点直线和圆的位置关系教案

合集下载

《直线与圆的位置关系》教案

《直线与圆的位置关系》教案

《直线与圆的位置关系》教案第一章:引言教学目标:1. 让学生了解直线与圆的位置关系的概念。

2. 引导学生通过观察和思考,探索直线与圆的位置关系。

教学内容:1. 直线与圆的定义。

2. 直线与圆的位置关系的分类。

教学步骤:1. 引入直线和圆的定义,让学生回顾相关概念。

2. 提问:直线和圆有什么关系?它们可以相交、相切还是相离?3. 引导学生观察和思考直线与圆的位置关系,让学生举例说明。

练习题目:a) 直线x=2与圆x^2+y^2=4b) 直线y=3与圆x^2+y^2=9c) 直线x+y=4与圆x^2+y^2=8第二章:直线与圆的相交教学目标:1. 让学生了解直线与圆相交的概念。

2. 引导学生通过观察和思考,探索直线与圆相交的性质。

教学内容:1. 直线与圆相交的定义。

2. 直线与圆相交的性质。

教学步骤:1. 引入直线与圆相交的概念,让学生了解相交的含义。

2. 提问:直线与圆相交时,会有什么特殊的性质?3. 引导学生观察和思考直线与圆相交的性质,让学生举例说明。

练习题目:a) 直线y=2x+3与圆x^2+y^2=16b) 直线x-y+4=0与圆x^2+y^2=16c) 直线x+y-6=0与圆x^2+y^2=36第三章:直线与圆的相切教学目标:1. 让学生了解直线与圆相切的概念。

2. 引导学生通过观察和思考,探索直线与圆相切的性质。

教学内容:1. 直线与圆相切的定义。

2. 直线与圆相切的性质。

教学步骤:1. 引入直线与圆相切的概念,让学生了解相切的含义。

2. 提问:直线与圆相切时,会有什么特殊的性质?3. 引导学生观察和思考直线与圆相切的性质,让学生举例说明。

练习题目:a) 直线y=3x+2与圆x^2+y^2=16b) 直线x-y+4=0与圆x^2+y^2=16c) 直线x+y-6=0与圆x^2+y^2=36第四章:直线与圆的相离教学目标:1. 让学生了解直线与圆相离的概念。

2. 引导学生通过观察和思考,探索直线与圆相离的性质。

名师教学设计《直线与圆的位置关系》完整教学教案

名师教学设计《直线与圆的位置关系》完整教学教案

(四)归纳总结,布置作业
本环节采用填写表格,师生协作的方式,对所学的知识进行小结,培养学生的归纳能力。
师生协作的方式
作业布置试图通过阅读、练习和思考等不同形式的教学活动,加深对所学知识的理解和运用。
作业:
(1)阅读:教材第78-80页;
(2)练习:教材第80页A组1题。
(3)思考:教材第80页B组2题。
(三)运用新知,解决问题
例题与练习是掌握、应用知识和技能所必需的,根据学生的认知特点,我设计了如下例题与练习。
1.例题分析
例1判断直线 与圆 的位置关系。
例2是教材上的例题。作为对圆与直线的位置关系的理解和初步应用,可以让学生自主完成。
判断下列各题中的直线与圆的位置关系。
(1)直线2x-3y+1=0,圆 ;
学生动手画时,教师进行巡视,当所有学生都把三种位置关系画出来时,我用计算机给同学们作演示,给定直线圆在动,使学生从运动的观点去研究问题。
学生动手画时,我进行巡视,当所有学生都把三种位置关系画出来时,我用计算机给同学们作演示,给定直线圆在动,使学生从运动的观点去研究问题。
通过观察,我们已经知道直线和圆的位置关系有三种,引导学生从直线和圆的公共点的个数来完成直线和圆的位置关系的定义。
练习1:主要反馈学生对定义本身的掌握程度,由学生抢答,培养学生的分析能力和数学语言表达能力。
判断圆与直线的位置关系。
圆的直径为10cm,直线到圆心的距离分别为
3
5
练习2我设计了一个小型对抗赛:将全班同学分为两个小组,一组出题另一组回答,答题组再出题,对方回答,依次类推。看哪个组答题既准又快,对优胜组和表现突出的同学进行表扬。
3、掌握直线和圆三种位置关系的判定方法。

直线与圆的位置关系 —— 初中数学第六册教案

直线与圆的位置关系 —— 初中数学第六册教案

直线与圆的位置关系——初中数学第六册教案一、教学目标1.让学生掌握直线与圆的位置关系的判定方法。

2.培养学生运用圆的性质解决实际问题的能力。

3.培养学生的空间想象能力和逻辑思维能力。

二、教学重难点1.重点:直线与圆的位置关系的判定方法。

2.难点:运用直线与圆的位置关系解决实际问题。

三、教学过程(一)导入1.回顾圆的基本概念,如圆的定义、圆的性质等。

2.提问:同学们,我们在学习圆的过程中,有没有发现圆与其他图形(如直线)有特殊的联系方式呢?(二)探究直线与圆的位置关系1.让学生观察教材中的例题,引导学生发现直线与圆的位置关系。

3.引导学生探究每种情况下直线与圆的位置关系的特点。

(三)判定直线与圆的位置关系1.介绍直线与圆的位置关系的判定方法。

2.通过例题讲解,让学生掌握判定方法。

3.学生独立完成练习题,巩固所学知识。

(四)应用直线与圆的位置关系解决问题1.出示实际问题,如:已知圆的半径和圆心,求直线与圆的位置关系。

2.引导学生运用直线与圆的位置关系解决问题。

3.学生分组讨论,分享解题思路和方法。

(五)课堂小结1.回顾本节课所学内容,让学生复述直线与圆的位置关系及其判定方法。

2.提问:同学们,你们能举例说明直线与圆的位置关系在实际生活中的应用吗?(六)课后作业1.完成教材中的课后习题,巩固所学知识。

2.选取一道实际问题,运用直线与圆的位置关系解决问题。

四、教学反思1.本节课通过引导学生观察、讨论、练习,让学生掌握了直线与圆的位置关系及其判定方法。

2.在教学过程中,注意培养学生的空间想象能力和逻辑思维能力。

3.课后作业的设计既有助于巩固所学知识,又能够让学生将所学知识应用于实际生活。

五、教学资源1.教材:初中数学第六册2.辅助资料:直线与圆的位置关系的相关例题、练习题、实际问题等。

六、教学评价1.课堂表现:观察学生在课堂上的参与程度、发言积极性等。

2.作业完成情况:检查学生作业的正确率、解题思路等。

3.实际应用:关注学生在解决实际问题时的表现,了解学生的实际应用能力。

直线与圆的位置关系(教案)

直线与圆的位置关系(教案)

