第二章 随机过程总结

合集下载

第2讲 第二章随机过程的概念

第2讲  第二章随机过程的概念
它们的互相关函数定义为
RXY ( s, t ) E[ X ( s)Y t ]
互协方差函数为
BXY ( s, t ) Cov[ X ( s), Y t ]
E{[ X ( s) mX ( s)][Y (t ) mY (t )]}
例7 已知实随机过程X(t)具有自相关函数R(s,t), 令 Y(t)=X(t+a)-X(t) 求RXY(s, t), RYY(s, t).
设m n,
j 1
BY (n, m) min n, m pq,
RY (n, m) BY (n, m) E[Yn ]E[Ym ]
min n, m pq nmp 2
定义 设 X t , t T 和 Y t , t T 是两个随机过程,
2 1 2

x 1 t2
2 2
1 t 1 s
2
2 x1 x2
s, t 0, s t
例4 若从t=0开始每隔1/2秒抛掷一枚均匀的硬币做试 验,定义一个随机过程: t时出现正面; cos t , X (t ) t时出现反面. 2t 求 1) 一维分布函数F(1/2;x)和F(1,x); 2) 二维分布函数F(1/2, 1;x, y). 解(1) 这是独立随机过程(即在不同时刻的随机变量 相互独立) ,所以过程的有限维统计特性由一维确 定。 X(t cosπt 2t ) p 1/2 1/2
X t 的值称为随机过程在t时所处的状态。 X t 所有可能的值的集合,称状态空间, 记为I.
根据时间集和状态空间的不同,随机过程分为 四类: 1) T, I 均为离散;
2) T 离散, I 连续;

第二章 随机过程

第二章 随机过程

T /2
(2-2-7)
16
如果平稳过程使下式成立
a = a
σ
2

2
(2-2-8)
R (τ ) = R (τ )
称该平稳过程ξ(t)具有各态历经性。 称该平稳过程 具有各态历经性。 具有各态历经性 意义:随机过程中的任一次实现都经历了随机过程的 意义:随机过程中的任一次实现都经历了随机过程的 实现 所有可能状态。 所有可能状态。 具有各态历经性随机过程一定是平稳过程, 具有各态历经性随机过程一定是平稳过程,反之不 一定成立。 一定成立。 求解各种统计平均时(实际中很难获得大量样本), 求解各种统计平均时(实际中很难获得大量样本), 无需作无限多次考察,只要获得一次考察, 无需作无限多次考察,只要获得一次考察,用一次 实现的时间平均值代替过程的统计平均即可。 实现的时间平均值代替过程的统计平均即可。
满足上式则称ξ(t)为广义平稳随机过程或宽平稳随机过 满足上式则称 为广义平稳随机过程或宽平稳随机过 程。 严平稳随机过程(狭义平稳随机过程) 严平稳随机过程(狭义平稳随机过程)只要 Eξ2(t) 均方值有界,它必定是广义平稳随机过程。 均方值有界,它必定是广义平稳随机过程。 反之不一定成立。 反之不一定成立。
C (t1 , t 2 ) = E {[ξ (t1 ) − a (t1 ) ][ξ (t 2 ) − a (t 2 ) ]} =
∞ ∞ −∞ −∞
∫ ∫ [x
1
− a (t1 ) ][ x 2 − a (t 2 ) ] f 2 ( x1 , x2 ; t1 , t 2 ) dx1 x 2
(2-1-5) 2-1-5
互相关函数(针对两个随机过程) 互相关函数(针对两个随机过程)
Cξ ,η (t1 , t2 ) = E {[ξ (t1 ) − a (t1 ) ][η (t2 ) − a (t2 ) ]}

第二章 随机过程的基本概念_2.3 2.4

第二章 随机过程的基本概念_2.3 2.4
相关时间 0 小:随机过程随时间变化快 相关时间 0 大:随机过程随时间变化慢
4 2 0 -2 -4 10 5 0 -5 -10
0
50
100
0
50
100
0 1
2015/5/12
0 100
14
两个不同相关时间随机过程的样本函数
2.3.4 循环平稳的概念
广义循环平稳:
如果随机过程X(t)的均值和自相关函数满足下列关系
2T
0
(1

2T
2 )[ RX ( ) mX ]d 0
平稳随机过程X(t)具有相关函数遍历性的充要条件
1 lim T T

2T
0
(1

2T
2 )[ R ( ) RX ( )]d 0
(t ) X (t ) X (t )
2015/5/12 22
第二章随机过程的基本概念
mX mX
其中
RX ( ) RX ( )
RX ( )
1 lim T 2T
T T
x(t
) x(t )dt
则X(t)为遍历(各态历经)过程。
2015/5/12 19
2.3.5 随机过程的各态历经性
X (t ) X (t )
t
t
(a)
(b)
各态历经过程与非各态历经过程示意图 各态历经过程的一个样本函数经历了随机过程 所有可能的状态
如果
f XY ( x1 ,..., xN , t1 ,..., t N , y1 ,..., yM , t '1 ,..., t 'M ) f X ( x1 ,..., xN , t1 ,..., t N ) fY ( y1 ,..., yM , t '1 ,..., t 'M )

通信原理第2章 随机过程

通信原理第2章 随机过程
如果平稳随机过程依概率1使下式成立:
aa
则称该平稳随机过程具有各态历经性。 R() R()
“各态历经”的含义:随机过程中的任一实现(样本函数) 都经历了随机过程的所有可能状态。因此, 我们无需(实际中 也不可能)获得大量用来计算统计平均的样本函数,而只需从 任意一个随机过程的样本函数中就可获得它的所有的数字特征, 从而使“统计平均”化为“时间平均”,使实际测量和计算的 问题大为简化。
注意: 具有各态历经性的随机过程必定是平稳随机过程, 但平稳随机过程不一定是各态历经的。在通信系统中所遇到的 随机信号和噪声, 一般均能满足各态历经条件。
第2章 随 机 过 程
三、平稳随机过程自相关函数
对于平稳随机过程而言, 它的自相关函数是特别重要的一 个函数。(其一,平稳随机过程的统计特性,如数字特征等, 可通过自相关函数来描述;其二,自相关函数与平稳随机过程 的谱特性有着内在的联系)。因此,我们有必要了解平稳随机 过程自相关函数的性质。
E[(t1)] x1f1(x1,t1)d1x
第2章 随 机 过 程
注意,这里t1是任取的,所以可以把t1直接写为t, x1改为x, 这时 上式就变为随机过程在任意时刻的数学期望,记作a(t), 于是
a(t)E[(t)] x1(fx,t)dx
a(t)是时间t的函数,它表示随机过程的(n个样本函数曲线的) 摆动中心。
第2章 随 机 过 程
3. 相关函数
衡量随机过程在任意两个时刻获得的随机变量之间的关联 程度时,常用协方差函数B(t1, t2)和相关函数R(t1, t2)来表示。
(1)(自) 协方差函数:定义为 B(t1,t2)=E{[ξ(t1)-a(t1)][ξ(t2)-a(t2)]}
= [x1a(t1)]x2[a(t2)f]2(x1,x2; t1,t2)dx1dx2

第2章 随机过程概述

第2章 随机过程概述
E[ X (t )] mX 常数
(功率有限),且
2
则称
R(t1 , t2 ) E[ X (t ) X (t )] R( )
(t ), t T X为广义平稳随机过程。
t1 t2
用高阶矩来判断广义平稳随机过程是否是狭义平稳随机过程
二者没有关系,但如果狭义平稳随机过程且功率有限,则必为广义平稳的
RX (t1 , t2 ) E[ X (t1 ) X (t2 )]




x1 x2 f ( x1 , x2 ; t1 , t2 )dx1dx2
RXY (t1 , t2 ) E[ X (t1 )Y (t2 )]

xyf ( x, t1; y, t2 )dxdy
一、随机过程的概念
1、随机过程的定义 随机过程 样本函数
X (t ) X (t , e)
X i (t ) X (t , ei ) X (ti ) X (ti , e)
X i (t j ) X (t j , ei )
随机变量
标量
一、随机过程的概念
1、随机过程的定义
随机过程一般表示为{ X (t), t T }。
自相关函数各态历经
T
lim P{| X (t ) X (t ) RX ( ) | } 1
各态历经性-----同时满足以上两条!
平稳随机过程均值各态历经的充要条件
C (0) R(0) m2 2
自相关函数连续的充要条件
R( )在 0点处连续
二、平稳随机过程
4、平稳随机过程自相关函数的性质 非负定性
i , j 1
R(
n

随机过程个人总结

随机过程个人总结

随机过程个人总结随机过程是一个数学模型,用来描述随机现象的演化规律。

它在许多领域中都有广泛应用,在概率论、统计学、物理学、工程学等领域中都有重要的地位。

1. 定义和特征:随机过程是一族随机变量的集合,表示随机现象在不同时间发生的情况。

每个随机变量表示某个时刻或某个时间段内的随机事件的结果。

它具有两个维度:时间和状态。

2. 分类:根据状态空间的特征,可以将随机过程分为离散随机过程和连续随机过程。

离散随机过程的状态空间是离散的,而连续随机过程的状态空间是连续的。

根据时间的连续性,可以将连续随机过程分为时齐随机过程和时变随机过程。

时齐随机过程的统计特性不随时间变化,而时变随机过程的统计特性与时间有关。

3. 状态转移概率:随机过程的核心是状态转移概率,描述了随机过程在不同状态之间进行转移的概率。

状态转移概率可以用转移矩阵或转移函数表示,它描述了随机过程的演化规律。

4. 随机过程的性质:随机过程有许多重要的性质,包括平稳性、独立性、马尔可夫性、鞅性等。

这些性质可以帮助我们分析和理解随机过程的行为。

5. 应用:随机过程在概率论、统计学和工程学中有广泛的应用。

在概率论中,随机过程用于描述随机事件的演化过程。

在统计学中,随机过程用于建立模型和进行统计推断。

在工程学中,随机过程用于分析和设计系统,例如通信系统、控制系统和金融系统等。

总之,随机过程是一个重要的数学工具,可以帮助我们建立数学模型,描述和分析随机现象的演化过程。

它在各个领域中都有广泛应用,并且具有丰富的理论基础和实际应用价值。

第二章 随机过程汇总

第二章 随机过程汇总

第 2 章 随机过程2.1 引言•确定性信号是时间的确定函数,随机信号是时间的不确定函数。

•通信中干扰是随机信号,通信中的有用信号也是随机信号。

•描述随机信号的数学工具是随机过程,基本的思想是把概率论中的随机变量的概念推广到时间函数。

2.2 随机过程的统计特性一.随机过程的数学定义:•设随机试验E 的可能结果为)(t g ,试验的样本空间S 为{x 1(t), x 2(t), …, x n (t),…}, x i (t)是第i 次试验的样本函数或实现,每次试验得到一个样本函数,所有可能出现的结果的总体就构成一随机过程,记作)(t g 。

