《大学物理》第11章 角动量:转动
角动量课件
![角动量课件](https://img.taocdn.com/s3/m/1f69569dcf2f0066f5335a8102d276a2002960e1.png)
角动量的物理意义
总结词
角动量决定了物体旋转运动的特征。
详细描述
角动量的大小决定了物体旋转运动的快慢和方向。在无外力矩作用的情况下,角动量守恒,即物体的角动量保持 不变。这表明旋转运动的特性是保持不变的。
角动量的守恒定律
总结词
无外力矩作用时,系统角动量守恒。
详细描述
根据牛顿运动定律和角动量定理,当系统受到的外力矩为零时,系统角动量守恒。这意味着在封闭系 统中,如果没有外力矩作用,物体的旋转运动特性保持不变。这一原理在分析旋转机械、行星运动等 问题中具有重要应用。
角动量理论的发展
02
随着物理学的发展,角动量理论逐渐完善,被广泛应用于天体
物理、量子力学等领域。
角动量理论的挑战
03
随着研究的深入,角动量理论面临一些挑战,如对非线性系统
的描述、高维空间中的角动量等问题。
角动量理论的现代研究方法
数值模拟方法
利用计算机进行数值模拟,研究角动量在不同系 统中的演化规律。
详细描述
力可以改变物体的运动状态,包括速度和角速度。当物体受到外力作用时,其角动量会 发生变化。根据牛顿第二定律,力的大小等于角动量对时间的导数与质量的乘积。因此
,力、角动量和时间之间存在密切的联系。
06 角动量理论的发展与展望
角动量理论的历史发展
角动量理论的起源
01
角动量理论起源于经典力学,最初用于描述旋转运动的物体。
角动量课件
目录
CONTENTS
• 角动量基本概念 • 角动量在日常生活中的应用 • 角动量在科学实验中的应用 • 角动量在工程技术中的应用 • 角动量与其他物理量的关系 • 角动量理论的发展与展望
01 角动量基本概念
大学物理 角动量 角动量守恒定律课件
![大学物理 角动量 角动量守恒定律课件](https://img.taocdn.com/s3/m/d805041a59eef8c75fbfb369.png)
1 2 r gt , p mv mgt 2
r
v
2.4 角动量守恒定律
o
若以O为参考点,质点在任 意时刻的角动量为:
R
A
r
r
v
R
L0 r P ( R r ) p R mgt .
rmgt ; 方向垂直纸面向里
2.4 角动量守恒定律
• 若质点作匀速直线运动,以 O点为参考点,质点的角动 量为:
L0 r mv r mv const
L0 r mv sin r mv
• 注意:对不同的参考点有不同的角动量
开普勒第二定律 对于任一行星,由太阳 到行星的矢径在相等的 时间内扫过相等的面积
2.4 角动量守恒定律
3、质点系的角动量定理及守恒定律
质点系角动量对时间的变化率等 于质点系所受合外力矩,而与内 力矩无关。
写成积分式
dL 即: M 外 dt
L0
t
t0
L Mdt dL L L0 L
t0 L0
L Li ri pi ri mi vi
质点系的角动量守恒
当 M 外 0 时,L 恒矢量
2.4 角动量守恒定律 例1 一半径为 R 的光滑圆环置于竖直平面内.一质 量为 m 的小球穿在圆环上, 并可在圆环上滑动. 小球开始 时静止于圆环上的点 A (该点在通过环心 O 的水平面上), 然后从 A 点开始下滑.设小球与圆环间的摩擦略去不计.求 小球滑到点 B 时对环心 O 的角动量和角速度. 解 小球受重力和支持 力作用, 支持力的力矩为零, 重力矩垂直纸面向里
大学物理中的刚体运动转动惯量和角动量的研究
![大学物理中的刚体运动转动惯量和角动量的研究](https://img.taocdn.com/s3/m/dceef2d10875f46527d3240c844769eae009a3e8.png)
大学物理中的刚体运动转动惯量和角动量的研究在大学物理中,研究刚体运动的转动惯量和角动量是非常重要的。
本文将深入探讨刚体运动中转动惯量和角动量的概念、计算公式以及其在物理学中的应用。
一、转动惯量的概念及计算公式刚体的转动惯量,简称为惯量,是描述刚体旋转运动惯性大小的物理量。
转动惯量的计算与刚体的形状和质量分布有关。
刚体的转动惯量用符号"I"表示,其计算公式为:I = ∑mr²其中,"m"是刚体上各个质点的质量,"r"是该质点到转轴的距离。
对于连续分布的质量,转动惯量的计算将采用积分的方式。
二、角动量的概念及计算公式角动量是描述物体旋转状态的物理量。
在刚体运动中,角动量的大小和方向都很重要。
角动量(L)的计算公式为:L = Iω其中,"I"是刚体的转动惯量,"ω"是刚体的角速度。
刚体的角速度定义为单位时间内转过的角度。
对于质点和刚体的角动量,其大小和方向可以通过力矩(τ)和时间(t)的计算得到。
L = τt三、转动惯量和角动量的应用1. 刚体平衡在研究刚体的平衡时,转动惯量和角动量是非常重要的参考量。
通过计算刚体的转动惯量和角动量,可以确定平衡条件,从而解决物体受力平衡问题。
2. 陀螺原理陀螺是刚体运动转动惯量和角动量的经典应用之一。
陀螺的旋转方向不易改变,是因为陀螺具有较大的转动惯量,保持角动量守恒的特性。
3. 物体滚动在物体滚动的过程中,转动惯量和角动量的变化会影响物体的运动。
通过计算刚体的转动惯量和角动量,可以理解物体滚动的物理原理,并进行相关的问题求解。
4. 自行车行驶自行车作为一种常见的运动方式,其行驶原理也涉及到转动惯量和角动量。
通过刚体运动的转动惯量和角动量,可以分析自行车的稳定性和行驶效果,为相关问题提供解答。
总结:转动惯量和角动量是刚体运动中重要的物理概念。
它们的计算公式和理论基础为我们解决刚体运动问题提供了重要的数学工具。
第11章 动量矩定理
![第11章 动量矩定理](https://img.taocdn.com/s3/m/f318381208a1284ac95043a0.png)
M z Q(v1r1 cos1 v2r2 cos2 )
例 3 (书上例 11-7,动量矩守恒。)
质量为 m1 = 5kg,半径 r = 30cm 的均质圆盘,可绕铅直轴 z 转
