三维合成孔径声呐成像系统
三维成像声纳

0.5°
20° 0.5m-120m 7-30Hz 8mm 35W 18-75VDC Ethernet(10/100 Base T)or VSDL(with Ethernet
Comms
1000Base available) Impulse as standard,Schilling option
Connector
300m 4000m 2500m 300m 300m 4000m
深度 级别 频率
720KHz
720KHz
240KHz
1.35MHz
2.25MHz
10K/800KHz
重量
3.9Kg
7.96Kg
19Kg
21.7Kg
19.1Kg
2Kg
扫描 扇区 接口
120°×20°
120°×20 °
120°×45°; 120°×1.5°
BV5000-1350船坞扫描
高
软件
15.4in
• Leica Cyclone Register • Leica Cyclone Model
15.4in
• Leica Cyclone Register Customer Care Package (CCP)
• Leica Cyclone Model Customer Care Package
1000Base
产品介绍
Gemini 720id
高频三维实时成像声纳 Gemini 720i升级版
调焦能力优秀,适用于近距离观察和 远距离探测
耐压深度:4000m
产品介绍
Gemini 720id参数
工作频率
声学角度分辨率 扫描扇区 波束个数
720KHz
声呐图像的三维重建技术研究

声呐图像的三维重建技术研究声呐技术是一种无创性、安全可靠的医疗检测手段,能够在人体内部获得高分辨率的图像信息,发挥了在医学、生物医学等领域的重要作用。
然而,传统的声呐图像是二维的,只有一个截面信息,难以准确还原三维模型信息。
因此,声呐图像的三维重建技术研究也成为了目前医疗影像领域的研究热点之一。
一、三维重建技术的应用声呐图像三维重建技术在医疗诊断、治疗方案制定、手术规划等方面都有着广泛的应用。
例如,对于心脏病的诊断,三维重建技术可以通过重建立体实体模型,通过旋转、放大等操作判读心脏病发生部位、大小、形态特征等重要信息,对病情进行全面评估。
在骨科手术规划中,医生可以通过重建患者受伤部位的三维模型,对手术范围、操作角度等进行合理规划,术前精确确定手术的困难程度、手术时间和术后的修复进程。
二、三维重建技术的发展历程早在20世纪90年代,人们开始尝试使用三维重建技术研究声呐图像的三维结构。
最初的方法是通过单张不同角度的二维图像叠加,最终形成三维模型。
但是由于这种方法耗时长且图像信息不准确,限制了进一步的应用。
随着数字成像技术的发展,更高精度、更高效率的三维重建技术应运而生。
目前主要的三维重建技术包括基于成像图像的方法和基于声信号的方法。
三、基于成像图像的三维重建技术基于成像图像的三维重建技术是通过对多个二维图像进行合成,构建成三维模型。
这种技术需要获取多张图像,而且需要确保拍摄角度不同,增加图像间的差异性。
这种方法可以通过多个诊断仪器进行图像采集,例如核磁共振、CT、X光等仪器。
通过对这些成像技术得到的图像进行重建,可以得到具有高精度的三维模型。
四、基于声信号的三维重建技术基于声信号的重建技术是通过对声信号的处理和分析,重建出三维模型。
这种技术需要先将声信号转换成二维图像,然后再基于多个二维图像构建成三维模型。
这种方法可以通过超声波成像仪器进行采集,该仪器可以捕获到三维声波反射信息。
通过对反射信息进行处理和分析,可以形成高精度的声呐图像三维重建模型。
合成孔径声纳说明书

合成孔径声纳是一种水声设备,利用合成孔径成像原理,通过小物理声学基阵运动,逐次发射、接收和存储信号,再把所有存储的回波信号进行相干叠加获得一个虚拟大孔径阵列,进而产生一个窄波束,实现探测高分辨力走航方向的目标。
合成孔径声纳由三个分系统组成:
声纳分系统:由合成孔径声纳基阵、发射机、接收机、数据采集传输和存储子系统、声纳信号处理机和显控台等组成。
姿态与位移测量分系统:由磁罗经和GPS等组成。
拖曳分系统:由绞车、拖缆和拖体等组成。
使用合成孔径声纳时,需要注意以下几点:
确保设备连接正确,电源充足,并按照说明书正确设置参数。
在使用前,需要进行充分的调试和校准,以确保设备的精度和可靠性。
在使用过程中,需要注意设备的运行状态和周围环境的变化,避免干扰和损坏设备。
在使用完毕后,需要及时清理设备,并妥善保管。
三维合成孔径声呐在海底掩埋目标探查中的应用现状与展望