随机过程举例:二.随机过程基本特征其一,它是一个时间函数;其二,在固定的某一观察时刻1t ,)(1t g 是随机变量。

随机过程具有随机变量和时间函数的特点。

● 随机过程)(t g 在任一时刻都是随机变量; ● 随机过程)(t g 是大量样本函数的集合。

三.随机过程的统计描述设)(t g 表示随机过程,在任意给定的时刻T t ∈1, )(1t g 是一个一维随机变量。

1.一维分布函数:随机变量)(t g 小于或等于某一数值x 的概率,即})({);(1x t g P t x P ≤= 2.2.12.一维概率密度函数:一维概率分布函数对x 的导数.xt x P t x p ∂∂=);(),(11 2.2.2 3.对于任意两个时间1t 和2t ,随机过程的对应的抽样值)(1t g )(2t g 为两个随机变量.他们的联合分布定义为)(t g 的二维分布})(;)({),;,(221121212x t g x t g P t t x x P ≤≤= 2.2.34.二维分布密度定义为212121221212),;,(),;,(x x t t x x P t t x x p ∂∂∂=2.2.4四.随机过程的一维数字特征设随机过程)(t g 的一维概率密度函数为),(1t x p .1.数学期望(Expectation)dx t x xp t g E t g );()]([)(1⎰∞∞-==μ 2.2.52.方差(Variance)dx t x p t x t t g E t g Var t g g g ),()]([]))()([()]([)(1222μμσ-=-==⎰∞∞- 2.2.6五.随机过程的二维数字特征1.自协方差函数(Covariance)•21212122211221121),;,())())((())]()())(()([(),(dx dx t t x x p t x t x t t g t t g E t t C g g g g g μμμμ--=--=⎰⎰∞∞-∞∞- 2.2.72. 自相关函数(Autocorrelation)•2121212212121),;,()]()([),(dx dx t t x x p x x t g t g E t t R g ⎰⎰∞∞-∞∞-== 2.2.83.自相关函数和自协方差函数的关系)]([)]([),(),(212121t g E t g E t t R t t C g g •-= 2.2.9 4.设两个随机过程分别为)(),(t h t g ,在时刻1t 和2t ,对)(),(t h t g 抽样,两个随机过程的互相关函数(Cross-correlation)定义为)]()([),(2121t h t g E t t R gh = 2.2.105.两个随机过程的互协方差函数(Cross-covariance)定义为)]()())(()([(),(221121t t h t t g E t t C h g gh μμ--= 2.2.112.3 平稳随机过程一.狭义平稳的随机过程(严平稳的随机过程)对于任意的正整数n 和实数τ,若随机过程)(t g 的n 维概率密度函数满足),,;,,(),,;,,,(21212121n n n n n n t t t x x x p t t t x x x p ⋅⋅⋅⋅⋅⋅=+⋅⋅⋅++⋅⋅⋅τττ 2.3.1则称)(t g 为狭义平稳的随机过程.统计特性不随时间的推移而变化的随机过程称为平稳随机过程。

第二章随机过程的基本概念

第二章随机过程的基本概念
个子女形成第一代,每一个子女再生子女,他们合在一 起形成第二代,等等,假定第n代的个体数目为Xn,则 {Xn, n=0,1,2….}是随机过程。
例: 英国植物学家Brown注意到漂浮在液面上 的微小粒子不断进行无规则的运动。这种运 动叫做Brown运动,它是分子大量随机碰撞的
结果。记 X t ,Y t 为粒子于时刻t在平面
为t T 的函数,x(t,ω0 )是一个定义在T 上的
普通函数.
X(t1,ω)
X(t2,ω)
x(t,ω1) x(t,ω2) x(t,ω3)
t1
t2
tn
例5 X(t,ω) = acos(bt+Θ), Θ~U(0, 2π)
ω1 =5.4938 ω2 = 1.9164
ω3 = 2.6099
定义2.1.2 对每一固定ωΩ,称Xt (ω) 是随 机过程 {X (t,), t T }的一个样本函数.
是相互独立的,
则称 X (t) 为具有独立增量的随机过程。
(3)马尔可夫过程
设{ X (t) ,t T }对任意 n 个不同的 t1 ,t2 ,…,tn T
且 t1 t2 tn1 tn P( X (tn ) xn | X (tn1 ) xn1 ,…,X (t1 ) x1 )
X (t)


t, 3
et ,
如果t时取得红球 如果t时取得白球
试求这个随机过程的一维分布函数族。
分析 先求概率密度
解 对每一个确定的时刻 t,X (t) 的概率密度为
t
X (t)
3
t
e
P
所以
F (t1;x1 ) P( X (t1 ) x1 )
21

第二章 随机过程基本概念

第二章 随机过程基本概念
随机过程的基本概念
第二章 随机过程的基本概念
§2.1 随机过程的定义 §2.2 随机过程的分布与数字特征 §2.3 随机过程的分类
§2.1 随机过程的定义
引入:
初等概率论的研究对象
§2.1 随机过程的定义
引例1
某电话交换台在时间段[0,t]内接到的电话次数记为X(t),
随机现象某个时刻或有限个时刻静态的结果 即一个或有限个随机变量(随机向量). 问 描述随机现象的整个变化过程, 需要多少个随机变量?
Fn ( xi1 , xi2 ,, xin , ti1 , ti2 ,, tin ) Fn ( x1 , x2 ,, xn , t1, t2 ,, tn )
(2)相容性 对任意自然数m<n,随机过程的m维分布函数 与n维分布函数之间有关系:
Fm ( x1 , x2 ,, xm , t1 , t2 ,, tm ) Fn ( x1 , x2 ,, xm , ,, , t1 , t2 ,, tn )

X(t ) A (t (T0 kT )), T0 kT t T0 (k 1)T (k 0, 1, 2) T
§2.2 随机过程的分布与数字特征
2、随机过程的二维分布函数
定义 设{ X ( t ), t T }是一个随机过程,对任意固定的
T 故有,T0 X (t ) t kT h( X (t )), T0 kT t T0 (k 1)T A
29 November 2015
随机过程
§2.2 随机过程的分布与数字特征
例1 设X ( t ) X cos(at ), t ,其中a为常数,
X服从标准正态分布,试求X(t)的一维概率密度函数。

第二章 随机过程分析

第二章   随机过程分析

图2-3-2 幅度随机的正弦信号
图2-3-3 频率随机的正弦信号
图2-3-4 频率、相位和幅度随机的正弦信号
图2-3-5 云层背景下的飞机
2.3.1 随机信号 的统计特性(如概率密度函 数、相关函数),部分或全部在观察点或观察
点组的位置变化时,保持不变或变化。在随机
信号理论中就称该随机信号的相应统计特性具 有平稳或非平稳性。
5、n维分布函数和概率密度函数
例2.2 讨论贝努里随机过程 的一、二维概率 特性。
解:贝努里随机过程,在 时刻,独立地观 察某个事件 发生与否,建立事件 的指示函 数
且有概率
(2.2.7)

,单位步函数(阶跃函数)
贝努里随机过程的一维概率分布函数
一维概率密度函数
(2.2.8)
(2.2.9)
贝努里随机过程 ,对于不同的时刻 ,其
随机变量
是彼此统计独立的。因此,
可得
(2.2.10)
贝努里随机过程的二维概率分布函数是
其中, 是二维单位阶跃函数。 那么二维概率密度函数
(2.2.11) (2.2.12)
(2.2.13)
式中,
(2.2.14)
2.2.2、随机过程的数字特征
• 随机过程的分布函数在实际上是很难获取的, 甚至是不可能的。
(2.2.2) 成立,则称 为随机过程的一维概率密度函 数, 是 和 的二元函数,且满足
(2.2.3)
注:一维概率分布描述了随机过程在各个孤 立时刻的统计特性。
3、二维分布函数
与 , , 和 都有直接的关系, 是 ,, 和 的四元函数,记为:
(2.2.4) 被称为随机过程的二维分布函数。
4、二维概率密度函数

随机过程知识点总结

随机过程知识点总结

知识点总结第1章 概率论基础1.1概论空间随机试验,它是指其结果不能事先确定且在相同条件下可以重复进行的试验。

其中,一个试验所有可能出现的结果的全体称为随机试验的样本空间,记为Ω,试验的一个结果称为样本点,记为ω,即}{ω=Ω. 样本空间的某个子集称为随机事件,简称事件.定义1.1.1 设Ω样本空间,是Ω的某些子集构成的集合,如果:(1)∈Ω (2)若∈A ,则∈A(3)若∈n A ,,, ,21n =则∈∞= 1n nA那么称为一事件域,也称为σ域.显然,如果是一事件域,那么(1)∈φ(2)若∈B A ,,则∈-B A(3)若∈n A , ∞==1n n 2,1n A ,则,,定义 1.1.2 设Ω是样本空间,是一事件域,定义在上的实值函数)(⋅P 如果满足:(1)∈∀A 0)(,≥A P ,(2)1)(=ΩP , (3)若∈n A ,,2,1, =n 且,,2,1,,, =≠=j i j i A A j i φ则∞=∞=∑=11)()(n n n n A P A P那么称P 是二元组(,Ω)上的概率,称P (A )为事件A 的概率,称三元组,(Ω),P 为概率空间。