动,在圆盘中心用铰链 D 连接一质量 m2 = 4kg 的均质细杆
AB,AB = 2r,可绕 D 转动。当 AB 杆在铅直位置时,圆盘的
三、 刚体 1. 平动刚体
11-1
LO r MvC
2. 转动刚体(对定轴或平面上定点)
Lz I z
LO IO
3. 平面运动刚体
对质心 C: LC IC
对定点 O: LO mO (MvC ) IC
对瞬心 C': LC IC
11.2 动量矩定理
一、 质点动量矩定理
由牛顿第二定律: ma F
l 3g
而 aC
2
4
则
W 3g W
NA W g
4
4
IV. 绳子剪断前后 A 反力的变化:
WW W ΔN A N A N A0
42 4
例 2 例 11-5 (较典型题目)
作业:11-18
11.4 质点系相对动点的动量矩定理(*)
此部分较难,特别是公式推导不易理解。主要掌握两种:①对质心的动量矩定理;②平
m2 g
转速为 n = 90rpm。试求杆转到水平位置,碰到销钉 C 而相对
静止时,圆盘的转速。
解:系统对 z 轴动量矩守恒。
初时系统动量矩: Lz I z盘 1 m1r 2 4
末时系统动量矩: Lz Iz盘 Iz杆 1 m1r2 1 m2 (2r)2
4
12
Lz Lz
11-4
1 4
m1r 2
大学物理—刚体的动轴转动
![大学物理—刚体的动轴转动](https://img.taocdn.com/s3/m/4965294d783e0912a2162a70.png)
25
麦克斯韦分布
2 1 2 d mgR J mR 3 2 dt
设圆盘经过时间t停止转动,则有
t 0 2 1 g dt R d 0 0 3 2
1
麦克斯韦分布
所以刚体内任何一个质点的运动,都可代表整个 刚体的运动。 刚体运动时,如果刚体的各个质点在运动中 都绕同一直线圆周运动,这种运动就叫做转动, 这一直线就叫做转轴。 3. 刚体的定轴转动 定轴转动: 刚体上各点都绕同一转轴作不同半径的圆周运 动,且在相同时间内转过相同的角度。 特点: (1) 角位移,角速度和角加速度均相同;
F
(3) F1 对转轴的力矩为零,
在定轴转动中不予考虑。
转动 平面
r
F2
(4)在转轴方向确定后,力对 转轴的力矩方向可用+、-号表示。
2. 刚体定轴转动定律 对刚体中任一质量元mi
O’
f i -内力
-外力
ω
Fi
ri
mi
fi
i i
Fi
应用牛顿第二定律,可得: O
Lz Li cos mi Ri v i cos mi ri v i
m r
2 i i
10
式中 mi ri2 叫做刚体对 Oz 轴的转动惯量, 用J表示。
麦克斯韦分布
刚体转动惯量:
J mi ri2
刚体绕定轴的角动量表达式:
Lz J
麦克斯韦分布
a m2 m1 g M / r 1 r m2 m1 m r 2 当不计滑轮质量及摩擦阻力矩即令 m=0 、 M=0 时,有
2m1m2 T1 T2 g m2 m1
大学物理 角动量 角动量守恒定律
![大学物理 角动量 角动量守恒定律](https://img.taocdn.com/s3/m/f5f2142e5901020207409c38.png)
z L mv
r
注意
L r mv
角动量 L在直角坐标系中各坐标轴的分量:
1. 质点的角动量与质点对固定点的矢径有关;同一质 点对不同的固定点角动量不同。 2. 讲角动量必须指明对哪一个固定点而言。
Lx ypz zp y Ly zpx xpz
角动量的单位:
例2.17 一质量为 m的质点t=0时位于 ( x1 , y1 )处,速度为 v0 v x 0 i v y 0 j ,质点受到恒力 f = f i 的作用,(1) 求t=0时相对于坐标原点的角动量以及作用于质点上的力 的力矩(2)求2s后相对于原点的角动量的变化中木块在水平面内只受指向O点的 弹性有心力,故木块对O点的角动量守恒,设 v 2 与OB方向成θ角,则有
l0 (m M ) v1 l (m M ) v2 sin
在由A→B的过程中,子弹、木块系统机械能守恒
1 1 1 2 2 (m M ) v1 (m M ) v2 k (l l0 ) 2 2 2 2
( x1mv y 0 y1mv x 0 )k
作用在质点上的力的力矩为
M 0 r0 f ( x1i y1 j ) ( f i )
y1 f k
t t (2) L Mdt (r f )dt t0 t0 f f f 2 a i x x1 vx 0t t m m 2m
k (l l0 ) 2 m2 2 v2 v0 (m M ) 2 mM
arcsin
l0 mv0
2 l m 2 v0 k (l l0 ) 2 (m M )
例 . 在光滑的水平桌面上有一小孔O,一细绳穿过小孔,其一端系 一小球放在桌面上,另一端用手缓慢拉绳,开始时小球绕孔运动, 半径为 r1 ,速率为 v1 ,当半径变为 r2 时,求小球的速率 v2?
理论力学:第11章 动量矩定理
![理论力学:第11章 动量矩定理](https://img.taocdn.com/s3/m/b40711fd2cc58bd63186bda3.png)
对瞬心 C': LC IC
11.2 动量矩定理
一、 质点动量矩定理
由牛顿第二定律: ma F
易证:
dmO (mv )
dt
mO
(F)
微分形式动量矩定理
其中 O 为定点。
或
dmO (mv) mO (dS )
LH
P vr
b
1
Q r2
Q vC
r
b
sin
1
Q r2
g 2 2 g
g 2 2g
(P
2Q)r
P
b b
(1
sin
)
vC g
系统外力对 H 的力矩:
11-3
ΣmH
(F
(e)
)
m
P
r
b
Q
b
Q
sin
绳子剪断前为静力学问题,易求反力。
绳子剪断后为定轴转动动力学问题,用质心运动定理求: MaC
F (e)
但需要先求出 aC ,用刚体定轴转动微分方程可求: Iz mz (F (e) )
11-5
解:I. 绳子剪断前,受力如图(a)。 W
由对称性: N A0 2
II. 绳子剪断瞬时,受力、运动如图(b)。
11-2
欲用动量矩定理求 aC , aC 只跟三个运动物体有关,并且有一个“轴”O,如图。 但其中的 N 如何处理?