4.2.1直线与圆的位置关系【三维目标】1.知识与技能(1)理解直线与圆的三种位置关系;能根据直线、圆的方程,判断直线与圆的位置关系;(2)能用直线和圆的方程解决一些简单的问题;2. 过程与方法(1)响应高考发展的趋势,培养学生自主探究,动手实践,并适应合作交流的学习方式;(2)强化学生用解析法解决几何问题的意识,培养学生分析问题和灵活解决问题的能力;3. 情感态度与价值观(1)让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想;(2)加深对解析法解决几何问题的认识,激发学习热情,培养学生的创新意识和探索精神;【重点难点】1.重点:直线与圆的位置关系及其判断方法;2.难点:体会和理解解析法解决几何问题的数学思想;【教学准备】多媒体课件【教学设计】一.情境引入以生活中常见的具体实例(日出的过程)演示直线与圆的位置关系,并引导学生回忆初中阶段判断直线与圆的位置关系的思想过程.二.探索新知1.引出课题——直线与圆的位置关系问题1:通过情境引入中的动画演示提出问题,直线与圆的位置关系有几种?在平面几何中,我们怎样判断直线与圆的位置关系呢?如何定义?师生活动:展示出直线与圆的位置关系的图形和定义,用表格展示,使问题更直观形象.2在已有知识的基础上,通过一组题目,让学生分组展开活动:如何判断直线与圆的位置关系?能否利用直线与圆的方程判断它们之间的位置关系呢?<分组活动>1.请判断直线02=-+y x 与圆221x y +=的位置关系. 2.请判断直线01=-+y x 与圆221x y +=的位置关系. 3.请判断直线02=-+y x 与圆222x y +=的位置关系师生活动:以小组为单位进行讨论研究,教师巡视指导,讨论有结果的小组可以派代表回答。

问题2:这是利用圆心到直线的距离d 与半径r 的大小关系判别直线与圆的位置关系(称此法为“几何法”).请问用“几何法”的一般步骤如何?师生活动:比较d 与r 的大小,确定直线与圆的位置关系.分类情况如下:①当r d >时,直线l 与圆C 相离;②当r d =时,直线l 与圆C 相切;③当r d <时,直线l 与圆C 相交。

直线和圆的位置关系的数学教案

直线和圆的位置关系的数学教案

直线和圆的位置关系的数学教案一、教学目标:1. 让学生理解直线和圆的位置关系,并能运用其解决实际问题。

2. 让学生掌握判断直线和圆位置关系的方法,提高空间想象力。

3. 培养学生的逻辑思维能力和团队合作精神。

二、教学内容:1. 直线和圆的位置关系:相离、相切、相交。

2. 判断直线和圆位置关系的方法。

3. 实际问题中的应用。

三、教学重点与难点:1. 教学重点:直线和圆的位置关系,判断方法及实际应用。

2. 教学难点:直线和圆位置关系的判断,空间想象能力的培养。

四、教学方法:1. 采用问题驱动法,引导学生探究直线和圆的位置关系。

2. 利用多媒体辅助教学,直观展示直线和圆的位置关系。

3. 开展小组讨论,培养学生的团队合作精神。

五、教学过程:1. 导入新课:通过生活中的实例,引出直线和圆的位置关系。

2. 知识讲解:讲解直线和圆的相离、相切、相交三种位置关系,及判断方法。

3. 案例分析:分析实际问题,运用直线和圆的位置关系解决问题。

4. 课堂练习:布置练习题,巩固所学知识。

5. 小组讨论:探讨直线和圆位置关系在实际问题中的应用。

7. 课后作业:布置作业,巩固所学知识。

六、教学评估:1. 课堂练习题目的完成情况,以检验学生对直线和圆位置关系的理解和应用能力。

2. 小组讨论的参与度,观察学生是否能够主动思考和解决问题。

3. 课后作业的质量,评估学生对课堂所学知识的掌握程度。

4. 学生对拓展问题的回答,了解学生的思维拓展和创造性解决问题的能力。

七、教学反思:1. 学生是否能够清晰理解直线和圆的位置关系?2. 学生是否能够熟练运用判断方法解决实际问题?3. 教学方法和教学内容的安排是否适合学生的学习水平?4. 如何改进教学策略以提高学生的空间想象力和逻辑思维能力?八、教学资源:1. 多媒体教学课件,用于展示直线和圆的位置关系示意图。

2. 实际问题案例库,用于引导学生将理论知识应用于解决实际问题。

3. 练习题库,包括不同难度的题目,以满足不同学生的学习需求。

点、直线、圆和圆的位置关系复习课教案

点、直线、圆和圆的位置关系复习课教案

点、直线、圆和圆的位置关系复习课教案一、教学目标1. 知识与技能:(1)理解点、直线、圆的基本概念及其性质;(2)掌握点与直线、直线与圆、圆与圆之间的位置关系及判定方法。

2. 过程与方法:(1)通过复习,巩固点、直线、圆的基本性质;(2)运用位置关系判定方法,解决实际问题。

3. 情感态度与价值观:(1)培养学生的逻辑思维能力;(2)激发学生对几何学科的兴趣。

二、教学重点与难点1. 教学重点:(1)点、直线、圆的基本性质;(2)点与直线、直线与圆、圆与圆之间的位置关系及判定方法。

2. 教学难点:(1)点与直线、直线与圆、圆与圆之间的位置关系的判定;(2)运用位置关系解决实际问题。

三、教学过程1. 复习导入:(1)回顾点、直线、圆的基本概念及其性质;(2)引导学生通过图形直观理解点与直线、直线与圆、圆与圆之间的位置关系。

2. 知识梳理:(1)点与直线的位置关系:点在直线上、点在直线外;(2)直线与圆的位置关系:直线与圆相切、直线与圆相交、直线与圆相离;(3)圆与圆的位置关系:圆与圆相切、圆与圆相交、圆与圆相离。

3. 典例分析:(1)分析点与直线、直线与圆、圆与圆的位置关系;(2)运用位置关系解决实际问题。

四、课堂练习1. 判断题:(1)点A在直线BC上。

(对/错)(2)直线AB与圆O相切。

(对/错)(3)圆O1与圆O2相交。

(对/错)2. 选择题:(1)点P在直线AB上,点Q在直线CD上,则点P与点Q的位置关系是(A. 相交B. 平行C. 异面D. 无法确定)。

(2)直线EF与圆O相交,则直线EF与圆O的位置关系是(A. 相切B. 相离C. 相交D. 平行)。

五、课后作业1. 请总结点、直线、圆的基本性质及其位置关系;(1)已知点A在直线BC上,点D在直线BC外,求证:直线AD与直线BC 的位置关系;(2)已知圆O的半径为r,点P在圆O上,求证:点P到圆心O的距离等于r。

