初中数学应用题复习专题

合集下载

中考数学专题实际应用题(解析版)

中考数学专题实际应用题(解析版)
(2)今年该村村民再投入了10万元,增设了土特产的实体销售和网上销售项目并实现盈利,村民在接受记者采访时说,预计今年餐饮和住宿的收入比去年还会有10%的增长.这两年的总收入除去所有投资外还能获得不少于10万元的纯利润,请问今年土特产销售至少收入多少万元?
【答案】(1)去年餐饮收入11万元,住宿收入5万元;(2)今年土特产销售至少有6.4万元的收入
【解析】
【分析】
(1)设去年餐饮收入为x万元,住宿为收入y万元,根据题意列出方程组,求出方程组的解即可得到结果;
(2)设今年土特产的收入为m万元,根据题意列出不等式,求出不等式的解集即可得到结果.
【详解】解:(1)设去年餐饮收入x万元,住宿收入y万元,
依题意得: ,
解得: ,
答:去年餐饮收入11万元,住宿收入5万元;
【答案】(1) ;(2)①60,②20,1500;(3)当 时,捐赠后 每天的剩余利润不低于1025元
【解析】
【分析】
(1)从表格中取点代入一次函数解析式即可求解;(2)①由表格信息规律直接填写答案,或利用(1)中的函数解析式,求当 时的函数值.②建立W与 的函数关系式,利用二次函数性质求最大值即可.(3)先求捐赠后的利润为1025元时的销售单价,再利用二次函数的性质直接下结论即可;
2.(2019年重庆市中考数学模拟试卷5月份试题)今年五一期间,重庆洪崖洞民俗风情街景区受热棒,在全国最热门景点中排名第二.许多游客慕名来渝到网红景点打卡,用手机拍摄夜景,记录现实中的“千与千寻”,手机充电宝因此热销.某手机配件店有A型(5000毫安)和B型(10000毫安)两种品牌的充电宝出售
(1)已知A型充电宝进价40元,售价60元,B型充电宝进价60元,要使B型充电宝的利润率不低于A型充电宝的利润率,则B型充电宝的售价至少是多少元(利润率= ×100%)

初中应用题大全及答案

初中应用题大全及答案

初中应用题大全及答案1. 应用题:小明的爸爸给他买了一辆自行车,原价为500元,现在打八折出售,请问小明的爸爸实际支付了多少钱?答案:原价为500元,打八折后的价格为500元× 0.8 = 400元。

所以小明的爸爸实际支付了400元。

2. 应用题:一个班级有40名学生,其中男生占60%,女生占40%,现在要选出10%的学生参加学校的运动会,请问需要选出多少名男生和女生?答案:班级总人数为40人,选出10%的学生参加运动会,即40人× 10% = 4人。

男生占60%,所以需要选出的男生人数为4人× 60% = 2.4人,取整数为2人。

女生占40%,所以需要选出的女生人数为4人× 40% = 1.6人,取整数为1人。

因此,需要选出2名男生和1名女生。

3. 应用题:一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,求这个长方体的体积。

答案:长方体的体积可以通过长、宽、高的乘积来计算,即体积 = 长× 宽× 高 = 10厘米× 8厘米× 6厘米 = 480立方厘米。

4. 应用题:一个工厂生产了100个零件,其中有2%是次品,合格的零件有多少个?答案:次品占总零件数的2%,即100个零件× 2% = 2个。

所以合格的零件数为100个 - 2个 = 98个。

5. 应用题:一个水池,每小时流入4立方米的水,同时每小时流出3立方米的水,如果水池原本有20立方米的水,那么5小时后水池里有多少水?答案:每小时流入4立方米的水,流出3立方米的水,所以每小时净增加1立方米的水。

5小时后,水池净增加的水为5小时× 1立方米/小时 = 5立方米。

原本有20立方米的水,所以5小时后水池里的水量为20立方米 + 5立方米 = 25立方米。

6. 应用题:小华在书店买了3本书,每本书的价格是30元,书店正在进行满100元减20元的优惠活动,请问小华实际支付了多少钱?答案:3本书的总价为3本× 30元/本 = 90元,未达到满100元减20元的优惠条件,所以小华实际支付了90元。

初中数学应用题目大全

初中数学应用题目大全

初中数学应用题目大全
一、整数运算
1. 某车间今年共生产了-1200辆汽车,明年计划生产2400辆汽车,问两年内共生产了多少辆汽车?
-1200 + 2400 = 1200
2. 甲数温度计的度数比乙数温度计的度数少45℃,已知乙数温度计的度数是-8℃,问甲数温度计的度数是多少?
-8 + 45 = 37
二、百分数
1. 某项商品原价为200元,现在打8折出售,问现价为多少?
200 × 0.8 = 160
2. 小明考试得了85分,班级总分为400分,班级平均分为80分,问小明的成绩相对于平均分高几个百分点?
85 - 80 = 5
三、利率问题
1. 某银行存款年利率为5%,小明存了2000元,请问3年后小明将获得多少利息?
2000 × 0.05 × 3 = 300
2. 甲行存款年利率为3%,乙行存款年利率为2%,小刚同时在两家银行存了5000元,问一年后他能获得多少利息?
(5000 × 0.03) + (5000 × 0.02) = 250
四、几何问题
1. 一个直角三角形的直角边长分别为3cm和4cm,求斜边长。