2021年 第1期海洋开发与管理49三维合成孔径声呐在海底掩埋目标探查中的应用现状与展望郎诚1,茅克勤1,向芸芸2(1.浙江省海洋科学院 杭州 310000;2.自然资源部第二海洋研究所 杭州 310012)收稿日期:2020-07-20;修订日期:2020-08-18基金项目:国家自然科学基金青年科学基金项目 土地资源约束下海岛系统的适应性管理研究 (41506140);自然资源部第二海洋研究所及中央级公益性科研院所基本科研业务费专项资金资助项目(J G 1719).作者简介:郎诚,助理工程师,硕士,研究方向为声学成像和海洋装备研发通信作者:茅克勤,高级工程师,硕士,研究方向为海洋测绘和地理信息系统摘要:为提高我国海底掩埋目标的探查技术,以适应不断发展的探测需求,文章综述了现有三维合成孔径声呐在海底掩埋目标探查中的应用现状,并对关键技术的发展方向进行了展望㊂结果表明:尽管三维合成孔径声呐在海底掩埋目标探查中具有较大的技术优势,但是由于技术难度大㊁复杂程度高,可提供成熟商用设备的单位仅有两家,中科探海研发的三维合成孔径声呐系统多项核心技术指标领先㊂运动误差估计和补偿技术,掩埋目标特征提取和识别分类算法,多通道大规模数据并行处理算法等关键技术将成为三维合成孔径声呐系统未来的发展方向㊂关键词:掩埋目标;合成孔径声呐;三维S A S ;海底探测装备;声学成像中图分类号:T H 766;T B 565.2 文献标志码:A 文章编号:1005-9857(2021)01-0049-04T h eA p p l i c a t i o n s a n dP r o s p e c t o f 3DS y n t h e t i cA pe r t u r e S o n a r S y s t e mi nB u r i e dT a r ge t sD e t e c t i o n L A N GC h e n g 1,MA O K e q i n 1,X I A N G Y u n yu n 2(1.Z h e j i a n g A c a d e m y o fM a r i n eS c i e n c e ,H a n gz h o u310000,C h i n a ;2.S e c o n d I n s t i t u t e o fO c e a n o g r a p h y ,MN R ,H a n gz h o u310012,C h i n a )A b s t r a c t :F o r t h e p u r p o s eo f i m p r o v i n g t h ed o m e s t i c t e c h n o l o g y o nb u r i e dt a r g e t sd e t e c t i o n ,a n d m a t c h i n g i n c r e a s i n g d e m a n d so f s u b m a r i n ed e t e c t i o n ,t h i s p a p e r r e v i e w e dt h ea p pl i c a t i o n so f 3D s y n t h e t i c a p e r t u r e s o n a r s y s t e mo nb u r i e d t a r g e t s d e t e c t i o n ,a n d p r o s p e c t e d t h e f u t u r e d i r e c t i o n o f t h e c o r e t e c h n o l o g i e s .I tw a s f o u n d t h a t :t h e r e a r eo n l y t w oc o r p o r a t i o n s p r o v i d i n g d e v e l o p e d3D S A Sd u et ot h eh i g hc o m p l e x i t y a n dd i f f i c u l t y i nd e s i g n i n g a n di m p l e m e n t a t i o n ,d e s p i t eo f i t s g r e a t a d v a n t a g e s i n b u r i e d t a r g e t s d e t e c t i o n ;m a n y p a r a m e t e r s o f t h e 3DS A S p r o d u c e d b y T-S E A M a r i n eT e c h n o l o g y C o .,L t d .a r e a h e a do f t h e c o m p e t i t o r ;m o t i o n e r r o r e s t i m a t i o n a n d c o m p e n s a -t i o n ,b u r i e d t a r g e t s f e a t u r e e x t r a c t i o n a n d c l a s s i f i c a t i o n a l g o r i t h m ,a n dm u l t i -c h a n n e l p a r a l l e l p r o -c e s s i n g a l g o r i t h mf o r l a r g e -s c a l e d a t aw o u l db e t h e f u t u r e d i r e c t i o no f 3DS A S .K e yw o r d s :B u r i e d t a r g e t s ,S y n t h e t i c a p e r t u r e s o n a r ,3DS A S ,S u b m a r i n e d e t e c t i o n ,A c o u s t i c a l i m a -g i n g50海洋开发与管理2021年0引言随着海洋科技和海洋经济的深入发展,对海洋的认知和开发已遍布海洋的各个区域,对探查装备的能力需求越来越高,要求探查装备的探测能力从近海延展到中远海,从水中悬浮㊁沉底目标扩展到海底以下地质层或掩埋物体㊂与此同时,随着海洋经济的快速发展,海底通信光缆㊁海底供电电缆㊁海岛之间的输水和输气等水下管道等铺设量也越来越大,而且这些基础工程都是关乎国计民生的重大事项㊂现在海底管道和线缆均采用掩埋的方式铺设,所以在后期的管缆路由探查和维护工作中,被掩埋的管缆目标的精确探测需求越来越迫切㊂目前,可用于掩埋目标探查的技术主要包括浅地层剖面仪㊁二维合成孔径声呐和三维合成孔径声呐等[1-2]㊂浅地层剖面仪目前在传统的作业方式中应用最为广泛[3-7],但其主要问题在于开角非常窄,只能横穿掩埋目标作业㊂另外浅地层剖面仪对小的掩埋目标(比如直径20c m以内的管缆㊁光缆㊁普通的掩埋目标等)均无法探测㊂合成孔径声呐的概念最早由美国的R a y t h o n 公司在20世纪60年代提出[8],其基本思想是对小孔径基阵沿直线运动过程中记录的接收信号进行孔径合成处理,从而达到虚拟大孔径基阵的方位分辨力效果,在高分辨海底成像领域有着潜在的应用前景㊂1合成孔径声呐1.1二维合成孔径声呐早期二维合成孔径声呐的研究主要集中于侧扫式合成孔径声呐,只能形成目标的二维图像,无法给出深度信息[9]㊂而在海底掩埋目标的位置探测时,掩埋目标埋深这一判断管缆目标安全状态的关键信息至关重要[10]㊂因此,二维合成孔径声呐在实际应用中无法完全满足工程需求㊂三维合成孔径声呐技术在此背景下应运而生㊂1.2三维合成孔径声呐三维合成孔径声呐技术最早由G r i f f i t h[11]通过干涉法在水池中试验成功,并逐步获得研究学者的关注[12-14]㊂但是干涉式合成孔径声呐的三维图像是通过多幅二维图像重建获得,并非目标的真实三维成像,因此无法完成对目标的高精度测深[15]㊂21世纪初,为克服干涉式合成孔径声呐的这一缺点,日本学者A s a d a等[16]基于多波束测深声呐技术,提出了多波束合成孔径声呐,并在试验中获得了良好效果㊂国内,哈尔滨工程大学和中国科学院也对三维合成孔径声呐技术开展了早期研究[17-18],并奠定了一定的理论基础㊂由于在三维成像上所具有的显著优势,多波束合成孔径声呐使得海底掩埋目标探查技术装备的研究与开发重点聚焦于多波束合成孔径声呐㊂2三维合成孔径声呐在海底掩埋目标探查中的应用现状由于多波束合成孔径声呐在三维成像上的显著优势,应用于掩埋目标探查的设备多基于多波束原理设计开发㊂目前成熟商用的三维合成孔径声呐仅有加拿大的P a n g e o公司的S B I(S u bB o t t o m I m a g e r)型三维合成孔径声呐和我国中科探海海洋科技有限责任公司(以下简称中科探海)设计生产的下视三维合成孔径声呐㊂2.1S B I型三维合成孔径声呐加拿大P a n g e o公司生产的S B I型三维合成孔径声呐,研发始于2008年,2010年完成了对海底掩埋的高压直流输电(HV D C)电缆的验证,主要技术参数如表1所示,2011年正式进入商用领域,完成了大量的实际应用㊂表1加拿大P a n g e o公司S B I系统主要技术参数[19]参数名称参数数值阵元数目40个最大埋深7m航数<2k n探测距底高度数距海床垂直高度3.5mʃ0.5m作业深度3~1000m尺寸1.8mˑ1.85m(可展开至3.4mˑ1.85m) S B I型三维合成孔径系统采用5ˑ8的水听器阵列,可4~14k H