六、教学拓展1. 利用多媒体展示点、直线、圆在实际生活中的应用,如交通导航、建筑设计等;2. 探讨点、直线、圆的位置关系在其他学科领域的应用,如物理学、计算机科学等。

直线与圆的位置关系教案

直线与圆的位置关系教案

直线与圆的位置关系教案教学目标:1. 理解直线与圆的位置关系,掌握相关概念。

2. 学会利用直线与圆的位置关系解决实际问题。

3. 培养学生的空间想象能力和逻辑思维能力。

教学重点:1. 直线与圆的位置关系的判定。

2. 直线与圆的位置关系的应用。

教学难点:1. 理解并掌握直线与圆的位置关系的判定条件。

2. 解决实际问题时,如何正确运用直线与圆的位置关系。

教学准备:1. 教学课件或黑板。

2. 直线与圆的位置关系的相关例题和练习题。

教学过程:第一章:直线与圆的基本概念1.1 直线的定义及性质1.2 圆的定义及性质1.3 直线与圆的位置关系的基本概念第二章:直线与圆的位置关系的判定2.1 直线与圆相交的判定条件2.2 直线与圆相切的判定条件2.3 直线与圆相离的判定条件第三章:直线与圆的位置关系的应用3.1 求圆的方程3.2 求直线的方程3.3 求直线与圆的位置关系第四章:实际问题中的应用4.1 求点到直线的距离4.2 求点到圆心的距离4.3 求直线与圆的交点坐标第五章:综合练习5.1 判断直线与圆的位置关系5.2 求直线与圆的位置关系5.3 解决实际问题教学反思:通过本章的学习,学生应能掌握直线与圆的位置关系的基本概念,判定条件以及应用。

在教学过程中,应注意引导学生运用数学知识解决实际问题,培养学生的空间想象能力和逻辑思维能力。

通过练习题的训练,使学生巩固所学知识,提高解题能力。

第六章:直线与圆的位置关系的性质6.1 直线与圆相交的性质6.2 直线与圆相切的性质6.3 直线与圆相离的性质本章主要学习直线与圆的位置关系的性质。

学生将学习到在直线与圆相交、相切、相离的情况下,直线和圆的特定性质。

这些性质包括交点的数量、切点的位置、距离的关系等。

教学活动:通过图形和实例,让学生观察和总结直线与圆相交、相切、相离时的性质。

引导学生通过几何推理证明这些性质。

提供练习题,让学生应用这些性质解决具体问题。

教学评估:通过课堂讨论和练习题,评估学生对直线与圆位置关系性质的理解程度。

直线和圆的位置关系教案

直线和圆的位置关系教案

直线与圆的位置关系教学目标1、知识与技能目标:使学生理解直线与圆的三种位置关系,掌握直线与圆的各位置关系所表现的数量特征。

2、过程与方法目标:(1)指导学生从观察直线与圆的相对运动中归纳直线与圆的位置关系,培养学生分类思想。

(2)通过点与圆的位置关系类比研究直线与圆位置关系中的数量问题, 培养学生联想、类比、推理能力以及化归,数形结合等数学思想。

3、情感、态度价值观目标:(1)指导学生从图形运动中揭示直线与圆的不同位置关系,培养学生的辩证唯物主义观点。

(2)通过本节课学习,使学生进一步感受直线与圆的位置关系中表现的距离美和对称美.同时认识到数学美在自然生活中的体现。

教学重点、难点重点:直线与圆的三种位置的性质和判定。

难点:直线与圆的三种位置关系的研究及运用。

教学方法:运用多媒体手段,创设问题情景,增强内容趣味性,让学生积极主动地参与动手、探索。

科学合理的安排练习,加强对知识的消化,巩固,提升,做好对学生学习目标的检验工作。

教学软件: flash 5参考中考要求:教学过程情景引入:海上日出是非常壮美的景象,那么太阳在升起的过程中它与海平线有几种不同的位置关系呢?(多媒体演示,从中体现圆与直线的相对运动产生不同位置关系)一直线和圆的位置关系的基本概念我们对刚才的景象进行数学的抽象不难发现,直线和圆在相对运动过程中会有三种不同的位置关系.请大家观察直线与圆处在不同位置关系时有哪些不同点(引导学生观察图形,发现问题)发现:直线与圆处在不同位置关系时直线与圆的公共点个数不同.(将公共点个数确立为直线和圆位置关系分类的原则,对三种分类进行定义)多媒体图形展示:直线和圆三种位置关系的图形,并给出定义直线与圆相交直线与圆相切直线与圆相离二直线与圆的位置关系的数量特征:直线与圆的相对运动会产生不同的位置关系,那么我们可以通过数量来刻画这些位置关系吗?(指导学生体会位置关系与数量关系的联系,从中感受数与形的相互结合与转化)1.回忆:(1)点与圆的三种位置关系取决于哪两个数据?多媒体图形展示:点P与圆O的三种位置关系明确:点与圆的三种位置关系取决于点到圆心的距离OP和圆的半径r.将二者进行比较得: 点P在圆O外<=>OP﹥r点P在圆O上<=>OP= r点P在圆O内<=>OP< r(2)与上述结论进行类比,直线与圆的位置关系取决于哪几个数据?(注重启发学生在探索时使用类比思想)多媒体图形展示:直线l与圆O的三种位置关系明确: 直线与圆的三种位置关系取决于圆心O到直线的距离d和圆的半径r2.猜想结论及多媒体演示:猜想直线与圆的三种位置关系中r和d满足的关系:(让学生猜想结果,并通过多媒体动态演示来验证)直线与圆相离<=> d﹥r直线(切线)与圆相切<=> d﹦r直线(割线)与圆相交<=> d﹤r3.证明:观察多媒体演示找出证明的突破口:直线与圆的位置关系可转化为点(垂足)与圆的位置关系来研究数量特征(指导学生把握知识间的联系与发展,培养学生的化归思想,使其形成严谨,求实的学习习惯)(1)直线与圆相离<=>垂足P在圆O外<=> d﹥r(2)直线与圆相切<=>垂足P在圆O上???<=> d﹦r(3)直线与圆相交<=>垂足P在圆O内<=> d﹤r注:直线与圆相切时垂足P所在位置,证明较难,要适当地安排学生进行讨论,集中集体智慧攻克难点。

直线和圆的位置关系教案

直线和圆的位置关系教案

直线和圆的位置关系教案教学目标:1.能够理解直线和圆的位置关系,并能够准确描述它们之间的相对位置。

2.能够运用几何知识,解决与直线和圆的位置关系相关的问题。

3.培养学生观察和归纳总结的能力,培养学生的几何思维。

教学重难点:1.直线和圆的位置关系。

2.解决与直线和圆的位置关系相关的问题。

教学准备:1.教师准备:教学课件、教学资料。

2.学生准备:几何工具。

教学过程:一、导入(5分钟)教师通过一个小游戏,让学生通过观察几何图形的关系,来引出直线和圆的位置关系。

教师可在黑板上绘制几个形状,要求学生观察并回答以下问题:1.画一个圆和一条直线,它们的位置关系是什么?2.如果直线与圆相交,交点有几个?3.如果直线与圆相切,它们的位置关系又是什么?4.如果直线与圆没有交点或相切,它们的位置关系呢?通过学生的回答,介绍直线和圆的位置关系。