斜边长= √(3^2 + 4^2) = 5
2. 某房子的地面是一个长方形,长为8m,宽为6m,求地面的面积。

面积 = 8 × 6 = 48
以上是初中数学应用题目大全,希望能帮到你!。

初中数学应用题知识点总结及练习

初中数学应用题知识点总结及练习

如,“小时”“分钟”的换算“分钟”的换算;s ;s ;s、、v 、t 单位的一致等。

单位的一致等。

内容内容类型类型题中涉及的数量及公式题中涉及的数量及公式 等量关系等量关系 注意事项注意事项和、差问题和、差问题由题可知由题可知弄清“倍数”及“多、少”等数量关系少”等数量关系 行程问题问题相遇问题相遇问题 路程路程==速度×时间速度×时间 时间时间==路程÷速度路程÷速度 速度速度==路程÷时间路程÷时间 快者快者++慢者慢者==原来的距离原来的距离 注意始发时间和地点追及问题追及问题快者快者--慢者慢者==原来的距离原来的距离 调配问题调配问题 调配后的数量关系调配后的数量关系流动的方向和数量流动的方向和数量 比例分配问题比例分配问题全部数量全部数量==各种成分的数量之和把一份设为X 工程问题工程问题工作量工作量==工作效率×工作时间工作效率×工作时间 工作时间工作时间==工作量÷工作效率工作量÷工作效率 工作效率工作效率==工作量÷工作时间工作量÷工作时间 每个工作量的和每个工作量的和==工作总量工作总量工作总量没有的情况下,可设为1利润问题利润问题 利润率利润率==利润÷进价×利润÷进价×100% 100% 利润利润==(售价(售价--进价)×量进价)×量 利用公式或利润率与利润的关系关系 打几折就是百分之几十出售几十出售 行船问题行船问题顺水速度顺水速度==静水速度静水速度++水速水速 逆水速度逆水速度==静水速度静水速度--水速水速A C A B C 甲→甲→ 乙→乙→ (相遇处)乙→乙→A B 甲)→ (相遇处)1、某酒店客房部有三人间,双人间客房,收费数据如下表:、某酒店客房部有三人间,双人间客房,收费数据如下表:普通(元普通(元//间/天)天) 豪华(元(元//间/天) 三人间三人间 150 300 双人间双人间140400为吸引游客,团体入住五折优惠措施,团体入住五折优惠措施,一个一个50人的旅游团优惠期间到该酒店入住,人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间住了一些三人普通间和双人普通间客房.若每间客房正好住满,客房.若每间客房正好住满,••且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房各多少间?元,则旅游团住了三人普通间和双人普通间客房各多少间? 2、(20042004、湟中,、湟中,、湟中,33分)正在修建的西塔(西宁~塔尔寺)高速公路上,有一段工程,若甲、乙两个工程队单独完成,甲工程队比乙工程队少用10天;若甲、乙两队合作,天;若甲、乙两队合作,1212天可以完成.若设甲单独完成这项工程需要x 天.则根据题意,可列方程为意,可列方程为_____________________________________________。