关于事件的概率具有如下性质:(1);0)(=φP(2)若∈nA ,,,2,1,,,,,,2,1,n j i j i A A n i j i =≠==φ 则ni ni i i A P A P 11)()(==∑=(3)若∈B A ,,,B A ⊂则)A P B P A B P ()()(-=-(4)若∈B A ,)()(,,B P A P B A ≤⊂则; (5)若∈A ;1)(,≤A P 则(6)若∈A );(1)(,A P A P -=则(7)若∈n A ,,2,1, =n 则∞=∞=∑≤11)()(n n n i A P A P(8)若∈i A ,,,2,1,n i =则-===∑ ni ni i i A P A P 11)()(∑∑≤<≤≤<<≤--+-+nj i nk j i n n kj ij i A A A P A A A P A A P 11211)()1()()(一列事件∈n A ,2,1,=n 称为单调递增的事件列,如果;,2,1,1 =⊂+n A A n n 一列事件∈n A ,2,1,=n 称为单调递减的事件列,如果,2,1,1=⊃+n A A n n .定理1.1.1 设 ∈n A ,2,1,=n(1)若 ,2,1,=n A n 是单调递增的事件列,则⎪⎪⎭⎫⎝⎛=∞=∞→ 1)(lim n n n n A P A P (2)若 ,2,1,=n A n 是单调递减的事件列,则⎪⎪⎭⎫⎝⎛=∞=∞→ 1)(lim n n n n A P A P 定义1.1.3.设,(Ω),P 为一概率空间,∈B A ,.且,0)(>A P 则称)()()(A P AB P A B P =为在事件A 发生的条件下事件B 发生的条件概率.不难验证,条件概率)|(A P ⋅符合定义1.1.2中的三个条件,即 (1)∈∀B , 0)|(≥A B P ;(2);1)|(=ΩA P (3)设∈n B ,,2,1,,,,2,1, =≠==j j i B B n j i φ则∞=∞=∑=11)|()|(n n n n A B P A B P定理 1.1.2. 设,Ω( ),P 是一概率空间,有: (1)(乘法公式)若∈i A ,,,,2,1n i =且0)(121>-n A A A P ,则)|()()(12121A A P A P A A A P n =(2)(全概率公式)设∈A ,∈iB ,,2,1,0)(, =>i B P i 且∞=⊃=≠=1,,,2,1,,,,i i j i A B j i j i B B φ则∑∞==1)|()()(i i i B A P B P A P(3)(贝叶斯(Bayes)公式)且∈A ∈>i B A P ,0)(,,,,2,1,0)( =>i B P i且 ∞=⊃==1,,,2,1,,i i j i A B j i B B φ则,2,1,)|()()|()()|(1==∑∞=i B A P B P B A P B P A B P j jji i i定义 1.1.4设,(Ω ),P 为一概率空间,,,,2,1,n i F A i =∈如果对于任意的)1(n k k ≤<及任意的,12n i i i k i ≤<<<≤ 有)()()()(2121k k i i i i i i A P A P A P A A A P =则称n 21,,,A A A 相互独立。

第二章随机过程(函数)

第二章随机过程(函数)

t1 ,全体样本在t1 时刻的取值ξ(t1)是一个不含t变化的随机
变量。 因此,我们又可以把随机过程看成依赖时间参数的一族随 机变量。可见,随机过程具有随机变量和时间函数的特点。
8
西安电子科技大学 理学院
随机过程的定义:设Sk(k=1, 2, …)是随机试验。 每一次 试验都有一条时间波形(称为样本函数或实现),记作xi(t), 所有可能出现的结果的总体{x1(t), x2(t), …, xn(t), …} 就构成一随机过程,记作ξ(t)。简言之, 无穷多个样本函 数的总体叫做随机过程,如图所示。
N=200;
ind=find(rand(N,1)>0.5); z(1:N)=1; z(ind)=-1; stairs(1:25,z(1:25)); axis([0 25 -1.5 1.5]); xlabel('时间-秒 (假定T=1 秒)'); ylabel('X(t)','FontSize',[12]);
17
西安电子科技大学 理学院
伪随机序列似乎已经失去了“随机”特点,但是它确
代替或者模拟了某类随机过程!
所谓:经目之事有恐未真;过耳之言焉能全信! 工程种研究随机过程实际是通过理论分析其大量样本 函数,建立符合其实际过程或者称为能体现其过程特点 的伪随机序列模型,对伪随机序列进行研究,即可得到
其过程特点。
3
西安电子科技大学 理学院
随机信号序列
4
西安电子科技大学 理学院
5
西安电子科技大学 理学院
6
西安电子科技大学 理学院
7
西安电子科技大学 理学院
按分布特性分类,依照过程在不同时刻状态的统计依赖关 分类。例如:独立增量过程,马尔可夫过程,平稳过程,鞅,

第二章随机过程基本概念

第二章随机过程基本概念

2随机过程的基本概念§2.1 基本概念随机过程是指一族随机变量.对随机过程的统计分析称为随机过程论,它是随机数学中的一个重要分支,产生于本世纪的初期.其研究对象是随机现象,而它特别研究的是随“时间”变化的“动态”的随机现象.一随机过程的定义1 定义设E为随机试验,S为其样本空间,如果(1)对于每个参数t∈T, X(e,t)为建立在S上的随机变量,(2)对每一个e∈S, X(e,t)为t的函数,那么称随机变量族{X(e,t), t∈T, e∈S}为一个随机过程,简记为{X(e,t), t∈T}或X(t)。

()()()()(){}{}[]()为随机序列。

时,通常称,取可列集合当可以为无穷。

通常有三种形式:参数一般表示时间或空间,或有时也简写为一个轨道。

随机过程的一个实现或过程的样本函数,或称随机的一般函数,通常称为为对于:上的二元单值函数。

为即若用映射来表示注意:t X T T T b a b a T T T T t X t X t e X T t e X S e S T t e X RS T t e X t21321,,,,3,2,1,0,1,2,3,,3,2,1,0T ,.4,.3,,2,:,.1=---==ÎÎ×δ®´L L L为一个随机过程。

则令掷一均匀硬币,例),()(cos )(},{1t e X t X Rt T e t H e t t X T H S =Îîíì====p 2 随机过程举例îíì=====为随机变量的函数均为和解释:T e t He t t e X t t t T X t t H X 000cos ),(),(cos ),((p p 2121cos ),(000p t t t e X p 并且:例2:用X(t)表示电话交换台在(0,t)时间内接到的呼唤的次数,则(1)对于固定的时刻t, X(t)为随机变量,其样本空间为{0,1,2,…..},且对于不同的t,是不同的随机变量.(2)对于固定的样本点n, X(t)=n是一个t的函数.(即:在多长时间内来n个人?)所以{X(t),t>0}为一个随机过程.相位正弦波。