二、讲解(10分钟)1.直线与圆相交的位置关系:教师通过教学课件,向学生展示直线与圆相交的不同情况,并讲解每种情况下的名称和特点。

-直线穿过圆的两个交点,这种情况称为“直线与圆相交”。

-直线经过圆的中心,这种情况称为“直线与圆相交于两个点”,交点分别为A、B。

-直线切圆,这种情况称为“直线与圆相切”。

2.直线与圆相切的位置关系:教师通过教学课件,向学生展示直线与圆相切的情况,并讲解。

-直线与圆相切于一个点,这种情况称为“直线与圆外切”。

-直线经过圆的中心,这种情况称为“直线与圆相切”。

-直线穿过圆,并且在圆的内部,这种情况称为“直线与圆内切”。

三、练习(35分钟)1.教师出示一些练习题,供学生进行个别练习。

学生可以用纸和笔列式解答,并标注出直线与圆的位置关系。

2.在练习过程中,教师根据学生的情况,进行辅导和指导,解答学生的疑惑。

四、归纳总结(10分钟)1.教师可以要求学生归纳总结直线与圆的位置关系,可以通过小组合作让学生共同完成。

2.教师带领学生一起进行讨论,让他们自己总结直线与圆的位置关系,并在黑板上进行记录。

《直线与圆的位置关系》教案

《直线与圆的位置关系》教案

《直线与圆的位置关系》教案一、教学目标知识与技能:1. 让学生掌握直线与圆的位置关系,理解直线与圆相交、相切、相离的概念。

2. 学会运用直线与圆的位置关系解决实际问题。

过程与方法:1. 通过观察、分析、推理等方法,探索直线与圆的位置关系。

2. 培养学生的空间想象能力和逻辑思维能力。

情感态度与价值观:1. 激发学生对数学的兴趣,培养学生的探究精神。

2. 培养学生运用数学知识解决实际问题的能力。

二、教学重点与难点重点:1. 直线与圆的位置关系的判定。

2. 直线与圆相交、相切、相离的性质。

难点:1. 直线与圆的位置关系的推理论证。

2. 运用直线与圆的位置关系解决实际问题。

三、教学准备教具:1. 直尺、圆规、铅笔。

2. 直线与圆的位置关系的图片或模型。

学具:1. 直尺、圆规、铅笔。

2. 直线与圆的位置关系的练习题。

四、教学过程1. 导入:1.1 教师出示一些直线与圆的位置关系的图片或模型,让学生观察。

1.2 学生分享观察到的直线与圆的位置关系。

2. 探究:2.1 教师引导学生通过画图、观察、分析、推理等方法,探索直线与圆的位置关系。

3. 讲解:3.1 教师根据学生的探究结果,讲解直线与圆的位置关系的判定方法和性质。

3.2 教师通过例题,讲解如何运用直线与圆的位置关系解决实际问题。

4. 练习:4.1 学生独立完成练习题,巩固所学知识。

4.2 教师选取部分学生的练习题进行点评,解答学生的疑问。

五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对直线与圆的位置关系的理解和运用能力。

关注学生在学习过程中的情感态度,激发学生的学习兴趣,培养学生的探究精神。

六、教学拓展1. 教师引导学生思考:直线与圆的位置关系在实际生活中有哪些应用?2. 学生举例说明直线与圆的位置关系在实际生活中的应用,如自行车轮子与地面的关系、篮球筐与投篮线的关系等。

七、课堂小结八、作业布置1. 完成课后练习题,巩固直线与圆的位置关系的知识。

直线与圆的位置关系》教案

直线与圆的位置关系》教案

直线与圆的位置关系》教案直线与圆的位置关系》教案教学目标:1、认识和理解直线与圆的三种位置关系,能够用定义来判断直线与圆的位置关系。

2、掌握圆的切线的判定方法和性质,能够判断一条直线是否是圆的切线,培养逻辑推理能力。

3、了解切线长的概念和定理,能够应用切线长的知识解决简单问题。

教学重点:1、直线和圆的三种位置关系。

2、切线的性质定理和判定定理。

3、切线长定理。

教学难点:1、直线和圆的位置关系的性质与应用。

2、运用切线的判定定理解决问题。

3、应用切线长定理。

教学过程:一、直线和圆的三种位置关系1、复导入、回顾旧知回顾点和圆的位置关系,以及判断方法。

2、创设情境,提出问题通过唐诗和观察太阳升起的过程,引出直线和圆的位置关系。

3、探究发现,建构知识练一:在纸上画圆,利用直尺移动直线,观察直线和圆的位置关系,得出相离、相切、相交的定义和判别依据。

练二:利用所学知识判断直线和圆的位置关系,并进行数量分析。

练三:复点到直线的距离和垂线段的概念。

二、圆的切线1、复导入、回顾旧知回顾圆的性质和定理。

2、创设情境,提出问题通过实例引出圆的切线的概念和判定方法。

3、探究发现,建构知识练一:通过实验和观察,得出圆的切线的性质和定理。

练二:运用切线的判定方法判断一条直线是否是圆的切线,综合运用切线的性质解决问题。

练三:介绍切线长的概念和定理,并应用切线长的知识解决简单问题。

三、课堂练和作业练一:判断直线和圆的位置关系。

练二:判断一条直线是否是圆的切线。

作业:应用所学知识解决相关问题。

通过以上教学过程,学生能够掌握直线和圆的位置关系、圆的切线的判定方法和性质,以及切线长的概念和定理,并能够应用所学知识解决相关问题。

例1如图24-43,Rt△ABC的斜边AB=10cm,∠A=30°。

求以点C为圆心作圆,当半径为多少时,AB与⊙C相切。

另外,以点C为圆心、半径分别为4cm和5cm作两个圆,这两个圆与斜边AB分别有怎样的位置关系?解:(1)过点C作边AB上的高CD。

直线与圆的位置关系教案(2篇)

直线与圆的位置关系教案(2篇)

直线与圆的位置关系教案(2篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲发言、策划方案、合同协议、心得体会、计划规划、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, planning plans, contract agreements, insights, planning, emergency plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!直线与圆的位置关系教案(2篇)作为一无名无私奉献的教育工作者,就不得不需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。

直线与圆位置关系教案

直线与圆位置关系教案

直线与圆位置关系教案【篇一:直线与圆的位置关系(教案)】《直线与圆的位置关系》的教学设计一、教学课题:人民教育出版社出版的普通高中课程标准实验教科书a版数学②第四章第二节“直线与圆的位置关系”第一课时。