事实上,滚子沿斜面法向是静平衡的, N = Q cosα。 解:① 求加速度 aC 。
2024版年度《大学物理》全套教学课件(共11章完整版)
![2024版年度《大学物理》全套教学课件(共11章完整版)](https://img.taocdn.com/s3/m/cf3ddc0d32687e21af45b307e87101f69e31fbed.png)
01课程介绍与教学目标Chapter《大学物理》课程简介0102教学目标与要求教学目标教学要求教材及参考书目教材参考书目《普通物理学教程》(力学、热学、电磁学、光学、近代物理学),高等教育出版社;《费曼物理学讲义》,上海科学技术出版社等。
02力学基础Chapter质点运动学位置矢量与位移运动学方程位置矢量的定义、位移的计算、标量与矢量一维运动学方程、二维运动学方程、三维运动学方程质点的基本概念速度与加速度圆周运动定义、特点、适用条件速度的定义、加速度的定义、速度与加速度的关系圆周运动的描述、角速度、线速度、向心加速度01020304惯性定律、惯性系与非惯性系牛顿第一定律动量定理的推导、质点系的牛顿第二定律牛顿第二定律作用力和反作用力、牛顿第三定律的应用牛顿第三定律万有引力定律的表述、引力常量的测定万有引力定律牛顿运动定律动量定理角动量定理碰撞030201动量定理与角动量定理功和能功的定义及计算动能定理势能机械能守恒定律03热学基础Chapter1 2 3温度的定义和单位热量与内能热力学第零定律温度与热量热力学第一定律的表述功与热量的关系热力学第一定律的应用热力学第二定律的表述01熵的概念02热力学第二定律的应用03熵与熵增原理熵增原理的表述熵与热力学第二定律的关系熵增原理的应用04电磁学基础Chapter静电场电荷与库仑定律电场与电场强度电势与电势差静电场中的导体与电介质01020304电流与电流密度磁场对电流的作用力磁场与磁感应强度磁介质与磁化强度稳恒电流与磁场阐述法拉第电磁感应定律的表达式和应用,分析感应电动势的产生条件和计算方法。
法拉第电磁感应定律楞次定律与自感现象互感与变压器电磁感应的能量守恒与转化解释楞次定律的含义和应用,分析自感现象的产生原因和影响因素。
介绍互感的概念、计算方法以及变压器的工作原理和应用。
分析电磁感应过程中的能量守恒与转化关系,以及焦耳热的计算方法。
电磁感应现象电磁波的产生与传播麦克斯韦方程组电磁波的辐射与散射电磁波谱与光子概念麦克斯韦电磁场理论05光学基础Chapter01光线、光束和波面的概念020304光的直线传播定律光的反射定律和折射定律透镜成像原理及作图方法几何光学基本原理波动光学基础概念01020304干涉现象及其应用薄膜干涉及其应用(如牛顿环、劈尖干涉等)01020304惠更斯-菲涅尔原理单缝衍射和圆孔衍射光栅衍射及其应用X射线衍射及晶体结构分析衍射现象及其应用06量子物理基础Chapter02030401黑体辐射与普朗克量子假设黑体辐射实验与经典物理的矛盾普朗克量子假设的提普朗克公式及其物理意义量子化概念在解决黑体辐射问题中的应用010204光电效应与爱因斯坦光子理论光电效应实验现象与经典理论的矛盾爱因斯坦光子理论的提光电效应方程及其物理意义光子概念在解释光电效应中的应用03康普顿效应及德布罗意波概念康普顿散射实验现象与经德布罗意波概念的提典理论的矛盾测不准关系及量子力学简介测不准关系的提出及其物理量子力学的基本概念与原理意义07相对论基础Chapter狭义相对论基本原理相对性原理光速不变原理质能关系广义相对论简介等效原理在局部区域内,无法区分均匀引力场和加速参照系。
大学物理角动量ppt
![大学物理角动量ppt](https://img.taocdn.com/s3/m/553bfa6883d049649a665812.png)
因此掠面速度相等:
dS
1 vt OH 2
1 vr sin
1 r 2
常量
dt
t
2
2
式中
v sin
r
பைடு நூலகம்
ω 相当于质点绕O点转动的角速度。
由上式可得: mvr sin 常量
写成矢量式: r p r mv 常量
②再来看有心力场的简单情形。
质点在向心力的作用下作匀速圆周运动
由: M dL dt
则有:
若 M 0 L 常矢量
若质点或质点系所受外力对某固定参照点的矩 的矢量和为零,则质点对该固定点的角动量守恒。
—角动量守恒定律
例如:质点在有心力作用下角动量守恒。
例题:质量为m的圆锥摆摆球,以速率υ运动时, 对O参考点的角动量是否守恒?对C参考点的 角动量是否守恒?
l c
星系的形状可能与此有关。
星系(银河系)的早期可能是具有动量矩的 大质量气团,在引力作用下收缩。轴向的收缩不 受什么阻碍,很快塌缩。径向却不那么容易,因 而像银河系这样的星系呈扁平状。
银河系
银河系(模拟)
5.2 刚体的定轴转动
质点的运动只代表物体的平动,物体实 际上是有形状、大小的,它可以平动、转动, 甚至更复杂的运动。因此,对于机械运动的 研究,只限于质点的情况是不够的。
刚体(rigid body)是一种特殊的质点系, 无论在多大外力作用下,系统内任意两质点 间的距离始终保持不变。即物体的形状、大 小都不变的固体称为刚体。
刚体考虑了物体的形状和大小,但不考虑它 的形变,刚体同质点一样,也是一个理想化模型。
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
大学物理角动量转动惯量及角动量的守恒定律PPT课件
![大学物理角动量转动惯量及角动量的守恒定律PPT课件](https://img.taocdn.com/s3/m/89a5a7e6cc17552706220838.png)
dt M 外i riFi外
f2 1
2
m2
质点系总角动量的时间变化率等于质点系所受
外力矩的矢量和 (合外力矩 )
dL
dt M 外i riFi外
注意: 合外力矩 M是外质点系所受各外力矩的矢
量和,而非合力的力矩。
注意:质点系内力矩的作用
不能改变质点系总角动量,但是影响总角动量 在系内各质点间的分配。
L r c m i v ir i m i v c r i m i v i
第三项:
i
i
i
与 i 有关
rimivi 各质点相对于质心角动量的矢量和
i
反映质点系绕质心的旋转运动,与参考点O的选择无关,
描述系统的内禀性质: L自 旋
L自 旋
L轨 道
于是:
∑
L=rc×Mvc+
本讲内容:三个基本概念
1.角动量
质点
L r p r m v
质点系 L r c M v c r i m iv i L 轨 L 自 道
i
定轴刚体 Lz ri2mi J
i
2. 转动惯量
J ri2mi J r2dm i
3.力矩
M rF M zrF
Mi内0
i
上讲 §5.1 角动量 转动惯量
动量对参考点(或轴)求矩
1.质点的角动量
定义 : L = r× p = r× m v r
m θ
p p
r
大小: L=rmvs inθ
o
=r p⊥= pr⊥
z
方向:
垂直r于 和p组
成
L
的平面o,
服从右手定则。
x
r
r m
大学物理-刚体绕定轴转动的角动量
![大学物理-刚体绕定轴转动的角动量](https://img.taocdn.com/s3/m/1c0cecd5162ded630b1c59eef8c75fbfc67d945b.png)
M J
p mivi
角动量
L J
角动量定理 M d(J)
dt
质点的运动规律与刚体的定轴转动规律的比较(续)
质点的运动
动量守恒 力的功 动能
Fi 0时
mivi 恒量
Aab
b
F
dr
a
Ek
1 2
mv
2
动能定理
A
1 2
mv
2 2
1 2
mv12
重力势能
Ep mgh
机械能守恒
A外 A非保内 0时
进动特性的技术应用
翻转
外力
C
外力
进动
C
炮弹飞行姿态的控制:炮弹在飞行时,空气阻力对炮弹质心 的力矩会使炮弹在空中翻转;若在炮筒内壁上刻出了螺旋线 (称之为来复线),当炮弹由于发射药的爆炸所产生的强大 推力推出炮筒时,炮弹还同时绕自己的对称轴高速旋转。由 于这种自转作用,它在飞行过程中受到的空气阻力将不能使 它翻转,而只能使它绕着质心前进的方向进动。
pA pB
pA A
Bp B
s
s
O
x
结论:静止流体中任意两等高点的压强相等,即压强差为零。 若整个流体沿水平方向加速运动? 加速运动为a,压强差为?