第二章 随机过程的概念和类型

第二章 随机过程的概念和类型

第二章 随机过程的概念和基本类型2.1 随机过程的基本概念随机过程是随机数学一个十分广泛的分支,它研究的是客观世界中随机现象演变过程的统计规律性.随机过程理论不仅广泛应用于自然科学的各个领域(例如物理学、生物学、电子技术等),而且在社会科学的许多领域也日益受到重视.我们都知道,初等概率论的主要研究对象是随机现象,可以用一个或有限个随机变量来描述随机试验所产生的随机现象.但是,随着科学技术的不断发展,我们必须对一些随机现象的过程进行研究,也就是要考虑无穷多个随机变量,而且解决问题的出发点不是随机变量的独立样本,而是无穷个随机变量的一次具体观测.这时,必须用一簇随机变量才能刻画这种随机现象的全部统计规律,这种随机变量簇就是随机过程.下面先考察几个例子.例 2.1 某人不断地掷一颗骰子,设()X n 表示第n 次掷骰子时出现的点数,1,2,n =⋅⋅⋅,对于任意一个n ,在第n 次掷骰子前不知道试验的结果会出现几点,因此,()X n 是一个随机变量.这样,随机现象可以用一簇随机变量{(),1}X n n ≥来描述.例2.2 设()X t 表示某流水线从开工(0t =)到时刻t 为止的累计次品数,在开工前不知道时刻t 的累计次品数将有多少,因此,()X t 是一个随机变量,假设流水线不断工作,随机现象可以用一簇随机变量{(),0}X t t ≥来描述.例2.3 在天气预报中,若以()X t 表示某地区第t 次统计所得到的该天最高气温,则()X t 是一个随机变量,为了预报未来该地区的气温,我们必须用一簇随机变量{(),0}X t t ≥来描述它的统计规律性.例2.4 在海浪分析中,需要观测某固定点海平面的垂直振动,设()X t 表示在时刻t 该点海平面相对于平均海平面的高度,则()X t 是一个随机变量,我们可以用一簇随机变量{(),0}X t t ≥来描述它的统计规律性.上述例子的共同点是,不是静止地研究某种随机现象,从而研究个别随机变量,而是动态地关心某种随机现象如何随时间变化而发展的,也就是说,需要研究许多随机变量组成的一簇随机变量.一般地,这簇随机变量包含无限多个随机变量,如果这簇随机变量包含有限多个随机变量(例如例 2.1),那么,这类问题用初等概率论中多维随机变量来解决.一簇随机变量描述了随机现象的变化发展过程.为了更深入地研究随机过程的相关性质,我们先给出随机过程的一般定义.定义2.1 设(,ΩF ,)P 是一概率空间,T 是给定的参数,若对于任意t T ∈,有一个随机变量(,)X t ω与之对应,则称随机变量簇{(,),}X t t T ω∈是(,ΩF ,)P 上的随机过程(stochastic process ),简记为随机过程{(),}X t t T ∈,在不致引起混淆的情况下,也可记为()X t .T 为参数集(或指标集),通常表示时间,t 为参数(或指标).需要说明的是:上述定义中的参数集T 可以是时间集,也可以是长度、重量、速度等物理量的集合,随机过程本来通称随机函数,当参数集T 是时间集时称为随机过程,但现在将参数集不是时间集的随机函数也称随机过程,对参数集T 不再有时间限制.在例2.1中,{1,2,}T =⋅⋅⋅,在例2.2, 例2.3和例2.4中[0,)T =+∞,一般地,如果T 由有限多个或可列无限个元素组成的集合,则称{(),}X t t T ∈为离散时间(或离散参数)的随机过程,例2.1是离散时间的随机过程,当T 为有限集时,{(),}X t t T ∈就是概率论中多维随机变量;如果T 是一区间,则称{(),}X t t T ∈为连续时间(或连续参数)的随机过程,例2.2, 例2.3 和例2.4都是连续时间的随机过程.从数学的角度看,随机过程{(),}X t t T ∈是定义在T R ⨯上的二元函数,对固定的t ,(,)X t ω是(,ΩF ,P )上的随机变量,随机变量()X t 所取的值称为随机过程在时刻t 所处的状态(state ),随机过程{(),}X t t T ∈所有随机变量的全体称为随机过程的状态空间(state space ),记为I ;对固定ω,(,)X t ω是定义在T 上的函数,称为随机过程{(),}X t t T ∈的一个样本函数(sample function )或轨道(orbit ),样本函数的全体称为样本函数空间.在例2.1中,{1,2,3,4,5,6}I =;在例2.2中,{0,1,2,}I = ;在例2.3中,(,)I =-∞+∞,在例2.4中[0,)I =+∞.不难看出,在上述例子中,把状态空间作适当扩大,仅仅是为了数学上处理的方便,如果I 是由有限个或可列无限个元素组成的集合,则称{(),}X t t T ∈为离散状态的随机过程,例2.1和例2.2都是离散状态的随机过程;如果I 是一个区间,则称{(),}X t t T ∈为连续状态的随机过程,例2.3和例2.4都是连续状态的随机过程.现将这一分类列表如下:表2-1随机过程的分类随机过程的分类,除了按照参数集和状态集是否可列外,还可以进一步根据过程之间的概率关系进行分类,如独立增量过程、Poisson 过程、Markov 过程、平稳过程、鞅过程等.2.2 随机过程的分布概率论基本内容之一是研究随机变量的分布,随机变量的分布刻画了随机变量的统计规律,分布的表现形式是分布函数(或离散型随机变量的概率函数,或连续型随机变量的概率密度).我们知道,随机过程{(),}X t t T ∈由一簇随机变量组成,当参数集T 为有限集时,随机过程{(),}X t t T ∈由有限个随机变量组成,它本质上与概率论中的多维随机变量相同,可以用多维随机变量的分布函数(或概率函数,或密度函数)来表示随机过程{(),}X t t T ∈的分布;当T 为无限集时,也可以借助有限个随机变量的联合分布来刻画随机过程{(),}X t t T ∈的分布.对于任意一个t T ∈, ()X t 是一维随机变量,其分布函数为(;){()},F x t P X t x x R =≤∈称(;)F x t 为随机过程{(),}X t t T ∈的一维分布函数,显然,对于不同的t ,()X t 是不同的随机变量,因此,(;)F x t 一般也不同,全体一维分布函数组成的集合{(;),:}F x t x R t T ∈∈ F 1称为随机过程{(),}X t t T ∈的一维分布函数簇.对于任意两个12,t t T ∈, ()12(),()X t X t 是二维随机变量,其分布函数为{}21212112212(,;,)(),(),(,)F x x t t P X t x X t x x x R ≤≤∈称1212(,;,)F x x t t 为随机过程{(),}X t t T ∈的二维分布函数,显然,对于不同的12,t t ,()12(),()X t X t 是不同的随机变量,因此,1212(,;,)F x x t t 一般也不同,全体二维分布函数组成的集合212121212{(,;,),(,):,}F x x t t x x R t t T ∈∈ F 2称为随机过程{(),}X t t T ∈的二维分布函数簇.一般地,对于任意n 个12,,,n t t t T ∈ , ()12(),(),,()n X t X t X t ⋅⋅⋅是n 维随机变量,其分布函数为{}121211(,...;,,,)(),,(),n n n n F x x x t t t P X t x X t x ≤⋅⋅⋅≤ 1(,,)n n x x R ⋅⋅⋅∈称11(,,;,,)n n F x x t t 为随机过程{(),}X t t T ∈的n 维分布函数,显然,对于不同的12,,,n t t t ,()1(),,()n X t X t ⋅⋅⋅是不同的随机变量,因此,11(,,;,,)n n F x x t t 一般也不同,全体n 维分布函数组成的集合1111{(,,;,,),(,,):,,}n n n n n F x x t t x x R t t T ⋅⋅⋅⋅⋅⋅⋅⋅⋅∈⋅⋅⋅∈ F n 称为随机过程{(),}X t t T ∈的n 维分布函数簇.定义2.2 {(),}X t t T ∈全体一维分布函数簇F 1、二维分布函数簇F 2⋅⋅⋅的并集F 1n n F ∞== 11111{(,,;,,),(,,):,,,1}n n n n n n F x x t t x x R t t T n ∞=∈⋅⋅⋅∈≥称为随机过程{(),}X t t T ∈的有限维分布函数簇.如果随机过程{(),}X t t T ∈是一个连续状态的随机过程,对于任意,()t T X t ∈通常是连续型随机变量,其密度函数为(;)f x t .称(;)f x t 为随机过程{(),}X t t T ∈的一维密度函数,全体一维密度函数组成的集合称为随机过程{(),}X t t T ∈的一维密度函数簇;一般地,称()1(),,()n X t X t 的密度函数11(,,;,,)n n f x x t t 为随机过程{(),}X t t T ∈的n 维密度函数,全体n 维密度函数组成的集合称为随机过程{(),}X t t T ∈的n 维密度函数簇. 随机过程{(),}X t t T ∈一维密度函数簇、二维密度函数簇 的并集111{(,,;,,:,,,1)}n n n f x x t t t t T n ∈≥ 称为随机过程{(),}X t t T ∈的有限维密度函数簇.类似可以得到离散状态随机过程{(),}X t t T ∈的有限维概率函数簇.随机过程{(),}X t t T ∈有限维分布函数簇、有限维密度函数簇、有限维概率函数簇统称为随机过程{(),}X t t T ∈的有限维分布簇.随机过程{(),}X t t T ∈有限维分布函数簇满足如下两条性质:(1)(对称性) 设12,,,n i i i 为1,2,,n 的任意排列,12,,,n t t t T ∀∈ ,则1111(,,;,,)(,,;,,)n n n n i i i i F x x t t F x x t t =(2)(相容性 consistent )设121,,,,,,,m m n m n t t t t t T +<∀∈ ,则1111(,,,,;,,)(,,;,,)m n m m F x x t t F x x t t ∞∞=反之,对于给定的满足对称性和相容性的分布函数簇,是否存在一个以它作为其有限维分布函数簇随机过程?Kolmogorov 在1931年证明了下述定理肯定地回答了.定理2.1 (Kolmogorov 存在定理)设已知参数集T 满足对称性和相容性的分布函数簇F ,则必存在一概率空间(,ΩF ,P )及定义在上的随机过程{(),}X t t T ∈,它的有限维分布函数簇是F .下面举例说明求随机过程的一维、二维分布.例2.4 设随机过程(),0X t tV t =≥,V 为随机变量,概率函数为{1}0.4,P V =-= {1}0.6P V == 求随机过程()X t 的一维分布函数();12F x 与(;2)F x 及二维分布函数()12,;12,2F x x解 当12t =时,(12)2X V =是离散型随机变量;当2t =时,(2)2X V =是离散型随机变量,它们的概率函数分别为分布函数分别为 0,121;0.4,121221,12x F x x x <-⎧⎪⎛⎫=-≤<⎨ ⎪⎝⎭⎪≥⎩ 和 0,2(;2)0.4,221,2x F x x x <-⎧⎪=-≤<⎨⎪≥⎩当1212,2t t ==时,()()(12),(2)2,2X X V V =是二维离散型随机变量,它的概率函数为因此,()(12),(2)X X 分布函数为 (){}1212,;12,2(12),(2)F x x P X x X x =≤≤=121212121220,0.4,12122,12221,122x x x x x x x x <-<-⎧⎪-≤<≥-≥--≤<⎨⎪≥≥⎩或且且且2.3 随机过程的数字特征定义2.3 随机过程{(),}X t t T ∈,如果对于任意,()t T EX t ∈存在,称()(),X m t EX t t T =∈ (2.1)为随机过程{(),}X t t T ∈的均值函数(expectation function ),简记()m t .定义 2.4 随机过程{(),X t t T ∈,如果对于任意,,s t T ∈ [()()][()()]E X s m s X t m t --存在,称(,)[()()][()()],X C s t E X s m s X t m t -- ,s t T ∈ (2.2)为{(),}X t t T ∈的自协方差函数(self covariance - function ),简称协方差函数,简记(,)C s t ;称 (,)[()()],X R s t E X s X t ,s t T ∈ (2.3) 为随机过程{(),}X t t T ∈的自相关函数(self correlation - function ),简称相关函数,简记为(,)R s t .自协方差函数(,)C s t 是随机过程{(),}X t t T ∈本身在不同时刻状态之间线性关系程度的一种描述,特别地,当s t =时,称为随机过程{(),}X t t T ∈的方差函数(variance function ).2()(,)[()()],X X D t C t t E X t m t t T =-∈ (2.4)由Schwarz 不等式知,随机过程{(),}X t t T ∈的协方差函数和相关函数一定存在,且有下面的关系式(,)(,)()()X X X X C s t R s t m s m t =-.特别地,当均值函数()0X m t ≡时,(,)(,)X X C s t R s t =.从定义可以知道,均值函数()m t 是反映随机过程{(),}X t t T ∈在时刻t 的平均值; 方差函数()X D t 是反映随机过程{(),}X t t T ∈在时刻t 对均值函数()m t 的偏离程度,而协方差函数(,)C s t 和相关函数(,)R s t 反映的是随机过程{(),}X t t T ∈在时刻s 和t 的线性相关程度.例2.5 设随机过程()cos()sin(),0X t Y t Z t t θθ=+>,其中,Y Z 是相互独立的随机变量,且20,EY EZ DY DZ σ====,求{(),0}X t t >的均值函数()m t 和协方差函数(,)C s t .解 由数学期望的性质()[cos()sin()]cos()sin()0EX t E Y t Z t t EY t EZ θθθθ=+=+=又由,Y Z 的相互独立,因此(,)(,)[()()]X X C s t R s t E X s X t ==[cos()sin()][cos()sin()]E Y s Z s Y t Z t θθθθ=++222cos()cos()sin()sin()cos[()]s t EY s t EZ t s θθθθσθ=+=-类似可以定义两个随机过程的互协方差函数和互相关函数.定义2.5 设随机过程{(),}X t t T ∈,{(),}Y t t T ∈,称(,)[()()][()()],,XY X Y C s t E X s m s Y t m t s t T --∈ (2.5)为{(),}X t t T ∈与{(),}Y t t T ∈的互协方差函数(mutual covariance function ),称(,)[()()],,XY R s t E X s Y t s t T ∈ (2.6)为{(),}X t t T ∈与{(),}Y t t T ∈的互相关函数(mutual correlation function ).如果对任意,s t T ∈,有(,)0XY C s t =,则称{(),}X t t T ∈与{(),}Y t t T ∈互不相关.显然有(,)(,)()()XY XY X Y C s t R s t m s m t =- (2.7)例 2.6 设(),Z t X Yt t R =+∈,若已知二维随机变量(,)X Y 的协方差矩阵为2122σρρσ⎛⎫ ⎪⎝⎭,求()Z t 的协方差函数. 解 由数学期望的性质121122(,){[()()][()()]}Z X Y X Y C t t E X Yt m m t X Yt m m t =+-++-+1122{[()()][(()]}X Y X Y E X m Yt m t X m Yt m t =-+--+-2[()()][()()]X X X Y E X m X m E X m t Y m =--+--112[()()][()()]Y X Y Y E t Y m X m E t t Y m Y m +--+--222112112122()XY XY XX YY C t C t C t t C t t t t σρσ=+++=+++例 2.7 设两个随机过程()sin()X t A t ωθ=+与()sin()Y t A t ωθϕ=+-,其中,,,A B ωϕ为常量ϕ为[0,2]π上的均匀分布的随机变量,求12(,)XY R t t .解 设12t t <,则212121201(,)[()()]sin()sin()2XY R t t E X t Y t A t B t d πωθωθϕθπ==++-⎰ 211211210sin(){sin()cos[()]cos()sin[()]}2AB t t t t t t t d πωθωθωϕωθωϕθπ=++--++--⎰222110{cos[()]()2AB t t sin t d πωϕωθθπ=--+⎰ 221110sin[()]sin()cos()}t t t t d πωϕωθωθθ+--++⎰ 21cos[()]2AB t t ωϕ=-- 例 2.8 设()X t 为信号过程,()Y t 为噪音过程,令()()()W t X t Y t =+,则()W t 的均值函数为()()()w X Y m t m t m t =+其相关函数为(,)[()()][()()]w R s t E X s Y s X t Y t =++[()()][()()]E X s X t E X s Y t =+[()()][()()]E Y s X t E Y s Y t ++(,)(,)(,)(,)X XY YX Y R s t R s t R s t R s t =+++上式表明两个随机过程之和的相关函数可以表示为各个随机过程的相关函数之和.特别地,若两个随机过程的均值函数恒为0且互不相关时,有(,)(,)(,)W X Y R s t R s t R s t =+2.4 复值随机过程在工程技术上,常把随机过程表示成复数的形式进行研究更为方便.例如,在许多有关谱函数的运算要用到Fourier 变换,就需要复数形式.定义2.6 设{(),}X t t T ∈,{(),}Y t t T ∈是取值实数的两个随机过程,若对于任意t T ∈, ()()()Z t X t iY t =+其中i =,则称{(),}Z t t T ∈为复随机过程.