《一元一次方程》竞赛试题

合集下载

初一奥数一元一次方程测试题及答案

初一奥数一元一次方程测试题及答案

初一奥数一元一次方程测试题及答案一元一次方程指只含有一个未知数、未知数的次数为1且两边都为整式的等式。

一元一次方程只有一个根。

一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。

一元一次方程最早见于约公元前1600年的古埃及时期。

公元820年左右,数学家花拉子米在《对消与还原》一书中提出了“合并同类项”、“移项”的一元一次方程思想。

16世纪,数学家韦达创立符号代数之后,提出了方程的移项与同除命题。

1859年,数学家李善兰正式将这类等式译为一元一次方程。

下面是无忧考网为大家带来的初一奥数一元一次方程测试题及答案,欢迎大家阅读。

一、精心选一选(每小题4分,共32分)1.已知x=y,则下列各式中:x﹣3=y﹣3;3x=3y;﹣2x=﹣2y;正确的有()A.1个B.2个C.3个D.4个2.下列方程中,解为x=3的方程是()A.x﹣2=﹣3 B.x﹣4=﹣2 C.x﹣8=﹣4 D.x﹣2=﹣13.将方程0.7+ 变形正确的是()A.7+ B.0.7+ C.0.7+ D.0.7+1.5x﹣1=3﹣x4.下列变形中:①由方程=2去分母,得x-12=10;②由方程x=两边同除以,得x=1;③由方程6x-4=x+4移项,得7x=0;④由方程2- =两边同乘以6,得12-x-5=3(x+3).错误变形的个数是().A.4个B.3个C.2个D.1个5.解方程(3x+2)+2[(x﹣1)﹣(2x+1)]=6,得x=()A.2 B.4 C.6 D.86.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是()A.2(x﹣1)+3x=13 B.2(x+1)+3x=13C.2x+3(x+1)=13 D.2x+3(x﹣1)=137.如图所示,是某月份的日历表,任意圈出一横行或一竖列相邻的三个数,这三个数的和不可能是()A.24 B.43 C.57 D.698.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x 米,根据题意,列出方程为()A.2x+4×20=4×340 B.2x﹣4×72=4×340C.2x+4×72=4×340 D.2x﹣4×20=4×340二、细心填一填(每小题4分,共20分)9.在公式s=(a+b)h中,已知s=16,a=3,h=4,则b = .10.若(m+1)x|m|+3=0是关于x的一元一次方程,则m=.11.当x=时,代数式(1-2x)与代数式(3x+1)的值相等.12.三个连续偶数的和为48,则这三个偶数为 .13.某市自来水费实行阶梯水价,收费标准如下表所示,某用户5月份交水费44元,则所用水为吨.月用水量不超过10吨的部分超过10吨不超过16吨的部分超过16吨的部分收费标准(元/吨)2.00 2.50 3.00三、专心解一解(5个小题,共48分)14.(9分)解方程:﹣x=1﹣.15.(9分)阅读下列例题,并按要求完成问题:例:解方程|2x|=1解:①当2x≥0时,2x=1,它的解是x=②当2x≤0时,﹣2x=1,它的解是x=﹣所以原方程的解是x=或x=﹣ .请你模仿上面例题的解法,解方程:|2x﹣1|=3.16.(9分)解方程:=﹣1.17.(10分)某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车可以少租一辆,并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)18.(11分)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?参考答案一、1.C 2.A 3.C 4.B 5.D 6.A 7.B 8.A二、9.5 10.1 11. 12.14、16、18 13.19三、14. 解:去分母,得10x+5﹣15x=15﹣18+12x,移项,得10x﹣15x﹣12x=15﹣18-5合并同类项,得-17x=-8,系数化为1,得x= .15. 解:|2x﹣1|=3,①当2x﹣1≥0时,2x﹣1=3,∴x=2,②当2x﹣1≤0时,﹣(2x﹣1)=3,∴x=﹣1,∴原方程的解是x=2或x=﹣1.16. 解:整理,得=—1去分母,得90(x+1)=50(x+1)—6去括号,得90x+90=50x+50-6移项,得90x—50x=50-6-90合并同类项,得40x=-46,系数化为1,得x=﹣.17. 解:(1)设该单位参加旅游的职工有x人,由题意,得解得x=360;答:该单位参加旅游的职工有360人.(2)有可能,因为租用4辆40座的客车、4辆50座的客车刚好可以坐360人,正好坐满.18. 解:(1)∵裁剪时x张用A方法,∴裁剪时(19﹣x)张用B方法.∴侧面的个数为:6x+4(19﹣x)=(2x+76)个,底面的个数为:5(19﹣x)=个;(2)由题意,得(2x+76)×2=(95﹣5x)×3解得:x=7,∴盒子的个数为:=30.答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.。

(易错题精选)初中数学方程与不等式之一元一次方程经典测试题

(易错题精选)初中数学方程与不等式之一元一次方程经典测试题

(易错题精选)初中数学方程与不等式之一元一次方程经典测试题一、选择题1.足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了A .3场B .4场C .5场D .6场【答案】C【解析】【分析】设共胜了x 场,本题的等量关系为:胜的场数×3+平的场数×1+负的场数×0=总得分,解方程即可得出答案.【详解】设共胜了x 场,则平了(14-5-x )场,由题意得:3x+(14-5-x )=19,解得:x=5,即这个队胜了5场.故选C .【点睛】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.2.在解分式方程31x -+21x x+-=2时,去分母后变形正确的是( ) A .()()3221x x -+=- B .()3221x x -+=-C .()322x -+=D .()()3221x x ++=- 【答案】A【解析】【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x-1和1-x 互为相反数,可得1-x=-(x-1),所以可得最简公分母为x-1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【详解】方程两边都乘以x-1,得:3-(x+2)=2(x-1).故答案选A .【点睛】本题考查了解分式方程,解题的关键是方程两边都乘以最简公分母.3.某书店推出一种优惠卡,每张卡售价为50元,凭卡购书可享受8折优惠,小明同学到该书店购书,他先买购书卡再凭卡付款,结果省了10元。

若此次小明不买卡直接购书,则他需要付款()A.380元B.360元C.340元D.300元【答案】D【解析】【分析】此题的关键描述:“先买优惠卡再凭卡付款,结果节省了10元”,设出未知数,根据题中的关键描述语列出方程求解.【详解】解:设小明同学不买卡直接购书需付款是x元,则有:50+0.8x=x-10解得:x=300即:小明同学不凭卡购书要付款300元.故选:D.【点睛】本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.4.某商品打七折后价格为a元,则原价为()A.a元B.107a元C.30%a元D.710a元【答案】B【解析】【分析】直接利用打折的意义表示出价格即可得出答案.【详解】设该商品原价为x元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=107a(元),故选B.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.5.若x=-2是方程ax-b=1的解,则代数式4a+2b-3的值为()A.1 B.3-C.1-D.5-【答案】D【解析】【分析】把x=-2代入ax-b=1得到关于a和b的等式,利用等式的性质,得到整式4a+2b-3的值,即可得到答案.【详解】解:把x=-2代入ax-b=1得:-2a-b=1,等式两边同时乘以-2得:4a+2b=-2,等式两边同时减去3得:4a+2b-3=-2-3=-5,故选:D.【点睛】本题考查了一元一次方程的解和代数式求值,正确掌握代入法和等式的性质是解题的关键.6.已知△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x﹣2,2x﹣1,若这两个三角形全等,则x为()A.B.4 C.3 D.不能确定【答案】C【解析】试题分析:根据三角形全等可得:3x-2=5且2x-1=7或3x-2=7且2x-1=5;第一个无解,第二个解得:x=3.考点:三角形全等的性质7.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x【答案】C【解析】【分析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可【详解】.故选C.解:设安排x名工人生产螺钉,则(26-x)人生产螺母,由题意得1000(26-x)=2×800x,故C答案正确,考点:一元一次方程.8.某学校,安排50人打扫校园卫生,20人拉垃圾,后因两边的人手不够,又增派30人去支援,结果打扫卫生的人数是拉垃圾人数的3倍,若设支援打扫卫生的同学有x人,则下列方程正确的是()A.50+x=3×30 B.50+x=3×(20+30-x)C .50+x =3×(20-x)D .50+x =3×20【答案】B【解析】【分析】 可设支援打扫卫生的人数有x 人,则支援拉垃圾的人数有(30﹣x )人,根据题意可得题中存在的等量关系:原来打扫卫生的人数+支援打扫卫生的人数=3×(原来拉垃圾的人数+支援拉垃圾的人数),根据此等量关系列出方程即可.【详解】解:设支援打扫卫生的人数有x 人,则支援拉垃圾的人数有(30﹣x )人,依题意有 50+x =3[20+(30﹣x )],故选:B .【点睛】本题考查了一元一次方程的应用,列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐蔽,要注意仔细审题,耐心寻找.9.A ,B 两地相距480 km ,一列慢车从A 地出发,每小时行驶60 km ,一列快车从B 地出发,每小时行驶90 km ,快车提前30 min 出发.两车相向而行,慢车行驶了多少小时后,两车相遇.若设慢车行驶了x h 后,两车相遇,则根据题意,下面所列方程正确的是( ) A .60(30)90480x x ++=B .6090(30)480x x ++=C .160()904802x x ++=D .16090()4802x x ++= 【答案】D【解析】【分析】【详解】解:慢车行驶了x 小时后,两车相遇,根据题意得出:16090()4802x x ++=. 故选D .【点睛】本题考查由实际问题抽象出一元一次方程.10.某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价.设这种服装的成本价为x 元,则得到方程( )A .0150250x =⨯B .0251500x ⋅= C .0015025x x-= D .0150250x -= 【答案】C【解析】【分析】等量关系为:成本×(1+利润率)=售价,把相关数值代入即可【详解】解:设这种服装的成本价为x 元,那么根据利润=售价-成本价,可得出方程:150-x=25%x ;15025%x x-= 故应选C11.寒假期间,小刚组织同学一起去看科幻电影《流浪地球》,票价每张45元,20张以上(不含20张)打八折,他们一共花了900元,则他们买到的电影票的张数是( ) A .20B .22C .25D .20或25【答案】D【解析】【分析】本题分票价每张45元和票价每张45元的八折两种情况讨论,根据数量=总价÷单价,列式计算即可求解.【详解】①若购买的电影票不超过20张,则其数量为900÷45=20(张);②若购买的电影票超过20张,设购买了x 张电影票,根据题意,得:45×x ×80%=900,解得:x =25;综上,共购买了20张或25张电影票;故选D .【点睛】本题考查了一元一次方程的应用,注意分类思想的实际运用,同时熟练掌握数量,总价和单价之间的关系.12.某公园门票的收费标准如下:有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了( )元.A .300B .260C .240D .220【答案】B【解析】【分析】 根据题意,分情况讨论:若花费较少的一家的购票方案为5人团购,则另一家花费340元,据此组合验证是否能凑成整数张成人票和儿童票;若花费较少的一家的购票方案是成人票和儿童票分开购买,则可根据题意设未知数,列方程求解并验证.【详解】若花费较少的一家是60×5=300(元),则花费较多的一家为340元,经检验可知,成人和儿童共5张票无法组合成340元.设花费较少的一家花了x 元,则另一家花了40x +元,根据题意得:40=605x +⨯解得:260x =检验可知,该家庭有1个成人,4个儿童,共花费100+40×4=260(元);故选:B .【点睛】本题考查一元一次方程应用,理清题意,找准等量关系,正确列出方程是解题关键.13.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭大雁与从北海和南海同时起飞,经过x 天相遇,可列方程为( )A .179x x -= B .179x x += C .7x+9x=1 D .9x-7x=1 【答案】B【解析】【分析】 直接根据题意得出野鸭和大雁的飞行速度,进而利用它们相向而行何时相逢进而得出等式.【详解】 解:野鸭大雁与从北海和南海同时起飞,经过x 天相遇,可列方程为:11179x ⎛⎫+= ⎪⎝⎭,即179x x +=, 故选B.【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示出每天飞行的距离是解题关键.14.若代数式x +2的值为1,则x 等于( )A .1B .-1C .3D .-3【答案】B【解析】【分析】列方程求解.【详解】解:由题意可知x+2=1,解得x=-1,故选B.【点睛】本题考查解一元一次方程,题目简单.15.下列等式变形错误的是( )A.若x=y,则x-5=y-5 B.若-3x=-3y,则x=yC.若xa=ya,则x=y D.若mx=my,则x=y【答案】D【解析】【分析】等式两边同时加上或减去同一个数,等式依然成立;等式两边同时乘以或除以同一个不为0的数,等式依然成立;据此对各选项进行分析判断即可.【详解】A:等式两边同时减去了5,等式依然成立;B:等式两边同时除以3-,等式依然成立;C:等式两边同时乘以a,等式依然成立;D:当0m=时,x不一定等于y,等式不成立;故选:D.【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.16.若12xy=⎧⎨=-⎩是关于x和y的二元一次方程1ax y+=的解,则a的值等于()A.3 B.1 C.1-D.3-【答案】A【解析】【分析】将方程的解代入所给方程,再解关于a的一元一次方程即可.【详解】解:将12xy=⎧⎨=-⎩代入1ax y+=得,21a-=,解得:3a =.故选:A .【点睛】本题考查的知识点是二元一次方程的解以及解一元一次方程,比较基础,难度不大.17.我国古代名著《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四,问人数几何?原文意思是:现在有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?如果假设共有x 人,则可列方程为( )A .8374x x +=+B .8374x x -=+C .8374x x +=-D .8374x x -=-【答案】B【解析】【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可.【详解】解:设共有x 人,可列方程为:8x-3=7x+4.故选:B【点睛】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.18.今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有( )A .2种B .3种C .4种D .5种【答案】B【解析】【分析】设小虎足球队踢平场数是所负场数的k 倍,依题意建立方程组,解方程组从而得到用k 表示的负场数,因为负场数和k 均为整数,据此求得满足k 为整数的负场数情况.【详解】解:设小虎足球队胜了x 场,平了y 场,负了z 场,依题意得 17316x y z x y y kz ++=⎧⎪+=⎨⎪=⎩①②③,把③代入①②得(1)17316x k z x kz ++=⎧⎨+=⎩,解得z=3523k +(k 为整数). 又∵z 为正整数,∴当k=1时,z=7;当k=2时,z=5;当k=16时,z=1. 综上所述,小虎足球队所负场数的情况有3种情况.故选B .【点睛】本题考查了二元一次方程组的应用.解答方程组是个难点,用了换元法.19.如果关于x 的方程()32019a x -=有解,那么实数a 的取值范围是( ) A .3a <B .3a =C .3a >D .3a ≠ 【答案】D【解析】【分析】根据方程有解确定出a 的范围即可.【详解】∵关于x 的方程(a-3)x=2019有解,∴a-3≠0,即a≠3,故选:D .【点睛】此题考查了一元一次方程的解,弄清方程有解的条件是解本题的关键.20.方程834x ax -=-的解是3x =,则a 的值是( ).A .1B .1-C .3-D .3【答案】A【解析】【分析】把3x =代入方程834x ax -=-,得出一个关于a 的方程,求出方程的解即可.【详解】把3x =代入方程834x ax -=-得:8-9=3a-4解得:a=1故选:A .【点睛】本题考查了解一元一次方程和一元二次方程的解,能够得出关于a 的一元一次方程是解此题的关键.。

