personnel and skilled workers, the aging of knowledge, knowledge structure can not meet the current needs; and staff employed after 80 years, expertise, experience lack of hands-on ability, not ease, do not want to learn technology. In recent years, the brain drain caused by personnel not only decrease the quantity and quality levels, and personnel structure of the emergence of new faults, lean, make mold design, manufacturing difficult to raise the technical level.3.3 mold industry supporting materials, standard parts of present conditionOver the past 10 years, especially the "Eighth Five-Year", the State organization of the ministries have repeatedly Material Research Institute, universities and steel enterprises, research and development of special series of die steel, molds and other mold-specific carbide special tools, auxiliary materials, and some promotion. However, due to the quality is not stable enough, the lack of the necessary test conditions and test data, specifications andvarieties less, large molds and special mold steel and specifications are required for the gap. In the steel supply, settlement amount and sporadic users of mass-produced steel supply and demand contradiction, yet to be effectively addressed. In addition, in recent years have foreign steel mold set up sales outlets in China, but poor channels, technical services support the weak and prices are high, foreign exchange settlement system and other factors, promote the use of much current.Mold supporting materials and special techniques in recent years despite the popularization and application, but failed to mature production technology, most still also in the exploratory stage tests, such as die coating technology, surface treatment technology mold, mold guide lubrication technology Die sensing technology and lubrication technology, mold to stress technology, mold and other anti-fatigue and anti-corrosion technology productivity has not yet fully formed, towards commercialization. Some key, important technologies also lack the protection of intellectual property.China's mold standard parts production, the formation of the early 80s only small-scale production, standardization and standard mold parts using the coverage of about 20%, from the market can be assigned to, is just about 30 varieties, and limited to small and medium size. Standard punch, hot runner components and other supplies just the beginning, mold and parts production and supply channels for poor, poor accuracy and quality.3.4 Die & Mould Industry Structure in Industrial OrganizationChina's mold industry is relatively backward and still could not be called an independent industry. Mold manufacturer in China currently can be divided into four categories: professional mold factory, professional production outside for mold; products factory mold factory or workshop, in order to supply the product works as the main tasks needed to die; die-funded enterprises branch, the organizational model and professional mold factory is similar to small but the main; township mold business, and professional mold factory is similar. Of which the largest number of first-class, mold production accounts for about 70% of total output. China's mold industry, decentralized management system. There are 19 major industry sectors manufacture and use of mold, there is no unified management of the department. Only by China Die & Mould Industry Association, overall planning, focus on research, cross-sectoral, inter-departmental management difficulties are many.Mold is suitable for small and medium enterprises organize production, and our technical transformation investment tilted to large and medium enterprises, small and medium enterprise investment mold can not be guaranteed. Including product factory mold shop, factory, including, after the transformation can not quickly recover its investment, or debt-laden, affecting development.Although most products factory mold shop, factory technical force is strong, good equipment conditions, the production of mold levels higher, but equipment utilization rate.Price has long been China's mold inconsistent with their value, resulting in mold industry "own little economic benefit, social benefit big" phenomenon. "Dry as dry mold mold standard parts, standard parts dry as dry mold with pieces of production. Dry with parts manufactured products than with the mold" of the class of anomalies exist.4 EngineeringEngineering is the discipline, art and profession of acquiring and applying scientific, mathematical, economic, social, and practical knowledge to design and build structures, machines, devices, systems, materials and processes that safely realize solutions to the needs of society.The American Engineers' Council for Professional Development (ECPD, the predecessor of ABET) has defined "engineering" as:The creative application of scientific principles to design or develop structures, machines, apparatus, or manufacturing processes, or works utilizing them singly or in combination; or to construct or operate the same with full cognizance of their design; or to forecast their behavior under specific operating conditions; all as respects an intended function, economics of operation and safety to life and property.One who practices engineering is called an engineer, and those licensed to do so may have more formal designations such as Professional Engineer, Chartered Engineer, Incorporated Engineer, or European Engineer. The broad discipline of engineering encompasses a range of more specialized subdisciplines, each with a more specific emphasis on certain fields of application and particular areas of technology.4.1 Engineering HistoryThe concept of has existed since ancient times as humans devised fundamental inventions such as the pulley, lever, and wheel. Each of these inventions is consistent with the modern definition of engineering, exploiting basic mechanical principles to develop useful tools and objects.The term