二、设计要点:学生在初中平面几何中已学过直线与圆的三种位置关系,在前面几节课学习了直线与圆的方程,因此,本节课主要以问题为载体,通过教师几个环节的设问,让学生利用已有的知识,自己去探究用坐标法研究直线与圆的位置关系的方法。

用过学生的参与和一个个问题的解决,让学生体验有关的数学思想,提高学生自主学习、分析问题和解决问题的能力,培养学生“用数学”及合作学习的意识。

三、教学目标:1.知识目标:能根据给定直线、圆的方程判断直线与圆的位置关系,并解决相关的问题; 2.能力目标:通过理论联系实际培养学生建模能力,培养学生数形结合思想与方程的思想; 3.情感目标:通过学生的自主探究,培养学生学习的主动性和合作交流的学习习惯。

四、教学重点、难点、关键:(1)重点:用坐标法判断直线与圆的位置关系(2)难点:学生对用方程组的解来判断直线与圆的位置关系方法的理解(3)关键:展现数与形的关系,启发学生思考、探索。

五、教学方法与手段:1.教学方法:探究式教学法2。

教学手段:多媒体、实物投影仪六、教学过程:1.创设情境,提出问题教师利用多媒体展示如下问题:问题:一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西50km处,受到影响的范围是半径长为30km 的圆形区域,已知港口位于台风中心正北50km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?教师提出:利用初中所学的平面几何知识,你能解决这个问题吗?请同学们动手试一下。

设计意图:让学生从数学角度看日常生活中的问题,体验数学与生活的密切联系,激发学生的探索热情。

2.切入主题,提出课题(1)由学生将问题数学建模,展示平面几何解决方法,得出结论。

24.2.2直线和圆的位置关系教案

24.2.2直线和圆的位置关系教案

24.2.2直线和圆的位置关系(一)教学目标:(1)知识与技能:a、知道直线和圆相交、相切、相离的定义。

会根据定义来判断直线和圆的位置关系。

b、根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置。

(2)过程与方法:让学生通过观察、发现、操作、实验、对比,能找出圆心到直线的距离和圆的半径之间的数量关系,揭示直线和圆的关系。

此外,通过直线与圆的相对运动,培养学生运动变化的辨证唯物主义观点,通过对研究过程的反思,进一步强化对分类和归纳的思想的认识。

(3)情感与价值:通过观察生活中的例子,让学生感受到实际生活中,存在的直线和圆的三种位置关系,便于学生用运动的观点观察圆与直线的位置关系,有利于学生把实际的问题抽象成数学模型。

教学重难点:重点:掌握直线和圆的三种位置关系的性质与判定。

难点:如何引导学生发现隐含在图形中的两个数量d和r并加以比较。

教学过程一、情境创设,导入新课:活动1:欣赏王维的《使至塞上》中的“大漠孤烟直,长河落日圆”的情景,感知直线与和圆的位置关系。

二、合作交流,解读探究活动2:1.让学生通过实物演示,体会直线和圆的位置关系。

(1)在纸上画一条直线,把硬币的边缘看作圆,在纸上移动硬币.(2)在纸上画一个圆,把直尺看作直线,移动直尺.思考:你能发现直线与圆的公共点个数的变化情况吗?公共点最少时有几个?最多时又有几个?2、定义归纳:明确用直线和圆的交点的个数来确定直线与圆的位置关系直线和圆没有公共点,这时我们说直线和圆相离.直线和圆有一个公共点,这时我们说直线和圆相切,这条直线叫做圆的切线,这个点叫做切点。

直线和圆有两个公共点,这时我们说直线和圆相交,这条直线叫做圆的割线。

3、定义运用:如何根据基本概念来判断直线与圆的位置关系?4、性质探究、知识小结活动3:思考:设⊙O的半径为r,圆心O到直线的距离为d,在直线和圆的不同位置关系中,d与r具有怎样的大小关系?反过来,你能根据d与r的大小关系确定直线和圆的位置关系吗?观察讨论:当直线与圆相离、相切、相交时,圆心到直线的距离d与半径r有何关系?直线与圆 O相交 <=> d<r 直线l与圆 O相切 <=> d=r 直线l与圆 O相离 <=> d>r判定直线与圆的位置关系的方法有两种:(1)根据定义,由直线与圆的公共点的个数来判断;(2)根据性质,由圆心到直线的距离d与半径r的关系来判断。

《直线和圆的位置关系》教学设计

《直线和圆的位置关系》教学设计

《直线和圆的位置关系》教学设计《直线和圆的位置关系》教学设计(精选5篇)教学设计是把教学原理转化为教学材料和教学活动的计划。

教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。

今天应届毕业生店铺为大家编辑整理了《直线和圆的位置关系》教学设计,希望对大家有所帮助。

《直线和圆的位置关系》教学设计篇1一、素质教育目标㈠知识教学点⒈使学生理解直线和圆的位置关系。

⒉初步掌握直线和圆的位置关系的数量关系定理及其运用。

㈡能力训练点⒈通过对直线和圆的三种位置关系的直观演示,培养学生能从直观演示中归纳出几何性质的能力。

⒉在7.1节我们曾学习了“点和圆”的位置关系。

⑴点P在⊙O上OP=r⑵点P在⊙O内OP<r⑶点P在⊙O外OP>r初步培养学生能将这个点和圆的位置关系和点到圆心的距离的数量关系互相对应的理论迁移到直线和圆的位置关系上来。

㈢德育渗透点在用运动的观点揭示直线和圆的位置关系的过程中向学生渗透,世界上的一切事物都是变化着的,并且在变化的过程中在一定的条件下是可以相互转化的。

二、教学重点、难点和疑点⒈重点:使学生正确理解直线和圆的位置关系,特别是直线和圆相切的关系,是以后学习中经常用到的一种关系。

⒉难点:直线和圆的位置关系与圆心到直线的距离和圆的关径大小关系的对应,它既可做为各种位置关系的判定,又可作为性质,学生不太容易理解。

⒊疑点:为什么能用圆心到直线的距离九圆的关径大小关系判断直线和圆的位置关系?为解决这一疑点,必须通过图形的演示,使学生理解直线和圆的位置关系必转化成圆心到直线的距离和圆的关径的大小关系来实现的。

三、教学过程㈠情境感知⒈欣赏网页flash动画,《海上日出》提问:动画给你形成了怎样的几何图形的印象?⒉演示z+z超级画板制作《日出》的简易动画,给学生形成直线和圆的位置关系的印象,像这样平面上给定一条定直线和一个运动着的圆,它们之间虽然存在着若干种不同的位置关系,如果从数学角度,它的若干位置关系能分为几大类?请同学们打开练习本,画一画互相研究一下。