初一数学应用题及其解析大全

初一数学应用题及其解析大全

初一数学应用题及其解析大全1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运;还要运几次才能完解:设还要运x次才能完 29.5-34=2.5x 17.5=2.5x x=7 答:还要运7次才能完;2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米解:设它的高是x米 x7+11=902 18x=180 x=10 答:它的高是10米;3、某车间计划四月份生产零件5480个;已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个解:设这9天中平均每天生产x个9x+908=5408 9x=4500 x=500 答:这9天中平均每天生产500个;4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米;甲每小时行45千米,乙每小时行多少千米解:设乙每小时行x千米345+x+17=272 345+x=255 45+x=85 x=40 答:乙每小时行40千米;5、某校六年级有两个班,上学期级数学平均成绩是85分;已知六1班40人,平均成绩为87.1分;六2班有42人,平均成绩是多少分解:设平均成绩是x分4087.1+42x=8582 3484+42x=6970 42x=3486 x=83 答:平均成绩是83分;6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒解:设平均每箱x盒 10x=250+550 10x=800 x=80 答:平均每箱80盒;7、四年级共有学生200人,课外活动时,80名女生都去跳绳;男生分成5组去踢足球,平均每组多少人解:设平均每组x人 5x+80=200 5x=160 x=32 答:平均每组32人;8、食堂运来150千克大米,比运来的面粉的3倍少30千克;食堂运来面粉多少千克解:食堂运来面粉x千克 3x-30=150 3x=180 x=60 答:食堂运来面粉60千克;9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵;平均每行梨树有多少棵解:平均每行梨树有x棵 6x-52=20 6x=72 x=12 答:平均每行梨树有12棵;10、一块三角形地的面积是840平方米,底是140米,高是多少米解:高是x米140x=8402 140x=1680 x=12 答:高是12米;11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服;每件大人衣服用2.4米,每件儿童衣服用布多少米解:设每件儿童衣服用布x米16x+202.4=72 16x=72-48 16x=24 x=1.5 答:每件儿童衣服用布1.5米;12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁解:设女儿今年x岁 30=6x-3 6x-18=30 6x=48 x=8 答:女儿今年8岁;13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车解:设需要x小时50x=40x+250x=40x+80 10x=80 x=8 答:需要8小时;14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元解:设苹果每千克x元 3x+2x-0.5=155x=16 x=3.2 答:苹果:3.2元,梨:2.7元;15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达终点;甲几小时到达终点解:设甲x小时到达终点 50x=40x+1 10x=40 x=4 答:甲4小时到达终点;16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇;如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙;已知甲速度是15千米/时,求乙的速度;解:设乙的速度x2x+2×15+4x=60 2x+30+4x=60 6x=30 x=52x+15=415-x解得x=5答:乙的速度为5千米/小时答:乙的速度5千米/时;有甲乙两人,乙的速度是甲的五分之三,甲乙两人分别从ab两地同时出发,若相向而行,一小时相遇,若同向而,甲要几小时才追上乙1+3/5/1-3/5=4小时17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米;问原来两根绳子各长几米解:设原来两根绳子各长x米3x-15+3=x3x-45+3=x2x=42x=21答:原来两根绳子各长21米;18.某校买来7只篮球和10只足球共付248元;已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元解:设每只篮球x元 7x+10x/3=24821x+10x=744 31x=744 x=24 答:每只篮球:24 元,每只足球:8元19、运一批货物,一直过去两次租用这两台大货车情况:第一次甲种车2辆,乙种车3辆,运了15.5吨第二次甲种车5辆乙种车6辆运了35吨货物现租用该公司3辆甲种车和5辆乙种车如果按每吨付运费30元问货主应付多少元解:设甲可以装x吨,乙可以装y吨,则 2x+3y=15.5 5x+6y=35 得到x=4 y=2.5 得到3x+5y30=735答:货主应付735元20、现对某商品降价10%促销.为了使销售总金额不变.销售量要比按原价销售时增加百分之几解:设原价销售时增加X% 1-10%1+X%=1 X%=11.11% 答:为了使销售总金额不变.销售量要比按原价销售时增加11.11%;21、1个商品降价10%后的价格恰好比原价的一半多40元,问该商品原价是多少解:设原价为x元 1-10%x-40=0.5x x=100 答:原价为100元22、有含盐8%的盐水40克,要使盐水含盐20%,则需加盐多少克解:设加盐x 克开始纯盐是408%克加了x克是408%+x盐水是40+x克浓度20%所以408%+x/40+x=20%3.2+x/40+x=0.23.2+x=8+0.2x0.8x=4.8x=6答:需加盐6克23、某市场鸡蛋买卖按个数计价,一商贩以每个0.24元购进一批鸡蛋,但在贩运途中不慎碰碎了12个,剩下的蛋以每个0.28元售出,结果仍获利11.2元;问该商贩当初买进多少个鸡蛋解:设该商贩当初买进X个鸡蛋.根据题意列出方程:X-120.28-0.24X=11.20.28X-3.36-0.24X=11.20.04X=14.56X=364答:该商贩当初买进364个鸡蛋.24、某车间有技工85人,平均每天每人可加工甲种部件15个或乙种部件10个,2个甲种部件和3个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套解:设安排生产甲的需要x人,那么生产乙的有85-x人因为2个甲种部件和3个乙种部件配一套,所以所以生产的甲部件乘以3才能等于乙部件乘以2的数量16x3=1085-x2解得:x=25答:生产甲的需要25人,生产乙的需要60人25、红光电器商行把某种彩电按标价的八折出售,仍可获利20%;已知这种彩电每台进价1996元;那么这种彩电每台标价应为多少元解:设标价为X元.80%X=1996×1+20%80%X= 2395.2X=2994答: 这种彩电每台标价应为2994元;26、某商店把某种商品按标价的8折出售,可获利20%;若该商品的进价为每件22元,则每件商品的标价为多少元解::设标价为X元.80%X=22×1+20%80%X= 26.4X=33答: 每件商品的标价为33元;27、在一段双轨铁道上,两列火车迎头驶过,A列车车速为20m/s,B列车车速为24m/s,若A列车全长180m,B列车全长160m,问两列车错车的时间为多少秒解:180+160/20+24=7.28秒答: 两列车错车的时间为7.28秒28、甲乙两名同学在同一道路上从相距5km的两地同向而行,甲的速度为5km/h,乙的速度为3km/h,甲同学带着一条狗,当甲追乙时,狗先追乙,再返回遇上甲,又返回追乙,……直到甲追到乙为止;已知狗的速度为15km/h,求此过程中,狗跑的总路程;解:首先要明确,甲乙的相遇时间等于狗来回跑的时间所以狗的时间=甲乙相遇时间=总路程/甲乙速度和 =5km/5km/h+3km/h=5/8h所以狗的路程=狗的时间狗的速度=5/8h15km/h=75/8km答:所以甲乙相遇狗走了75/8千米29、一天小红和小亮2人利用温度差测量某山峰的高度,小红在山顶侧的温度是-1度小亮此时在山脚下测得的温度是5度已知该地区的高度每增加100M,气温大约下降0.6度这座山峰的高度是30、当气温每上升1度时,某种金属丝伸长0.002MM 反之, 当温度每下降1度时,金属丝缩短0.002MM;把15度的金属丝加热到60度,在使它冷却降温到5度,金属丝的长度经历了怎样的变化最后的长度比原来长度伸长多少31、一种出租车的收费方式如下:4千米以内10元,4千米至15千米部分每千米加收1.2元,15千米以上部分每千米加收1.6元,某乘客要乘出租车去50千米处的某地.1如果乘客中途不换车要付车费多少元2如果中途乘客换乘一辆出租车,他在何处换比较合算算出总费用与1比较.32、已知开盘是25.35,收盘是27.38,求开盘都收盘上涨的百分比.27.38-25.35×100%÷25.35≈8%33、购票人 50人以下 50-100人 100人以上每人门票价 12元 10元 8元现有甲乙两个旅游团,若分别购票,两团应付门票费总计1142元,如合在一起作为一个团体购票,只要门票费864元;两个旅游团各有几人解因为864>8×100,可知两团总人数超过100人,因而两团总人数为864÷8=108人.因为108×10=1080<1142,108×12=1296>1142.所以每个团的人数不会都大于50人,也不会都小于50人,即一个团大于50人,另一个团少于50人.假设两团都大于 50人,则分别付款时,应付108×10=1080元,实际多付了1142-1080=62元.这是少于50人的旅游团多付的钱.因此,这个旅游团的人数为:62÷12-10=31人,另一个旅游团人数为108-31=77人.1,有一只船在水中航行不幸漏水;当船员发现时船里已经进了一些水,且水仍在匀速进入船内;若8人淘水,要用5小时淘完;若10人淘水,要用3小时淘完;现在要求2.5小时淘完,要用多少人淘水答案:11个人解:设船的总容积为a,船进水的速度为b,人淘水的速度为c,设要用x人淘水能2.5小时淘完.8c5=1/2a+5b 110c3=1/2a+3b 2xc2.5=1/2a+2.5b 31-2得到b=5c 4,把b=5c代入12,然后1-2得到1/2a=15c 5把45代入3,最后整理的x=1134、快、慢两辆车从快到慢车,快车行到全程2/3,慢车距终点180千米,两车按原速继续行驶,快到到达终点,慢车行驶了全程6/7,求全程多少米答案:快车行完全程,慢车走了全程的6/7;同比可知:快车行完全程的2/3时,慢车应走了6/72/3即4/7,还剩余3/7,全程的3/7也就是已知条件180,全程即为180/3/7=42035、某银行建立大学生助学贷款,6年期的贷款年利率为百分之六,贷款利息的百分之五十由国家财政贴补;某大学生预计6年后能一次性偿还2万元,则他现在可以贷款的数额是多少元精确的1元答案:设他现在可以贷款的数额是x元;0.50.06x6+x=200000.18x+x=200001.18x=20000x≈1694936、将△ABC的边延长至A1,使B为线段A A1的中点,同样方法,延长边BC得到点B1,延长边得到点C1,得到△A1 B1 C1称为第一次扩展,再将△A1 B1 C1按上述方法向外扩展得到△A2 B2 C2,如此,进行下去,得到△An Bn Cn,研究△An Bn Cn 与△ABC的面积关系;字数不少于200答案:连接A B1∵AC=AC1∴S△B1AC=S△B1AC1又∵CB1=CB∴S△B1AC=S△ABC∴S△B1C1C=2S△ABC同理可得S△AA1C1=S△BA1B1=2S△ABC∴S△A1B1C1=7S△ABC同理S△A2B2C2=7S△A1B1C1=49S△ABC∴S△AnBnCn=7^nS△ABC37、将△ABC的边延长至A1,使B为线段A A1的中点,同样方法,延长边BC得到点B1,延长边得到点C1,得到△A1 B1 C1称为第一次扩展,再将△A1 B1 C1按上述方法向外扩展得到△A2 B2 C2,如此,进行下去,得到△An Bn Cn,研究△An Bn Cn 与△ABC的面积关.答案:设三角形ABC三个角分别为α、β、γ按题意画出三角形DEF,则可得DEF 的三个角分别为180-180-α/2-180-β/2=α+β/2180-180-γ/2-180-β/2=γ+β/2180-180-α/2-180-γ/2=α+γ/2在三角形ABC内一定存在α+β<180γ+β<180α+γ<180所以在三角形DEF中三个角都小于90所以DEF为锐角三角形38、小红抄写一份材料,每分钟抄写30个字,若干分钟可以抄完,当她抄完这份材料的五分之二时,决定提高50%的效率,结果提前20分钟抄完,求这份材料有多少字解:设材料原先x分钟可以抄完,则有30x=302/5x+301+50%3/5x-20得出x=100。