2022-2023学年七年级数学上《一元一次方程》测试卷及答案解析

2022-2023学年七年级数学上《一元一次方程》测试卷及答案解析

2022-2023学年七年级数学上《一元一次方程》一.选择题(共8小题)1.(2022春•嵩县期中)下列各式中是方程的是()A.2x﹣3B.2+4=6C.x﹣2>1D.2x﹣1=3 2.(2022春•兰考县期中)下列四个式子中,是方程的是()A.3+2=5B.3x﹣2=1C.2x﹣3<0D.a2+2ab+b2 3.(2021秋•临西县校级月考)关于式子①2x=3和②1﹣3=﹣2,下列说法正确的是()A.①、②均是方程B.①是方程,②不是方程C.①不是方程,②是方程D.①、②均不是方程4.(2020秋•饶平县校级期末)下列式子是方程的是()A.6x+3B.6m+m=14C.5a﹣2<53D.3﹣2=1 5.(2022春•北碚区校级期中)已知正整数a,b,c,d满足a<b<c<d,且a+b+c+d=d2﹣c2+b2﹣a2,关于这个四元方程下列说法正确的个数是()①a=1,b=2,c=3,d=4是该四元方程的一组解;②连续的四个正整数一定是该四元方程的解;③若a<b<c<d<10,则该四元方程有21组解;④若a+b+c+d=2022,则该四元方程有504组解.A.1B.2C.3D.46.(2021秋•渝中区校级期末)下列选项是一元一次方程的是()A.x+2y=0B.3x+1C.3x2+1=0D.2x=1 7.(2022春•临汾月考)下列属于方程的是()A.2x=3B.2x>﹣1C.1﹣3=﹣2D.7y﹣1 8.(2021秋•遵化市期末)方程﹣3(★﹣9)=5x﹣1,★处被盖住了一个数字,已知方程的解是x=5,那么★处的数字是()A.1B.2C.3D.4二.多选题(共2小题)(多选)9.(2021秋•乳山市期末)下列变形错误的是()A.由﹣3+2x=1,得2x=1﹣3B.由3y=﹣4,得C.由3=x+2,得x=3+2D.由x﹣4=9,得x=9+4(多选)10.(2021秋•潍坊期中)下列运用等式的性质,变形正确的是()A.若x=y,则x﹣5=y+5B.若a=b,则ac=bcC.若,则x=y D.若,则2a=3b三.填空题(共6小题)11.(2021秋•渌口区期末)写出一个解为x=3的方程:.12.(2017秋•左贡县校级期末)如果x=5是方程ax+5=10﹣4a的解,那么a=.13.(2013秋•嘉峪关校级期末)在①2+1=3,②4+x=1,③y2﹣2y=3x,④x2﹣2x+1中,方程有(填序号)14.1:2x﹣1;2:2x+1=3x;3:﹣3;4:t+1=3中,代数式有,方程有(填入式子的序号).15.(2020秋•太原期末)方程2x+▲=3x,▲处是被墨水盖住的常数,已知方程的解是x=2,那么▲处的常数是.16.(2021秋•龙泉驿区校级期末)关于x的方程3(k﹣2)x5﹣2|k|﹣2k=16是一元一次方程,那么k=.四.解答题(共4小题)17.(2022春•开福区校级月考)方程的解的定义:使方程两边相等的未知数的值.如果一个方程的解都是整数,那么这个方程叫做“立信方程”.(1)若“立信方程”2x+1=1的解也是关于x的方程1﹣2(x﹣m)=3的解,则m=;(2)若关于x的方程x2+3x﹣4=0的解也是“立信方程”6x+2x2﹣3﹣n=0的解,则n =;(3)若关于x的方程ax=2a3﹣3a2﹣5a+4的解也是关于x的方程9x﹣3=kx+14的解,且这两个方程都是“立信方程”,求符合要求的正整数a和正整数k的值.18.指出下列方程中的未知数是什么,方程的左边是什么.方程的右边是什么?并且判断它否是一元一次方程?(1)3=2x﹣1;(2)x+2y=7;(3)x2+5x﹣1=5;(4)x2=y2+2y;(5)x﹣π=3;(6)3m+5=﹣4;(7)﹣=1.19.判断下列各式是不是方程,如果是,指出未知数;如果不是,说明理由.(1)3+5x﹣4x2;(2)2x﹣y=1;(3)=1;(4)3x﹣11>0.20.小明今年12岁,他爸爸今年36岁,几年后爸爸的年龄是小明年龄的2倍?(列方程并估计问题的解)2022-2023学年七年级数学上《一元一次方程》参考答案与试题解析一.选择题(共8小题)1.(2022春•嵩县期中)下列各式中是方程的是()A.2x﹣3B.2+4=6C.x﹣2>1D.2x﹣1=3【考点】方程的定义.【专题】一次方程(组)及应用;符号意识.【分析】根据方程的定义:含有未知数的等式叫方程可得答案.【解答】解:A.2x﹣3含有未知数,但不是等式,所以不是方程,故不符合题意;B.2+4=6不含有未知数,且不是等式,所以不是方程,故不符合题意;C.x﹣2>1不是等式,所以不是方程,故不符合题意;D.2x﹣1=3符合方程的定义,故符合题意.故选:D.【点评】此题主要考查了方程的定义.方程是含有未知数的等式,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.2.(2022春•兰考县期中)下列四个式子中,是方程的是()A.3+2=5B.3x﹣2=1C.2x﹣3<0D.a2+2ab+b2【考点】方程的定义.【专题】常规题型.【分析】根据方程的定义即可求出答案.【解答】解:方程是指含有未知数的等式.故选:B.【点评】本题考查方程的定义,解题的关键是熟练运用方程的定义,本题属于基础题型.3.(2021秋•临西县校级月考)关于式子①2x=3和②1﹣3=﹣2,下列说法正确的是()A.①、②均是方程B.①是方程,②不是方程C.①不是方程,②是方程D.①、②均不是方程【考点】方程的定义.【专题】符号意识.【分析】根据方程的定义进行判定.【解答】解:①2x=3是含有未知数的等式,属于方程;②1﹣3=﹣2中不含有未知数,不是方程.观察选项,选项B符合题意.故选:B.【点评】本题主要考查了方程的定义,方程是含有未知数的等式,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.4.(2020秋•饶平县校级期末)下列式子是方程的是()A.6x+3B.6m+m=14C.5a﹣2<53D.3﹣2=1【考点】方程的定义.【专题】一次方程(组)及应用.【分析】根据方程的定义:含有未知数的等式叫方程,可得出正确答案.【解答】解:A、不是等式,错误;B、是一元一次方程,正确;C、不是等式,错误;D、不含未知数,错误;故选:B.【点评】本题考查了方程的定义,含有未知数的等式叫做方程.方程有两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数).5.(2022春•北碚区校级期中)已知正整数a,b,c,d满足a<b<c<d,且a+b+c+d=d2﹣c2+b2﹣a2,关于这个四元方程下列说法正确的个数是()①a=1,b=2,c=3,d=4是该四元方程的一组解;②连续的四个正整数一定是该四元方程的解;③若a<b<c<d<10,则该四元方程有21组解;④若a+b+c+d=2022,则该四元方程有504组解.A.1B.2C.3D.4【考点】方程的解.【专题】方程与不等式;推理能力.【分析】(1)将a=1,b=2,c=3,d=4代入检验即可;(2)设a=n,则b=n+1,c=n+2,d=n+3,代入方程检验即可判断;(3)根据正整数a,b,c,d满足a<b<c<d,且a+b+c+d=d2﹣c2+b2﹣a2中连续的四个正整数一定是该四元方程的解即可写出四元方程的解,进而可判断;(4)设a=n,则b=n+1,c=n+2,d=n+3,则a+b+c+d=4n+6,进而可得n的值,即可判断.【解答】解:∵a=1,b=2,c=3,d=4,∴a+b+c+d=1+2+3+4=10,d2﹣c2+b2﹣a2=42﹣32+22﹣12=16﹣9+4﹣1=10,∴a+b+c+d=d2﹣c2+b2﹣a2,∴a=1,b=2,c=3,d=4是该四元方程的一组解;故①正确;设a=n,则b=n+1,c=n+2,d=n+3,∴a+b+c+d=4n+6,d2﹣c2+b2﹣a2=4n+6,∴a+b+c+d=d2﹣c2+b2﹣a2,∴连续的四个正整数一定是该四元方程的解;故②正确;∵正整数a,b,c,d满足a<b<c<d,且a+b+c+d=d2﹣c2+b2﹣a2中连续的四个正整数一定是该四元方程的解;∴a=1,b=2,c=3,d=4;a=2,b=3,c=4,d=5;a=3,b=4,c=5,d=6;a=4,b=5,c=6,d=7;a=5,b=6,c=7,d=8;a=6,b=7,c=8,d=9;∴当a<b<c<d<10,则该四元方程有6组解;故③错误;∵连续的四个正整数一定是该四元方程的解,设a=n,则b=n+1,c=n+2,d=n+3,∴a+b+c+d=n+n+1+n+2+n+3=4n+6,∵a+b+c+d=2022,∴4n+6=2022,∴n=504,∴a=504,b=505,c=506,d=507是该四元方程的一组解,并非有504组解,故④错误;综上所述,①②正确.故选:B.【点评】本题主要考查方程的解,解题关键是理解方程的解的定义.6.(2021秋•渝中区校级期末)下列选项是一元一次方程的是()A.x+2y=0B.3x+1C.3x2+1=0D.2x=1【考点】一元一次方程的定义.【专题】一次方程(组)及应用;符号意识.【分析】根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程,据此即可判断.【解答】解:A、含有两个未知数,不是一元一次方程,选项错误;B、不是方程,则不是一元一次方程,选项错误.C、x的次数是2,不是一元一次方程,选项错误;D、是一元一次方程,选项正确.故选:D.【点评】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1.7.(2022春•临汾月考)下列属于方程的是()A.2x=3B.2x>﹣1C.1﹣3=﹣2D.7y﹣1【考点】方程的定义.【专题】一次方程(组)及应用;符号意识.【分析】含有未知数的等式叫方程,据此可得出正确答案.