z多个频段扫描探测,可安装于水下机器人上作业㊂该系统在线性探测时,探测宽度可以到5m,并在长度方向上连续探测数千米㊂第1期郎诚,等:三维合成孔径声呐在海底掩埋目标探查中的应用现状与展望51 而在进行区域探测时,可以在探测结束后对探测结果进行组合,形成整个区域的完整探测成像㊂2.2 中科探海三维合成孔径声呐2.2.1 产品概述中科探海在2016年开始了下视三维合成孔径声呐的研制工作,并于2018年推出可商用的产品㊂与加拿大产品相比,该公司研制的三维合成孔径声呐系统,突出优点是同时集成了下视三维合成孔径声呐㊁下视多波束声呐㊁侧视声呐等三部声呐分机,采用模块设计,可根据不同要求灵活组合,满足不同任务场景以及安装需求㊂其中下视三维合成孔径声呐可获得水体㊁海底㊁海底以下掩埋层等全海深的三维声呐数据,下视多波束声呐可获得海底高精度地形数据,侧视声呐可获得海底高精度的地貌数据㊂利用不同声呐的成像特性,可获得目标的多维度特征信息,可提供水下悬浮㊁沉底和掩埋目标的高清影像㊁目标位置㊁目标埋设深度以及水下高精度三维地层等多种信息,对目标的辨别㊁埋深的精确测定㊁路由走向㊁海底环境信息等均可获得高质量成果,极大地促进海底电缆和管线的成像和信息提取㊂该系统可满足用户水下环境探查㊁水下目标搜索㊁航道整治复勘㊁护堤结构复勘㊁桥墩监测㊁救捞㊁应急㊁油气管线路由勘察㊁光缆电缆勘察(路由+埋深+地层等功能)㊁三维精细地层结构㊁水下其他各类成像等多种使命任务的需求㊂2.2.2 产品性能中科探海三维合成孔径声呐系统的主要技术参数如表2所示㊂通过与加拿大P a n g e o 公司产品的技术参数对比可以看出其在分辨率㊁探掩埋深度㊁工作航速等指标上具有绝对优势㊂表2 中科探海三维合成孔径声呐系统主要技术参数[20]参数名称参数数值像素精度2c mˑ2c mˑ2c m最高工作航速6k n最大工作水深300m埋深测量精度10c m 最大可探测掩埋目标埋深(泥底)直径5c m 电缆埋深5m ;沉船埋深10m ;浅地层剖面深度30m续表参数名称参数数值最大探测范围掩埋目标:正下方90度;沉底目标和悬浮目标:正下方140度(下视)/双侧各45度(侧视)下视三维阵元数量A 型432个;B 型288个;C 型96个下视多波束最大波束数物理波束192个;数字波束1400个最大量程150m质量A 型ɤ400k g ;B 型ɤ250k g ;C 型ɤ100k g尺寸A 型:1.8mˑ1.4mˑ0.2mB 型:1.5mˑ1.2mˑ0.2mC 型:1.2mˑ0.7mˑ0.2m2.2.3 产品系列中科探海三维合成孔径声呐系统目前有A ㊁B ㊁C3个系列[20-21]㊂A 系列产品为拖曳式产品㊂适用于深水水域,工作时通过调整拖缆长度的方式,来调整拖体在水中的深度,使声呐距底高度处于良好工作状态,满足较深水域水下悬浮㊁沉底和掩埋目标探测的需求㊂接收阵列采用3行6列模块配置,共432个阵元㊂B 系列产品为大型框架式安装,适用于测量船船底安装或船侧挂载㊁水面大型无人船船底安装等,其接收阵列采用3行4列模块配置,共288个阵元㊂C 系列产品为小型框架安装,体积小㊁搭载方便,适用于小型测量船船侧挂载,作业方便㊁迅捷㊂可对浅海海底掩埋目标进行高清晰三维成像㊂接收阵列采用1行4列的模块配置,共96个阵元㊂3 结语本研究主要对三维合成孔径声呐在海底掩埋目标探查中的应用现状及现有成熟设备的应用情况进行综述㊂尽管三维合成孔径声呐系统在海底掩埋探查中具有良好的成像性能,但由于该系统的开发难度大㊁复杂程度高,市面众多研究单位中,仅有两家可提供成熟的商用产品㊂目前,三维合成孔径声呐系统已能基本满足当下的作业需求,然而海52海洋开发与管理2021年洋科技㊁海洋经济的深入发展对三维合成孔径声呐系统提出了新的技术需求:(1)运动误差估计和补偿技术:与无人平台合作进行高度自动化作业是三维合成孔径声呐系统未来的发展方向,而无人平台姿态变化对其成像精度和目标定位精度影响较大,因此必须发展基于G P S㊁超短基线㊁惯导等多数据源的运动误差估计和补偿技术㊂(2)掩埋目标特征提取和识别分类技术:实现掩埋目标物目标特征提取和识别分类是一体化探测无人平台智能探测的基础㊂对水下目标的正确分类与识别建立在有效的特征提取技术上,特征提取是目标识别过程中的关键,它直接影响到目标识别的效果㊂(3)多通道㊁大规模数据并行处理算法:随着对探测深度和探测分辨率的要求越来越高,阵列也变得越发庞大,未来阵列的通道数量可达到数百路,这就对数据采集和处理提出了较高要求,尤其在处理实时成像时,对电子系统和成像算法的要求更高㊂参考文献[1]路晓磊,张丽婷,王芳,等.海底声学探测技术装备综述[J].海洋开发与管理,2018,35(6):91-94.[2]宋帅,周勇,张坤鹏,等.高精度和高分辨率水下地形地貌探测技术综述[J].海洋开发与管理,2019,36(6):74-79. [3]张兆富.S E S-96参量阵测深/浅地层剖面仪的特点及其应用[J].中国港湾建设,2001(3):41-44.[4]周兴华,姜小俊,史永忠.侧扫声纳和浅地层剖面仪在杭州湾海底管线检测中的应用[J].海洋测绘,2007(4):64-67. [5]李平,杜军.浅地层剖面探测综述[J].海洋通报,2011,30(3):344-350.[6]石谦,张金城,蔡爱智,等.浅地层剖面仪在海岸工程上的应用[J].海洋工程,1995(2):71-74.[7]李一保,张玉芬,刘玉兰,等.浅地层剖面仪在海洋工程中的应用[J].工程地球物理学报,2007(1):4-8.[8] WA L S H G M.s y n t h e t i c a p e r t u r e a r r a y t e c h n i q u e s f o r h i g h r e s-o l u t i o no c e a nb o t t o m m a p p i n g[R].1967.[9]王晓静.多波束S A S三维仿真模型与成像算法研究[D].哈尔滨:哈尔滨工程大学,2015.[10]于福建,王斌,张培珍.起伏海底掩埋目标声散射特性数值仿真[J].水下无人系统学报,2018,26(6):533-536.[11] G R I F F I T H H D.M i n ed e t e c t i o nu s i n g i n t e r f e r o m e t r i cs y n t h e t i ca p e r t u r e s o n a r[Z].1995.[12] S E R A F I N P,O K O N F A F A R A M,S Z U G A J E W M,e t a l.3-Di n v e r s e s y n t h e t i c a p e r t u r e s o n a r i m a g i n g[C]//I E E E.18t h I n-t e r n a t i o n a lR a d a r S y m p o s i u m(I R S),2017,18:1-7. [13] HA N S E N R E.S y n t h e t i ca p e r t u r es o n a rt e c h n o l o g y r e v i e w[J].M a r i n e T e c h n o l o g y S o c i e t y J o u r n a l,2013,47(5):117-127.[14] HA Y E S M,G O U G H P T.S y n t h e t i c A p e r t u r e S o n a r:AR e v i e wo fC u r r e n t S t a t u s[J].I E E EJ o u r n a l o fO c e a n i cE n g i-n e e r i n g,2009,34(3):207-224.[15]朱宇涛,粟毅,陆珉,等.基于宽带二维合成孔径的三维成像算法[J].系统工程与电子技术,2012,34(4):673-680. [16] A S A D A A,Y A B U K IT.S y n t h e t i c a p e r t u r e t e c h n i q u e a p p l i e dt o a m u l t i-b e a m e c h os o u n d e r[J].E a r t h,P l a n e t sa n dS p a c e, 2001,53(4):321-326.[17]李海森,魏波,杜伟东.多波束合成孔径声呐技术研究进展[J].测绘学报.2017,46(10):1760-1769.[18]徐江,唐劲松,张春华,等.运动补偿的多子阵合成孔径声纳波束形成算法[C]//中国声学学会.中国声学学会2002年全国声学学术会议论文集,2002:104-105.[19] P a n g e o公司.S u b-B o t t o mI m a g e r产品简介[E B/O L].[2020-07-24].h t t p s://w w w.p a n g e o s u b s e a.c o m/s u b-b o t t o m-i m-a g e r.[20]中科探海(苏州)海洋科技有限责任公司.三维掩埋物成像声纳产品简介[E B/O L].(2016-09-18)[2020-07-24]h t-t p://w w w.t-s e a.c n/h t m l/c p z x/t y s h y t c s b/t y s s x k s c x s n_s w_/2016/0917/151.h t m l.[21]中科探海(苏州)海洋科技有限责任公司.中科探海某海域L N G管线探测项目内部报告[R].2019.。
声呐三维重建原理