直线和圆的位置关系教案

直线和圆的位置关系教案

直线和圆的位置关系教案教学目标:1. 了解直线和圆的位置关系,掌握判断方法。

2. 能够运用直线和圆的位置关系解决实际问题。

3. 培养学生的空间想象能力和逻辑思维能力。

教学内容:一、直线和圆的位置关系概述1. 直线和圆的定义2. 直线和圆的位置关系的分类二、直线和圆的位置关系的判断方法1. 直线与圆相交的判断2. 直线与圆相切的判断3. 直线与圆相离的判断三、直线和圆的位置关系在实际问题中的应用1. 求圆的方程2. 求圆的切线方程3. 求直线与圆的交点坐标四、直线和圆的位置关系的证明1. 直线与圆相交的证明2. 直线与圆相切的证明3. 直线与圆相离的证明五、综合练习1. 判断直线和圆的位置关系2. 求直线和圆的交点坐标3. 求圆的方程和切线方程教学方法:1. 采用讲授法,讲解直线和圆的位置关系的定义、判断方法、应用和证明。

2. 利用图形展示,帮助学生直观理解直线和圆的位置关系。

3. 运用例题,引导学生学会运用直线和圆的位置关系解决实际问题。

4. 进行课堂练习和课后作业,巩固所学知识。

教学评价:1. 课堂问答,检查学生对直线和圆的位置关系的理解和掌握程度。

2. 课后作业,评估学生运用直线和圆的位置关系解决实际问题的能力。

3. 进行阶段性测试,全面了解学生对直线和圆的位置关系的掌握情况。

教学资源:1. 教学PPT,展示直线和圆的位置关系的图形和例题。

2. 练习题,供学生课堂练习和课后作业。

3. 教学视频,讲解直线和圆的位置关系的证明。

教学步骤:一、导入新课1. 引入直线和圆的概念。

2. 提问:直线和圆有什么关系?二、讲解直线和圆的位置关系概述1. 讲解直线和圆的定义。

2. 讲解直线和圆的位置关系的分类。

三、讲解直线和圆的位置关系的判断方法1. 讲解直线与圆相交的判断方法。

2. 讲解直线与圆相切的判断方法。

3. 讲解直线与圆相离的判断方法。

四、讲解直线和圆的位置关系在实际问题中的应用1. 讲解求圆的方程的方法。

直线和圆的位置关系数学教案

直线和圆的位置关系数学教案

直线和圆的位置关系数学教案
标题:直线与圆的位置关系
一、教学目标
1. 理解并掌握直线与圆的位置关系的概念。

2. 掌握判断直线与圆位置关系的方法。

3. 培养学生的空间想象能力,提高学生解决实际问题的能力。

二、教学重难点
重点:直线与圆的位置关系的理解及应用。

难点:根据条件判断直线与圆的位置关系。

三、教学过程
1. 导入新课:
通过实例引入,如:在日常生活中我们经常会遇到直线与圆的位置关系的问题,比如篮球运动员投篮时,球的运动轨迹就是一个抛物线,而篮球框是一个圆形。

那么如何确定球是否会进入篮筐呢?这就需要我们学习直线与圆的位置关系的知识。

2. 新课讲解:
(1) 直线与圆的位置关系:相交、相切、相离。

(2) 判断方法:利用点到直线的距离公式,比较圆心到直线的距离与半径的大小关系。

3. 练习巩固:
设计一些练习题,让学生自己动手操作,通过实践来理解和掌握直线与圆的位置关系。

4. 小结:
回顾本节课所学的内容,强调重点和难点。

5. 作业:
设计一些相关的题目作为家庭作业,让学生在课后继续复习和巩固所学知识。

四、教学反思
教师要时刻关注学生的学习情况,对教学效果进行反思和调整,以达到最佳的教学效果。

1直线与圆的位置关系一等奖创新教案

1直线与圆的位置关系一等奖创新教案

1直线与圆的位置关系一等奖创新教案一、教学目标:1.了解直线与圆的位置关系;2.掌握求圆与直线的交点的方法;3.能够应用所学知识解决实际问题。

二、教学内容:直线与圆的位置关系。

三、教学过程:1.导入(10分钟)通过讲解直线与圆的定义,引导学生思考直线与圆的关系,激发学生的学习兴趣。

2.概念解释(20分钟)通过幻灯片展示直线与圆的关系,引导学生理解直线穿过圆、外切圆和内切圆的情况,并讲解相应概念。

3.求解交点(30分钟)通过示例讲解如何求解直线与圆的交点,包括刚好相切、直线穿过圆、以及直线与圆没有交点等情况的判断与求解方法。

4.实际应用(30分钟)通过实际问题的讨论与解答,让学生将所学的内容应用到实际生活中,培养学生的分析问题和解决问题的能力。

5.小结与展望(10分钟)总结本节课所学的内容,展望下一节课的学习目标,并鼓励学生对数学知识的进一步学习和应用。

四、教学评价:1.通过学生课堂表现评价学生对直线与圆的位置关系的理解和掌握程度;2.通过解答问题评价学生解决实际问题和应用所学知识的能力。

五、教学资源:1.幻灯片;2.教学板书。

六、教学延伸:为了帮助学生更好地理解直线与圆的位置关系,教师可以引导学生通过实例讨论或自主探索的方式进一步巩固所学内容,提高学生的学习兴趣和主动性。

七、教学后记:通过本节课的教学,学生能够明确直线与圆的位置关系,并能够灵活运用所学知识解决实际问题。

这一教学方案使学生在感知性认识的基础上进一步理解了抽象概念,培养了学生的逻辑思维和问题解决能力,对学生的数学素养提高起到了积极作用。

直线与圆的位置关系教案

直线与圆的位置关系教案

直线与圆的位置关系教案教学目标:1.知道直线与圆的位置关系有三种情况:相离、相切、相交。

2.掌握判断直线与圆的位置关系的方法。

3.能够综合运用所学知识解决直线与圆的位置关系问题。

教学重点:1.直线与圆的位置关系的判断方法。

2.解决直线与圆的位置关系问题的能力。

教学难点:1.判断直线与圆的位置关系。

2.综合运用所学知识解决直线与圆的位置关系问题。

教学过程:一、导入(5分钟)老师出示一张图片,图片上有一条直线与一个圆相交,并让学生观察并回答:直线与圆的位置关系有哪些可能的情况?二、讲授(15分钟)1.老师引入“直线与圆的位置关系”的概念,并给出三种可能的情况:相离、相切、相交。