数学初一应用题及答案

数学初一应用题及答案

数学初一应用题及答案1. 问题:小明的爸爸给他买了一辆自行车,原价为500元,现在商店打8折出售,小明的爸爸实际支付了多少钱?答案:首先,我们需要计算打折后的价格。

原价为500元,打8折,即支付原价的80%。

计算方法如下:500元× 80% = 500元× 0.8 = 400元所以,小明的爸爸实际支付了400元。

2. 问题:一个长方形的长是15米,宽是10米,求这个长方形的面积。

答案:长方形的面积可以通过长乘以宽来计算。

计算方法如下:面积 = 长× 宽 = 15米× 10米 = 150平方米所以,这个长方形的面积是150平方米。

3. 问题:一个班级有40名学生,其中男生人数是女生人数的1.5倍,求这个班级男生和女生各有多少人?答案:首先,我们设女生人数为x,那么男生人数就是1.5x。

根据题意,男生和女生的总人数为40人。

我们可以列出方程:x + 1.5x = 402.5x = 40x = 40 ÷ 2.5 = 16所以,女生有16人,男生有1.5x = 1.5 × 16 = 24人。

4. 问题:小华家离学校的距离是2公里,小华每天骑自行车上学,他的速度是每小时5公里。

求小华每天骑自行车上学需要多少时间?答案:首先,我们需要计算小华骑自行车上学的总时间。

已知距离是2公里,速度是每小时5公里。

计算方法如下:时间 = 距离÷ 速度 = 2公里÷ 5公里/小时 = 0.4小时所以,小华每天骑自行车上学需要0.4小时。

5. 问题:一个数的3倍加上4等于20,求这个数。

答案:设这个数为x,根据题意,我们可以得到方程:3x + 4 = 203x = 20 - 43x = 16x = 16 ÷ 3x = 5.33(保留两位小数)所以,这个数是5.33。

初中数学应用题复习专题

初中数学应用题复习专题

初中数学应用题复习专题〖知识点〗列方程(组)解应用题的一般步骤、列方程(组)解应用题的核心、应用问题的主要类型内容分析列出方程(组)解应用题的一般步骤是:(i)弄清题意和题目中的已知数、未知数,用字母表示题目中的一个(或几个)未知数;(ii)找出能够表示应用题全部含义的一个(或几个)相等关系;(iii)根据找出的相等关系列出需要的代数式,从而列出方程(或方程组);(iv)解这个方程(或方程组),求出未知数的值;(v)写出答案(包括单位名称).〖考查重点与常见题型〗考查列方程(组)解应用题的能力,其中重点是列一元二次方程或列分式方程解应用题,习题以工程问题、行程问题为主,近几年出现了一些经济问题,应引起注意一、填空题1.某商品标价为165元,若降价以九折出售(即优惠10%),仍可获利10%(相对于进货价),则该商品的进货价是2.甲、乙二人投资合办一个企业,并协议按照投资额的比例分配所得利润,已知甲与乙投资额的比例为3:4,首年的利润为38500元,则甲、乙二人可获得利润分别为元和元3.某公司1996年出口创收135万美元,1997年、1998年每年都比上一年增加a%,那么,1998年这个公司出口创汇万美元4.某城市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口将增加1%,求这个城市现有的城镇人口数与农村人口数,若设城镇现有人口数为x万,农村现有人口y万,则所列方程组为5.在农业生产上,需要用含盐16%的盐水来选种,现有含盐24%的盐水200千克,需要加水多少千克?解:设需要加水x千克根据题意,列方程为,解这个方程,得答: .6.某电视机厂1994年向国家上缴利税400万元,1996年增加到484万元,则该厂两年上缴的利税平均每年增长的百分率7.某种商品的进货价每件为x 元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折降价并让利40元销售,仍可获利10%(相对于进价),则x = 元8.一个批发与零售兼营的文具店规定,凡是一次购买铅笔301支以上(包括301支),可以按批发价付款;购买300支以下(包括300支)只能按零售价付款,现有学生小王来购买铅笔,如果给学校初三年级学生每人买1支,则只能按零售价付款,需用(m 2-1)元(m 为正整数,且m 2-1>100);如果多买60支,则可以按批发价付款,同样需用(m 2-1)元.(1)设这个学校初三年级共有x 名学生,则(a)x 的取值范围应为(b)铅笔的零售价每支应为 元,批发价每支应为 元(用含x ,m 的代数式表示)(2)若按批发价每购15支比按零售价每购15少付款1元,试求这个学校初三年级共有多少名学生,并确定m 的值。

2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题

2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题

2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题1.某中学学生步行到郊外旅行.七(1)班学生组成前队,步行速度为4千米/时,七(2)班的学生组成后队,速度为6千米/时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/时.(1)后队追上前队需要多长时间?(2)后队追上前队时间内,联络员骑车的路程是多少千米?2.某开发公司生产出若干件新产品,需要精加工后才能投放市场,现有甲、乙两个工厂每天分别能加工这种产品16件和24件,已知甲单独加工这批产品比乙单独加工这批产品要多用20天,又知若由甲厂单独做,公司需付甲厂每天加工费用80元;若由乙厂单独做,公司需付乙厂每天加工费用120元。