声呐三维重建原理
声纳三维重建的原理主要基于声纳测深和定位技术。
具体来说,它包括以下几个步骤:
1. 数据采集:通过在水下部署声纳设备,发射声波并接收反射回来的回声信号。
这些信号包含了水下物体的深度、距离等信息。
2. 数据处理:将收集到的数据进行处理,包括噪声消除、信号增强等操作,以提高数据的质量和准确性。
3. 数据解析:根据声波在水中传播的速度,以及其反射和折射的特性,解析出物体的大小、形状、位置等信息。
4. 三维重建:利用解析出的信息,构建出物体的三维模型。
这一步通常需要使用专门的软件,如CAD软件,进行建模和渲染。
5. 结果输出:将重建的三维模型输出,可以用于进一步的研究、分析,或者制作成可视化的图像和视频。
需要注意的是,声纳三维重建的准确性和精度受到许多因素的影响,包括声波的频率、发射和接收设备的性能、环境条件等。
因此,在实际应用中,需要根据具体的需求和条件进行调整和优化。
声学所合成孔径声呐奖项

声学所合成孔径声呐奖项合成孔径声呐(Synthetic Aperture Sonar,简称SAS)是一种利用声波进行水下探测和成像的先进技术。
它通过在声呐传感器上安装多个接收元件,利用传感器与目标之间的相对运动,实现高分辨率的成像效果。
合成孔径声呐技术的发展为水下任务的执行提供了重要的支持,因此在该领域取得卓越成就的个人或团队往往会获得声学所合成孔径声呐奖项的认可和嘉奖。
声学所合成孔径声呐奖项的设立旨在表彰在合成孔径声呐技术研究、应用和推广方面做出杰出贡献的个人或团队。
该奖项的设立不仅有助于激励科研人员在该领域进行深入研究,还能促进学术交流和合作,推动合成孔径声呐技术的不断发展。
合成孔径声呐技术的研究与应用是声学所合成孔径声呐奖项的重要评选标准。
在科学研究方面,获奖者应具备扎实的理论基础,深入探索合成孔径声呐技术的原理和方法,提出创新的研究思路和解决方案。
在应用方面,获奖者应能将合成孔径声呐技术应用于实际水下任务中,取得显著的成果和效益。
他们的研究和应用成果应具备一定的创新性和实用性,能够为水下探测和成像领域的进一步发展提供有益借鉴和启示。
声学所合成孔径声呐奖项还注重对团队协作和合作创新的肯定。
合成孔径声呐技术的研究和应用需要多领域、多学科的交叉融合,需要不同研究团队之间的密切合作和互相支持。
因此,获奖者应具备良好的团队合作精神和创新能力,能够在团队中发挥协同作用,实现合成孔径声呐技术的整体突破和提升。
声学所合成孔径声呐奖项还特别强调获奖者在合成孔径声呐技术推广和普及方面的贡献。
合成孔径声呐技术的研究成果应该能够为水下探测和成像领域的广大从业人员提供参考和借鉴,促进技术的推广和应用。
获奖者应具备良好的科普能力和沟通能力,能够将复杂的技术概念和方法以简明易懂的方式传达给非专业人士,提高合成孔径声呐技术在社会中的认知度和影响力。
声学所合成孔径声呐奖项的评选也注重获奖者在学术界和行业中的影响力和声誉。
合成孔径声纳分辨率