【解答】解:A、是含有未知数的等式,所以是方程,故符合题意;B、不是等式,所以不是方程,故不符合题意;C、是等式,但不含有未知数,所以不是方程,故不符合题意;D、含有未知数,但不是等式,所以不是方程,故不符合题意.故选:A.【点评】本题主要考查的是方程的定义,方程有两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数).8.(2021秋•遵化市期末)方程﹣3(★﹣9)=5x﹣1,★处被盖住了一个数字,已知方程的解是x=5,那么★处的数字是()A.1B.2C.3D.4【考点】方程的解.【专题】一次方程(组)及应用.【分析】把x=5代入已知方程,可以列出关于★的方程,通过解该方程可以求得★处的数字.【解答】解:将x=5代入方程,得:﹣3(★﹣9)=25﹣1,解得:★=1,即★处的数字是1,故选:A.【点评】此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.二.多选题(共2小题)(多选)9.(2021秋•乳山市期末)下列变形错误的是()A.由﹣3+2x=1,得2x=1﹣3B.由3y=﹣4,得C.由3=x+2,得x=3+2D.由x﹣4=9,得x=9+4【考点】等式的性质.【专题】一次方程(组)及应用;运算能力.【分析】根据等式的性质逐个判断即可.【解答】解:A.∵﹣3+2x=1,∴2x=1+3,错误;B.∵3y=﹣4,∴y=﹣,错误;C.∵3=x+2,∴3﹣2=x,即x=3﹣2,错误;D.∵x﹣4=9,∴x=9+4,正确;故选:ABC.【点评】本题考查了等式的性质,能熟记等式的性质是解此题的关键,①等式的性质1、等式的两边都加(或减)同一个数或式子,等式仍成立,②等式的性质2、等式的两边都乘同一个数,等式仍成立,等式的两边都除以同一个不等于0的数,等式仍成立.(多选)10.(2021秋•潍坊期中)下列运用等式的性质,变形正确的是()A.若x=y,则x﹣5=y+5B.若a=b,则ac=bcC.若,则x=y D.若,则2a=3b【考点】等式的性质.【专题】一次方程(组)及应用;运算能力.【分析】利用等式的性质对每个式子进行变形即可找出答案.【解答】解:A、根据等式性质1,x=y两边同时加5得x+5=y+5,原变形错误;B、根据等式性质2,等式两边都乘以c,即可得到ac=bc,原变形正确;C、根据等式性质2,等式两边同时乘1+m得x=y,原变形正确;D、根据等式性质2,等式两边同时乘6c得3a=2b,原变形错误.故选:BC.【点评】本题主要考查等式的性质.运用等式性质1必须注意等式两边所加上的(或减去的)必须是同一个数或整式;运用等式性质2必须注意等式两边所乘的(或除的)数或式子不为0,才能保证所得的结果仍是等式.三.填空题(共6小题)11.(2021秋•渌口区期末)写出一个解为x=3的方程:x﹣3=0(答案不唯一).【考点】方程的解.【专题】一次方程(组)及应用.【分析】方程的解是指使方程两边相等的未知数的值,根据方程解的定义进行填空即可.【解答】解:∵方程的解为x=3,∴方程为x﹣3=0,故答案为:x﹣3=0(答案不唯一).【点评】本题考查了方程的解,掌握方程解的定义是解题的关键.12.(2017秋•左贡县校级期末)如果x=5是方程ax+5=10﹣4a的解,那么a=.【考点】方程的解.【专题】计算题;转化思想.【分析】方程的解就是能够使方程左右两边相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.把x=5代入方程,就得到关于a的方程,就可求出a的值.【解答】解:把x=5代入方程,得:5a+5=10﹣4a,解得:a=.故填:.【点评】本题主要考查了方程解的定义,已知x=5是方程的解实际就是得到了一个关于a的方程.13.(2013秋•嘉峪关校级期末)在①2+1=3,②4+x=1,③y2﹣2y=3x,④x2﹣2x+1中,方程有②,③(填序号)【考点】方程的定义.【分析】根据含有未知数的等式叫方程,可得答案.【解答】解:∵①不含未知数,①不是方程;∵②、③含有未知数的等式,②、③是方程;④不是等式,④不是方程,故答案为:②、③.【点评】本题考查了方程,方程是含有未知数的等式,注意不含未知数的等式不是方程,含有字母的代数式不是方程.14.1:2x﹣1;2:2x+1=3x;3:﹣3;4:t+1=3中,代数式有1,3,方程有2,4(填入式子的序号).【考点】方程的定义.【分析】本题主要考查的是方程的定义,对照方程的两个特征解答.【解答】解:1不是方程,因为它不是等式而是代数式;2是方程,x是未知数;3不是方程,因为它不是等式而是代数式;4是方程,未知数是t.【点评】解题关键是依据方程的定义.含有未知数的等式叫做方程.方程有两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数).15.(2020秋•太原期末)方程2x+▲=3x,▲处是被墨水盖住的常数,已知方程的解是x=2,那么▲处的常数是2.【考点】方程的解.【专题】一次方程(组)及应用;运算能力.【分析】把x=2代入已知方程,可以列出关于▲的方程,通过解该方程可以求得▲处的数字.【解答】解:把x=2代入方程,得4+▲=6,解得▲=2.故答案为:2.【点评】此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.16.(2021秋•龙泉驿区校级期末)关于x的方程3(k﹣2)x5﹣2|k|﹣2k=16是一元一次方程,那么k=﹣2.【考点】一元一次方程的定义;绝对值.【专题】一次方程(组)及应用;符号意识.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:由题意,得:5﹣2|k|=1且k﹣2≠0,解得k=﹣2,故答案为:﹣2.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.四.解答题(共4小题)17.(2022春•开福区校级月考)方程的解的定义:使方程两边相等的未知数的值.如果一个方程的解都是整数,那么这个方程叫做“立信方程”.(1)若“立信方程”2x+1=1的解也是关于x的方程1﹣2(x﹣m)=3的解,则m=1;(2)若关于x的方程x2+3x﹣4=0的解也是“立信方程”6x+2x2﹣3﹣n=0的解,则n =5;(3)若关于x的方程ax=2a3﹣3a2﹣5a+4的解也是关于x的方程9x﹣3=kx+14的解,且这两个方程都是“立信方程”,求符合要求的正整数a和正整数k的值.【考点】方程的解.【专题】新定义;一次方程(组)及应用;运算能力.【分析】(1)根据“立信方程”的定义解答即可;(2)先求出x2+3x﹣4=0的解,再把其中的解代入求解即可求n的解;(3)利用“立信方程”以及a和k为正整数求解.【解答】(1)∵2x+1=1,解得x=0;把x=0代入1﹣2(x﹣m)=3,得:1﹣2(0﹣m)=3,∴1+2m=3,解得:m=1;(2)解方程x2+3x﹣4=0,(x﹣1)(x+4)=0,解得:x1=1或x2=﹣4,把x1=1代入6x+2x2﹣3﹣n=0得:6×1+2×12﹣3﹣n=0,解得:n=5;把x2=﹣4代入6x+2x2﹣3﹣n=0得:6×(﹣4)+2×(﹣4)2﹣3﹣n=0,解得:n=5;故满足条件的n的值为5.(3)因a为正整数,则a≠0,又∵ax=2a3﹣3a2﹣5a+4,∴,∵两方程均为立信方程,∴x的值为整数,∴为整数,∴此时a可取1,4,2,﹣1,﹣4,﹣2,∴x=﹣2,16,﹣1,﹣4,38,7,同理9x﹣3=kx+14,∴(9﹣k)x=17,显然,此时k≠9,则x=,∴9﹣k可取8,﹣810,26,∴此时x=17,1,﹣17,﹣1,∴两方程相同的解为x=﹣1,此时对应的a=2,k=26,故符合要求的正整数a的值为2,k的值为26.【点评】本题考查了一元一次方程的解的应用,能理解立信方程的意义是解此题的关键.18.指出下列方程中的未知数是什么,方程的左边是什么.方程的右边是什么?并且判断它否是一元一次方程?(1)3=2x﹣1;(2)x+2y=7;(3)x2+5x﹣1=5;(4)x2=y2+2y;(5)x﹣π=3;(6)3m+5=﹣4;(7)﹣=1.【考点】方程的定义;一元一次方程的定义.【分析】依据方程的相关概念和一元一次方程的定义回答即可.【解答】解:(1)未知数是x,方程的左边是3,方程的右边是2x﹣1,它是一元一次方程;(2)未知数是x、y,方程的左边是x+2y,方程的右边是7,它不是一元一次方程;(3)未知数是x,方程的左边是x2+5x﹣1,方程的右边是5,它不是一元一次方程;(4)未知数是x,y,方程的左边是x2,方程的右边是y2+2y,它不是一元一次方程;(5)未知数是x,方程的左边是x﹣π,方程的右边是3,它是一元一次方程;(6)未知数是m,方程的左边是3m+5,方程的右边是﹣4,它是一元一次方程;(7)未知数是a,方程的左边是﹣,方程的右边是1,它是一元一次方程.【点评】本题主要考查的是方程的概念,掌握方程的相关概念是解题的关键.19.判断下列各式是不是方程,如果是,指出未知数;如果不是,说明理由.(1)3+5x﹣4x2;(2)2x﹣y=1;(3)=1;(4)3x﹣11>0.【考点】方程的定义.【专题】整式;符号意识.【分析】根据方程的定义对各小题进行逐一分析即可.【解答】解:(1)3+5x﹣4x2,不是等式,所以不是方程;(2)2x﹣y=1,是方程;(3)=1,是方程;(4)3x﹣11>0,不是方程,是不等式.【点评】本题考查的是方程的定义,方程是含有未知数的等式,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.20.小明今年12岁,他爸爸今年36岁,几年后爸爸的年龄是小明年龄的2倍?(列方程并估计问题的解)【考点】方程的定义.【分析】设x年后爸爸的年龄是小明年龄的2倍,再根据x年后两人的年龄是2倍关系列出方程即可.【解答】解:设x年后爸爸的年龄是小明年龄的2倍,根据题意得,36+x=2(12+x),x=12.【点评】本题考查了列一元一次方程,需要注意父子二人的年龄都增加x.。