类似可以定义复随机过程的均值函数、协方差函数、相关函数、方差函数如下: 均值函数: ()[()]()(),Z X Y m t E Z t m t im t t T ==+∈相关函数: 121212(,)()(),,Z R t t E Z t Z t t t T ⎡⎤=∈⎣⎦协方差函数:{}121122(,)[()()][()()]Z Z Z C t t E Z t m t Z t m t =--=121212(,)()(),,Z Z Z R t t m t m t t t T +∈ 方差函数:2()[|()()|](()())(()())(,)Z Z Z Z Z D t E Z t m t E Z t m t Z t m t C t t ⎡⎤=-=--=⎣⎦对于两个随机过程可以定义互相关函数和互协相关函数.互相关函数:12121122(,)[()()]Z Z R t t E Z t Z t =互协相关函数:(){}1212121122111222(,)(),()[()()][()()]Z Z Z Z C t t Cov Z t Z t E Z t m t Z t m t ==--2.5 随机过程的主要类型随机过程可以根据状态空间和参数集离散或连续进行分类,现在我们将根据随机过程的统计特征进一步将随机过程分类,这些常见的随机过程在以后的章节中将作进一步说明,这里只作简单介绍如下:2.5.1 二阶矩过程(two order - moment process )定义2.7 设{(),}X t t T ∈是(取值实数或复值)的随机过程,若对于任意t T ∈,都有2[|()|]E X t <∞(二阶矩存在),则称{(),}X t t T ∈是二阶矩过程二阶矩过程{(),}X t t T ∈的均值函数()()X m t EX t =一定存在,一般假定()0X m t =,这时,协方差函数化为(,)[()()],,X C s t E X s X t s t T =∈.二阶矩过程的协方差函数具有以下性质:(1)(Hermite 性)(,)(,),X X C s t C t s = ,s t T ∈(2)(非负定性)对任意i t T ∈及复数,1,2,,,1i i n n α=≥ 有11(,)0n n X i j i j i j Ct t αα==≥∑∑2.5.2正交增量过程(orthogonal incremental process )定义2.8 设{(),}X t t T ∈是零均值的二阶矩过程,若对于任意1234t t t t T <≤<∈,有 2143[()()][()()]0E X t X t X t X t ⎡⎤--=⎣⎦(2.8) 则称{(),}X t t T ∈为正交增量过程.从定义可以看出,正交增量过程的协方差函数可由其方差确定,且()2(,)(,)min(,)X X X C s t R s t s t σ== (2.9)事实上,不妨设[,]T a b =为有限区间,且规定()0X a =,取12340,,t t t s t b ====,则当a s t b <<<时,有()(()()E X s X t X s ⎡⎤-⎣⎦()()()()(()()E X s X a X t X s ⎡⎤=--⎣⎦0= 因此,(,)(,)()()(,)X X X X X C s t R s t m s m t R s t =-= =()()()()()()()E X s X t E X s X t X s X s ⎡⎤⎡⎤=-+⎣⎦⎣⎦ ()2()(()()()()()X E X s X t X s E X s X s s σ⎡⎤⎡⎤=-+=⎣⎦⎣⎦ 同理,当b s t a >>>时,2(,)(,)()X X X C s t R s t t σ==于是 ()2(,)(,)min(,)X X X C s t R s t s t σ== 2.5.3 独立平稳增量过程(independent stationary incremental process ) 定义2.9 给定随机序列{,1}n X n ≥,如果随机变量12,,X X 相互独立,那么随机序列{,1}n X n ≥为独立过程(或独立随机序列).在例2.1中,如果骰子每次出现的点数是相互独立的,那么得到一个独立随机过程.值得注意的是,就物理意义来说,连续参数独立过程是不存在的,因为,当1t 和2t 很接近时,我们完全有理由说1()X t 和2()X t 有一定的依赖关系,因此,连续参数独立过程只是理想化的随机过程.定义2.10 设随机过程{(),}X t t T ∈,若对任意正整数n 和12n t t t T <<<∈ ,随机变量21321()(),()(),,()()n n X t X t X t X t X t X t ----相互独立,则称随机过程{(),}X t t T ∈为独立增量过程.同独立过程一样,独立增量过程中的参数集T 可以是离散的,也可以是连续的.独立增量过程的直观含义是:随机过程{(),}X t t T ∈在各个不相重叠的时间间隔上状态的增量是相互独立的.在实际应用中,某服务系统在某时间间隔的“顾客”数,电话传呼站的“电话”次数等都可用这种过程来描述.正交增量过程与独立增量过程都是根据不相重叠的时间间隔上增量的统计相依性来定义的,前者增量是不相关,后者增量是独立的.显然,正交增量过程不一定是独立增量过程;而独立增量过程只有在二阶矩存在,且均值为零的条件下才是正交增量过程.定理2.2 设二阶矩过程{(),}X t t T ∈是独立增量过程,若[,),()0T a X a =+∞=,则{(),}X t t T ∈的协方差函数为()2(,)min{,},,X X C s t s t s t a σ=≥. 证明 假设s t <,由()()(),()()()X s X s X a X t X t X a =-=-相互独立性, ()()(,)(),()(),[()()()]X C s t Cov X s X t Cov X s X t X s X s ==-+()()(),()()(),()Cov X s X t X s Cov X s X s =-+2()()X DX s s σ==定义2.11 设随机过程{(),}X t t T ∈,对于任意,,,s t T s t T ττ∈++∈,增量()()X s X s τ+-与()()X t X t τ+-服从相同的分布,则称{(),}X t t T ∈为平稳增量过程.平稳增量过程的直观含义是:随机过程{(),}X t t T ∈在时间间隔(,]t t τ+上状态的增量()()X t X t τ+-仅仅依赖终点和起点的时间差τ,与时间起点无关.如果一个独立增量过程同时又是平稳增量过程,则称它为平稳独立增量过程.平稳独立增量过程是一种很重要的随机过程,后面将反复提到.定理2.3 设随机序列{,0}n X n ≥,且00X =(1){,0}n X n ≥是独立增量过程的充要条件是n X 可以表示为独立随机变量序列的部分和(1)n ≥;(2){,0}n X n ≥是平稳独立增量过程的充要条件是n X 可以表示为独立同分布随机变量序列的部分和(1)n ≥.证明 充分性由定义直接得到,下面证明必要性.令随机变量 1,1n n n U X X n -=-≥,则1,1nn ii X U n ==≥ (1){,0}n X n ≥是独立增量随机过程,对任意n ,增量12,,,n U U U 相互独立,因此,12,,U U 是独立随机变量序列;(2){,0}n X n ≥是平稳独立增量过程时,对任意,m n ,增量,m n U U 同分布,因此,12,,U U 是独立同分布随机变量序列.2.5.4 维纳过程(W i e n e r process )在概率论中我们都知道,正态分布是一种十分重要的分布,正态过程在随机过程中的地位类似于正态随机变量在概率论中的地位,尤其在电讯技术中,正态过程有着十分广泛的应用.定义2.12 设随机过程{(),}X t t T ∈,对任意正整数n 和12,,,,n t t t T ∈()12(),(),,()n X t X t X t 是n 维正态分布,即有密度函数2121211()exp ()()(2)||2n f x x B x B μμπ-⎧⎫=---⎨⎬⎩⎭其中()1212(,,,),(),(),,()T T n n x x x x EX t EX t EX t μ== ,()ij n n B b ⨯=为正定矩阵,{[()()][()()]}ij i i j j b E X t EX t X t EX t =--.则称{(),}X t t T ∈为正态过程或Gauss 过程.19世纪英国植物学家布朗(Brown )发现,浸在水中的微小花粉粒子,受到作不规则运动的水分子的随机碰撞在水面上做不规则的运动,后来,人们把这种运动称为布朗运动.爱因斯坦(Einstein )于1905年第一次给出它的物理解释.1918年,控制论创始人维纳(Wiener )首先对这个随机过程进行了严格的数学论证,奠定了研究这类随机过程的基础.定义2.13 设随机过程{(),}X t t T ∈满足下列条件:(1)(0)0X =;(2)()X t 是独立增量过程;(3)对任意0s t ≤<,增量()2()()0,()X t X s N t s σ-⋅- ,其中,常数20σ>,则称随机过程{(),}X t t T ∈为参数为2σ的Wiener 过程.从定义可以看出,Wiener 过程的参数集[0,)T =∞,状态空间(,)I =-∞+∞,而且Wiener 过程也是平稳增量过程,因此,Wiener 过程是平稳独立增量过程,另外,当s t ≥时,2()()(0,||)X t X s N t s σ-- 依然成立,特别地,当21σ=时,随机过程{(),}X t t T ∈为标准Wiener 过程.定理2.4设随机过程{(),}X t t T ∈为参数为2σ的Wiener 过程.则(1) Wiener 过程是一个正态过程;(2) 22()0,()X X m t t t σσ==; 0t > 且 2121212(,)(,)min(,),X X R t t C t t t t σ==⋅ 12,0t t ≥ (2.10)证明:(2)()()[()(0)]0X m t EX t E X t X ==-=当12t t <时,1212(,)[()()]X R t t E X t X t =1211[()(0)][()()()(0)]E X t X X t X t X t X =--+-21211[()(0)][()()][()(0)]E X t X X t X t E X t X =--+-21t σ=当12t t >时,同样可以得到2122(,)X R t t t σ=因此 21212(,)min(,)X R t t t t σ=例 2.9 设随机过程{(),}X t t T ∈为参数为4的Wiener 过程,定义随机过程()2(3),0Y t X t t =>,则有()Y t 的均值函数为: ()()2(3)0Y m t EY t EX t ===;()Y t 的相关函数为:121212(,)()()4(3)(Y R t t EY t Y t EX t X t ==12121644min(3,min(,)3t t t t =⨯= 2.5.5 泊松过程(Poisson process )在现实世界中有很多例子,例如:盖格记数器上的粒子数,二次大战时,伦敦空袭的弹着点,电话总机所接听的呼唤次数,交通流中事故数,某地区地震发生次数等.这类过程有如下两个性质:一是时间和空间上的均匀性,二是未来的变化与过去的变化没有关系,为了描述这类过程的特性,我们来建立Poisson 过程的模型.定义2.14 给定随机过程{(),0}N t t ≥,如果()N t 表示时间段[0,]t 出现的质点数,状态空间{0,1,2,}I = ,且满足(1)(0)0N =;(2)当s t <时,()()N s N t ≤, 则称{(),0}N t t ≥为记数过程(counting process ).记数过程的样本函数是单调不减的右连续函数(阶梯函数),当跳跃度为1时,称为简单记数过程.简单记数过程表示同一时刻至多出现一个的记数过程.记数的对象不仅仅是电话呼叫次数、来到商店的顾客数,也可表示质点流. 记数过程是时间连续状态离散的随机过程.定义2.15 设随机过程{(),0}N t t ≥是记数过程,如果()N t 满足条件:(1)(0)0N =;(2)()N t 是独立增量过程;(3)对任意0a ≥,0t >,区间(,]a a t +(0a =是应理解为[0,]t )上的增量()()N a t N a +-服从参数为t λ的Poisson 分布,即(){()()},0,1,2,!kt t P N a t N a k e k k λλ-+-=== (2.11) 则,称{(),0}N t t ≥为参数为λ的泊松过程(Poisson process ).0λ>条件(3)表明,()()N a t N a +-的分布只依赖时间t 而与时间起点a 无关,因此,Poisson 过程具有平稳增量性,当0a =时,(){()},0,1,2,,0!kt t P N t k e k k λλλ-===> 因此,Poisson 过程的均值函数为()()N m t EN t t λ==,它表明在时间段[0,]t 出现的平均次数为t λ,λ称为Poisson 过程的强度. 因此,Poisson 过程表明前后时间的独立性和时间上的均匀性,强度λ描述了随机时间发生的频率.有关Poisson 过程的更多结果,后面将进一步论述.2.5.6 马尔可夫过程(Markov process )定义 2.16 设随机过程{(),}X t t T ∈,对于任意正整数n 及12,n t t t <<< 1111{(),,()}0n n P X t x X t x --==> ,且条件分布1111{()|(),,()}n n n n P X t x X t x X t x --≤== 11{()|()}0n n n n P X t x X t x --=≤=> 则称{(),}X t t T ∈为马尔可夫过程(Markov process ).定义中给出的性质称为马尔可夫性,或称无后效性,它表明若已知系统“现在”的状态,则系统“未来”所处状态的概率规律性就已确定,而不管系统“过去”的状态如何.也就是说,系统在现在所处状态的条件下,它将来的状态与过去的状态无关.Markov 过程{(),}X t t T ∈的状态空间和参数集可以是连续的,也可以是离散的.有关Markov 过程的进一步讨论,我们将在第四章进行.2. 5.7 鞅过程(martingale process )最近几十年才迅速发展起来的现代鞅(过程)论是概率论的一个重要分支,它给随机过程论、随机微分方程等提供了基本工具.定义2.17 设参数集{0,1,2,}T = ,如果随机序列{(),0}X n n ≥对任意0,n ≥,且|()|E X n <∞,若[](1)|(1),(2),,()()E X n X X X n X n += (2.12)则称{(),0}X n n ≥为离散参数鞅(discrete parameter martingale ).定义 2.15 设参数集[0,)T =∞,如果随机过程{(),}X t t T ∈对任意|()|,E X t t T <∞∈,若[()|(),](),,..E X s X u u t X t s t a s ≤=> (2.13)则称{(),}X t t T ∈为连续参数鞅(continuous parameter martingale ).上式中,如果将“=”换成“≤”或“≥”,则分别称为离散参数(连续参数)上(或下)鞅.鞅是用条件期望来定义的,关于离散时间鞅,我们可以作下面的直观解释:设()X n 表示赌徒在第n 次赌博时的资本,(1)X 表示最初赌本(这是一常数)而()X n (2)n ≥由于赌博的输和赢是一个随机变量,如果赌博是公平的,那么每次他的资本增益的期望为零,在以后的赌博中,他资本的期望值还是他最近一次赌完的资本数()X n ,用数学模型表示,就是定义中的等式,因此,鞅表示一种“公平”的赌博,上鞅和下鞅表示一方赢利的赌博.例 2.8 设{(),0}Y n n ≥相互独立的随机变量序列,(0)0,Y = 且|()|,E Y n <∞ ()0,0EY n n =≥,令1(0)0,()(),1ni X X n Y i n ===≥∑,则{(),0}X n n ≥是鞅.证明 因为11|()||()||()|n ni i E X n E Y i Y i ===≤<∞∑∑,且[(1)|(0),(1),,()][()(1)|(0),(1),,()]E X n X X X n E X n Y n X X X n +=++[()|(0),(1),,()][(1)|(0),(1),,()]E X n X X X n E Y n X X X n =++()[(1)]()X n E Y n X n =++=定理2.5 设{(),0}X t t ≥是Wiener 过程,则它是鞅.证明:对于任意0s t <<,由独立增量性得 [()()|()][()()]0E X t X s X s E X t X s -=-=因此,对于任意参数01,,,,n t t t t ,01(0)n t t t t =<<<< 有[()|(),0][()()()|(),0]i n n i E X t X t i n E X t X t X t X t i n ≤≤=-+≤≤[()()]()()n n n E X t X t X t X t =-+=习 题 二2.1 设随机变量Y 具有概率密度()f y ,令(),(0,0)Yt X t e t Y -=>>,求随机过程()X t 的一维概率密度及12(),(,)X EX t R t t .2.2 设随机过程()cos()sin()X t A t B t ωω=+,其中ω为常数,,A B 是相互独立且服从正态2(0,)N σ的随机变量,求随机过程的均值和相关函数.2.3 随机过程()X t 的均值函数()X m t 和协方差函数12(,),()X C t t t ϕ为普通函数,令()()()Y t X t t ϕ=+,求随机过程()Y t 的均值和相关函数.2.4 设随机过程2()X t X Yt Zt =++,其中,,X Y Z 是相互独立的随机变量,且均值为0,方差为1,求随机过程()X t 的协方差函数.2.5 设()f t 是一个周期为T 的周期函数,随机变量Y 在(0,)T 上均匀分布,令()()X t f t Y =-,证明:随机过程()X t 满足 01[()()]()()T E X t X t f t f t dt T ττ+=+⎰ 2.6 设随机过程()X t 和()Y t 的互协方差函数为12(,)XY C t t ,证明1212|(,)|()()XY X Y C t t t t σσ≤2.7 设{(),0}X t t ≥是实正交增量过程,(0)0,X V =是标准正态随机变量,对任意的0t ≥,()X t 与V 相互独立,令()()Y t X t V =+,求随机过程{(),0}Y t t ≥的协方差函数.2.8 设,Y Z 是独立同分布随机变量,12{1}{1}P Y P Y ===-=, ()cos()sin(),X t Y t Z t θθ=+t -∞<<∞,其中θ为常数,证明:随机过程()X t 是广义平稳过程,但不是严平稳过程.。