合成孔径声纳分辨率1. 引言合成孔径声纳(Synthetic Aperture Sonar,简称SAS)是一种高分辨率声纳成像技术,通过利用航行器或潜艇的移动合成大孔径来提高声纳图像的分辨率。
合成孔径声纳分辨率是衡量SAS系统性能的重要指标,本文将详细介绍合成孔径声纳分辨率的概念、计算方法和影响因素。
2. 合成孔径声纳分辨率的概念合成孔径声纳分辨率是指在声纳成像过程中,系统能够分辨出两个相邻目标的最小距离。
分辨率越高,说明系统能够更准确地显示目标的细节,具有更好的成像效果。
合成孔径声纳通过在接收到的声纳信号中提取目标的回波信号,并利用这些回波信号进行图像重构。
由于声波在水中的传播速度较慢,声纳波束的宽度较大,导致成像时的分辨率较低。
为了提高分辨率,合成孔径声纳利用航行器或潜艇的移动,合成了一个较大的孔径,从而实现高分辨率成像。
3. 合成孔径声纳分辨率的计算方法合成孔径声纳分辨率的计算方法通常基于雷达方程和信号处理技术。
以下是一种常用的计算方法:3.1 雷达方程合成孔径声纳的雷达方程描述了声波在水中传播、目标回波信号接收和成像的过程。
在计算分辨率时,可以利用雷达方程中的参数来推导分辨率的表达式。
3.2 空间带宽空间带宽是合成孔径声纳中用于描述波束宽度的参数,它与系统的孔径大小、发射信号的频率和接收信号的带宽有关。
空间带宽越大,表示波束越窄,分辨率越高。
3.3 点扩散函数点扩散函数是描述目标回波信号在成像过程中的传播特性的函数。
通过计算点扩散函数的形状和大小,可以得到合成孔径声纳的分辨率。
3.4 信号处理技术在合成孔径声纳中,常用的信号处理技术包括傅里叶变换、窗函数、滤波器等。
这些技术可以对接收到的回波信号进行处理,提取出目标的特征信息,进一步提高分辨率。
4. 影响合成孔径声纳分辨率的因素合成孔径声纳分辨率受到多种因素的影响,包括系统参数和环境条件等。
以下是一些常见的影响因素:4.1 孔径大小合成孔径声纳的分辨率与孔径大小成反比,即孔径越大,分辨率越高。
合成孔径雷达成像原理

合成孔径雷达成像原理合成孔径雷达成像原理的关键在于利用合成孔径来实现长波长雷达的高分辨率成像。
在传统的雷达成像中,由于天线尺寸受限,波长较长,因此分辨率较低。
而合成孔径雷达则通过合成长孔径的方式,实现了高分辨率的成像。
合成孔径雷达成像的基本原理是通过飞行器或卫星在运动过程中,利用合成孔径雷达系统对目标进行多次回波信号的接收。
这些回波信号经过处理后,可以得到高分辨率的雷达图像。
合成孔径雷达成像的分辨率与合成孔径的长度成正比,因此可以实现远比实际天线尺寸更高的分辨率。
合成孔径雷达成像原理的关键技术包括回波信号的相干积累、多普勒频率调制、运动补偿等。
其中,相干积累是合成孔径雷达成像的核心技术之一。
相干积累通过对多次回波信号进行相干叠加,从而增强了信号的强度,提高了成像的信噪比,实现了高分辨率的成像。
另外,多普勒频率调制也是合成孔径雷达成像的重要技术之一。
在飞行器或卫星运动过程中,目标的多普勒频率会发生变化,因此需要对回波信号进行多普勒频率调制,以实现运动补偿,保证成像的准确性和稳定性。
总的来说,合成孔径雷达成像原理是利用合成孔径来实现对地面目标的高分辨率雷达成像。
它通过相干积累、多普勒频率调制等关键技术,实现了高分辨率、高精度的雷达成像。
合成孔径雷达成像技术在军事侦察、地质勘探、环境监测等领域具有广泛的应用前景,对于提高雷达成像的分辨率和准确性具有重要意义。
在实际应用中,合成孔径雷达成像原理需要综合考虑飞行器或卫星的运动轨迹、目标的特性、信号处理算法等多个因素,才能实现高质量的雷达成像。
因此,对合成孔径雷达成像原理的深入研究和技术创新具有重要意义,可以进一步推动雷达成像技术的发展和应用。
三维声呐原理