engineering itself has a much more recent etymology, deriving from the word engineer, which itself dates back to 1325, when an engine’er (literally, one who operates an engine) originally referred to “a constructor of military engines.” In this context, now obsolete, an “engine” referred to a military machine, i.e., a mechanical contraption used in war (for example, a catapult). Notable exceptions of the obsolete usage which have survived to the present day are military engineering corps, e.g., the U.S. Army Corps of Engineers.The word “engine” itself is of even older origin, ultimately deriving from the Latin ingenium (c. 1250), meaning “innate quality, especially mental power, hence a clever invention.”Later, as the design of civilian structures such as bridges and buildings matured as a technical discipline, the term civil engineering entered the lexicon as a way to distinguish between those specializing in the construction of such non-military projects and those involved in the older discipline of military engineering.4.2 Ancient eraThe Pharos of Alexandria, the pyramids in Egypt, the Hanging Gardens of Babylon, the Acropolis and the Parthenon in Greece, the Roman aqueducts, Via Appia and the Colosseum, Teotihuacán and the cities and pyramids of the Mayan, Inca and Aztec Empires, the Great Wall of China, among many others, stand as a testament to the ingenuity and skill of the ancient civil and military engineers.The earliest civil engineer known by name is Imhotep. As one of the officials of the Pharaoh, Djosèr, he probably designed and supervised the construction of the Pyramid ofDjoser (the Step Pyramid) at Saqqara in Egypt around 2630-2611 BC. He may also have been responsible for the first known use of columns in architecture[citation needed].Ancient Greece developed machines in both the civilian and military domains. The Antikythera mechanism, the first known mechanical computer, and the mechanical inventions of Archimedes are examples of early mechanical engineering. Some of Archimedes' inventions as well as the Antikythera mechanism required sophisticated knowledge of differential gearing or epicyclic gearing, two key principles in machine theory that helped design the gear trains of the Industrial revolution, and are still widely used today in diverse fields such as robotics and automotive engineering.Chinese, Greek and Roman armies employed complex military machines and inventions such as artillery which was developed by the Greeks around the 4th century B.C., the trireme, the ballista and the catapult. In the Middle Ages, the Trebuchet was developed.4.3 Renaissance eraThe first electrical engineer is considered to be William Gilbert, with his 1600 publication of De Magnete, who was the originator of the term "electricity".The first steam engine was built in 1698 by mechanical engineer Thomas Savery. The development of this device gave rise to the industrial revolution in the coming decades, allowing for the beginnings of mass production.With the rise of engineering as a profession in the eighteenth century, the term became more narrowly applied to fields in which mathematics and science were applied to these ends. Similarly, in addition to military and civil engineering the fields then known as the mechanic arts became incorporated into engineering.4.4 ModernThe International Space Station represents a modern engineering challenge from many disciplines.Electrical engineering can trace its origins in the experiments of Alessandro Volta in the 1800s, the experiments of Michael Faraday, Georg Ohm and others and the invention of the electric motor in 1872. The work of James Maxwell and Heinrich Hertz in the late 19thcentury gave rise to the field of Electronics. The later inventions of the vacuum tube and the transistor further accelerated the development of electronics to such an extent that electrical and electronics engineers currently outnumber their colleagues of any other Engineering specialty.The inventions of Thomas Savery and the Scottish engineer James Watt gave rise to modern Mechanical Engineering. The development of specialized machines and their maintenance tools during the industrial revolution led to the rapid growth of Mechanical Engineering both in its birthplace Britain and abroad.Chemical Engineering, like its counterpart Mechanical Engineering, developed in the nineteenth century during the Industrial Revolution. Industrial scale manufacturing demanded new materials and new processes and by 1880 the need for large scale production of chemicals was such that a new industry was created, dedicated to the development and large scale manufacturing of chemicals in new industrial plants. The role of the chemical engineer was the design of these chemical plants and processes.Aeronautical Engineering deals with aircraft design while Aerospace Engineering is a more modern term that expands the reach envelope of the discipline by including spacecraft design. Its origins can be traced back to the aviation pioneers around the turn of the century from the 19th century to the 20th although the work of Sir George Cayley has recently been dated as being from the last decade of the 18th century. Early knowledge of aeronautical engineering was largely empirical with some concepts and skills imported from other branches of engineering.The first PhD in engineering (technically, applied science and engineering) awarded in the United States went to Willard Gibbs at Yale University in 1863; it was also the second PhD awarded in science in the U.S.Only a decade after the successful flights by the Wright brothers, the 1920s saw extensive development of aeronautical engineering through development of World War I military aircraft. Meanwhile, research to provide fundamental background science continued by combining theoretical physics with experiments.In 1990, with the rise of computer technology, the first search engine was built by computer engineer Alan Emtage.。

相关文档
最新文档