2.介绍判断直线与圆的位置关系的方法:a.直线与圆相离的情况下,直线与圆的最短距离大于圆的半径。

b.直线与圆相切的情况下,直线与圆的最短距离等于圆的半径。

c.直线与圆相交的情况下,直线与圆的最短距离小于圆的半径。

3.通过示例讲解判断直线与圆的位置关系的方法。

三、练习(20分钟)1.团队合作练习:将学生分成若干小组,给出不同的直线与圆的示例,让学生判断直线与圆的位置关系,并在白板上写出自己的判断结果。

2.小组讨论与展示:每个小组轮流讲解和展示自己的判断结果,并给出相应的理由。

3.整体讨论与总结:老师引导学生就判断直线与圆的位置关系时遇到的问题进行讨论,并总结判断方法和解决问题的关键。

四、拓展(15分钟)1.引导学生思考更复杂的问题:在平面直角坐标系中,如何判断直线与圆的位置关系?2.给出示例并指导解决问题:通过求直线与圆的方程,将问题转化成代数方程求解。

五、讲评(10分钟)1.对学生在练习环节中的表现给予评价和点评。

2.解答学生提出的疑问,帮助学生理解和掌握直线与圆的位置关系。

六、小结(5分钟)老师对本节课的内容进行小结,并指导学生合理复习巩固相关知识。

教学反思:本节课通过引入问题、讲解相关概念、示例分析和练习等环节,使学生逐步理解和掌握直线与圆的位置关系的判断方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学过程一、课堂导入问题:观察上面太阳升起的图片,思考直线和圆有怎样的位置关系?二、复习预习1、圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半2、圆周角定理的推论: (1)同圆或等圆中,相等的圆周角所对的弧也相等.(2)半圆(或直径)所对圆周角是直角,90°的圆周角所对的弦是直径3、其它推论:①圆周角度数定理,圆周角的度数等于它所对的弧的度数的一半.②同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半.③同圆或等圆中,同弧或等弧所对的圆周角相等,相等圆周角所对的弧也相等.④圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角.三、知识讲解考点1点与圆的位置三种位置关系如图1所示,设⊙O 的半径为r ,A 点在圆内,OA <rB 点在圆上,OB = r图1C点在圆外,OC>r反之,在同一平面上,已知的半径为r⊙O,和A,B,C三点:若OA<r,则A点在圆内若OB= r,则B点在圆上若OC>r,则C点在圆外考点2直线和圆的位置关系(设圆心到直线的距离为d,圆的半径为r.)1、当d>r时,直线与圆相离(如图所示)2、当d<r时,直线与圆相交(如图所示)3、当d=r时,直线与圆相切(如图所示),此时直线即为圆的切线.考点3切线的判定和性质1、切线的性质定理圆的切线垂直于过切点的半径2、推论:经过圆心且垂直于切线的直线必经过切点,经过切点且垂直于切线的直线必经过圆心.3、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线考点4切线长定理1、切线长定义:从圆外一点作圆的切线,这点和切点之间的线段长,叫做这点到圆的切线长(如图AB长度即为切线长).切线长定理:从圆外一点可以引圆的两条切线,这两条切线长相等,这一点和圆心的连线平分这两条切线的夹角.如图所示,PA,PB为圆的两条切线,则PA=PB,∠APO=∠BPO.考点5三角形的内心外心经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线的交点,它到三角形三个顶点的距离相等。

与三角形各边都相切的圆叫做三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形,三角形的内心就是三角形三条内角平分线的交点,它到三角形三边的距离相等。