三维声呐原理引言:三维声呐是一种利用声波传播和反射原理来获取目标物体位置和形状信息的技术。
它在军事、海洋勘探、水下探测等领域具有广泛应用。
本文将介绍三维声呐的原理和工作过程。
一、声波传播原理声波是一种机械波,通过介质中的分子振动传播。
声波的传播速度与介质的特性有关,一般在水中的速度约为1500米/秒。
声波在传播过程中,会遇到障碍物而产生反射、折射和散射等现象。
二、声波反射原理当声波遇到介质的边界时,会发生反射现象。
根据反射定律,入射角等于反射角,声波以相同的角度从边界上反射回来。
利用这个原理,三维声呐可以通过接收反射回来的声波来获取目标物体的位置和形状信息。
三、三维声呐的工作过程1. 发射声波:三维声呐通过发射器发出一束声波。
发射的声波可以是单一频率或多个频率的声波。
2. 接收反射波:声波在传播过程中,会遇到目标物体并发生反射。
三维声呐的接收器会接收到这些反射回来的声波。
3. 时差测量:三维声呐通过测量声波从发射到接收的时间差来计算目标物体与声呐之间的距离。
利用声波在水中的传播速度,可以根据时间差计算得到距离。
4. 角度测量:为了获取目标物体的方位角和俯仰角,三维声呐需要测量声波的入射角和反射角。
这可以通过控制声波发射的方向和接收反射波的方向来实现。
5. 数据处理:三维声呐会将接收到的声波数据进行处理,通过计算和分析得到目标物体的位置和形状信息。
常用的处理方法包括时差定位、相位差定位和多普勒效应等。
四、三维声呐的应用1. 海洋勘探:三维声呐可以用于海底地形测绘、海底资源勘探等。
通过测量海底反射声波的时间差和角度,可以绘制出海底地形图。
2. 水下探测:三维声呐可以用于水下目标探测,如水下航行器探测、水下障碍物避让等。
通过测量目标物体的位置和形状信息,可以实现水下目标的自动识别和跟踪。
3. 军事应用:三维声呐在军事领域有着广泛的应用,如水下声呐阵列用于潜艇的探测和追踪,水下声呐网络用于水下通信等。
总结:三维声呐利用声波传播和反射原理,通过发射声波并接收反射波,以时间差和角度测量为基础,通过数据处理得到目标物体的位置和形状信息。
合成孔径声呐原理

合成孔径声呐原理
合成孔径声呐(Synthetic Aperture Sonar,简称SAS)是一种
基于声纳技术的遥感系统,用于探测和成像海洋或水下的目标。
其原理如下:
1. 发射声波:合成孔径声呐通过发射声波脉冲来探测目标。
这些声波经由传感器发射至水中,并在水下传播。
2. 接收回波:当声波遇到目标或水下结构时,会产生回波。
传感器会接收到这些回波信号,并将其记录下来。
3. 信号处理:接收到的回波信号经过一系列处理,包括时延校正、滤波和去除杂音等步骤。
这些处理有助于提高信号质量和目标分辨率。
4. 合成孔径:在传感器移动时,传感器会以一定的速度沿着水下路径移动。
合成孔径声呐利用传感器相对于目标的运动,通过将多个接收到的回波信号进行叠加和相位校正,形成一个合成的孔径。
这个合成孔径相当于一个极长的声纳阵列,具有更高的分辨率和更大的侧向视场。
5. 成像处理:通过对合成孔径下的回波信号进行分析和处理,可以获得目标的高分辨率成像。
成像处理技术包括波束成像、相干积累和图像纠正等。
合成孔径声呐的原理与合成孔径雷达(Synthetic Aperture Radar,简称SAR)类似,都是通过利用传感器的运动合成一
个长的孔径,实现高分辨率成像。
由于声波在水中传播的特性和水下环境的复杂性,合成孔径声呐在水下勘探、海洋科学和水下目标检测等领域具有广泛的应用。
合成孔径声纳概述

合成孔径声纳合成孔径声纳的研究起源于五十年代末期,但直到八十年代以后,合成孔径声纳的研究才逐步全面展开。
目前国际上只有少数国家和地区研制出了合成孔径声纳原型机并进行了海上试验。
合成孔径声纳是一种新型高分辨水下成像声纳,合成孔径雷达原理推广到水声领域,就出现了合成孔径声纳。
其基本原理是利用小孔径基阵的移动,通过对不同位置接收信号的相关处理,来获得移动方向(方位方向)上大的合成孔径,从而得到方位方向的高分辨力。
从理论上讲,这种分辨力和探测距离无关。
直观地说,距离越大,合成孔径长度就越长,合成阵的角分辨率就越高,从而抵消了距离增大的影响,保持了分辨力不变。
但合成孔径声纳作为一种水下成像设备,受水下复杂条件的影响,有不同于合成孔径雷达的特点。
首先是声传播信道的非理想性比合成孔径雷达中电磁波传播的严重;其次是声纳拖体的运动稳定性比合成孔径雷达要差得多;再者因为声速大大低于电磁波在空间的传播速度,从而大大限制了拖体运动的速度;最后由于声纳中常采用宽带信号而使雷达中的一些窄带信号处理方法在合成孔径声纳中不再适用,需对已有的算法进行改进或研究新的算法。
这正是合成孔径声纳研究极富挑战性之所在。
合成孔径声纳系统一般由三个分系统组成:1)声纳分系统,由合成孔径声纳基阵、发射机、接收机、数据采集、传输和存储子系统、声纳信号处理机和显控台等组成;2)姿态与位移测量分系统,由姿态、位移测量系统和GPS等组成;3)拖曳分系统,由绞车、拖缆和拖体等组成。
合成孔径声纳可以用于水下军事目标的探测和识别,最直接的应用就是进行沉底水雷和掩埋水雷的高分辨探测和识别。
在国民经济方面,可以用于海底测量、水下考古和搜寻水下失落物体等,尤其可以进行高分辨海底测绘,对数字地球研究具有重要意义。
综合声纳技术研究室"九五"期间在国家863项目支持下,研制出国内第一套合成孔径声纳湖试样机。
合成孔径声纳成像算法合成孔径声纳成像算法分为聚焦处理和非聚焦处理算法。
声学所合成孔径声呐奖项