2. 高度相差为 h 的两点的压强差(不可压缩的流体)
选取研究对象,受力分析:(侧面?)
沿 y 方向:
p C
Y C s
pB s pC s mg may
已知:p0=1.013×105 Pa , 0 1.29kg / m3
解 由等温气压公式
p
p e(0g / p0 ) y 0
0g 1.25104 m1
p0
p1 1.0 105 e1.251043.6103 0.64 105 Pa
大学物理答案第11章
![大学物理答案第11章](https://img.taocdn.com/s3/m/4e40d5443968011ca30091ed.png)
第十一章 恒定磁场11-1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小r R B B 、满足( )(A ) r R B B 2= (B ) r R B B = (C ) r R B B =2 (D )r R B B 4=分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比21==R r n n r R 因而正确答案为(C ).11-2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A )B r 2π2 (B ) B r 2π(C )αB r cos π22(D ) αB r cos π2题 11-2 图分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为(D ).11-3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零 分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为(B ).11-4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )(A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B =(B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = (C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ (D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B≠题 11-4 图分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).11-5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( ) (A )()r I μr π2/1-- (B ) ()r I μr π2/1- (C ) r I μr π2/- (D ) r μI r π2/分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ).11-6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行? 已知电子的速率接近光速. 分析 一个电子绕存储环近似以光速运动时,对电流的贡献为c I e I /Δ=,因而由lNec I =,可解出环中的电子数.解 通过分析结果可得环中的电子数10104⨯==ecIlN 11-7 已知铜的摩尔质量M =63.75 g·mol -1,密度ρ =8.9 g · cm -3,在铜导线里,假设每一个铜原子贡献出一个自由电子,(1)为了技术上的安全,铜线内最大电流密度26.0A mm m j -=⋅ ,求此时铜线内电子的漂移速率v d ;(2) 在室温下电子热运动的平均速率是电子漂移速率v d 的多少倍?分析 一个铜原子的质量A N M m /=,其中N A 为阿伏伽德罗常数,由铜的密度ρ 可以推算出铜的原子数密度m ρn /=根据假设,每个铜原子贡献出一个自由电子,其电荷为e ,电流密度d m ne j v = .从而可解得电子的漂移速率v d .将电子气视为理想气体,根据气体动理论,电子热运动的平均速率em kTπ8=v 其中k 为玻耳兹曼常量,m e 为电子质量.从而可解得电子的平均速率与漂移速率的关系.解 (1) 铜导线单位体积的原子数为M ρN n A /=电流密度为j m 时铜线内电子的漂移速率14A s m 1046.4--⋅⨯===eN M j ne j m m d ρv (2) 室温下(T =300 K)电子热运动的平均速率与电子漂移速率之比为81042.2π81⨯≈=edd m kTv v v 室温下电子热运动的平均速率远大于电子在恒定电场中的定向漂移速率.电子实际的运动是无规热运动和沿电场相反方向的漂移运动的叠加.考虑到电子的漂移速率很小,电信号的信息载体显然不会是定向漂移的电子.实验证明电信号是通过电磁波以光速传递的. 11-8 有两个同轴导体圆柱面,它们的长度均为20 m ,内圆柱面的半径为3.0 mm ,外圆柱面的半径为9.0 mm.若两圆柱面之间有10 μA 电流沿径向流过,求通过半径为6.0 mm 的圆柱面上的电流密度.题 11-8 图分析 如图所示是同轴柱面的横截面,电流密度j 对中心轴对称分布.根据恒定电流的连续性,在两个同轴导体之间的任意一个半径为r 的同轴圆柱面上流过的电流I都相等,因此可得rlI j π2=解 由分析可知,在半径r =6.0 mm 的圆柱面上的电流密度2m A μ3.13π2-⋅==rlIj 11-9 如图所示,已知地球北极地磁场磁感强度B 的大小为6.0×10-5T .如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大? 流向如何?解 设赤道电流为I ,则由教材第11-4节例2 知,圆电流轴线上北极点的磁感强度()RIRR IR B 24202/32220μμ=+=因此赤道上的等效圆电流为A 1073.12490⨯==μRBI 由于在地球地磁场的N 极在地理南极,根据右手螺旋法则可判断赤道圆电流应该是由东向西流,与地球自转方向相反.题 11-9 图11-10 如图所示,有两根导线沿半径方向接触铁环的a 、b 两点,并与很远处的电源相接.求环心O 的磁感强度.题 11-10 图分析 根据叠加原理,点O 的磁感强度可视作由ef 、be 、fa 三段直线以及acb 、a d b 两段圆弧电流共同激发.由于电源距环较远,0=ef B .而be 、fa 两段直线的延长线通过点O ,由于0Idl r ⨯=,由毕奥-萨伐尔定律知0be fa ==B B .流过圆弧的电流I 1 、I 2的方向如图所示,两圆弧在点O 激发的磁场分别为21101π4r l I μB =,22202π4r l I μB = 其中l 1 、l 2 分别是圆弧acb 、a d b 的弧长,由于导线电阻R 与弧长l 成正比,而圆弧acb 、a d b又构成并联电路,故有2211l I l I =将21B B 、叠加可得点O 的磁感强度B . 解 由上述分析可知,点O 的合磁感强度0π4π42220211021=-=-=r l I μr l I μB B B 11-11 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感强度各为多少?题 11-11 图分析 应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度∑=iB B 0.解 (a) 长直电流对点O 而言,有0d =⨯rl I ,因此它在点O 产生的磁场为零,则点O 处总的磁感强度为1/4 圆弧电流所激发,故有RIμB 800=B 0 的方向垂直纸面向外.