一元一次方程(含答案)

一元一次方程(含答案)

8.一元一次方程知识纵横早在300多年前法国数学家笛卡尔有一个伟大的设想:首先把宇宙万物的所有问题都转化为数学问题;其次,把所有的数学问题转化为代数问题;最后,把所有的代数问题转化为解方程.••虽然笛卡尔“伟大设想”没有实现,但是充分说明了方程(equation)的重要性. 一元一次方程(linear equation with one unknown)是代数方程中最基础的部分,是后续学习的基础,其基本内容包括:解方程、方程的解及其讨论.解一元一次方程有一般程序化的步骤,我们在解一元一次方程时,既要学会按部就班(严格按步骤)地解方程,又要能随机应变(灵活打乱步骤)解方程.当方程中的系数是用字母表示时,这样的方程叫含字母系数的方程,含字母系数的一元一次方程总可以化为ax=b 的形式,继续求解时,一般要对字母系数a 、b 进行讨论:1.当a ≠0时,方程有惟一解x=b a2.当a=0且b ≠0时,方程无解;3.当a=0且b=0时,方程有无数个解.例题求解【例1】(1)已知关于x 的方程3[x-2(x-3a )]=4x 和312x a +-158x -=1•有相同的解,•那么这个解是___________. (北京市“迎春杯”竞赛题)(2)如果12+16+112+…+1(1)n n +=20032004,那么n=________.(第18届江苏省竞赛题) 思路点拨 (1)设法建立关于a 的等式,再解关于a 的方程求出a 的值;(2)•恰当地解关于n 的一元一次方程.解:(1) 2728 提示:两方程的解分别为27a 、27221a - ;(2)n=2003 【例2】 当b=1时,关于x 的方程a(3x-2)+b(2x-3)=8x-7有无数多个解,则a 等于(• ). A.2 B.-2 C.-23 D.不存在 (“希望杯”邀请赛试题) 思路点拨 将b=1代入原方程,整理所得方程,就方程解的个数情况建立a 的等式. 解:选A. 提示:原方程化为(3a-6)x=2a-4,则3a-6=0且2a-4=0.【例3】 是否存在整数k,使关于x 的方程(k-5)x+6=1-5x 在整数范围内有解?并求出各个解.思路点拨 把方程的解x 用k 的代数式表示,利用整除的知识求出k.解: 存在整数k,k=±1或k=±5,原方程解分别为x=5 或x=1.【例4】解下列关于x 的方程.(1)4x+b=ax-8;(a ≠4)(2)mx-1=nx;(3)13m(x-n)=14(x+2m).思路点拨首先将方程化为ax=b的形式,•然后注意每个方程中字母系数可能取值的情况进行讨论.解:(1)x=84 ba+-;(2)当m≠n时,方程有惟一解x=1m n -;当m=n时,原方程无解;(3)原方程化为(4m-3)x=4mn+6m,当m≠34时,原方程有惟一解x=4643mn mm+-;当m=34,n=-32(由4mn+6m=0,即n=-64mm=-32得到)时,原方程有无数个解;当m=34,n≠-32时,原方程无解.【例5】已知p、q都是质数,并且以x为未知数的一元一次方程px+5q=97•的解是1,求代数式40p+101q+4的值. (第14届“希望杯”邀请赛试题) 思路点拨用代解法可得到p、q的关系式,进而综合运用整数相关知识分析.解:提示:把x=1代入方程px+5q=97,得p+5q=97,故p与5q中必有一个数是偶数.(1)若p=2,则5q=95,q=19,40p+101q+4=40×2+101×19+4=2003.(2)5q为偶数,则q=2,p=87,而87不是质数,与题设矛盾,舍去,因此原式值为2003.学力训练一、基础夯实1.已知x=-1是关于x的方程7x3-3x2+kx+5=0的解,则k3+2k2-11k-85=______.2.计算器上有一个倒数键1/x,能求出输入的不为零的数的倒数(注:有时需先按shift 或2nd键,再按1/x键,才能实现此功能,下面不再说明).例如,输入2,按下键1/x,则得0.5,现在计算器上输入某数,再依下列顺序按键:1/x-1=1/x-1= ,在显示屏上的结果为-0.75,则原来输入的某数是_______. (第17届江苏省竞赛题)3.方程16(20x+50)+23(5+2x)-12(4x+10)=0的解为______;解方程12{12[12(12x-3)-3]-3}-3=0,得x=_______.4.已知关于x的方程2a(x-1)=(5-a)x+3b有无数多个解,那么a=_____,b=_____.(“希望杯”邀请赛试题)5.和方程x-3=3x+4不同解的方程是( ). A.7x-4=5x-11 B.13x +2=0 C.(a 2+1)(x-3)=(3x+4)(a 2+1) D.(7x-4)(x-1)=(5x-11)(x-1)6.已知a 是任意有理数,在下面各题中(1)方程ax=0的解是x=1 (2)方程ax=a 的解是x=1(3)方程ax=1的解是x=1a(4)方程│a │x=a 的解是x=±1 结论正确的个数是( ).A.0B.1C.2D.3 (江苏省竞赛题)7.方程x-16[36-12(35x+1)]=13x-2的解是( ). A. 1514 B.-1514 C. 4514 D.- 4514 8.已知关于x 的一次方程(3a+8b)x+7=0无解,则ab 是( ).A.正数B.非正数C.负数D.非负数9.解下列关于x 的方程:(1)ax-1=bx; (2)4x+b=ax-8; (3)k(kx-1)=3(kx-1).10.a 为何值时,方程3x +a=2x -16(x-12)有无数多个解?无解?二、能力拓展11.已知方程2(x+1)=3(x-1)的解为a+2,那么方程2[2(x+3)-3(x-a)]=3a•的解为_______.12.•已知关于x•的方程9x-•3=•kx+•14•有整数解,•那么满足条件的所有整数k=_______. (“五羊杯”竞赛题)13.已知14+4(11999+1x )=134,那么代数式1872+48·(19991999x x +)的值为_________. 14.若(3a+2b)x 2+ax+b=0是关于x 的一元一次方程,且有惟一解,则x=_____.15.有4个关于x 的方程:(1)x-2=-1 (2)(x-2)+(x-1)=-1+(x-1) (3)x=0 (4)x-2+11x -=-1+11x - 其中同解的两个方程是( ).A.(1)与(2)B.(1)与(3)C.(1)与(4)D.(2)与(4)16.方程12x ⨯+23x ⨯+…+19951996x ⨯=1995的解是( ). A.1995 B.1996 C.1997 D.199817.已知a+2=b-2=2c =2001,且a+b+c=2001k,那么k 的值为( ). A.14 B.4 C.-14 D.-4 (第15届江苏省竞赛题) 18.若k 为整数,则使得方程(k-1999)x=2001-2000x 的解也是整数的k 值有( ).A.4个B.8个C.12个D.16个 (第12•届“希望杯”邀请赛试题)19.若干本书分给小朋友,每人m 本,则余14本;每人9本,则最后一人只得6本,•问小朋友共几个?有多少本书?20.下边横排有12个方格,每个方格都有一个数字,•已知任何相邻三个数字的和都是20,求x 的值. (上海市竞赛题)X 10E H G F E D C B A 5三、综合创新21.如果a 、b 为定值,关于x 的方程23kx a +=2+6x bk -,无论k 为何值,它的根总是1,求a 、b 的值. (山东省竞赛题)22.将连续的自然数1~1001按如图的方式排列成一个长方形阵列,•用一个正方形框出16个数,要使这个正方形框出的16个数之和分别等于:(1)1988;(2)1991;(•3)2000;(4)2080.这是否可能?若不可能,试说明理由;若可能,请写出该方框16个数中的最小数与最大数. (2002年河北省竞赛题)1 2 3 4 5 6 78 9 10 11 12 13 1415 16 17 18 19 20 2122 23 24 25 26 27 28…………995 996 997 998 999 1000 1001答案:1.-105.2.设原来输入的数为x,则111x-1=-0.75,解得x=0.23.-52;904. 53、-1095.•D •6.A7.A8.B9.(1)当a≠b时,方程有惟一解x=1a b-;当a=b时,方程无解;(2)当a≠4时,•方程有惟一解x=84 ba+-;当a=4且b=-8时,方程有无数个解; 当a=4且b≠-8时,方程无解;(3)当k≠0且k≠3时,x=1k;当k=0且k≠3时,方程无解;当k=3时,方程有无数个解.10.提示:原方程化为0x=6a-12.(1)当a=2时,方程有无数个解;当a≠2时,方程无解.11.10.5 12.10、26、8、-8 提示:x=179k-,9-k│17,则9-k=±1或9-k=±17.13.2000 提示:把(11999+1x)看作一个整体. 14.1.5 15.A 16.B 17.B18.D 提示:x=20011k+为整数,又2001=1×3×23×29,k+1可取±1、±3、±23、•±29、±(3×23)、±(3×29)、±(23×29)、±2001共16个值,其对应的k值也有16个.19.有小朋友17人,书150本. 20.x=521.提示:将x=1代入原方程并整理得(b+4)k=13-2a,此式对任意的k值均成立,即关于k的方程有无数个解.故b+4=0且13-2a=0,解得a=132,b=-4.22.提示:设框中左上角数字为x,则框中其它各数可表示为:x+1,x+2,x+3,x+•7,x+8,x+9,x+10,x+14,x+15,x+16,x+17,x+21,x+22,x+23,x+24, 由题意得:x+(x+1)+(x+2)+(x+3)+…x+24=1998或1999或2000或2001,即16x+192=•2000•或2080解得x=113或118时,16x+192=2000或2080又113÷7=16 (1)即113是第17排1个数,该框内的最大数为113+24=137;118÷7=16 (6)即118是第17排第6个数,故方框不可框得各数之和为2080.。

一元一次方程试题总集(含答案)

一元一次方程试题总集(含答案)

一元一次方程测试题A卷一、填空题1若2a与1 a互为相反数,则a等于___________2、y 1是方程2 3 m y 2y的解,则m _____________3、方程2 - x 4,则x34、如果3x2a 2 4 0是关于x的一元一次方程,那么 a ______(a b)h5、在等式S J 丄中,已知S 800, a=30, h 20,则b _______________26、甲、乙两人在相距10千米的A、B两地相向而行,甲每小时走x千米,乙每小时走2x千米,两人同时出发 1.5小时后相遇,列方程可得____________7、将1000元人民币存入银行2年,年利息为5 %,到期后,扣除20%的利息税,可得取回本息和为___________ 元。

9、某品牌的电视机降价10 %后每台售价为2430元,则这种彩电的原价为每台__________ 元。

10、有两桶水,甲桶有水180升,乙桶有水150升,要使甲桶水的体积是乙桶水的体积的两倍,则应由乙桶向甲桶倒_____ 升水。

二、选择题1、卜列方程中,是兀一次方程的是()A2x x3x x 2 B、x 4 x0 C、x y 1 D、1 x 0y2、与方程x12x的解相同的方程是()A 、x 212x B、x 2x 1 C、x 2x 1x 1D、x23、若关于x的方程mx m 2 m 3 0是一元一次方程,则这个方程的解是()A、x 0B、x 3C、x 3D、x 24、一队师生共328人,乘车外出旅行,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租用多少辆客车?在这个问题中,如果还要租x辆客车,可列方程为()A、44x 328 64B、44x 64 328 c、328 44x 64 D、328 64 44x5、小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:1 1 52y y ,怎么呢?小明想了一想,便翻看书后答案,此方程的解是y2 2 3很快补好了这个常数,并迅速地完成了作业,同学们,你们能补出这个常数吗?它应是()B、2x x 17、把方程1去分母后,正确的是()。