声学所合成孔径声呐奖项引言:合成孔径声呐(Synthetic Aperture Sonar,简称SAS)是一种利用运动平台和多个接收器构成的合成孔径来获取高分辨率海底图像的声呐系统。
在海洋勘探、海洋资源开发等领域具有广泛的应用前景。
本文将从合成孔径声呐的原理、技术发展、应用领域以及相关奖项等方面进行介绍。
一、合成孔径声呐的原理和技术发展合成孔径声呐是利用船体或潜器在水下运动,通过多个接收器接收返回的声波信号,并利用这些信号进行数据处理,从而实现对海底目标的高分辨率成像。
其原理类似于合成孔径雷达,通过合成多个接收器的接收信号,实现对目标的高分辨率成像。
合成孔径声呐的技术发展可以追溯到20世纪60年代。
当时,美国海军研究实验室首次提出了SAS概念,并在1967年进行了首次实验。
随着计算机技术的发展和信号处理算法的改进,合成孔径声呐的分辨率和成像质量不断提高。
近年来,随着高性能计算能力的提升和新型传感器技术的应用,合成孔径声呐在海底地质调查、海底资源勘探和水下考古等领域得到了广泛应用。
二、合成孔径声呐的应用领域合成孔径声呐在海洋勘探、海底地质调查、海洋资源开发等领域具有重要的应用价值。
1. 海洋勘探:合成孔径声呐可以提供高分辨率的海底地形图像,帮助科学家研究海底地质构造、海底地貌以及地震活动等现象。
2. 海底地质调查:合成孔径声呐可以用于勘探海底沉积物的类型、厚度和分布等信息,对海洋环境和生态系统的研究具有重要意义。
3. 海洋资源开发:合成孔径声呐可以用于勘探海底油气资源、矿产资源和生物资源等,为海洋资源的开发和利用提供科学依据。
4. 水下考古:合成孔径声呐可以用于水下文化遗址的勘探和保护,为考古学家研究古代文明和历史文化提供重要信息。
三、合成孔径声呐奖项由于合成孔径声呐在海洋勘探和海洋资源开发等领域的重要应用,相关研究和技术创新得到了广泛的关注和认可。
以下是一些与合成孔径声呐相关的奖项:1. XX奖:该奖项旨在表彰在合成孔径声呐领域做出杰出贡献的个人或团队。
合成孔径声纳中RD和ω-k成像算法的比较

dxr一 I s ) h ( 一 f rcr xd— l s , 0 h r ; d ( (, ) ( , ・ ,一2/; d t ( £ (,一2/ r t 4 l xf ) x) c ) )
J J — J一
其 中 :d x,) 示 目标 场 ; ( r表 0 符 号 表 示 z 方 向 的 卷 积 .
.5 . 9
() 4 式是 一个 空变、 二维 的运算 , 使得 合成孔径的处理 变得困难. 如果 可以忽略距 离迁移 R , M 也就
是说 ^ (・) 际 上 相 当于 是 一 维 的 , 4 式 将 化 为 一 系 列 一 维 相 关 . 一 方 面 , 果 考 虑 r t 近 的 小 实 () 另 如 =" 0附 区 域 ,4 式 可 以化 为一 个 二维 空 不 变 的 的卷 积 : () d x, ( r= / ) sx,) @ ( T) 2≈ ( @ h z,;" o 评 判 算 法 的依 据 .
即 为 距 离 迁 移 RM. 可 以看 出点 扩 展 函数 h tz;。o 其 沿 方 位 向 移 不 变 和 沿 距 离 向移 变 . 合 成 孔 径 成 像 时 , 接 收 (, z r) 在 将 的 回波 信 号 sx,) 空 变 的 ^ ( £与 (・) 相 关 , 即 相位 修 正 和 积 分 , 到 目标场 : 做 亦 得
1 2 转 移 函 数 .
() 5
这 一 近 似 使 得 可 以采 用 二 维 F T 对 回波 数 据 聚焦 . 以 下 的 分 析 中 , ( ) ( ) 式 近 似 的 精 确 程 度 是 F 在 对 4、5两
为 了评 判 距 离 r r 处 的 聚 焦质 量 , 以 利 用 ( ) . ( ) 中 的变 量 X和 作 傅 氏 变 换 , 到 : — 0 可 5式 对 5式 得
合成孔径声纳技术及其在海底探测中的应用

合成孔径声纳技术及其在海底探测中的应用2天津市鼎致仪器设备有限公司天津300143摘要:合成孔径声呐是目前海底探测中的一个热点,在地形成像、海底小目标成像、海底管线探测等领域具有重要的应用价值。
本文对合成孔径声纳技术的相关概述和基本原理进行了较为详细的论述,并着重分析了合成孔径声纳技术及其在海底探测中的应用及其效果。
并对其在水下探测方面的应用进行了展望。
关键词:合成孔径声纳技术;海底探测;应用海洋科学研究,海洋勘探,海洋资源开发,是海洋经济发展的三个主要方面。
作为海洋勘探的一种技术方法,水下声波检测对维护海洋主权、防治海洋灾害、开发海洋油气资源具有十分重要的意义。
在水声导航、高速数字信号处理、多子阵成像、运动误差估计等方面的迅猛发展的今天,合成孔径声纳技术的研究得到了迅猛的发展。
目前,我国在不同类型的海洋平台,如无人驾驶、水下拖曳等方面均已获得较大的成功;其中,地形成像,海底小目标成像,海底小目标成像,海底管道探测,海底光缆探测,都有了长足的进步。
1相关概述随着中国海洋石油天然气工业的迅速发展,其海底管线的敷设数量越来越多,其事故发生率和危害性也越来越大。
海底管道的泄漏风险来源涉及许多领域,如:地质灾害引起的管道失稳、埋设不合理引起的管道滞留、复杂地形引起的管道变形、砂砾移动引起的管道磨损等。
为此,需要对已有管线的埋深、暴露状况及位置进行探测,同时,对海底管线区域的地形、地貌等因素进行研究。
目前,海洋勘探中最常见的方法有:多波束测深系统,侧扫声呐,浅地层剖面图等。
当前,合成孔径声纳技术(syntheticaperturesonar,SAS)是一种具有自主知识产权的新型水下检测与成像系统。
该技术可提供宽范围、高解析度的图像,可侦测水下、半埋及被埋物体。
该技术可用于探测与识别水下地雷及其他有威胁的目标,海底调查,水下沉船搜寻等,具有广阔的应用前景。
2合成孔径声纳技术基本原理合成孔径声呐技术是一种以小口径声呐为基础,通过对大口径声呐阵列做线性同步运动的方法。
三维成像声纳图像后处理与可视化