(b) 将载流导线看作圆电流和长直电流,由叠加原理可得RIμR I μB π22000-=B 0 的方向垂直纸面向里.(c ) 将载流导线看作1/2 圆电流和两段半无限长直电流,由叠加原理可得RIμR I μR I μR I μR I μB 4π24π4π4000000+=++=B 0 的方向垂直纸面向外.11-12 载流导线形状如图所示(图中直线部分导线延伸到无穷远),求 点O 的磁感强度B .题 11-12 图分析 由教材11-4 节例题2的结果不难导出,圆弧载流导线在圆心激发的磁感强度RαI μB π40=,其中α为圆弧载流导线所张的圆心角,磁感强度的方向依照右手定则确定;半无限长载流导线在圆心点O 激发的磁感强度R IμB π40=,磁感强度的方向依照右手定则确定.点O 的磁感强度O B 可以视为由圆弧载流导线、半无限长载流导线等激发的磁场在空间点O 的叠加. 解 根据磁场的叠加 在图(a)中,k i k k i B RI μR I μR I μR I μR I μπ24π4π44000000--=---= 在图(b)中,k i k i i B RI μR I μR I μR I μR I μπ41π14π44π4000000-⎪⎭⎫ ⎝⎛+-=---= 在图(c )中,k j i B RIμR I μR I μπ4π4830000---= 11-13 如图(a)所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量.题 11-13 图分析 由于矩形平面上各点的磁感强度不同,故磁通量Φ≠BS .为此,可在矩形平面上取一矩形面元d S =l d x ,如图(b)所示,载流长直导线的磁场穿过该面元的磁通量为x l xId π2d d 0μ=⋅=ΦS B矩形平面的总磁通量ΦΦ⎰=d解 由上述分析可得矩形平面的总磁通量⎰==Φ211200lnπ2d π2d dd d Ilx l xIμμ 11-14 已知10 mm 2裸铜线允许通过50 A 电流而不会使导线过热.电流在导线横截面上均匀分布.求导线内、外磁感强度的分布.题 11-14 图分析 可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B 大小相等、方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.解 围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有∑⎰=⋅=⋅I μB 0πr 2d l B在导线内r <R , 2222ππRIr r R I I ==∑,因而 202πR IrμB =在导线外r >R ,I I =∑,因而rIμB 2π0=磁感强度分布曲线如图所示.11-15 有一同轴电缆,其尺寸如图(a)所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感强度:(1) r <R 1 ;(2) R 1 <r <R 2 ;(3) R 2 <r <R 3 ;(4) r >R 3 .画出B -r 图线.题 11-15 图分析 同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r 的同心圆为积分路径,πr 2d ⋅=⋅⎰B l B ,利用安培环路定理∑⎰=⋅I μ0d l B ,可解得各区域的磁感强度.解 由上述分析得r <R 122101ππ12πr R μr B =⋅ 21012πR Ir μB =R 1 <r <R 2I μr B 022π=⋅rI μB 2π02=R 2 <r <R 3()()⎥⎦⎤⎢⎣⎡---=⋅I R R R r I μr B 22232203ππ2π 2223223032πR R r R r I μB --= r >R 3()02π04=-=⋅I I μr B04=B磁感强度B (r )的分布曲线如图(b).11-16 如图所示,N 匝线圈均匀密绕在截面为长方形的中空骨架上.求通入电流I 后,环内外磁场的分布.题 11-16 图分析 根据右手螺旋法则,螺线管内磁感强度的方向与螺线管中心轴线构成同心圆,若取半径为r 的圆周为积分环路,由于磁感强度在每一环路上为常量,因而πr 2d ⋅=⋅⎰B l B依照安培环路定理∑⎰=⋅I μ0d l B ,可以解得螺线管内磁感强度的分布.解 依照上述分析,有∑=⋅I μr B 02πr <R 102π1=⋅r B01=BR 2 >r >R 1NI μr B 022π=⋅rNI μB 2π02=r >R 202π3=⋅r B 03=B在螺线管内磁感强度B 沿圆周,与电流成右手螺旋.若112R R R <<- 和R 2 ,则环内的磁场可以近似视作均匀分布,设螺线环的平均半径()1221R R R +=,则环内的磁感强度近似为 RNIμB 2π0≈11-17 电流I 均匀地流过半径为R 的圆形长直导线,试计算单位长度导线内的磁场通过图中所示剖面的磁通量.题 11-17 图分析 由题11-14 可得导线内部距轴线为r 处的磁感强度()202πR Irμr B =在剖面上磁感强度分布不均匀,因此,需从磁通量的定义()S B d ⎰=r Φ来求解.沿轴线方向在剖面上取面元dS =l dr ,考虑到面元上各点B 相同,故穿过面元的磁通量dΦ=B dS ,通过积分,可得单位长度导线内的磁通量⎰=Sr B Φd解 由分析可得单位长度导线内的磁通量4πd 2π0020Iμr R Ir μΦR==⎰11-18 已知地面上空某处地磁场的磁感强度40.410T B -=⨯,方向向北.若宇宙射线中有一速率715.010m s -=⨯v 的质子,垂直地通过该处.求:(1)洛伦兹力的方向;(2) 洛伦兹力的大小,并与该质子受到的万有引力相比较.题 11-18 图解 (1) 依照B F ⋅=v q L 可知洛伦兹力L F 的方向为B ⊥v 的方向,如图所示. (2) 因B ⊥v ,质子所受的洛伦兹力N 102.316-⨯==B F v q L在地球表面质子所受的万有引力N 1064.126p -⨯==g m G因而,有101095.1/⨯=G F L ,即质子所受的洛伦兹力远大于重力.11-19 霍尔效应可用来测量血流的速度,其原理如图所示.在动脉血管两侧分别安装电极并加以磁场.设血管直径为d =2.0 mm ,磁场为B =0.080 T ,毫伏表测出血管上下两端的电压为U H =0.10 mV ,血流的流速为多大?题 11-19 图分析 血流稳定时,有H qE B q =v由上式可以解得血流的速度. 解 依照分析m/s 63.0===dBU B E HH v 11-20 带电粒子在过饱和液体中运动,会留下一串气泡显示出粒子运动的径迹.设在气泡室有一质子垂直于磁场飞过,留下一个半径为3.5 cm 的圆弧径迹,测得磁感强度为0.20 T,求此质子的动量和动能.解 根据带电粒子回转半径与粒子运动速率的关系有m /s kg 1012.121⋅⨯===-ReB m p vkeV 35.222==mp E k11-21 从太阳射来的速度为0.80×108m/s 的电子进入地球赤道上空高层范艾伦辐射带中,该处磁场为4.0 ×10-7T,此电子回转轨道半径为多大? 若电子沿地球磁场的磁感线旋进到地磁北极附近,地磁北极附近磁场为2.0 ×10-5T,其轨道半径又为多少? 解 由带电粒子在磁场中运动的回转半径高层范艾伦辐射带中的回转半径m 101.1311⨯==eB m R v地磁北极附近的回转半径m 2322==eB m R v11-22 如图(a)所示,一根长直导线载有电流I 1 =30 A ,矩形回路载有电流I 2 =20 A .试计算作用在回路上的合力.已知d =1.0 cm ,b =8.0 cm ,l =0.12 m .题 11-22图分析 矩形上、下两段导线受安培力F 1 和F 2 的大小相等,方向相反,对不变形的矩形回路来说,两力的矢量和为零.