(完整)随机过程总结,推荐文档

(完整)随机过程总结,推荐文档

第一章随机变量基础1历史上哪些学者对随机过程学科的基础理论做出了突出贡献?答:随机过程整个学科的理论基础是由柯尔莫哥洛夫和杜布奠定的。

这一学科最早源于对物理学的研究,如吉布斯、玻尔兹曼、庞加莱等人对统计力学的研究,及后来爱因斯坦、维纳、莱维等人对布朗运动的开创性工作。

1907年前后,马尔可夫研究了一系列有特定相依性的随机变量,后人称之为马尔可夫链。

1923年维纳给出布朗运动的数学定义,直到今日这一过程仍是重要的研究课题。

随机过程一般理论的研究通常认为开始于20世纪30年代。

1931年,柯尔莫哥洛夫发表了《概率论的解析方法》,1934年A·辛饮发表了《平稳过程的相关理论》,这两篇著作奠定了马尔可夫过程与平稳过程的理论基础。

1953年,杜布出版了名著《随机过程论》,系统且严格地叙述了随机过程基本理论。

2 全概率公式的含义?答:全概率公式的含义就是各种可能发生的情况的概率之和为1。

3 概率空间有哪几个要素,其概念体现了对随机信号什么样的建模思想?答:样本空间、事件集合、概率函数称为概率空间的三要素。

概率函数建立了随机事件与可描述随机事件可能性大小的实数间的对应关系,因此,概率空间是在观测者观测前对随机事件发生的可能性大小进行了量化,其有效性是通过多次观测体现出来的,也即在多次观测中,某个随机事件发生的频率可直接认为与其发生的概率相等,所以,概率空间的建模思想实际是对大量观测中某随机事件发生频率的稳定性的描述。