一元一次方程竞赛题精选

一元一次方程竞赛题精选

一元一次方程竞赛题精选
1. 题目,某商店举行促销活动,原价为x元的商品打7折后售
价为84元,求原价x是多少?
解答,根据题意,可以列出方程0.7x=84,解方程得到
x=120,所以原价为120元。

2. 题目,甲、乙两人合作种菜,甲一个人干5天能种完,乙一
个人干8天能种完,他们两人一起干需要几天?
解答,设甲、乙两人一起干x天能种完,根据工作量和时间
的关系,可以列出方程5/x+8/x=1,解方程得到x=3.33,所以他们
两人一起干需要4天。

3. 题目,一条绳子长12米,剪成两段,一段比另一段长3米,求这两段各是多长?
解答,设较长的一段为x米,则较短的一段为(x-3)米,根
据题意可以列出方程x+(x-3)=12,解方程得到x=7.5,所以两段分
别为7.5米和4.5米。

以上是一些常见的一元一次方程竞赛题精选,希望能帮助到你。

如果有其他问题,欢迎继续提问。

《用一元一次方程解决比赛问题与分段计费问题》练习题

《用一元一次方程解决比赛问题与分段计费问题》练习题

11.(15 分)供电公司分时电价执行时段分为平、谷两个时段,平 段为 8:00~22:00,14 小时,谷段为 22:00~次日 8:00,10 小 时.平段用电价格在原销售电价基础上每千瓦时上浮 0.03 元,谷段 电价在原销售电价基础上每千瓦时下浮 0.25 元,小明家 5 月份使用 平段电量 40 千瓦时, 谷段电量 60 千瓦时, 按分时电价付费 42.73 元. (1)问小明该月支付的平段、谷段电价每千瓦时各为多少元? (2)如不使用分时电价结算, 5 月份小明家将多支付电费多少元?
解:设该户一月份用水量为 x 立方米,由题意可知 x>15,则有 15×3.5+(x-15)×4+x=92.5,解得 x=20,答:该户一月份用水量 为 20 立方米
解答题(共 60 分) 9. (12 分)为了节约开支和节约能源, 某单位按以下规定收取每月 的电费:用电不超过 140 千瓦时,按每千瓦时 0.43 元收费;如果超过 140 千瓦时,超过的部分按每千瓦时 0.57 元收费.若某用户四月份的 电费平均每千瓦时 0.5 元,则该用户四月份应交多少元电费?
2.(3 分)在 11-12 赛季西甲联赛中,皇家马德里队 38 场比赛豪 取 100 分,创造了新的纪录,足球比赛中胜一场得 3 分,平一场得 1 分,负一场得 0 分.皇家马德里队平的场数是负的场数的 2 倍,则胜 的场数是( C ) A.29 B.30 C.32 D.31
3.(3 分)小丽和爸爸一起玩投篮球游戏,两人商定规则为:小丽 投中 1 个得 3 分,爸爸投中 1 个得 1 分,结果两人一共投中 20 个,
球赛积分表中的数量关系:
+ 负场数_____ + 平场数;比赛总积分=胜 比赛总场数=胜场数_____ + 平场积分. + 负场积分______ 场积分_____

一元一次方程的应用高频考题训练(2)---比赛积分及行程问题(含解析)

一元一次方程的应用高频考题训练(2)---比赛积分及行程问题(含解析)

5.4《一元一次方程的应用》高频考题训练(2)---比赛积分及行程问题比赛积分问题1.在2012年伦敦奥运会足球赛的前11场比赛中,某队仅负1场,共积22分,按比赛规则,胜一场得3分,平一场得1分,负一场得0分,则该队共胜了()场.A.4B.5C.6D.72.某篮球俱乐部组织的比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,今年某队在38场比赛中得到70分,那么这个队今年胜的场次是()A.6场B.31场C.32场D.35场3.某次篮球积分赛,每队均比赛14场,胜一场记2分,平一场记1分,负一场记0分.某中学篮球队的胜场数是负场数的3倍,这个蓝球队在这次积分赛中积分可能为()A.12B.17C.20D.224.学校组织全国文明城市知识问答,共设有20道选择题,各题分值相同,每题必答.下表记录了A,B,D三名参赛学生的得分情况,则参赛学生E的得分可能是()参赛者答对题数答错题数得分A200100B19194D14664A.93B.87C.66D.405.足球比赛中,每场比赛都要分出胜负,每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,则该队胜的场数为.6.某市中学生足球联赛规定:每队胜一场得3分,平一场得1分,负一场得0分,希望之星队前14场保持不败,共得34分,该队共平了场.7.一张试卷只有20道选择题,做对一题的3分,做错一题倒扣1分,欢欢做了全部试题共得了48分,她做对了道题.8.足球比赛的记分规则为:胜一场得3分,平一场得1分,负一场得0分,一个队进行了14场比赛,其中负5场,共得19分,设:这个队胜了x场.那么根据题意,可列方程得.9.列方程解应用题:某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制.某班与其他7个队各赛1场后,以不败战绩积17分,那么该班共胜了几场比赛?10.为有效落实双减工作,切实做到减负提质,很多学校高度重视学生的体育锻炼,并不定期举行体育比赛.已知在一次足球比赛中,胜一场得3分,平一场得1分,负一场得0分,某队在已赛的11场比赛中保持连续不败,共得25分,求该队获胜的场数.11.北京时间1月5日凌晨,拥有梅西的巴塞罗那足球队在最后时刻被西班牙人队中的中国球员武磊攻破球门,遗憾收获一场平局,巴塞罗那队在最近10场比赛中,保持不败,一共得了22分.足球比赛中规定每队胜一场得3分,平一场得1分,负一场得0分.问巴塞罗那足球队近10场中共胜了多少场,平了多少场?12.学校篮球联赛共有十支队伍参赛,部分积分表如下:队名比赛场次胜场负场积分A1612428B1610626C168824D1601616(1)分别求出负一场的积分和胜一场的积分;(2)在这次比赛中,一个队的胜场总积分能否等于负场总积分?请说明理由.行程问题13.某学校七年级进行一次徒步活动,带队教师和学生们以4km/h的速度从学校出发,20min后,小王骑自行车前去追赶.如果小王以12km/h的速度行驶,那么小王要用多少小时才能追上队伍?设小王要用xh才能追上队伍,那么可列出的方程是()A.12x=4(x+20)B.12x=4(+x)C.12x=4×+x D.4x=12(x)14.一轮船从甲地顺水开往乙地,所用时间比从乙地逆水开往甲地少1.5h.已知船在静水中的速度为18km/h,水流速度为2km/h,甲、乙两地之间的距离为()A.90km B.120km C.150km D.160km15.甲乙两人骑自行车同时从相距48千米的两地相向而行,1.5小时相遇,若甲比乙每小时多骑2千米,则乙每小时行驶()A.12.5千米B.15 千米C.17千米D.20千米16.某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船6h,已知船在静水中的速度是16km/h,水流速度是4km/h,若A、C两地距离为4km,则A、B两地间的距离是km.17.如图所示,已知数轴上点A表示的数为8,点B表示的数为﹣6.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动;动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发,点P运动()秒追上点Q.A.5B.6C.7D.818.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发相向而行,甲速度为120千米/时,乙速度为80千米/时,t小时后两车相距50千米,t满足的方程是.19.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.甲车速度120千米/时,乙车速度为105千米/时,经过小时两车相遇.20.如图,A、B两地相距90千米,从A到B依次经过60千米平直公路(AC段)、10千米上坡公路(CD段)和20千米平直公路(DB段).甲从A地驾驶汽车前往B地,乙从B地骑摩托车前往A地,他们同时出发.已知在平直公路上汽车、摩托车的速度分别是120千米/时、60千米/时,汽车上坡速度为100千米/时,摩托车下坡速度为80千米/时,两人出发小时相遇.21.我县境内的某段铁路桥长2200m,现有一列高铁列车从桥上匀速通过,测得此列高铁从开始上桥到完全过桥共用30s,整列高铁在桥上的时间是25s,试求此列高铁的车速和车长.22.某人自驾车从A市前往B市,前五分之一路段为县道,中间的路段为高速公路,后十分之一路段也是县道.已知汽车在县道上行驶的速度为60km/h.在高速公路上行驶的速度为100km/h,汽车从A市前往B市一共行驶了1.8小时.求A、B两市之间的路程.23.古代名著《算学启蒙》中有一题:良马日行二百里.驽马日行一百二十里.驽马先行一十二日,问良马几何追及之.意思是:跑得快的马每天走200里,跑得慢的马每天走120里.慢马先走12天,快马几天可追上慢马?24.有甲、乙、丙三个小朋友,甲走的速度为每分钟80米,乙的速度为甲的速度的,丙的速度为乙的速度的.(1)求乙和丙行走的速度分别为每分钟多少米?(2)现在甲从A地,乙从B地同时出发,两人相遇后又以原来的速度继续前进,甲到达B地后立即返回,乙到达A地后也立即返回,两人再次相遇时,甲比乙多走了90米,求A、B两地之间的距离?(3)若甲从A地,乙和丙从B地同时出发,相向而行,当甲和乙相遇后,又过了5分钟,甲与丙相遇,那么A、B两地相距多少米?参考答案比赛积分问题1.【解答】解:设该队共胜了x场,则平了(11﹣1﹣x)场,由题意得:3x+(11﹣1﹣x)×1+1×0=22,解得:x=6,故选:C.2.【解答】解:设胜了x场,由题意得:2x+(38﹣x)=70,解得x=32.答:这个队今年胜的场次是32场.故选:C.3.【解答】解:设所负场数为x场,则胜3x场,平(14﹣4x)场,依题意得,积分=0×x+2×3x+14﹣4x=14+2x,当14+2x=12时,x=﹣2,不符合题意;当14+2x=17时,x=1.5,不符合题意;当14+2x=20时,x=3,符合题意;当14+2x=22时,x=4,3x=12,12+4>14,不符合题意;故选:C.4.【解答】解:根据表格数据,A学生答对20道得分100,由B、D同学得分情况可知答错一题扣6分,故设参赛学生E答错x道题(0≤x≤20,且x为整数),则其得分值为:100﹣6x选项A:令100﹣6x=93,解得x=,故A错误;选项B:令100﹣6x=87,解得x=,故B错误;选项C:令100﹣6x=66,解得x=,故C错误;选项D:令100﹣6x=40,解得x=10,故D正确.故选:D.5.【解答】解:设该队胜的场数为x,则负的场数为(8﹣x),依题意得:3x﹣(8﹣x)=12,解得:x=5.故答案为:5.6.【解答】解:设该队平了x场,则胜了(14﹣x)场,根据题意得:x+3(14﹣x)=34,解得:x=4.故答案为:4.7.【解答】解:设他做对了x道题,则做错了(20﹣x)道题,依题意得:3x﹣(20﹣x)=48,解得x=17.故答案是:17.8.【解答】解:设该队胜了x场,则该队平了14﹣x﹣5场,胜场得分是3x分,平场得分是(14﹣x﹣5)分.根据等量关系列方程得:3x+(14﹣5﹣x)=19.故答案为:3x+(14﹣5﹣x)=19.9.【解答】解:设胜利x场,平(7﹣x)场,依题意得:3x+(7﹣x)=17解之得:x=5答:该班共胜了5场比赛.10.【解答】解:设该队获胜x场,则平(11﹣x)场,依题意得:3x+(11﹣x)=25,解得:x=7,∴11﹣x=11﹣7=4.答:该队获胜7场.11.【解答】解:设巴塞罗那足球队近10场中共胜了x场,平了(10﹣x)场,则3x+(10﹣x)×1=22,∴2x+10=22,解得x=6,10﹣6=4(场).答:巴塞罗那足球队近10场中共胜了6场,平了4场.12.【解答】解:(1)由题意可得,负一场积分为:16÷16=1(分),胜一场的积分为:(28﹣4×1)÷12=2(分),故负一场的积分为1分,胜一场的积分为2分;(2)设胜x场,则负(16﹣x)场,由题意可得:2x=16﹣x,解得x=.∵场数必须是整数,∴x=不符合题意.故在这次比赛中,一个队的胜场总积分不能等于负场总积分.行程问题13.【解答】解:∵小王比队伍晚出发h(20min),且小王要用xh才能追上队伍,∴小王追上队伍时,队伍出发了(+x)h.依题意得:12x=4(+x).故选:B.14.【解答】解:设船逆水航行从乙地到甲地需x小时,根据题意,得(18+2)(x﹣1.5)=(18﹣2)x,解得:x=7.5,(18﹣2)×7.5=120(km).答:甲、乙两地之间的距离为120km.故选:B.15.【解答】解:设乙每小时骑x千米,甲每小时骑(x+2)千米,由题意列方程:(x+x+2)×1.5=48,解得:x=15.故选:B.16.【解答】解:①C地在A地上游时,设A、B两地间的距离是xkm,根据题意得=6,解得x=42.5,②C地在A地下游时,设A、B两地间的距离是xkm,根据题意得=6,解得x=47.5,故答案为:42.5或47.5.17.【解答】解:设点P运动x秒追上点Q.线段BA的距离=|﹣6﹣8|=14.由题意,得3x+14=5x.解得x=7.故选:C.18.【解答】解:①当甲、乙两车未相遇时,根据题意,得120t+80t=450﹣50;②当两车相遇后,两车又相距50千米时,根据题意,得120t+80t=450+50.故答案是:120t+80t=450﹣50或120t+80t=450+50.19.【解答】解:设经过x小时相遇,根据题意得,(120+105)x=450,解得x=2,故答案为:2.20.【解答】解:甲行驶到C地所需时间为60÷120=(小时),乙行驶到C地所需时间为20÷60+10÷80=(小时).∵>,∴甲、乙相遇在AC段.设两人出发x小时相遇,依题意得:120x+60(x﹣)=60,解得:x=.故答案为:.21.【解答】解:设此列高铁的车长为xm,依题意得:=,解得:x=200,∴==80.答:此列高铁的车速为80m/s,车长为200m.22.【解答】解:设A、B两市之间的路程为skm,根据题意可知,+=1.8,解得:s=150,答:A、B两地的距离为150千米.23.【解答】解:设快马x天可以追上慢马,依题意,得200x=120x+120×12.解得x=18.答:快马18天可以追上慢马.24.【解答】解:(1)80×=70(米),70×=60(米).答:乙行走的速度为每分钟70米,丙行走的速度为每分钟60米.(2)设A、B两地之间的距离为x米,依题意得:80×﹣70×=90,解得:x=450.答:A、B两地之间的距离为450米.(3)设A、B两地相距y米,依题意得:﹣=5,解得:y=10500.答:A、B两地相距10500米.。