中 分 号 T31 圈 类 : P9
三维成像 声纳图像后处理与可视化
洪一帆 ,宋坤坡 ,夏牍仁 l 丛 卫华 p
(. 1 浙江大学 生物 医学工程教育部重点实验室 ,杭州 3 0 2 ;2 杭州应用声 学研 究所,杭 州 30 1 ) 10 7 . 10 2
摘 要: 针对基于 线阵合成 孔径技术 的三 维成像声纳缺乏有效后处理与可视化方法的问题 , 出一个适用于三维成像声纳图像后处理与可 提
2 .Ha g h u s ac s tt f pid o s c , n z o 1 0 2 C ia n z o e rhI t ueo Ap l u t s Ha g h u3 0 1 , hn ) Re n i e Ac i
[ src |I iw o easneo ot rcsigadvsaiainme o rhe-i n ini gn o a a do n ra y tei Abtat nve f h be c f s- oes n i l t t df redmeso t p - p n u z o h ot - maigsnrb s nl earysn t e i h c
a etr , ne e t e p s—r c si ga d3 vs aiain s h m ei o o e n t spa e.Co sd rn h i ee c fa o t h a trs c p ru e a f ci o t o esn n D iu l to c e sprp s d i hi p r v p z n ie g ted f rn eo c usi c a ce t s i c r i i b t e tr ds a o rt et eso aaaespaae sn eg di a eprc si gagoih ,ol we yamo i e D d pt er go ewe nwae e f o ,h wos t fd t r e r tdu igm r e g o e sn n a l m l r ms f l t o db df d3 a a i e in i v g o n g rtm ae n teme fe e ga e tt ee t et g t n te . ep o e sd d t ec mbie n iu ie sn ery r wiga o h l i b s do h a o dg rdin d tc a esi m Th r c se aaa o n o h t r h r n d a d vs a z d u ig t a l h
合成孔径声纳分辨率

合成孔径声纳分辨率合成孔径声纳(Synthetic Aperture Sonar,简称SAS)是一种用于海洋探测和地质勘探的高分辨率声纳成像技术。
它通过利用声波在水中传播的特性,实现对海底地貌和目标的高清晰度成像。
合成孔径声纳分辨率是评估该技术成像质量的重要指标之一。
合成孔径声纳是一种主动声纳技术,它利用发射声波并接收回波来获取目标信息。
与传统的单发单接收声纳不同,合成孔径声纳通过在接收过程中综合多次回波信号,从而提高了分辨率和图像质量。
它可以通过对多个回波信号进行叠加处理,实现高分辨率的海底成像。
合成孔径声纳的分辨率主要受到以下几个因素的影响:1. 声源频率:合成孔径声纳通常使用的频率范围较宽,可以根据需要选择不同的频率。
高频率的声波能够提供更高的分辨率,但穿透力较弱;低频率的声波穿透力较强,但分辨率较低。
因此,在实际应用中需要根据目标深度和成像需求选择合适的频率。
2. 接收器间距:合成孔径声纳使用多个接收器来接收回波信号,并通过对这些信号进行叠加处理来提高分辨率。
接收器间距越大,叠加处理的效果越好,分辨率也就越高。
但是,接收器间距过大会增加系统复杂度和成本,因此需要在实际应用中进行权衡。
3. 接收器数量:合成孔径声纳使用多个接收器来接收回波信号,并通过对这些信号进行叠加处理来提高分辨率。
接收器数量越多,叠加处理的效果越好,分辨率也就越高。
但是,接收器数量过多会增加系统复杂度和成本,因此需要在实际应用中进行权衡。
4. 信号处理算法:合成孔径声纳通过对多个回波信号进行叠加处理来提高分辨率。
不同的信号处理算法对分辨率的影响也不同。
常用的信号处理算法包括波束形成、相干积累等。
选择合适的信号处理算法可以进一步提高合成孔径声纳的分辨率。
合成孔径声纳在海洋探测和地质勘探中具有广泛的应用前景。
它可以用于海底地貌、海洋生物、海洋资源等方面的研究和勘测。
通过提高分辨率,合成孔径声纳可以帮助人们更好地了解海洋环境和资源分布情况,为海洋科学研究和海洋开发提供有力支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三维合成孔径声呐成像系统
所属领域:电子信息
完成人:张学武等
成果简介:
系统主要由四个部分组成:湿端组件(拖体)、拖曳系统、信号处理机和控制台,各组成部分之间通过千兆以太网进行通信,协同完成超声波信号的发射、接收、声数据处理、和声图像的成像功能。
控制命令由干端显控台发出,通过光纤传输到湿端组件,湿端数据采集传输和控制中心通过串口与传感器进行通信;采集获得的声数据通过光纤发送到显控
台进行处理。
数据采集传输和控制中心的硬件
平台包含两块数据采集传输模块和一
块控制中心模块。
数据采集板与接收
机共用一个水密电子舱;控制中心板
与系统电源共用一个水密电子舱。
主要技术指标
本三维合成孔径声呐成像系统具
有数据采集、传输与控制功能,其主要技术指标如下:
(1)同步触发信号最高支持256路16bit AD同步采样,采样频率等于100kHz。
(2) AD采集差分输入,输入信号动态范围-1.625~1.625V。
输出通道幅度
不一致性小于1dB,相位不一致性小于3度,通道噪声小于1mV(有效值)。
(3)传感器数据、控制命令与AD采集数据通过千兆以太网信号经控制中心
电光转换后,进行单模光纤传输。
(4)湿端数据采集传输模块为+5. 7V直流电源供电,每个模块电流4A,电
源输出纹波峰峰值电压≤100mV。
(5)数据采集功能分为
两块电路板完成,每块电路
板完成128通道数据采集,
通过母板与接收机连接,每
块板配置温度传感器芯片。
(6)通过串口接收信号
采集板转发的显控台控制命
令,进行命令解析和分包,
再通过各串口分别发送各种
对应的控制命令和设置参数
给控制电机和各个传感器。
(7)提供3路线性调濒脉冲信号的发射信号源,DA频率大于200kHz。
信号
形式:1路15kHz-30kHz正调频脉冲;1路6kHz-15kHz正调频脉冲;1路6kHz-15kHz 正调频脉冲或15kHz-6kHz反调频脉冲。
信号幅度3.3V, 1.65V, 0.825V,
0.4125V可调,脉冲宽度5ms,10ms, 20ms可调。
(8)数据传输总数据率256路*100kHz * 16bit =409. 6Mbit/s,分两路传输。