而矩形的左右两段导线,由于载流导线所在处磁感强度不等,所受安培力F 3 和F 4 大小不同,且方向相反,因此线框所受的力为这两个力的合力.解 由分析可知,线框所受总的安培力F 为左、右两边安培力F 3 和F 4 之矢量和,如图(b)所示,它们的大小分别为d lI I μF π22103=()b d l I I μF +=π22104故合力的大小为()N 1028.1π2π2321021043-⨯=+-=-=b d lI I μd l I I μF F F 合力的方向朝左,指向直导线.11-23 一直流变电站将电压为500kV 的直流电,通过两条截面不计的平行输电线输向远方.已知两输电导线间单位长度的电容为3.0×10-11F ·m -1,若导线间的静电力与安培力正好抵消.求:(1) 通过输电线的电流;(2) 输送的功率.分析 当平行输电线中的电流相反时,它们之间存在相互排斥的安培力,其大小可由安培定律确定.若两导线间距离为d ,一导线在另一导线位置激发的磁感强度dIμB π20=,导线单位长度所受安培力的大小BI F B =.将这两条导线看作带等量异号电荷的导体,因两导线间单位长度电容C 和电压U 已知,则单位长度导线所带电荷λ=CU ,一导线在另一导线位置所激发的电场强度dελE 0π2=,两导线间单位长度所受的静电吸引力λE F E =.依照题意,导线间的静电力和安培力正好抵消,即0=+E B F F从中可解得输电线中的电流.解 (1) 由分析知单位长度导线所受的安培力和静电力分别为d I μBI F B π220==dεU C λE F E 022π2== 由0=+E BF F 可得dεU C d I μ02220π2π2=解得A 105.4300⨯==μεCUI (2) 输出功率W 1025.29⨯==IU N11-24 在氢原子中,设电子以轨道角动量π2/h L =绕质子作圆周运动,其半径为m 1029.5110-⨯=a .求质子所在处的磁感强度.h 为普朗克常量,其值为s J 1063.634⋅⨯-分析 根据电子绕核运动的角动量π20h a m L ==v 可求得电子绕核运动的速率v .如认为电子绕核作圆周运动,其等效圆电流v/π20a e T e i ==在圆心处,即质子所在处的磁感强度为02a i μB =解 由分析可得,电子绕核运动的速率π2ma h=v其等效圆电流2020π4/π2ma he v a e i ==该圆电流在圆心处产生的磁感强度T 5.12π82202000===ma heμa i μB 11-25 如图[a]所示,一根长直同轴电缆,内、外导体之间充满磁介质,磁介质的相对磁导率为μr (μr <1),导体的磁化可以忽略不计.沿轴向有恒定电流I 通过电缆,内、外导体上电流的方向相反.求:(1) 空间各区域内的磁感强度和磁化强度;*(2) 磁介质表面的磁化电流.题 11-25 图分析 电流分布呈轴对称,依照右手定则,磁感线是以电缆对称轴线为中心的一组同心圆.选取任一同心圆为积分路径,应有⎰⋅=⋅r H d π2l H ,利用安培环路定理⎰∑=⋅fI d l H求出环路内的传导电流,并由H μB =,()H μM r 1-=,可求出磁感强度和磁化强度.再由磁化电流的电流面密度与磁化强度的关系求出磁化电流.解 (1) 取与电缆轴同心的圆为积分路径,根据磁介质中的安培环路定理,有∑=fπ2I r H对r <R 1221f ππrR I I =∑ 得2112πR IrH =忽略导体的磁化(即导体相对磁导率μr =1),有01=M ,21012πR IrμB =对R 2 >r >R 1I I=∑f得rI H 2π2=填充的磁介质相对磁导率为μr ,有()r I μM r 2π12-=,rI μμB r 2π02= 对R 3 >r >R 2()()2223223ππR r R R I I I f -⋅--=∑ 得()()222322332πR R r r R I H --= 同样忽略导体的磁化,有03=M ,()()2223223032πR R r r R I μB --= 对r >R 30=-=∑I I If得04=H ,04=M ,04=B(2) 由r M I s 2π⋅=,磁介质内、外表面磁化电流的大小为()()I μR R M I r si 12π112-=⋅= ()()I μR R M I r se 12π222-=⋅=对抗磁质(1r μ<),在磁介质内表面(r =R 1 ),磁化电流与内导体传导电流方向相反;在磁介质外表面(r =R 2 ),磁化电流与外导体传导电流方向相反.顺磁质的情况与抗磁质相反.H (r )和B (r )分布曲线分别如图(b)和(c )所示.。
大学物理角动量PPT精选文档
![大学物理角动量PPT精选文档](https://img.taocdn.com/s3/m/72dd571b6529647d26285262.png)
解 设盘对地的角速度为
体系初态角动量 [12mR 21m0(12R)2]o
o
末态盘的角动量 1 mR 2
2
R/2
V 人 地 V 人 盘 V 盘地 v
R 2
21
[12m2R1m0(12R)2]o12 mR 2 1m0(R2v)R2
o
2v 21R
o
(2) 欲使盘静止,可令
o
2v 0 21R
R/2
质量为m、长度为L的细直棒,通过质心 C且垂直于棒的轴
I 1 mL2 12
3
上次内容回顾
均质圆盘(m,R)绕中心轴转动时,
I 1 mR2 2
刚体对任一转轴的转动惯量I等于刚体通过质心的 平行轴的转动惯量Ic加上刚体的总质量M乘以两平行 轴间距离d的平方,即
I=Ic+Md2
4
上次内容回顾
LI
M dL dt
l
mg
讨论: (1)当=0时,=3g/2l, =0 ; (2)当=90°时, =0,=(3g/l)1/2。
11
例题5 一质量为m、半径为R的匀质圆盘绕通过盘 心且垂直于盘面的光滑轴正以o的角速度转动。现将 盘置于粗糙的水平桌面上,圆盘与桌面间的摩擦系数 为µ,求圆盘经转几圈将停下来?
I 1 mR 2 2
计算出来摩 擦力矩是关键
o
dr r
M0Rrgm R22rdr
2 3
mgR
12
M0Rrgm R22rdr
2 3
mgR
I 1 mR 2 2
于是得M4g
I 3R
o
dr r
又由2-o2=2,所以停下来前转过的圈数为
N 22o2 136o2R g 13
《大学物理》第11章 角动量:转动
![《大学物理》第11章 角动量:转动](https://img.taocdn.com/s3/m/a44405d919e8b8f67c1cb9f0.png)
花样滑冰运动员通过改变身体姿态 即改变转动惯量来改变转速
上页 下页 返回 退出
解题思路:作用在小球上的拉力沿径向,对转轴的力臂为零, 因此作用在小球m上合外力矩为零,体系角动量守恒。
I11 I22 I mR 2
v R,
v2
R 22
R 21
质点系的总角动量 质点系的总转动力矩
n
L Li
i 1
net i
1)系统内力作用于质点上的内力力矩
成对出现。大小相等、方向相 反,作用在同一条直线上
内力矩总和 为0
2)系统外力作用于质点上的外力矩
上页 下页 返回 退出
net i ext
§11-1 角动量 物体绕定轴旋转
一、质点的角动量
L
对于定点转动而言:
L
r
P
r mv
r o
r sin
P
mv
m
上页 下页 返回 退出
二、质点角动量定理
平动中合外力和动量的关系 相对于惯性参考系原点
F
dp dt
L rp
对角动量取微分
dL
d
r
所以L为常量,即dA/dt为常量。 开普勒定律得证
上页 下页 返回 退出
例11-12 一个质量为m的子弹以速度v击中一个质量为M半径为 R0的圆柱边缘,且子弹嵌入圆柱中,如图所示。圆柱原来静止 ,被子弹击中后开始绕其对称轴(位置固定)转动。假设无摩 擦力矩。子弹击中后圆柱的角速度为多少?动能是否守恒?