4 可用哪些概率函数完全描述一个随机变量?答:概率分布函数(cdf)、概率密度函数(pdf)、特征函数(cf)、概率生成函数(gf)。

5 可用哪些数字特征部分描述一个随机变量?答:均值、方差、协方差、相关系数和高阶矩。

6 随机变量与通常意义上的变量有何区别与联系?答:随机变量具有通常意义上的变量的所有性质和特征(即变量特性),还增加了变量取每个值的可能性大小的描述(即概率特性)。

因此,描述或刻画一个随机变量时,还必须要特别考察其概率函数或各阶矩函数。

第二章 随机过程的基本概念

第二章 随机过程的基本概念
4
5
随机变量X (t1)
x1 (t )
随机序列
x2 (t) x3 (t)
xn (t)
t1
噪声电压
xi (t)为样本函数
每一个样本函数都是 一个确定的时间函数
连续随机过程 连续随机序列 离散随机过程 离散随机序列
随机过程在任意时刻 随机过程是一族时间函数的集合
的状态是一随机变量
6
设正弦波随机过程为 X (t) Acos0t 其中0 为常数
f
XY
(
x1 ,
x2
,,
xn
,
y1,
y2
,,
ym
;
t1,
t2
,,
tn
,
t1' ,
t
' 2
,,
tm'
)
f X (x1, x2 ,, xn ; t1, t2 ,, tn ) fY ( y1, y2 ,, ym ; t1' , t2' ,, tm' )
X (t),Y (t)互相独立时也一定满足 RXY (t1, t2 ) mX (t1)mY (t2 )
CX (t1, t2 ) 31cos 4t1 cos 4t2 5 cos 4t1 5 cos 4t2 6 cos 4t1 cos 4t2
26
实随机过程:如果随机过程的所有样本函数 都是实函数,则该随机过程为 实随机过程。
对任意的两个时刻t1、t2,实随机过程X(t) 的自相关函数定义为:
RX (t1, t2 ) E[ X (t1 ) X (t2 )]
x1x2 f X ( x1, x2 ; t1, t2 )dx1dx2
X (t1)和X (t2 )的二阶混合原点 矩或称 X (t1)和X (t2 )的相关矩

02_03第二章 随机过程的基本概念汇总

02_03第二章 随机过程的基本概念汇总
0
2p

2p
um
2p
0
sin(w 0t + j )dj 0
2.3.1 平稳随机过程的定义
★ 平稳随机过程的例题(续)
X(t)的相关函数为 2 RX (t1 , t2 ) E[ X (t1 ) X (t2 )] u m E[sin(w0t1 + F) sin(w0t2 + F)]
点是:其统计特性不随时间的平移而变化,它 的初始时间可以任意选择,其统计特性与时间 起点的选择无关。也就是说,平稳随机过程的 统计特性在相当长的时间内是不变的。
2.3.1 平稳随机过程的特点
★ 平稳随机过程的特点(续)
严格地说,现实存在的所有信号(过程)都是 非平稳的。一般说来,如果产生某一随机过程的 主要物理条件在时间进程中不改变时,则此过程 便可认为是平稳的,因为平稳随机过程的分析要 容易得多。例如噪声发生器在接上电源后,当温 度和其它物理条件未达到稳定状态时,输出噪声 是非平稳的,达到稳定状态后,则可认为是平稳 的。
E[ X (t )] xf X ( x, t )dx xf X ( x)dx mX

D[ X (t )] [ X (t ) mX (t )]2 f X ( x)dx 2 X


2.3.1 平稳随机过程的定义
★ 狭义平稳随机过程的定义(续) 同理,狭义平稳随机过程的二维概率密度仅与时
i i
xi P ( xi ) cos t + yi P ( yi ) sin t

2 um
2p
2 2 um
E[cos w0 (t1 t2 ) cos(w0t1 + w0t2 + 2F )]

随机过程知识点总结

随机过程知识点总结

第一章:考试范围1.3,1.41、计算指数分布的矩母函数.2、计算标准正态分布)1,0(~N X 的矩母函数.3、计算标准正态分布)1,0(~N X 的特征函数.第二章:1. 随机过程的均值函数、协方差函数与自相关函数2. 宽平稳过程、均值遍历性的定义及定理3. 独立增量过程、平稳增量过程,独立增量是平稳增量的充要条件1、设随机过程()Z t X Yt =+,t -∞<<∞.若已知二维随机变量(,)X Y 的协方差矩阵为2122σρρσ⎡⎤⎢⎥⎣⎦,求()Z t 的协方差函数. 2、设有随机过程{(),}X t t T ∈和常数a ,()()()Y t X t a X t =+-,t T ∈,计算()Y t 的自相关函数(用(,)X R s t 表示).3、设12()cos sin X t Z t Z t λλ=+,其中212,~(0,)Z Z N σ是独立同分布的随机变量,λ为实数,证明()X t 是宽平稳过程.4、设有随机过程()sin cos Z t X t Y t =+,其中X 和Y 是相互独立的随机变量,它们都分别以0.5和0.5的概率取值-1和1,证明()Z t 是宽平稳过程.第三章:1. 泊松过程的定义(定义3.1.2)及相关概率计算2. 与泊松过程相联系的若干分布及其概率计算3. 复合泊松过程和条件泊松过程的定义1、设{(),0}N t t ≥是参数3λ=的Poisson 过程,计算:(1). {(1)3}P N ≤; (2). {(1)1,(3)3}P N N ==; (3). {(1)2(1)1}P N N ≥≥.2、某商场为调查顾客到来的客源情况,考察了男女顾客来商场的人数. 假设男女顾客来商场的人数分别独立地服从每分钟2人与每分钟3人的泊松过程.(1).试求到某时刻t 时到达商场的总人数的分布;(2). 在已知t 时刻有50人到达的条件下,试求其中恰有30位女性的概率,平均有多少个女性顾客?3、某商店顾客的到来服从强度为4人/小时的Poisson 过程,已知商店9:00开门,试求:(1). 在开门半小时中,无顾客到来的概率;(2). 若已知开门半小时中无顾客到来,那么在未来半小时中,仍无顾客到来的概率。

第二章随机过程的基本概念

第二章随机过程的基本概念
(4)连续参数,连续状态的随机过程
二、有限维分布族: 定义:对于任意的t1 , t 2 , , t n T ,
F ( x1, x2 , , xn ; t1, t2 , , tn ) P X (t1) x1, , X (tn ) xn
称为随机过程X (t) 的n 维分布函数. 定义随机过程X(t) 的 n 维分布密度
而 0 ,若 t 从 0 变到 ,时刻 t 来到的
呼叫次数需用一族随机变量 X (t),t [0,) 表 示,X(t)是一个随机过程.
对电话交换站作一次观察 E 可得到一条表 示 t 以前来到的呼唤曲线 x1(t) ,它为非降的阶
梯曲线,在有呼唤来到的时刻阶跃地增加, (假定在任一呼唤来到的时刻不可能来到多 于一次呼唤).
程 X (t,) 在时刻t 的状态或截口. 若 固定,它
是 t 的函数,称为随机过程的样本函数或样 本曲线,亦称之为现实(曲线).
Remark:①上述定义中样本空间通常可理
解为样本函数的全体,而每一条样本曲线作 为一个基本事件;例3:样本曲线 x i (t )
作为i(i 1,2,,n,) 改写为 X(t,i) ;全体样本函数x(t) 构成样本空间 ,即X(t,) 全体构成样本空间 当 i 时,X(t,i) 即为 xi(t),i 1,2
的结果是一个随机过程,可用一族相互独 立 r v X 1 ,X2, 或 Xn,n 1表示.

Xn
0
n
n
0
……
n
0
1
2
3
4
5
6
7
8Hale Waihona Puke 910例2.当 t(t 0)固定时,电话交换站在 [ 0 , t ] 时 间内来到的呼叫次数是 r v ,记X (t ) ,X(t) P(t) , 其中 是单位时间内平均来到的呼叫次数,

随机过程第二章

随机过程第二章

2.2 随机过程的分类和举例
2、离散参数、连续状态的随机过程 这类过程的特点是参数集是离散的,对于固定的t∈T, X(t)是连续性随机变量。
例 设Xn,n=…,-2,-1,0,1,2,…是相互独立同服从标准正态 分布的随机变量,则{Xn,n=…,-2,-1,0,1,2,…}为一随机
过程,其参数集T={…,-2,-1,0,1,2,…},状态空间 S=(﹣∞,+∞)
2.3 随机过程的有限维分布函数族
例2.3.2 令X(t)=Acost,﹣∞<t<+∞,其中A是随机变量,其
分布律为 试求
P(A=i)= 1 , i=1,2,3 3
(1) 随机过程{X(t),﹣∞<t<+∞}的一维分布函数
(x)
2,
1 2
0,其他
x
0
时X( )Vcos V,故 X
(
)
的概率密度
1,1x0 fX()(x)0,其他
2.1 随机过程的定义
(3) 当t
2
时,X(2)Vcos20,不论V取何值,
均有 X ( ) 0,因此,P(X( )0)1,从而X ( ) 的
2
2
2
分布函数为
1,x0
F
X(
(x)

exp[
j(u1x(t1)
u2x(t2)