一元一次方程单元试题4套

一元一次方程单元试题4套

一元一次方程试题1一、选择题1.下列方程中,属于一元一次方程的是( ) A.0127=+yB.082=+y xC.103=zD.0232=-+x x2.已知ax=ay ,下列等式中成立的是( ) A .x=y B.ax+1=ay-1 C .ax=-ay D.3-ax=3-ay 3.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价( )A.40% B.20% C25% D.15% 4.一列长a 米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是( )A .a 米 B .(a +60)米 C .60a 米 D .(60+2a)米 5.解方程20.250.1x0.10.030.02x -+=时,把分母化为整数,得( )。

A 、200025101032x x -+= B 、20025100.132x x -+= C 、20.250.10.132x x -+= D 、20.250.11032x x -+= 6.把一捆书分给一个课外小组的每位同学,如果每人5本,那么剩4本书,如果每人6本,那么刚好最后一人无书可领,这捆书的本数是( ) A .10 B .52 C .54 D .567.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x 千米/分钟,则所列方程为( ) A .x -1=5(1.5x ) B .3x +1=50(1.5x ) C .3x -1=(1.5x ) D .180x +1=150(1.5x )8.某商品的进货价为每件x 元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折让利40元销售,仍可获利10%,则x 为( ) A .约700元 B .约773元 C .约736元 D .约865元 9.下午2点x 分,钟面上的时针与分针成110度的角,则有( )A . 1105.06+=x xB .1705.06+=x xC .x x 5.01806=-D .505.06+=x x10.某商场经销一种商品由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,则经销这种商品原来的利润率为( ) A .15% B .17% C .22% D .80%二、填空题11.若x =-9是方程131-=+m x 的解,则m = 。

一元一次方程测试题及答案

一元一次方程测试题及答案

一元一次方程一、选择题1.下列等式变形正确的是( )A.如果s=12ab,那么b=2s aB.如果12x=6,那么x=3C.如果x-3=y-3,那么x-y=0D.如果mx=my,那么x=y2.已知关于x 的方程432x m -=的解是x m =,则m 的值是( ).A.2 B .-2 C .27 D .-27. 3.关系x 的方程(2k-1)x 2-(2k+1)x+3=0是一元一次方程,则k 值为( ) A.0 B.1 C.12 D.24.已知:当b=1,c=-2时,代数式ab+bc+ca=10,则a 的值为( )A.12B.6C.-6D.-125.下列解方程去分母正确的是( )A.由1132x x --=,得2x-1=3-3x B.由232124x x ---=-,得2(x-2)-3x-2=-4 C.由131236y y y y +-=--,得3y+3=2y-3y+1-6y D.由44153x y +-=,得12x-1=5y+206.某件商品连续两次9折降价销售,降价后每件商品售价为a 元,则该商品每件原价为( ) A.0.92a B.1.12a C.1.12a D.0.81a 7、已知y=1是关于y 的方程2-31(m -1)=2y 的解,则关于x 的方程m (x -3)-2=m 的解是( )A .1 B .6 C .34 D .以上答案均不对 8、一天,小明在家和学校之间行走,为了好奇,他测了一下在无风时的速度是50米/分,从家到学校用了15分钟,从原路返回用了18分钟20秒,设风的速度是x 米/分,则所列方程为( )A .)50(2.18)50(15x x -=+B .)50(2.18)50(15x x +=-C .)50(355)50(15x x -=+D .)50(355)50(15x x +=- 9、一个两位数,个位数字与十位数字的和为9,如果将个位数字与十位数字对调后所得新数比原数大9,则原来两位数是( )A.54B.27C.72D.4510、某专卖店2007年的营业额统计发现第二个月比第一个月增长10%,第三个月比第二个月减少10%,那么第三个月比第一个月( )A.增加10%B.减少10%C.不增不减D.减少1%二、填空题11. x=3和x=-6中,________是方程x-3(x+2)=6的解.12.若x=-3是方程3(x-a)=7的解,则a=________.13.若代数式213k --的值是1,则k=_________. 14.当x=________时,代数式12x -与113x +-的值相等. 15.5与x 的差的13比x 的2倍大1的方程是__________. 16.若4a-9与3a-5互为相反数,则a 2-2a+1的值为_________.17.三个连续偶数的和为18,设最大的偶数为x,则可列方程______.18、请阅读下列材料:让我们来规定一种运算:bc ad d c ba -=,例如:243525432-=⨯-⨯=按照这种运算的规定,当x=______时,232121=-x x. 三、解答题19.(7分) 解方程:1122(1)(1)223x x x x ⎡⎤---=-⎢⎥⎣⎦;20. (7分) 解方程:432.50.20.05x x ---=.21. (8分) 已知2y +m=my-m. (1)当m=4时,求y 的值.(2)当y=4时,求m 的值.22. (10分)王强参加了一场3000米的赛跑,他以6米/秒的速度跑了一段路程,又以4 米/秒的速度跑完了其余的路程,一共花了10分钟,王强以6米/ 秒的速度跑了多少米?23. (10分)小赵和小王交流暑假中的活动,小赵说:“我参加科技夏令营,外出一个星期,这七天的日期数之和为84,你知道我是几号出去的吗?”小王说:“我假期到舅舅家去住了七天,日期数的和再加上月份数也是84,你能猜出我是几月几号回家的吗?”试列出方程,解答小赵与小王的问题.24.(12分)振华中学在“众志成城,抗震救灾”捐款活动中,甲班比乙班多捐了20%,乙班捐款数比甲班的一半多10元,若乙班捐款m元.(1)列两个不同的含m的代数式表示甲班捐款数.(2)根据题意列出以m为未知数的方程.(3)检验乙班、甲班捐款数数是不是分别为25元和35元.。

“一元一次方程”测试题

“一元一次方程”测试题
维普资讯
◎“一次方裎’+生韧 ’掌 中 中他 数版 理 ・ 元 OM i  ̄

( 配合 华 师大 版 )
口浙



譬 1 、 0 _ 一
璃,
) .
1下 列 各 式 为一 元 一 次 方 程 的是 ( .
A , 2 2 + l: 0 3 — x B. 一 + 5 : 6
1. 节期 问 , 超 市 推 出如 下 购物 方 案 :1 2 春 某 ( )一 次 性 购 物 在 1 0元 0
( 含 1 0元 ) 内 时 , 优 惠 ;2 不 0 以 不 ( )一 次 性 购 物 在 1 0 元 ( 1 0 元 ) 0 含 0 以
上 ,0 元 ( 含 3 0元 ) 内 时 , 受 9折 优 惠 ; 3 30 不 0 以 享 ( )一 次 性 购 物 在 3 0 0 元 ( 3 0 元 ) 上 时 , 受 8折 优 惠 . 丽 在 这 个 超 市 的 两 次 购 物 中 , 别 含 0 以 享 王 分 付款 8 0元 和 2 2元 . 如 果 王 丽 改 为 在 该 超 市 一 次 性 购 买 与 上 两 次 完 全 5
表示 : 上 面 的 数是 , 面 的数 是 下 , 左
面的 数是
右 晰 的数 是


一 …
( ) 图 1十 字 框 中 的 5个 数 相 加 , 为 2 将 和
你 发 现 的规 律 是 :



( )如 果 一 个 十 字 框 中 的 5个 数 之 和 为 1 0, 么 【 间 的 数 是 3 0 那 } |
嘉 年 龄 的 3倍 .
A. 7 B. 8 C+ 9 D.1 O
6 笼 f 里 有 鸡 和 兔 共 l 只 , 有 4 条 腿 . 笼 罩有 只 鸡 , 据 . 2 共 0 设 根 题 意 , 列 方程 为 ( 可 ) .