(1)求这批新产品共有多少件?(2)若公司董事会制定了如下方案:可以由每个工厂单独完成,也可以由两个工厂合作完成,但在加工过程中,公司需派一名工程师到工厂进行技术指导,并由公司为其提供每天10元的午餐补助,请你帮助公司选择一种既省时又省钱的加工方案,并通过计算说明理由.3.某中学将举行“歌唱祖国”主题歌咏比赛,七年级需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知每袋贴纸有50张,每袋小红旗有20面,贴纸和小红旗需整袋购买,两家文具店的标价相同,每袋贴纸价格比每袋小红旗价格少5元,且4袋贴纸与3袋小红旗价格相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果购买贴纸和小红旗共90袋,给每位演出学生分发国旗图案贴纸2张、小红旗1面,恰好全部分完,请问贴纸和小红旗各多少袋?某校七年级(1)和(2)班共105人去游玩,其中七(1)班40多人不足50人,经计算,如果两个班都以班为单位购票,则一共应付1401元.(1)两班各有多少人?(2)如果两班联合起来,作为一个团体购票,能省多少钱?7.某中学举行校运会,初一(1)班同学准备用卡纸制成乒乓球拍和小旗作道具.若一张卡纸可以做3个球拍或6面小旗,用21张卡纸,刚好能够让每位同学拿一个球拍和一面小旗.(1)应用多少张卡纸做球拍,多少张卡纸做小旗?(2)若每个人的工作效率都相同,一个人完成道具制作要6个小时,先安排2个人做半小时,再增加几个人做1小时可以刚好完成?8.一段道路,甲工程队单独铺设需10天完成,乙工程队单独铺设需15天完成.(1)若两队自始至终合作铺设, 天可以完成;(2)实际由甲工程队先单独铺设几天后,为了加快进度,余下的部分由甲乙两个工程队合作完成,共用8天铺设完成了这段道路.甲工程队先铺设了几天道路?9. “双十二”期间,某个体商户在网上购进某品牌A 、B 两款羽绒服来销售,若购进3件A 和4件B 需支付2400元,若购进1件A 和1件B 则需支付700元.(1)求A 、B 两款羽绒服在网上的售价分别是每件多少元?(2)若个体商户把网上购买的A 、B 两款羽绒服各10件,均按每件600元进行销售,销售一段时间后,把剩下的羽绒服按6折销售完,若总获利为3800元,求个体商户打折销售的羽绒服是多少件?10.下雪了,学校七年级准备为同学们定制一批冬帽,现有甲、乙两个工厂都想加工这 批冬帽,已知甲工厂每天能加工这种冬帽20件,乙工厂每天能加工这种冬帽30件,且单独加工这批冬帽甲厂比乙厂要多用16天.(1)求这批冬帽共有多少件?(2)为了尽快完成这批冬帽,若先由甲、乙两厂按原生产速度合作一段时间后,甲工厂停工了,由乙工厂单独完成剩余部分,为此乙工厂每天的生产速度也提高20%.已知乙工厂的全部工作时间是甲工厂工作时间的2倍还少2天,求乙工厂共加工多少天?11.一个长方形的周长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形.(1)设长方形的长为cm x ,请列出关于x 的方程.(2)说明8x =是(1)中所列方程的解,而10x =不是它的解.(3)设长方形的宽是cm y ,请列出关于y 的方程.(1)若小泮购买了25千克的柑橘,则他需要付多少元?(2)若小钱一次购买柑橘共付了200元,则小钱购买柑橘多少千克?(3)小王分两次共购买了柑橘90千克,第二次购买的数量要多于第一次购买的数量,共付出376元,请问小王第一次、第二次分别购买柑橘多少千克?14.某校开展劳动教育,在植树节当天组织植树活动,该校七年级共有120人参加活动,分成树苗保障组和种植组,种植组的人数是树苗保障组人数的2倍.(1)求树苗保障组的人数;(2)已知种植点有甲、乙两处,种植组在甲处有a人.①用含a的代数式表示种植组在乙处的人数;a ,树苗保障组人员在运送完树苗后全部去支援种植组,使在甲处种植的人数②若46是乙处种植人数的2倍,问应调往甲、乙两处各多少人?15.甲、乙两地相距72km ,一辆工程车和一辆洒水车上午6时同时从甲地出发,分别以1km/h v 、2km/h v 的速度匀速驶往乙地.工程车到达乙地后停留了2h ,沿原路以原速返回,中午12时到达甲地,此时洒水车也恰好到达乙地.(1)1v =______,2=v ______;(2)求出发多长时间后,两车相遇?(3)求出发多长时间后,两车相距30km ?(直接写出答案)______16.某同学进入初中后,家长为他买了一个电话手表.现从某电信运营商那里了解到,有两种电话卡,A 类卡收费标准如下:无月租,每通话1分钟交费0.6元;B 类卡收费标准如下:月租费15元,每通话1分钟交费0.3元.(1)若每月平均通话时间为100分钟,他应该选择哪类卡?(2)如果这位同学这个月预交话费120元,按A 、B 两类卡收费标准分别可以通话多长时间?(3)根据一个月的通话时间,你认为选择哪种卡更实惠?17.用80m 的篱笆围成一个长方形场地.(1)如果长比宽多6m ,求这个长方形的面积;(2)如果一边靠墙,墙长为32m ,长比宽多11m (长边与墙平行),这样设计是否可行?请说明理由.18.请列一元一次方程解决下面的问题:某超市计划购进甲、乙两种型号的钢笔共900支,这两种钢笔的进价、售价如下表:(1)如果进货款恰好为28500元,那么可以购进甲、乙两种型号的钢笔各多少支?(2)售完这批钢笔一共可以获利多少元钱?参考答案:1.(1)2小时(2)20千米2.(1)这批新产品共有960件.(2)甲、乙合作同时完成时,既省钱又省时间,理由见解析.3.(1)每袋国旗图案贴纸和每袋小红旗的价格各是15和20元(2)购买贴纸40袋,购买小红旗50袋4.(1)买卡合算,小张能节省400元(2)这台冰箱的进价是2480元5.(1)第一批购进文具盒40个,则第二批购进文具盒30个.(2)第二批文具盒中按标价售出的有7个.6.(1)七年级(1)班47人,(2)班58人(2)两个班联合起来,作为一个团体购票,可省351元7.(1)用14张卡纸做球拍,7张卡纸做小旗;(2)再增加3个人做1小时可以刚好完成8.(1)6(2)5天9.(1)A、B两款羽绒服在网上的售价分别是每件400元,300元(2)个体商户打折销售的羽绒服是5件10.(1)这批冬帽共有960件(2)乙工厂共加工22天(2)售完这批钢笔一共可以获利7500元钱。

初中数学复习专题——应用题

初中数学复习专题——应用题

4 图表型应用题 这类试题的特点是由图象或表格提供一组数据,要求从图表中获取 有效信息并加以处理,因而寻找数据间的相等关系是解答这类问题 的突破口, 例4.一慢车和一快车沿相同路线从A地到B地,所行的路程与时间 的函数图象如图所示,试根据图象,回答下列问题:
(1)慢车比快车早出发_____小时,快车追上慢车行使了_____千 米,快车比慢车早____小时达到B地; y(千米) (快车)(慢车) (B) (2)在下列3个问题中任选一题求解 ①快车追上慢车需几个小时?
②求慢车、快车的速度。 ③求A、B之间的路程。 276 (A) 2 14 18
x(小时)
5
创新型应用题
现在有一 块直径为2m的圆形铁片,若将它做成一个有盖的油桶, 并尽可能的用好这块铁片,工人师傅在圆形铁片上截取两个圆 (即两底)和一个矩形(侧面),如图所示: (1)若把BC作油桶高时,则油桶的底面半径R1等于多少? (2)当把AB作油桶高时,油桶的底面半径R2 与(1)中的R 1
一个月内每天买进该报纸的份数 当月利润(单位:元) 100 150
(2)设每天从报社买进该种晚报x份(120≤x≤200)时,月利润为y元。 试求出y与x的函数关系式,并求出当月利润的最大值。
3 方程型应用题 这类问题一般要通过列方程或方程组求解,首先要理解题意,找出 已知量与未知量,并分析各量之间的关系,在此基础上寻找相等的 数量关系列出方程式或方程组。必须注意,在求得方程的解之后, 要根据应用题的实际意义,检查求得的结果是否合理,一要检验所 求出的解是否为所列方程的解,二是检验方程的解是否符合应用题 的题意,最终写出答案。
例3.黄冈百货商店服装柜在销售中发现:“宝乐”牌童装平均每 天可以售出20件,每件盈利40元。为迎接“六一”国际儿童节, 商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库 存,经市场调查发现:如果每件降价1元,那么平均每天就可多售 出2件。要想平均每天在销售这种套装上盈利1200元,那么每件童 装应降价多少元?