unx(tn))]dF(t1,t2,? ,tn;x1,x2,…,xn) ui∈R,ti∈T,i=1,2,…,n,j= 1
为随机过程{X(t), t ∈T }的n维特征函数.
2.3 随机过程的有限维分布函数族
称 { ( t 1 , t 2 , … , t n ; u 1 , u 2 , … , u n ) , u i R , t i T , i 1 , 2 , … , n , n N }
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图2-2-3 随机过程的均方值、方差
方差、均方值和均值有数学关系式:
(2.2.18) • 方差描述在该时刻对其数学期望的偏离程度。
• 数学期望、均方值和均方差只能描述随机过程孤 立的时间点上的统计特性。
• 随机过程孤立的时间点上的统计特性不能反映随 机过程的起伏程度。
图2-2-4 随机过程的起伏程度
注:一维概率分布描述了随机过程在各个孤 立时刻的统计特性。 3、二维分布函数
与 , , 和 都有直接的关系, 是 ,, 和 的四元函数,记为: (2.2.4) 被称为随机过程的二维分布函数。
4、二维概率密度函数
如果存在四元函数
ቤተ መጻሕፍቲ ባይዱ
,使
(2.2.5)
成立,则称 为随机过程的二维概率密 度函数,是 ,,和 的四元函数,且满足 (2.2.6)
§2.3
平稳随机过程
• 平稳随机过程的定义
• 严平稳随机过程及其性质 • 宽平稳随机过程及其性质
图2-3-1 初相角随机的正弦信号
图2-3-2 幅度随机的正弦信号
图2-3-3 频率随机的正弦信号
图2-3-4 频率、相位和幅度随机的正弦信号
图2-3-5 云层背景下的飞机
2.3.1 随机信号 的统计特性(如概率密度函 数、相关函数),部分或全部在观察点或观察 点组的位置变化时,保持不变或变化。在随机 信号理论中就称该随机信号的相应统计特性具 有平稳或非平稳性。 2.3.2 随机信号统计平稳性有多种情况: (1)对整个观察点位置 变化的平稳性; (2)对观察点中时间位置 变化的时间平稳性; (3)对观察点空间位置 变化的平稳性; (4)对观察点中空间位置的部分坐标变化的平 稳性。
例2.8 设有随机过程 ,式中A是高斯 随机变量, 为确定的时间函数。试判断 是否为严平稳过程。 解:已知A的概率密度函数
在固定的时刻, 为常数。 是随机变量A的 线性变化,仍为高斯分布。当 变化时, 的数学期望 和方差 均与时间有关。 因此,一维概率密度函数也与时间有关, 不是严平稳过程。
2.3.5 宽平稳随机过程
满足 (2.3.7)
则称
为宽平稳随机过程或广义平稳过程。
2、主要性质 (1) 随机信号的严格平稳性与广义平稳性之间 有关系 必然是 严格平稳 广义平稳 随机过程 随机过程 不一定是 (2) 广义平稳随机过程的相关函数卷积共轭的, 即 (2.3.8) 证明
(3)随机过程的协方差函数和相关系数也是平 稳的,即 (2.3.9) (2.3.10)
在区间
均匀分布)
所以
则方差
那么,自相关函数
例2.5 试证明: (1)若随机过程 加上确定的 时间函数 ,则协方差不变。(2) 若随机过 程 乘以非随机过程因子 ,则协方差函数 乘以积 。 证: (1) 设 ,即需证 。 因为
而中心化随机函数为
所以
故得证。 (2)设 ,即要证 因为 而中心化随机函数为
第二章
主要内容
随机过程
1、随机过程的基本概念 2、随机过程的统计特性 3、平稳随机过程 4、随机过程的各态历经性 5、平稳随机过程自相关函数的性质 6、随机过程的联合概率分布和互相关函数 7、正态随机过程
§2.1
2.1.1
随机过程的概念
随机过程的定义
例2.1 设有n台性能完全相同的雷达接收 机,它们工作的条件也完全相同,图2-1 是运用n台示波器记录的各接收机输出的噪 声电压。它们是n条噪声电压-时间的函数。 从中可看出,在相同条件下,雷达接收机 输出的噪声波形是不相同的。
决定随机信号的主 要物理条件不变
3、主要性质 (1)、若 是严平稳随机过程,则它的一维概 率密度与时间无关。 证明 令 ,则一维概率密度函数
得证。
(2)、若 是严平稳随机过程,则它的均值、 均方值和方差都是与时间无关的常数。
证明: 根据题意有 (2.3.2) (2.3.3) (2.3.4)
(2)、若 是严平稳随机过程,则它的均值、 均方值和方差都是与时间无关的常数。
图2-2-2 随机过程的数学期望
2、均方值 随机过程 在任意时刻 的取值是一随机变 量 ,随机过程的均方值 或 ,即
(2.2.16) 均方值 的取值与时刻 是有直接联系的,是时 刻 的函数。
3、方差 随机过程 在任意时刻 的取值是一随机变 量,称随机变量 的二阶中心矩为随机过 程的方差 。
(2.2.17)
贝努里随机过程的二维概率分布函数是
(2.2.11) 其中, 是二维单位阶跃函数。 (2.2.12) 那么二维概率密度函数
(2.2.13)
式中,
2.2.2、随机过程的数字特征
(2.2.14)
• 随机过程的分布函数在实际上是很难获取的, 甚至是不可能的。 • 随机过程(信号)的特征(或参数)在实际 工作中运用得十分广泛。
(1) 正态随机过程由数学期望和相关函数详细描述。 (2) 复杂背景下目标识别、跟踪所依赖的有效依据 仍然是目标在时间、空间的特征。
图2-2-1 云层背景下的飞机
• 由随机过程的定义2,可知随机过程是随机 变量集合:
1、数学期望(均值函数) 随机过程 在任意时刻 的取值是一随机变 量 ,随机过程 的数学期望 或 , 即 (2.2.15) 数学期望 的取值与时刻 是有直接联系 的,是时刻 的函数。它是该随机过程在各 个时刻的摆动中心。
图2-2-4 随机过程的起伏程度
•采用两时刻或更多时刻状态的相关性去描述 随机过程的起伏程度。
4、自相关函数 设 和 分别是随机过程 在时刻 和 的 状态,称它们的二阶原点混合矩为随机过 程 的自相关函数,记为 (2.2.19)
自相关函数反映了随机过程 在两个不同时 刻的状态之间的相关程度。
5、自协方差函数 设 和 分别是随机过程 在时刻 和 的 状态,称它们的二阶中心混合矩为随机过 程 的自相关函数,记为 (2.2.20)
自协方差函数反映了随机过程 在两个不同 时刻的状态相对于数学均值之间的相关程 度。
• 自协方差函数、自相关函数与数学均值有数 学关系式:
(2.2.20)
• 自相关系数
(2.2.21) (2.2.22) 在 , 。
• 随机过程统计不相关 如果对于任意的 , 都有 ,则称 该随机过程在任意两个时刻是不相关的。
2.2.1、随机过程的概率分布
随机过程 ,在每一固定时刻 都是随机变量。 随机事件:
发生概率:
, 和


1、一维分布函数 与 和 都有直接的关系,是 和 的 二元函数,记为: (2.2.1) 被称为随机过程的一维分布函数。 2、一维概率密度函数 如果存在二元函数 ,使 (2.2.2) 成立,则称 为随机过程的一维概率密度函 数, 是 和 的二元函数,且满足 (2.2.3)
注:1、二维概率分布反映了随机过程在不 同时刻的状态之间的统计特性; 2、随机过程的二维概率分布与多维随 机变量的二维概率分布所描述的物理概念 是不相同的。随机过程的二维概率分布描 述随机过程在不同时刻的状态之间的关系, 二维随机变量的二维概率分布则描述不同 变量之间的关系。
5、n维分布函数和概率密度函数 例2.2 讨论贝努里随机过程 特性。 的一、二维概率
解:贝努里随机过程,在 时刻,独立地观 察某个事件 发生与否,建立事件 的指示函 数 且有概率 (2.2.7)
设 ,单位步函数(阶跃函数) 贝努里随机过程的一维概率分布函数 (2.2.8) 一维概率密度函数 (2.2.9) 贝努里随机过程 ,对于不同的时刻 ,其 随机变量 是彼此统计独立的。因此, 可得 (2.2.10)
证明: 根据题意,则随机过程的自相关函数
(2.3.6)
式中, 。
例2.7 设有随机过程 任意时刻的随机变量是 高斯的,有概率密度函数
若其任意观察时刻组的随机变量是相互独立 的,试判断 是否为严平稳过程。 解:在任意n个时刻 ,随机过程的n 个随机变量是相互独立的,即
显然, 的任意n阶概率密度函数对观察点 时刻组 是平稳的。所以 是严平稳 随机过程。
所以
故得证。
例2.6 求贝努里随机过程 的均值、自相关 函数、协方差函数和相关系数。
解 贝努里随机过程 在不同时刻 的均值
,信号取值独立,则有
而在同一时刻 ,信号取值不独立,即取 相同的值,则有
因此,自相关函数为
贝努里随机过程
的协方差函数
贝努里随机过程
的相关系数
图2-2-4 贝努里随机过程的均值,相关函数和自相关系数 (a)均值(b)相关与协方差函数(c)自相关系数
图2-1-1 噪声电压的输出波形
定义1 设随机试验E的样本空间为 ,如果 对于每一个样本 ,总可以依某种规则确定 一时间t的函数 (T是时间t的变化范 围 ) 与之对应。于是,对于所有的 来说, 就得到一族时间t的函数,称此族时间的函数为 随机过程(也称随机信号)X,而族中的每一个 函数称为该随机过程的样本函数。 注:随机过程是样本函数的集合 。
例2-9 判断以下三个随机过程是否平稳?
式中, 是常数, 是相互独立的随机变 量。随机过程 在上 均匀分布。
相位
振幅
振幅、相位、频率
解:(1)当幅度为常数, 在 上均匀分布时, 数学期望和自相关函数分别为
因此,X(t) 为广义平稳过程。 (2) 当幅度为随机变量,相位为常数时,那 么每个样本函数的幅度都是随机变量A的一 个可能取值,但它们同时到达零点或最大, 均值和方差随时间变化。因此它是一个非平 稳随机过程。
证明: 根据题意有
• 严平稳随机过程的所有样本曲线都是在同 一水平直线周围随机地波动。
图2-3-6
严平稳随机过程
(3) 严平稳随机过程 的二维概率密度函数只 与两个时刻 和 的时间间隔有关,而与时 间起点无关。 证明: 令 度函数 ,则随机过程的二维概率密
(2.3.5)
相关文档
最新文档