大学物理角动量转动惯量及角动量的守恒定律共93页
![大学物理角动量转动惯量及角动量的守恒定律共93页](https://img.taocdn.com/s3/m/f4738dd80b1c59eef9c7b41f.png)
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
大学物理角动量转动惯 量及角Fra bibliotek量的守恒定律6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
第11章角动量:转动
![第11章角动量:转动](https://img.taocdn.com/s3/m/d26ea70610a6f524ccbf85a6.png)
§11-1 角动量 物体绕定轴旋转
一、角动量
对于定点转动而言:
L
L r P
P mv
r m v
o
r sin
r
m
刚体的角动量?
上页 下页 返回 退出
对于绕固定轴oz转动的 质元 mi 而言:
z
Li ri mi vi 2 mi r 1 et et e n e n 1
i j j k k i 0
et en 0
上页 下页 返回 退出
二、转动力矩
刚体定轴转动定律 牛顿第二运动定律
I
角加速度
F ma
的大小:
d lim t 0 t dt
v r
以及
I mr 2
2
L mvr mr I
上页 下页 返回 退出
§11-4 质点系的角动量和转动力矩:一般运动
质点系由n个质点组成, 角动量分别是 L1 ,L 2 ,L3 ........, L n
n L Li i 1
质点系的总角动量
质点系的总转动力矩
定轴转动刚体的角动量定理
由刚体定轴转动定理: Lz J dLz d d M z J J dt dt dt
刚体所受到的对某给定轴的总外力矩等于刚体对该 轴的角动量的时间变化率。这是用角动量描述的定 轴转动定律。 注意: 对刚体来说,它对给定轴的转动惯量 J 是保持不变的。
L I
解:(a)MA的角动量是
上页 下页 返回 退出
(b)圆盘从0开始加速,假设力矩为常数,则力矩为:
L 7.8kg m 2 /s - 0 3.9m N t 2s
《角动量理论》课件
![《角动量理论》课件](https://img.taocdn.com/s3/m/624f7e973086bceb19e8b8f67c1cfad6195fe99d.png)
本PPT课件旨在介绍角动量理论,深入浅出地讲解了什么是角动量,如何计算 角动量,以及角动量守恒定律和角动量定理的应用与意义。
什么是角动量?
角动量是物体旋转运动中的重要物理量,代表物体的转动能力和转动状态。 角动量的单位是千克式
角动量定理
角动量定理是描述角动量变化的物理定律,它指出当物体受到外力矩作用时, 角动量的变化率等于力矩的大小。 这个定理在解释物体旋转时的转动动力学问题时非常有用。
前提知识
• 向量的定义和基本运算 • 力矩的定义和计算 • 运动的动量和动能
总结
角动量理论的应用广泛,不仅在物理学和工程学中有重要地位,还对现代科技的发展产生了深远影响。 通过理解和应用角动量理论,我们能更好地解释和控制旋转运动。
线性运动中的角动量计算公式是 L = mvr,其中 m 是物体的质量,v 是物体的速度,r 是物体相对于旋转 轴的距离。 旋转运动中的角动量计算公式是 L = Iω,其中 I 是物体的转动惯量,ω 是物体的角速度。
角动量守恒定律
角动量守恒定律指的是在没有外力矩作用的情况下,系统的总角动量保持不 变。 这一定律在自然界的许多现象中起到了重要作用。
第11章_角动量:转动
![第11章_角动量:转动](https://img.taocdn.com/s3/m/3d4484f1561252d381eb6e4d.png)
一、角动量
L
对于定点转动而言:
L
r
P
r mv
r
o
刚体的角动量?
r sin
P
mv
m
对于绕固定轴oz转动的
质元 mi 而言:
Li
ri mi
ri2mikvi
对于绕固定轴oz 转动 的整个刚体而言:
z
L
vi ri
mi
L
N
miri2 I
i
角动量的方向沿轴的正向或负向,所以可
上式和牛顿第二定律的微分形式相似,所以上式有时 也叫做角动量定理的微分形式。
牛顿第二运动定律
F ma 或者写成动量形式 F dp dt
类似写出刚体定轴转动定律
I
I I d dt d (I) dt dL dt
d dt
dL dt
二、角动量守恒
dL dt
由上式可知合外力矩为零时,角动量守恒,即:
(2)参考点为质点系或刚体的质心。
§11-5 刚体的角动量和力矩
计算刚体转动沿转轴方向的角动量:
(因为角速度
ur
的方向平行于转轴,所以
沿转轴方向的角动量记为 L )
物体上任一质点,对O点的角动量为
r Li
rri
pr i
此角动量沿转轴方向的分量为
Li ri pi cos miviri cos r
例11-5 一人站在一个静止的、无摩擦的、可自由旋转的 台面上,手持一个旋转的自行车轮(如图所示)。如果 突然翻转旋转的车轮,即车轮向相反方向旋转,想想看 会发生什么情况? 解答:将桌子、人、自行车轮看作一个
系统,系统角动量守恒。故自行车轮反 方向旋转后系统仍需保持此角动量。因 此可以断言:此人将按照自行车轮初始 的旋转方向开始转。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
质点系的总角动量 质点系的总转动力矩
n
L Li
i 1
net i
1)系统内力作用于质点上的内力力矩
成对出现。大小相等、方向相 反,作用在同一条直线上
内力矩总和 为0
2)系统外力作用于质点上的外力矩
上页 下页 返回 退出
net i ext
总结
1、质点角动量
L r p
2、刚体绕固定轴旋转的角动量 L I
3、刚体定轴转动定律
dL dt
L
I
dL dt
4、角动量守恒定律:当刚体所受的合外力矩为零时,
即有
dL dt
0
,L
为常量
上页 下页 返回 退出
习题 : 5,17,19
上页 下页 返回 退出
例题11-4 :在一个圆形平台上奔跑 假设一个60kg的人站在直径为6米的圆形平台的边缘, 平台安装在无摩擦的轴承上,其转动惯量为1800 kg m2。
最初平台是静止的,当人开始以4.2m/s的速度(相对于 地球)在平台的边缘奔跑时,这个平台开始沿相反的方 向旋转,如图所示。计算平台的角速度。
i
dL dLi
dt i dt
ext
dL
dt
ext