一元一次方程测试题及答案

一元一次方程测试题及答案

一元一次方程测试卷、选择题(每小题3分,共36 分)3x — y= 2, X 」—2=0 , -xx2A. 3x —'3 =2x —'2B. 3x —'6 =2x —^23x —'6=2x —d D. 3x —'3 = 2x —d3.方程x -2 =2 -x 的解是(4 .下列两个方程的解相同的是(D.方程 6x -3(5x-2) =5与 6x-15x=3 5. A 厂库存钢材为100吨,每月用去15吨;B 厂库存钢材82吨,每月用去9吨。

若经过x 个月后,存钢材相等,则x 是( )B . 2个C .D. 4个2 .解方程 -_1时,去分母正确的是(2 31 .在方程 X 2—2x -3=0中一元一次方程的个数为(C.A. x =1B . X = -1 C. x =2A.方程5x • 3 = 6与方程2x = 4B.方程3x = x • 1与方程2x = 4x -1 1x 十1 C.方程x 0与方程22两厂库A. 3B. 5C. 2D. 46 .某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%该商品的进货价为(A. 80 元B. 85 元C. 90 元D. 95 元7.下列等式变形正确的是()sA.如果S二ab ,那么b ;B.如果x=6,那么x=3aC.如果x - 3 = y - 3 ,那么x - y = 0 ;D.如果mx = my ,那么x = y28、已知:1 - 3m -5有最大值,则方程5m -4 = 3x • 2的解是()7 9 7 9A— B、一C、D、__9 7 9 79 .小山向某商人贷款1万元月利率为6%0, 1年后需还给商人多少钱()A 17200 元,B 16000 元,C 10720 元,D 10600 元;,来电后10.有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛同时吹灭,发现其中的一支是另一支的一半,停电时间为()小时。

初中数学一元一次方程精选试题(含答案和解析)

初中数学一元一次方程精选试题(含答案和解析)

初中数学一元一次方程精选试题(含答案和解析)一.选择题1.(2018·湖北省恩施·3分)一商店在某一时间以每件120元的价格卖出两件衣服.其中一件盈利20%.另一件亏损20%.在这次买卖中.这家商店()A.不盈不亏 B.盈利20元C.亏损10元D.亏损30元【分析】设两件衣服的进价分别为x、y元.根据利润=销售收入﹣进价.即可分别得出关于x、y的一元一次方程.解之即可得出x、y的值.再用240﹣两件衣服的进价后即可找出结论.【解答】解:设两件衣服的进价分别为x、y元.根据题意得:120﹣x=20%x.y﹣120=20%y.解得:x=100.y=150.∴120+120﹣100﹣150=﹣10(元).故选:C.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.2.(2018湖南省邵阳市)(3分)程大位是我国明朝商人.珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著.详述了传统的珠算规则.确立了算盘用法.书中有如下问题:一百馒头一百僧.大僧三个更无争.小僧三人分一个.大小和尚得几丁.意思是:有100个和尚分100个馒头.如果大和尚1人分3个.小和尚3人分1个.正好分完.大、小和尚各有多少人.下列求解结果正确的是()A.大和尚25人.小和尚75人 B.大和尚75人.小和尚25人C.大和尚50人.小和尚50人 D.大、小和尚各100人【分析】根据100个和尚分100个馒头.正好分完.大和尚一人分3个.小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100.大和尚分得的馒头数+小和尚分得的馒头数=100.依此列出方程即可.【解答】解:设大和尚有x人.则小和尚有(100﹣x)人.根据题意得:3x+=100.解得x=25则100﹣x=100﹣25=75(人)所以.大和尚25人.小和尚75人.故选:A.【点评】本题考查了一元一次方程的应用.关键以和尚数和馒头数作为等量关系列出方程.二.填空题1.(2018·湖北江汉油田、潜江市、天门市、仙桃市·3分)某公司积极开展“爱心扶贫”的公益活动.现准备将6000件生活物资发往A.B两个贫困地区.其中发往A区的物资比B区的物资的1.5倍少1000件.则发往A区的生活物资为3200 件.【分析】设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据发往A.B两区的物资共6000件.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据题意得:x+1.5x﹣1000=6000.解得:x=2800.∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018•上海•4分)方程组的解是..【分析】方程组中的两个方程相加.即可得出一个一元二次方程.求出方程的解.再代入求出y即可.【解答】解:②+①得:x2+x=2.解得:x=﹣2或1.把x=﹣2代入①得:y=﹣2.把x=1代入①得:y=1.所以原方程组的解为..故答案为:..【点评】本题考查了解高次方程组.能把二元二次方程组转化成一元二次方程是解此题的关键.三.解答题1.(2018•广东•7分)某公司购买了一批A.B型芯片.其中A型芯片的单价比B型芯片的单价少9元.已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A.B型芯片的单价各是多少元?(2)若两种芯片共购买了200条.且购买的总费用为6280元.求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x ﹣9)元/条.根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.即可得出关于x的分式方程.解之经检验后即可得出结论;(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据总价=单价×数量.即可得出关于a的一元一次方程.解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x﹣9)元/条.根据题意得:=.解得:x=35.经检验.x=35是原方程的解.∴x﹣9=26.答:A型芯片的单价为26元/条.B型芯片的单价为35元/条.(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据题意得:26a+35(200﹣a)=6280.解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.2.(2018•海南•8分)“绿水青山就是金山银山”.海南省委省政府高度重视环境生态保护.截至2017年底.全省建立国家级、省级和市县级自然保护区共49个.其中国家级10个.省级比市县级多5个.问省级和市县级自然保护区各多少个?【分析】设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据国家级、省级和市县级自然保护区共49个.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据题意得:10+x+5+x=49.解得:x=17.∴x+5=22.答:省级自然保护区有22个.市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018湖南张家界5.00分)列方程解应用题《九章算术》中有“盈不足术”的问题.原文如下:“今有共買羊.人出五.不足四十五;人出七.不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊.每人出5元.则差45元;每人出7元.则差3元.求人数和羊价各是多少?【分析】可设买羊人数为未知数.等量关系为:5×买羊人数+45=7×买羊人数+3.把相关数值代入可求得买羊人数.代入方程的等号左边可得羊价.【解答】解:设买羊为x人.则羊价为(5x+45)元钱.5x+45=7x+3.x=21(人).5×21+45=150(员).答:买羊人数为21人.羊价为150元.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.。

一元一次方程测试题

一元一次方程测试题

一元一次方程测试题(满分:100分 时间: 90分)七年级 班 学号:_________ 姓名:___________ 成绩:一、慧眼识真!(每小题3分,共36分)1. 下列方程中,属于一元一次方程的是〖 〗2() 32 (B ) 23 (C ) 2(1)0 (D) 21A x x y t x x -+=-=-=2. y 比x 的2倍大5,列方程是〖 〗()52 ()52 ()25 A y x B y x C y x D y x+=-=+=-= 3.解是-2的一元一次方程是〖 〗(A )3x —2=2x ; (B )4x —1=2x+3; (C )3x+1=2x —1; (D )5x —3=6x —24. 下列运用等式的性质对等式进行的变形中,正确的是〖 〗(A )若a b =,那么22a b +=- (B )若a b =,那么0a b -=(C )若a b =,那么22a b -=- (D ) 若ac bc =,那么a b =5.下列方程变形正确的是〖 〗(A )56x =系数化为1得56x =; (B )213x x +=-移项得231x x +=+;(C )2(1)0x x --=去括号得220x x -+=(D )0.20.110.3x -=可化为21103x -= 6.一个长方形周长是16cm ,长与宽的多2cm ,那么这个长方形的宽与长分别为〖 〗(A )2cm ,6cm (B )3cm ,5cm (C )4cm ,6cm (D )7cm ,9cm7. 将方程211136x x ---=去分母,得到()22111x x ---=,错在〖 〗(A )最简公分母找错 (B )去分母时,不含分母的项乘了6(C )去分母时,分子部分没有加括号 (D )上述B 和C 两处8. 如果327x +=,那么91x +的值等于〖 〗(A )16 (B )22 (C )28 (D )无法确定9.如果关于x 的方程1x a +=与方程360x -=的解相同,那么a 的值等于〖 〗(A ) 1 (B )1- (C )3 (D )3-10.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为〖 〗(A )54 (B )27 (C )72 (D )4511. 甲、乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米,甲让乙先跑5米,设x 秒后甲可追上乙,则下列四个方程中不正确的是〖 〗(A )7x =6.5x +5 (B )7x +5=6.5x (C )(7-6.5)x =5 D )6.5x =7x -512. 南充市出租车的收费标准是:起步价4.5元(即行驶距离不超过3km 都需付4.5元车费),超过3km 以后,每增加1km ,加收1.5元(不足1km 按1km 计)。

一元一次方程经典40题

一元一次方程经典40题

一元一次方程经典40题一、选择题(1 - 10题)1. 下列方程是一元一次方程的是()A. x^2 - 2x + 3 = 0B. 2x - 5y = 4C. x = 0D. (1)/(x)=3解析:一元一次方程是只含有一个未知数,并且未知数的次数都是1,等号两边都是整式的方程。

A选项未知数的最高次数是2;B选项有两个未知数x和y;D选项(1)/(x)不是整式。

只有C选项符合一元一次方程的定义,所以答案是C。

2. 方程3x + 6 = 0的解是()A. x = 2B. x=-2C. x = 3D. x=-3解析:对于方程3x+6 = 0,首先移项得到3x=-6,然后两边同时除以3,解得x=-2,所以答案是B。

3. 若x = 2是方程ax - 3 = 1的解,则a的值是()A. 2B. -2C. 1D. -1解析:因为x = 2是方程ax-3 = 1的解,将x = 2代入方程得2a-3 = 1,移项可得2a=1 + 3=4,两边同时除以2,解得a = 2,所以答案是A。

4. 方程2(x - 1)=x+2的解是()A. x = 4B. x=-4C. x = 0D. x = 1解析:先去括号得2x-2=x + 2,然后移项2x-x=2 + 2,即x = 4,所以答案是A。

5. 关于x的方程3x+2m = 5 - x的解为x = 1,则m的值为()A. (1)/(2)B. -(1)/(2)C. (3)/(2)D. -(3)/(2)解析:把x = 1代入方程3x+2m=5 - x,得到3×1+2m = 5-1,即3 + 2m=4,移项得2m=4 - 3 = 1,解得m=(1)/(2),所以答案是A。

6. 下列变形正确的是()A. 由3x+5 = 4x得3x - 4x=-5B. 由6x = 3得x = 2C. 由x-1 = 2x+3得x+2x = 3 - 1D. 由2x = 1得x = 2解析:A选项,移项正确,3x+5 = 4x移项后为3x-4x=-5;B选项,由6x = 3,两边同时除以6,得x=(1)/(2);C选项,x - 1=2x + 3移项应该是x-2x = 3+1;D选项,由2x = 1得x=(1)/(2)。

一元一次方程单元测试题及答案

一元一次方程单元测试题及答案

一、填空题(每题3分,共30分)1.关于x的方程(k-1)x—3k=0是一元一次方程,则k_______.2.方程6x+5=3x的解是________.3.若x=3是方程2x—10=4a的解,则a=______.4.(1)—3x+2x=_______.(2)5m-m-8m=_______.5.一个两位数,十位数字是9,个位数比十位数字小a,则该两位数为_______.6.一个长方形周长为108cm,长比宽2倍多6cm,则长比宽大_______cm.7.某服装成本为100元,定价比成本高20%,则利润为________元.8.某加工厂出米率为70%的稻谷加工大米,现要加工大米1000t,设需要这种稻谷xt,则列出的方程为______.9.当m值为______时,的值为0.10.敌我两军相距14千米,敌军于1小时前以4千米/小时的速度逃跑,•现我军以7千米/小时的速度追击______小时后可追上敌军.二、选择题(每题3分,共30分)11.下列说法中正确的是( )A.含有一个未知数的等式是一元一次方程B.未知数的次数都是1次的方程是一元一次方程C.含有一个未知数,并且未知数的次数都是一次的方程是一元一次方程D.2y—3=1是一元一次方程12.下列四组变形中,变形正确的是( )A.由5x+7=0得5x=-7 B.由2x-3=0得2x-3+3=0C.由=2得x= D.由5x=7得x=3513.下列各方程中,是一元一次方程的是()A.3x+2y=5 B.y2—6y+5=0 C.x-3= D.3x-2=4x—7 14.下列各组方程中,解相同的方程是( )A.x=3与4x+12=0 B.x+1=2与(x+1)x=2xC.7x—6=25与=6 D.x=9与x+9=0确的是()16.(2006,江苏泰州)若关于x的一元一次方程=1的解为x=-1,则k的值为()A. B.1 C.— D.017.一条公路甲队独修需24天,乙队需40天,若甲、•乙两队同时分别从两端开始修,( )天后可将全部修完.A.24 B.40 C.15 D.1618.解方程=1去分母正确的是( )A.2(x-1)-3(4x—1)=1 B.2x—1-12+x=1C.2(x—1)-3(4-x)=6 D.2x-2—12—3x=619.某人从甲地到乙地,水路比公路近40千米,但乘轮船比汽车要多用3小时,•已知轮船速度为24千米/时,汽车速度为40千米/时,则水路和公路的长分别为( )A.280千米,240千米 B.240千米,280千米C.200千米,240千米 D.160千米,200千米20.一组学生去春游,预计共需用120元,后来又有2人参加进来,总费用降下来,•于是每人可少摊3元,设原来这组学生人数为x人,则有方程为( )A.120x=(x+2)x B.三、解方程(共28分)21.(1)-6x=-x+1;(5分)(2)y—(y-1)=(y—1); (5分) (3)[(x—)—8]= x+1;(5分) (4)。