四、例题精析例1【题干】若圆的半径为4cm,如果一个点和圆心的距离为6cm,则这个点和这个圆的位置关系是()A.点在圆上B.点在圆外C.点在圆内D.点在圆内或点在圆外【答案】B【解析】∵圆的半径为4cm,点和圆心的距离为6cm,4<6,∴这个点和这个圆的位置关系是点在圆外.故选B.例2【题干】如图所示,正方形ABCD的边长为2,AC和BD相交于点O,过O作EF∥AB,交BC于E,交AD 于F,则以点B为圆心,长为半径的圆与直线AC,EF的位置关系分别是多少?【答案】由题中已知条件,得BO⊥AC,BO=BD==,即点B到AC的距离为,与⊙B的半径相等;∴直线AC与⊙B相切.∵EF∥AB,∠ABC=90°,∴BE⊥EF,垂足为E.且BE=BC=×2=1<,∴直线EF与⊙B相交.【解析】此题重点是根据题意和正方形的性质,分别找到圆心到直线的距离,再根据数量关系判断其位置关系.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.例3【题干】如图,在直角坐标系XOY中,已知两点O1(3,0)、B(-3,0),⊙O1与X轴交于原点0和点A,E是Y轴上的一个动点,设点E的坐标为(0,m).(1)当点O1到直线BE的距离等于3时,问直线BE与圆的位置关系如何?求此时点E的坐标及直线BE的解析式;(2)当点E在Y轴上移动时,直线BE与⊙O1有哪几种位置关系?直接写出每种位置关系时的m的取值范围.【答案】(1)当m>0时,如图所示:由已知得BE是⊙O1的切线,设切点为M,连接O1M,则O1M⊥BM,∴O1M=3,∵O1(3,0)、B(-3,0),∴BO1=6,∴BM===3,又∵OE⊥BO,∴Rt△BOE∽Rt△BMO1,∴=,即=,∴OE=,∴m=,∴E(0,)设此时直线BE的解析式是y=kx+m,将B(-3,0)及E(0,)代入上式,解得,∴直线BE的解析式为:y=x+,当m<0时,E(0,-)由圆的对称性可得:k=-,m=-时,直线BE也与⊙O1相切,同理可得:y=-x-.(2)当m>或m<-时,直线与圆相离,当m=或m=-时,直线与圆相切,当-m<时,直线与圆相交.【解析】(1)根据题意得出⊙O1的半径,判断出直线BE与⊙O1的关系,根据题意画出直线BE,连接O1M,由利用勾股定理求出BM的长,由相似三角形的判定定理得出Rt△BMO1∽Rt△BOE,求出BE的长,进而得出E点坐标,用带定系数法即可求出直线BE的解析式,根据对称的性质可知当m<0时的直线解析式;(2)根据(1)所求出的m的值,分三种情况进行讨论,即可得出直线BE与⊙O1的位置关系.例4【题干】已知⊙O的半径为5cm,P为圆外一点,A为线段OP的中点,当OP=12时,点A和⊙O的位置关系是()A.点A在⊙O内B.点A在⊙O外C.点A在⊙O上D.无法确定【答案】B【解析】∵A为线段OP的中点,OP=12,∴OA=6,∵OA>5,∴点A在⊙O外,故选B.例5【题干】如图,在平面直角坐标系xOy中,以点A(3,0)为圆心的圆与x轴交于原点O和点B,直线l 与x轴、y轴分别交于点C(-2,0)、D(0,3).(1)求出直线l的解析式;(2)若直线l绕点C顺时针旋转,设旋转后的直线与y轴交于点E(0,b),且0<b<3,在旋转的过程中,直线CE与⊙A有几种位置关系?试求出每种位置关系时,b的取值范围.【答案】(1)设直线l的解析式为:y=kx+b,将点C(-2,0)、D(0,3)的坐标代入有:,解得:k=,b=3.∴直线l的解析式为:y=.(2)由题意得:旋转得到的直线l的解析式为:y=,当直线与圆相切时,有=3,解得:b=,∴当0<b时,直线与圆相离;当b=时,直线与圆相切;当b<3时,直线与圆相交.【解析】(1)设直线l的解析式为:y=kx+b,将点C(-2,0)、D(0,3)的坐标代入求出k,b的值即可;(2)直线CE与⊙A有相交、相切和相离3种位置关系,然后分别求出对应情况下的b的取值范围即可.例6【题干】如图,⊙A 与⊙B 外切于点D ,PC ,PD ,PE 分别是圆的切线,C ,D ,E 是切点,若∠CED =x °,∠ECD =y °,⊙B 的半径为R ,则⋂DE 的长度是( )A .()9090R x -π B .()9090R y -π C .()180180Rx -π D .()180180Ry -π【答案】B【解析】:由切线长定理,知:PE =PD =PC ,设∠PEC =z °所以,∠PED =∠PDE =(x +z )°,∠PCE =∠PEC =z °,∠PDC =∠PCD =(y +z )°,∠DPE =(180-2x -2z )°,∠DPC =(180-2y -2z )°,在△PEC 中,2z °+(180-2x -2z )°+(180-2y -2z )°=180°,化简,得:z =(90-x -y )°,在四边形PEBD 中,∠EBD =(180°-∠DPE )=180°-(180-2x -2z )°=(2x +2z )°=(2x +180-2x -2y )=(180-2y )°,所以,弧DE 的长为:(1802)180y R π-=()9090R y -π 例7【题干】如图1,圆O 1与圆O 2都经过A 、B 两点,经过点A 的直线CD 与圆O 1交于点C ,与圆O 2交于点D .经过点B 的直线EF 与圆O 1交于点E ,与圆O 2交于点F .(1)求证:CE∥DF;(2)在图1中,若CD和EF可以分别绕点A和点B转动,当点C与点E重合时(如图2),过点E作直线MN∥DF,试判断直线MN与圆O1的位置关系,并证明你的结论.【答案】(1)证明:连接AB;∵四边形ABEC是⊙O1的内接四边形,∴∠BAD=∠E.又∵四边形ADFB是⊙O2的内接四边形,∴∠BAD+∠F=180°.∴∠E+∠F=180°.∴CE∥DF.(2)【解析】MN与⊙O1相切,过E作⊙O1的直径EH,连接AH和AB;∵MN∥DF,∴∠MEA=∠D.又∵∠D=∠ABE,∠ABE=∠AHE,∴∠MEA=∠AHE.∵EH为⊙O1的直径,∴∠EAH=90°.∴∠AHE+∠AEH=90°.∴∠MEA+∠AEH=90°.又∵EH为⊙O1的直径,∴MN为⊙O1的切线.【解析】(1)只需连接AB,利用“圆的内接四边形的外角等于内对角”证明∠E+∠F=180°,从而证明CE ∥DF;(2)作辅助线:构造直径所对的圆周角是90°.利用平行线的性质求出∠ABE=∠AHE,根据“圆的内接四边形的外角等于内对角”得出∠D=∠ABE,所以得到∠MEA=∠AHE,∠MEA+∠AEH=90°,利用切线的判定定理,可知MN为⊙O1的切线.例8【题干】如图,以点O′(1,1)为圆心,OO′为半径画圆,判断点P(-1,1),点Q(1,0),点R(2,2)和⊙O′的位置关系.【答案】∵OO′=r==,O′P==2同理可得:O′Q=1,O′R=,∴O′P>r,点P在⊙O′外;O′Q<r,点Q在⊙O′内;O′R=r,点R在⊙O′上.【解析】点与圆的位置关系由三种:设点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内.例9【题干】已知:如图,AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD,求证:DC是⊙O的切线.【答案】证明:连接OD.∵OA=OD,∴∠1=∠2.∵AD∥OC,∴∠1=∠3,∠2=∠4.因此∠3=∠4.又∵OB=OD,OC=OC,∴△OBC≌△ODC.∴∠OBC=∠ODC.∵BC是⊙O的切线,∴∠OBC=90°,∴∠ODC=90°.∴DC是⊙O的切线.【解析】因为AB是直径,BC切⊙O于B,所以BC⊥AB.要证明DC是⊙O的切线,而DC和⊙O有公共点D,所以可连接OD,只要证明DC⊥OD.也就是只要证明∠ODC=∠OBC.而这两个角分别是△ODC和△OBC的内角,所以只要证△ODC≌△OBC.这是不难证明的.例10【题干】如图,将直角梯形ABCD置于直角坐标系中,点A和点C分别在x轴和y轴的正半轴上,点D和坐标原点O重合.已知:BC∥AD,BC=2,AD=AB=5,M(7,1),点P从点M出发,以每秒2个单位长度的速度水平向左平移,同时点Q从点A沿AB以每秒1个单位长度的速度向点B移动,设移动时间为t 秒.(1)直接写出点Q和点P的坐标(用t的代数式表示).(2)以点P为圆心,t个单位长度为半径画圆.①当⊙P与直线AB第一次相切时,求出点P坐标,并判断此时⊙P与x轴的位置关系,并说明理由.②设⊙P与直线MP交于E、F(E左F右)两点,当△QEF为直角三角形时,求t的值.【答案】(1)点P(7-2t,1),Q(5-t,t);(2)①当⊙P与直线AB第一次相切时,则点P到直线AB的距离(7-2t-5+t)=t,解得t=,则点P(,1),此时⊙P与x轴相离;②根据题意,得E(7-3t,1),F(7-t,1).要使△QEF为直角三角形,①若EF是斜边:根据勾股定理,得(2-t)2+2(1-t)2+(2-t)2=4t2,解得t=.②若QE是斜边:(-4)2+4t2=(t-4)2,解得t=;③若QF是斜边:4t2+(-4)2=(-4)2,解得t=5.【解析】(1)点P的纵坐标是1,横坐标即为点M的横坐标减去运动的路程;点Q的坐标运用解直角三角形的知识求解;(2)①根据直线和圆相切,则圆心到直线的距离等于半径可以求得t的值,再进一步判断此时⊙P与x轴的位置关系;②分别表示点E和点F的坐标,根据勾股定理的逆定理求解即可.课程小结1、本节课我们学习了点、直线与圆的位置关系,当我们判断直线与圆的位置关系时,应该用数量关系(圆心到直线的距离)来体现,即上面讲解的圆心到直线的距离与圆的半径进行比较大小,从而断定是哪种关系。

相关文档
最新文档