质点系的总角动量的变化率等于作用于系统的 合外力矩
注意:
上述公式适用于 (1)参考点为惯性参考系中的原点; (2)参考点为质点系或刚体的质心。
上页 下页 返回 退出
§11-2 刚体的角动量
对于绕固定轴oz转
动的质元
解答:我们将桌子、人、自行车轮看作 一个系统,系统角动量守恒。 故自行车轮反方向旋转后系统仍需保持 此角动量。因此可以断言:此人将按照 自行车轮初始的旋转方向开始转。
如果此人将自行车转轴旋转90°至 水平状态,会发生什么状况?(a) 和此例中相同的方向和速度;(b) 和此例中相同的方向,但速度减慢; (c)和此例相反的结果
§11-1 角动量 物体绕定轴旋转
一、质点的角动量
L
对于定点转动而言:
L
r
P
r mv
r o
r sin
P
mv
m
上页 下页 返回 退出
二、质点角动量定理
平动中合外力和动量的关系 相对于惯性参考系原点
F
dp dt
L rp
对角动量取微分
dL
d
r
t
2s
(c) 起初,MA是以不变的1 旋转(我们
忽略摩擦)。此时应用角动量守恒定律
IA1 IA IB 2
2
I
A
IA
IB
1
MA MA MB
1
165..00kkgg7.2 rad
s
2.9 rad
s
上页 下页 返回 退出
上页 下页 返回 退出
§11-3 角动量守恒
dL dt
由上式可知合外力矩为零时,角动量守恒,即:
当 0时,L I 常数
角动量守恒定律:当物体合外力矩为零时,转 动物体的角动量守恒,即转动物体总角动量保 持恒定不变。
上页 下页 返回 退出
例如:花样滑冰运动员 的“旋”动作 再如:跳水运动员的“团 身--展体”动作
R12
R
2 2
R2
v1 R1
R12
R
2 2
v1
R1 R2
2.4m/s
0.80m 0.48m
4.0m/s
可见当小球旋转半径减小时,速度增加
上页 下页 返回 退出
例题11-2 离合器 一个简单的离合器包括两个圆盘,通过压紧 可实现传动。这两块圆盘的质量分别是MA = 6.0 kg,MB = 9.0 kg,半径均为Ro = 0.60 m。最初两圆盘分开(如图所示)。圆 盘MA的角速度从0增加到 1=7.2 rad/s,所需时间Δt=2s。计算 (a)MA的角动量;(b)MA角速度从0增加到7.2 rad/s所需要的 力矩;(c)圆盘MB最初在无摩擦力作用的情况下可以自由旋 转,将其与另一个自由旋转圆盘MA紧密连接,两个圆盘都以一 个恒定的角速度 旋2转, 大大低于 ,1为什么会发生这种现象? 等于多2少?
上页 下页 返回 退出
花样滑冰运动员通过改变身体姿态 即改变转动惯量来改变转速
上页 下页 返回 退出
解题思路:作用在小球上的拉力沿径向,对转轴的力臂为零, 因此作用在小球m上合外力矩为零,体系角动量守恒。
I11 I22 I mR 2
v R,
v2
R 22
R 21
所以L为常量,即dA/dt为常量。 开普勒定律得证
上页 下页 返回 退出
例11-12 一个质量为m的子弹以速度v击中一个质量为M半径为 R0的圆柱边缘,且子弹嵌入圆柱中,如图所示。圆柱原来静止 ,被子弹击中后开始绕其对称轴(位置固定)转动。假设无摩 擦力矩。子弹击中后圆柱的角速度为多少?动能是否守恒?
p
dr
p
r
dp
dt dt
dt
dt
其中 所以
dr
p
v
mv
mv
v
0
dt dL
r
dp
r F
dt
dt
上页 下页 返回 退出
三、质点系的角动量和转动力矩:一般运动
质点系由n个质点组成,角动量分别是 L1,L2 ,L3........, Ln
上页 下页 返回 退出
例11-8 阿特伍德机 阿特伍德机包含两个物体,m1(mA)和m2(mB),这两个物体用一 根无弹性的不计质量的绳子通过滑轮相连,如图所示。若滑轮 的半径为R0,对轮轴的转动惯量为I,求两物体的加速度,并将 此结果同忽略滑轮转动惯量的结果进行对比。
系统总角动量
系统对O轴的合外力矩(顺时针方向为正)
L I
解:(a)MA的角动量是
LA
IA1
1 2
MA
R
2
01
1 6.0kg 0.60m2 7.2rad/s 7.8kg m2 /s
2
上页 下页 返回 退出
(b)圆盘从0开始加速,假设力矩为常数,则力矩为:
L 7.8kg m2/s - 0 3.9m N
上页 下页 返回 退出
练习:假设你站在一张很大,且匀速转动的桌面边沿。 如果你朝桌子中心走去,那么(a)桌子转速将减慢; (b)桌子转速加快;(c)转速不变;(d)需先知道 行走的速度才能回答。
上页 下页 返回 退出
猫从很高的地方跳下来,通常 都是脚着地,为什么呢?
上页 下页 返回 退出
思考:直升机的尾桨起了什么作用?
解题思路:
角动量守恒 L Lper Lplat
Lper mR2 v R
L plat I
mRv 60kg 3.0m4.2m/s 0.42rad/s
I
1800 kg m 2
上页 下页 返回 退出
例11-5 一人站在一个静止的、无摩擦的、可自由旋转的 台面上,手持一个旋转的自行车轮(如图所示)。如果 突然翻转旋转的车轮,即车轮向相反方向旋转,想想看 会发生什么情况?
解题思路:将子弹和圆柱看作一 个系统 系统合外力矩为0,角动量守恒 初始圆柱静止,系统对参考点O 的角动量=子弹角动量=mvR0 子弹击中后,圆柱和嵌入其中的 子弹一起运动
上页 下页 返回 退出
因为角动量守恒,所以
<0
子弹与圆柱体做完全非弹性碰撞, 系统损失的动能转换为系统的热能。
上页 下页 返回 退出
应用公式
பைடு நூலகம்
dL dt
上页 下页 返回 退出
加速度为
若忽略滑轮的转动惯量I 由此可知转动惯量的存在将使系统的加速度变小
例11-11 开普勒第二定律的推导
在dt时间内,行星移动的距离为vdt 扫过的面积dA等于图中阴影部分面积
上页 下页 返回 退出
行星以太阳为参考点的角动量大小为
所以
因为万有引力沿太阳-行星连线,此力产生的力矩为0,
rv
ω
角动量的方向沿轴的正向或负向,所以可 用代数量来描述.
上页 下页 返回 退出
二、刚体角动量定理
牛顿第二运动定律
F ma 或者写成动量形式
F dp dt
类比写出刚体沿转轴方向力矩和角动量的关系
I
I
I
d
dt
d(I)
dt
dL
dt
d dt
dLdt
Li
ri
m而i 言:
mivi
miri2k
对于绕固定轴oz 转动 的整个刚体而言:
L
N
miri2 I
i
z
L
vi ri
mi
上页 下页 返回 退出
刚体角动量的方向特性
角动量是一个矢量
L I
方向的确定:右手定则