(完整版)《一元一次方程》竞赛试题

(完整版)《一元一次方程》竞赛试题

《一元一次方程》竞赛试题1.已知x=一1是关于x 的方程7x 3一3x 2+kx+5=0的解,则k 3+2k 2-11k-85= . (“信利杯”竞赛题)2.方程0)104(21)25(32)5020(61=+-+++x x x 的解为 ;解方程0333)321(212121=-⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡--x ,得x= . 3.已知关于x 的方程2a(x 一1)=(5一a)x+3b 有无数多个解,那么a = . (“希望杯”邀请赛试题)4.和方程x 一3=3x+4不同解的方程是( ).A .79—4=59—11B .0231=++xC .(a 2+1)(x 一3)=(3x+4)(a 2+1)D .(7x 一4)(x —1)=(5x 一11)(x 一1) 5.已知a 是任意有理数,在下面各题中 (1)方程ax=0的解是x=1 (2)方程ax =a 的解是x =1 (3)方程ax=1的解是x =a1(4)方程a x a =的解是x =±1 结论正确的个数是( ).A .0B .1C . 2D .3 (江苏省竞赛题)6.方程231)153(123661-=⎥⎦⎤⎢⎣⎡+--x x x 的解是( )A .1415 B .1415- C .1445 D .1445- 7.已知关于x 的一次方程(3a+8b )x+7=0无解,则ab=( ) .A .正数B .非正数C .负数D .非负数 8.解关于x 的方程: (1)ax-1=bx (2)4x+b=ax-8 (3)k(kx-1)=3(kx-1) 9.A 为何值时,方程)12(6123--=+x x a x 有无数个解?无解? 10.已知方程2(x+1)=3(x-1)的解 为a+2,那么方程2[2(x+3)-3(x-a)]=3a 的解为 . 11.已知关于x 的方程9x-3=kx+14有整数解,那么满足条件的所有整数k = . 12.已知431)119991(441=++x ,那么代数式)19991999(481872xx+⋅+的值为 . 13.若(3a+2b)x 2+ax+b=0是关于x 的一元一次方程,且有唯一解,则x = . 14.有4个关于x 方程(1)x-2=-1 (2)(x-2)+(x-1)=-1+(x-1) (3)x=0 (4)111112-+-=-+-x x x 其中同解的两个方程是( )A .(1)与(2)B .(1)与(3)C .(1)与(4)D .(2)与(4) 15.方程1995199619953221=⨯++⨯+⨯xx x 的解是( ) A .1995 B .(1996 C .1997 D . 1998 16.已知2001222==-=+cb a ,且kc b a 2001=++,那么k 的值为( ). A .41B .4C .41- D .-417.若k 为整数,则使得方程(k-1999)x=2001-2000x 的解也是整数的k 值有A .4个B .8个C .12个D .16个 (“希望杯”邀请赛试题)18.若干本书分给小朋友,每人m 本,则余14本,每人9本,则最后一人只得6本,问小朋友共几个?有多少本书?19.下边横排有12个方格,每个方格都有一个数字,已知任何相邻三个数字的和都是20,求x 的值.(上海市竞赛题) 5ABCDEFXGHE 1020.如果a 、b 为定值,关于x 的方程6232bkx a kx -+=+,无论k 为何值,它的根总是1,求a 、b 的值.(山东省竞赛题)21.将连续的自然数1~1001按如图的方式排列成一个长方形阵列,用一个正方形框出16个数,要使这个正方形框出的16个数之和分别等于:(1)1988;(2)1991;(3)2000;(4)2080.这是否可能?若不可能,试说明理由;若可能,请写出该方框16个数中的最小数与最大数.(河北省竞赛题)22.(第12届“希望杯”竞赛试题)若k 为整数,则使得方程(k —1999)x=2001—2000x 的解也是整数的k 值为( D )A .4个B .8个C . 12个D .16个模拟试题一、选择题:1. 几个同学在日历纵列上圈出了三个数,算出它们的和,其中错误的一个是( ) A 、28 B 、33 C 、45 D 、572. 已知y=1是方程2-yy m 2)(31=-的解,则关于x 的方程m (x+4)=m (2x+4)的解是( )A 、x=1 B 、x=-1 C 、x=0 D 、方程无解3 某种商品的进价为1200元,标价为1750元,后来由于该商品积压,商店准备打折出售,但要保持利润不低于5﹪,则至多可打( )A 、6折B 、7折C 、8折D 、9折 4. 下列说法中,正确的是( )A 、代数式是方程B 、方程是代数式C 、等式是方程D 、方程是等式5. 一个数的31与2的差等于这个数的一半.这个数是( )A 、12B 、–12C 、18D 、–186. 母亲26岁结婚,第二年生了儿子,若干年后,母亲的年龄是儿子的3倍. 此时母亲的年龄为( )A 、39岁B 、42岁C 、45岁D 、48岁7. A 、B 两地相距240千米,火车按原来的速度行驶需要4小时到达目的地,火车提速后,速度比原来加快30%,那么提速后只需要( )即可到达目的地。

一元一次方程测试题及答案

一元一次方程测试题及答案

一元一次方程测试卷 一、选择题(每小题3分,共36分) 1.在方程23=-y x ,021=-+x x ,2121=x ,0322=--x x 中一元一次方程的个数为( ) A .1个 B .2个 C .3个 D .4个 2.解方程3112-=-x x 时,去分母正确的是( ) A .2233-=-x x B .2263-=-x x C .1263-=-x x D .1233-=-x x 3.方程x x -=-22的解是( ) A .1=x B .1-=x C .2=x D .0=x 4.下列两个方程的解相同的是( ) A .方程635=+x 与方程42=x B .方程13+=x x 与方程142-=x x C .方程021=+x 与方程021=+x D .方程5)25(36=--x x 与3156=-x x 5.A 厂库存钢材为100吨,每月用去15吨;B 厂库存钢材82吨,每月用去9吨。

若经过x 个月后,两厂库存钢材相等,则x 是( ) A .3 B .5 C .2 D .4 6.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为( )。

A .80元 B .85元 C .90元 D .95元 7.下列等式变形正确的是( ) A.如果ab s =,那么a s b =; B.如果x=6,那么x=3 C.如果x -3=y -3,那么x -y =0; D.如果m x =m y ,那么x =y 8、已知:()2135m --有最大值,则方程5432m x -=+的解是( ) 7979 B C D 9797A --、、、、9.小山向某商人贷款1万元月利率为6‰ ,1年后需还给商人多少钱( )A 17200元,B 16000元,C 10720元,D 10600元;10.有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中的一支是另一支的一半,停电时间为( )小时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

竞赛试题
1.已知x=一1是关于x 的方程7x 3一3x 2+kx+5=0的解,则k 3+2k 2-11k-85= . (“信利杯”竞赛题)
2.方程0)104(2
1)25(32)5020(61=+-+++x x x 的解为 ;解方程0333)321(212121=-⎭
⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡--x ,得x= . 3.已知关于x 的方程2a(x 一1)=(5一a)x+3b 有无数多个解,那么a = . (“希望杯”邀请赛试题)
4.和方程x 一3=3x+4不同解的方程是( ).
A .79—4=59—11
B .023
1=++x C .(a 2+1)(x 一3)=(3x+4)(a 2+1)
D .(7x 一4)(x —1)=(5x 一11)(x 一1)
5.已知a 是任意有理数,在下面各题中
(1)方程ax=0的解是x=1
(2)方程ax =a 的解是x =1
(3)方程ax=1的解是x =a
1 (4)方程a x a =的解是x =±1
结论正确的个数是( ).
A .0
B .1
C . 2
D .3 (江苏省竞赛题)
6.方程23
1)153(123661-=⎥⎦⎤⎢⎣⎡+--x x x 的解是( ) A .1415 B .14
15- C .1445 D .1445- 7.已知关于x 的一次方程(3a+8b )x+7=0无解,则ab=( ) .
A .正数
B .非正数
C .负数
D .非负数
8.解关于x 的方程:
(1)ax-1=bx
(2)4x+b=ax-8
(3)k(kx-1)=3(kx-1)
9.A 为何值时,方程)12(6
123--=+x x a x 有无数个解?无解? 10.已知方程2(x+1)=3(x-1)的解 为a+2,那么方程2[2(x+3)-3(x-a)]=3a 的解为 .
11.已知关于x 的方程9x-3=kx+14有整数解,那么满足条件的所有整数k = .
12.已知431)119991(441=++x ,那么代数式)19991999(481872x
x +⋅+的值为 . 13.若(3a+2b)x 2+ax+b=0是关于x 的一元一次方程,且有唯一解,则x = .
14.有4个关于x 方程
(1)x-2=-1 (2)(x-2)+(x-1)=-1+(x-1) (3)x=0 (4)1
11112-+-=-+-x x x 其中同解的两个方程是( )
A .(1)与(2)
B .(1)与(3)
C .(1)与(4)
D .(2)与(4)
15.方程19951996
19953221=⨯++⨯+⨯x x x 的解是( ) A .1995 B .(1996 C .1997 D . 1998
16.已知20012
22==-=+c b a ,且k c b a 2001=++,那么k 的值为( ). A .41 B .4 C .4
1- D .-4 17.若k 为整数,则使得方程(k-1999)x=2001-2000x 的解也是整数的k 值有
A .4个
B .8个
C .12个
D .16个
(“希望杯”邀请赛试题)
18.若干本书分给小朋友,每人m 本,则余14本,每人9本,则最后一人只得6本,问小朋友共几个?有多少本书?
19.下边横排有12个方格,每个方格都有一个数字,已知任何相邻三个数字的和都是20,求x 的值.
(上海市竞赛题)
20.如果a 、b 为定值,关于x 的方程6
23+=,无论k 为何值,它的
根总是1,求a、b的值.
(山东省竞赛题)
21.将连续的自然数1~1001按如图的方式排列成一个长方形阵列,用一个正方形框出16个数,要使这个正方形框出的16个数之和分别等于:(1)1988;(2)1991;
(3)2000;(4)2080.这是否可能?若不可能,试说明理由;若可能,请写出该方框16个数中的最小数与最大数.
(河北省竞赛题)
22.(第12届“希望杯”竞赛试题)若k为整数,则使得方程(k—1999)x=2001—2000x的解也是整数的k值为( D )
A.4个 B.8个 C. 12个 D.16个
参考答案。

相关文档
最新文档