初中数学方案选择类应用题复习专题

初中数学方案选择类应用题复习专题

初中数学应用题复习专题一、方程型例1、(长沙市)“5·12”汶川大地震后.灾区急需大量帐篷.某服装厂原有4条成衣生产线和5条童装生产线.工厂决定转产.计划用3天时间赶制1000顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线.一天可以生产帐篷105顶;若启用2条成衣生产线和3条童装生产线.一天可生产帐篷178顶.(1)每条成衣生产线和童装生产线每天生产帐篷各多少顶?(2)工厂满负荷全面转产.是否可以如期完成任务?练习:中考关键分P15 第20题例2、某市剧院举办大型文艺演出.其门票价格为:一等席300元/人,二等席200元/人.三等席150元/人,某公司组织员工36人去观看,计划用5850元购买2种门票,请你帮助公司设计可能的购票方案。

练习:某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机.出厂价分别为A种每台1500元.B种每台2100元.C种每台2500元。

(1)若家电商场同时购进两种不同型号的电视机共50台.用去9万元.请你研究一下商场的进货方案。

(2)若商场销售一台A种电视机可获利150元.销售一台B种电视机可获利200元.销售一台C种电视机可获利250元.在同时购进两种不同型号的电视机方案中.为了使销售时获利最多.你选择哪种方案?二、不等式型例3、(青岛市)2008年8月.北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A种船票600元/张.B种船票120元/张.某旅行社要为一个旅行团代购部分船票.在购票费不超过5000元的情况下.购买A、B两种船票共15张.要求A种船票的数量不少于B种船票数量的一半.若设购买A种船票x张.请你解答下列问题: (1)共有几种符合题意的购票方案?写出解答过程; (2)根据计算判断:哪种购票方案更省钱?练习:中考关键分P17 第10题三、一次函数型例4、(乌鲁木齐市)某公司在A、B两地分别库存挖掘机16台和12台.现在运往甲、乙两地支援建设.其中甲地需要15台.乙地需要13台.从A地运一台到甲、乙两地的费用分别是500元和400元;从B地运一台到甲、乙两地的费用分别是300元和600元.设从A地运往甲地x台挖掘机.运这批挖掘机的总费用为y元.运往甲地的费用运往乙地的费用从A地500元/台400元/台从B地300元/台600元/台(1)写出y与x之间的函数关系式;(2)公司应设计怎样的方案.能使运这批挖掘机的总费用最省?练习:(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机.其中甲型20台.乙型30台.现将这50台联合收割机派往A、B两地收割小麦.其中30•台派往A地.20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:甲型收割机的租金乙型收割机的租金A地1800元/台1600元/台B地1600元/台1200元/台(1)设派往A地x台乙型联合收割机.租赁公司这50台联合收割机一天获得的租金为y(元).请用x表示y.并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元.说明有多少种分派方案.并将各种方案写出.四、二次函数型例4、(2013•咸宁)为鼓励大学毕业生自主创业.某市政府出台了相关政策:由政府协调.本市企业按成本价提供产品给大学毕业生自主销售.成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元.出厂价为每件12元.每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元.那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元).当销售单价定为多少元时.每月可获得最大利润?(3)物价部门规定.这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于300元.那么政府为他承担的总差价最少为多少元?练习:(13年山东青岛、22)某商场要经营一种新上市的文具.进价为20元.试营销阶段发现:当销售单价是25元时.每天的销售量为250件.销售单价每上涨1元.每天的销售量就减少10件(1)写出商场销售这种文具.每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时.该文具每天的销售利润最大;(3)商场的营销部结合上述情况.提出了A、B两种营销方案方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件.且每件文具的利润至少为25元请比较哪种方案的最大利润更高.并说明理由。

初三数学《应用题复习专题》训练题

初三数学《应用题复习专题》训练题

初三数学《应用题复习专题》训练题(满分100分,时间90分钟)班级_______姓名_______分数_______第1~13题,每题7分,第14题9分,共100分1、由于节约用水,小明发现他家同样是用10m3的水,本月比上月能多用5天。

已知本月小明家每天的平均用水量比上月少20%,求小明家上月每天的平均用水量。

2、一件商品的成本价是100元,提高50%后标价,又以8折出售,则这件商品的售价是多少?3、甲、乙两种商品原来的单价和为100元。

因市场变化,甲商品降价10%,乙商品提价40%,调价后,两种商品的单价之和比原来的单价之和提高了20%。

求甲、乙两种商品原来的单价分别是多少?4、某车间加工1000个零件,由于采用了新工艺,效率提高了一倍,这样加工同样多的零件就少用5小时。

求该车间采用新工艺前、后每小时分别加工多少个零件?5、今年以来,CPI(居民消费价格总水平)的不断上涨已成热门话题。

已知某种食品在9月份的售价为8.1元/kg,11月份的售价为10元/kg。

求这种食品平均每月上涨的百分率是多少?6、“佳佳商场”在销售某种进货价为20元/件的商品时,以30元/件售出,每天能售出100件.调查表明:这种商品的售价每上涨1元/件,其销售量就将减少2件.(1)为了实现每天1600元的销售利润,“佳佳商场”应将这种商品的售价定为多少?(2)物价局规定该商品的售价不能超过40元/件,“佳佳商场”为了获得最大的利润,应将该商品售价定为多少?最大利润是多少?7、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

若商场平均每天要盈利1200元,每件衬衫应降价多少元?8、为了能以“更新、更绿、更洁、更宁”的城市形象迎接2011年大运会的召开,深圳市全面实施市容环境提升行动。

初一数学应用题60题

初一数学应用题60题

初一数学应用题60题1. 某车厂生产了600辆汽车,其中三分之一是轿车,四分之一是SUV,其余是面包车。

请问生产了多少辆面包车?解析:轿车的数量为600辆×三分之一=200辆;SUV的数量为600辆×四分之一=150辆。

那么面包车的数量为600辆-200辆-150辆=250辆。

2. 小明买了某商品,原价为160元,打了八折,最后花了多少钱?解析:八折即打折8折,也就是原价×80%。

所以小明最终花的钱为160元×80%=128元。

3. 某班级共有40名同学,其中女生占总人数的四分之三,男生占总人数的几分之几?解析:女生人数为40名同学×四分之三=30人。

男生人数为40名同学-30人=10人。

所以男生占总人数的十分之一。

4. 甲乙两个工程队共修建了120米的路段,甲队修建了其中的三分之一,乙队修建了其中的五分之二。

请问甲队修建了多少米的路段?解析:甲队修建的路段长度为120米×三分之一=40米。

5. 某电商平台进行促销活动,某商品原价为160元,打了三折又减去20元,最后售价为多少?解析:先打三折即为原价×30%。

然后再减去20元。

所以最后的售价为160元×30%-20元=28元。

6. 小明去超市买了一袋米,重5千克,他拿出一半的重量煮饭吃了,还剩下多少克?解析:小明煮饭吃掉了一半的重量,即5千克的一半。

所以还剩下的重量为5千克的一半=2.5千克(或2500克)。

7. 甲乙两个人一起行走,甲每走30步,乙走5步。

假设甲走了180步,乙走了多少步?解析:由甲每走30步,乙走5步,可得出他们的步数比为30:5。

所以乙走的步数为180步÷30步×5步=30步。

8. 小明参加了一次考试,满分为100分,他得了85分,占了多少百分比?解析:小明得分占满分的百分比即为85分÷100分×100%=85%。

八年级数学应用题30道

八年级数学应用题30道

八年级数学应用题30道一、行程问题1. 甲、乙两人相距30千米,甲的速度是每小时5千米,乙的速度是每小时4千米,两人同时相向而行,几小时后两人相遇?解析:设x小时后两人相遇。

根据路程 = 速度×时间,甲走的路程为5x千米,乙走的路程为4x千米,两人相向而行,总路程为30千米,可列方程5x +4x=30,即9x = 30,解得x=(10)/(3)小时。

2. 一艘轮船在两个码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流速度为每小时2千米,求轮船在静水中的速度。

解析:设轮船在静水中的速度为x千米/小时。

顺水速度 = 静水速度+水流速度,即(x + 2)千米/小时;逆水速度=静水速度水流速度,即(x-2)千米/小时。

根据两个码头之间的距离相等,可列方程4(x + 2)=5(x 2),展开得4x+8 = 5x-10,移项得5x-4x=8 + 10,解得x = 18千米/小时。

二、工程问题3. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要多少天完成?解析:设两人合作需要x天完成。

把这项工程的工作量看作单位“1”,甲的工作效率为(1)/(10),乙的工作效率为(1)/(15),两人合作的工作效率为((1)/(10)+(1)/(15)),根据工作量=工作效率×工作时间,可列方程((1)/(10)+(1)/(15))x = 1,通分得到((3 + 2)/(30))x=1,即(1)/(6)x = 1,解得x = 6天。

4. 某工程队修一条路,原计划每天修400米,25天完成,实际20天就完成了任务,实际每天修多少米?解析:这条路的总长度为400×25 = 10000米。

设实际每天修x米,根据实际工作总量 = 实际工作效率×实际工作时间,可列方程20x=10000,解得x = 500米。

三、利润问题5. 某商品的进价为每件20元,售价为每件30元,每月可卖出180件;如果售价每上涨1元,那么每月就少卖10件,售价定为多少元时,每月的利润最大?解析:设售价定为x元(x≥30),则每件的利润为(x 20)元,销售量为180-10(x 30)=180 10x+300=480 10x件。

初中数学应用题

初中数学应用题

初中数学应用题应用题一:小明乘公交车上学小明每天乘坐公交车上学,公交车每隔20分钟一班,小明家离学校有7公里,他每小时步行4公里的速度。

如果他下午5点放学,问他能否赶上5点40分的公交车?解答:小明步行4公里每小时,那么他步行7公里需要多长时间?7公里 ÷ 4公里/小时 = 1.75小时小明放学后5点,他需要1.75小时才能到达公交车站。

而公交车每隔20分钟一班,5点40分就是40分钟后,共有40 ÷ 20 = 2班公交车经过。

由此可知,小明可以赶上5点40分的公交车。

应用题二:图书馆还书小华上图书馆借了一本书,借期为21天。

他决定在借期结束前的最后一天还书。

假设小华从借期的第2天开始每天读书8小时,那么借期结束前他一共读了多少小时?解答:借期为21天,借期的第一天小华没有读书。

所以小华从借期的第2天开始读书,可以读21 - 1 = 20天。

每天读书8小时,那么小华一共读了 20天 × 8小时/天 = 160小时。

借期结束前,小华一共读了160小时。

应用题三:水果比例在一个篮子里有3个苹果、5个梨和2个桃子。

如果从篮子中任意取出一个水果,求取到的是桃子的概率。

解答:篮子中共有10个水果(3个苹果 + 5个梨 + 2个桃子)。

取到桃子的可能性为取到桃子数(2个桃子)除以篮子中总水果数(10个水果)。

所以取到桃子的概率为2/10 = 1/5。

因此,取到的是桃子的概率为1/5。

应用题四:汽车行程小明驾驶一辆汽车从A市到B市,全程320公里,中间经过了2个加油站。

第一个加油站离出发地A市80公里,第二个加油站离出发地160公里。

小明的汽车油箱容量为40升。

假设汽车每升油可行驶8公里,问小明是否需要在第一个加油站加油?解答:全程320公里,小明的汽车油箱容量为40升,每升油可行驶8公里。

那么汽车一次加满油最多可行驶 40升 × 8公里/升 = 320公里。

第一个加油站离出发地80公里,小明到达第一个加油站时,已经行驶了80公里,剩下的行程为 320公里 - 80公里 = 240公里。

初一数学应用题专题训练

初一数学应用题专题训练

初一数学应用题专题训练【考点7二元一次方程组的应用之几何问题】【例7】(2019春•南岗区校级月考)如图,在大长方形ABCD中,放入六个相同的小长方形,BC=11,DE =7,(1)设每个小长方形的较长的一边为x,较短的一边为y,求x,y的值.(2)求图中阴影部分面积.【变式7-1】(2019春•襄汾县期末)张师傅在铺地板时发现:用8个大小一样的长方形瓷砖恰好可以拼成一个大的长方形(如图①),然后,他用这8块瓷砖七拼八凑,又拼出了一个正方形,中间还留下一个边长为3的小正方形(阴影部分),请你根据提供的信息求出这些小长方形的长和宽.【变式7-2】(2019春•西湖区校级月考)工厂接到订单生产如图所示的巧克力包装盒子,每个盒子由3个长方形侧面和2个正三角形底面组成,仓库有甲、乙两种规格的纸板共2600张,其中甲种规格的纸板刚好可以裁出4个侧面(如图①),乙种规格的纸板可以裁出3个底面和2个侧面(如图②),裁剪后边角料不再利用.(1)若裁剪出的侧面和底面恰好全部用完,问两种规格的纸板各有多少张?(2)一共能生产多少个巧克力包装盒?【变式7-3】(2019春•西湖区校级月考)某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方形形状的无盖纸盒.(1)现有正方形纸板150张,长方形纸板300张,若这些纸板恰好用完,则可制作横式、竖式两种纸盒个多少个?(2)若有正方形纸板32张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完,已知70<a<75.求a的值.【考点8二元一次方程组的应用之销售问题】【例8】(2018秋•沈河区校级期中)列二元一次方程组解应用题甲、乙两件服装的成本共500元,商店老板为获取利润,将甲服装按50%的利润定价,乙服装按40%利润定价,在实际出售时,应顾客要求,两件服装均按定价的9折出售,这样商店共获利157元,求若两件服装都打8折,商店共可获利多少元?【变式8-1】(2019秋•沙坪坝区校级期中)据农业农村部消息,国内受猪瘟与猪周期叠加影响,生猪供应量大幅减少,从今年6月起猪肉价格连续上涨.一品生鲜超市在6月1日若售出3kg五花肉和5kg排骨,销售额为366元;若售出1kg五花肉和3kg排骨,销售额为186元.(1)6月1日每千克五花肉和排骨的价格各是多少元?(2)6月1日五花肉和排骨的销售量分别为410kg、240kg.由于猪肉价格持续上涨,11月1日五花肉的销售价格在6月1日的基础上增长了2m%,销售量减少了110kg;排骨的销售价格在6月1日的基础上增加了m元,销售量下降了25%,结果11月1日的销售额比6月1日的销售额多5100元,求m的值.【变式8-2】(2019秋•香坊区校级期中)某商场从厂家批发电视机进行零售,批发价格与零售价格如下表:电视机型号甲乙批发价(元/台)1500 2500零售价(元/台)2025 3640若商场购进甲、乙两种型号的电视机共50台,用去9万元.(1)求商场购进甲、乙型号的电视机各多少台?(2)迎“国庆”商场决定进行优惠促销:以零售价的七五折销售乙种型号电视机,两种电视机销售完毕,商场共获利8.5%,求甲种型号电视机打几折销售?【变式8-3】(2018春•鼓楼区校级期中)学校要求购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算.若买2个A型足球和3个B型足球,则要花费480元,若买3个A型足球和1个B型足球,则要花费370元.(1)求A,B两种型号足球的销售价格各是多少元/个?(2)为响应习总书记“足球进校园”号召,这所学校决定再次购买两种品牌的足球50个,恰逢商场对两种品牌足球的售价进行调整,A品牌售价比第一次购买时提高10%,B品牌售价比第一次购买时降低10%,如果此次购买两种品牌足球总费用为4680元,那么这所学校再次购买这50个两种品牌的足球与第一次购买相同数量两种品牌足球相比费用增加了还是减少了?增加(或减少了)多少钱?【考点9二元一次方程组的应用之分段计费问题】【例9】(2019春•西湖区校级月考)小明同学本周日上午先乘坐出租车到图书馆,乘坐了5千米,打车费14元.然后吃好中饭后乘坐出租车到电影院和同学一起看电影,乘坐了8千米,打车费18.5元.看完电影后再乘坐出租车回家.出租车费用为3千米以内为起步a元,超过3千米每千米b元.(1)请求出a和b的值.(2)小明家离电影院有7千米,他有15元,请问他的钱够吗?如果不够,还差多少.【变式9-1】(2019春•呼和浩特期末)为建设资源节约型、环境友好型社会,切实做好节能减排工作,某市决定对居民家庭用电实行“阶梯电价”.电力公司规定居民家庭每月用电量在80千瓦时以下(含80千瓦时),1千瓦时俗称1度/时,实行“基本电价”;当居民家庭月用电量超过80千瓦时,超过部分实行“提高电价”.已知小张家2017年2月份用电100千瓦时,上缴电费68元;3月份用电120千瓦时,上缴电费88元.若7月份小张家预计用电130千瓦时,请预算小张家7月份应上缴的电费.【变式9-2】(2019春•西湖区校级月考)为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:自来水销售价格每户每月用水量单位:元/吨15吨及以下a超过15吨但不超过25吨的部分b超过25吨的部分 5 (1)小王家今年3月份用水20吨,要交水费元;(用a,b的代数式表示)(2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a,b的值.(3)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a,b的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.【变式9-3】(2019春•鄞州区期末)滴滴快车是一种便捷的出行工具,计价规则如下表计费项目里程费时长费运途费单价2元/千米0.4元/分钟1元/千米注:1.车费=里程费+时长费+运途费2.里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取标准为:行车7千米以内(含7千米)不收费,若超过7千米,则超出部分每千米加收1元.(1)若小林乘车9千米,耗时30分钟,则车费是元;(2)小王与小林各自乘坐滴滴快车,行车里程共15千米,其中小王乘车里程少于7公里,乘车时间比小林多10分钟.如果下车时所付车费相同,两人共支付43.2元,求小王的乘车里程数和乘车时间.【考点10二元一次方程组的应用之方案设计问题】【例10】(2019秋•南岗区校级月考)某公司需要粉刷一些相同的房间,经调查3名师傅一天粉刷8个房间,还剩40m2刷不完;5名徒弟一天可以粉刷9个房间;每名师傅比徒弟一天多刷30m2的墙面.(1)求每个房间需要粉刷的面积;(2)该公司现有36个这样的房间需要粉刷,若只聘请1名师傅和2名徒弟一起粉刷,需要几天完成?(3)若来该公司应聘的有3名师傅和10名徒弟,每名师傅和每名徒弟每天的工资分别是240元和200元,该公司要求这36个房间要在2天内粉刷完成,问人工费最低是多少?【变式10-1】(2019春•西湖区校级月考)某校七、八年级师生开展“一日游”活动,已知七年级师生共300人,八年级师生共220人.(1)已知七年级教师比八年级教师多6人,七年级学生比八年级学生多37%,求七年级教师与学生各有多少人;(2)参现某景点时、需要乘船游玩,现有A、B两种型号的游船,A型船的座位数是B型船的1.5倍,若七年级师生全部乘坐A型船若干艘,刚好坐满,八年级全部乘坐B型船,要比七年级乘坐的A型船多一艘且空20个座位,问:①A、B两种游船每艘分别有多少个座位;②若两个年级的师生联合租船,且每艘游船恰好全部坐满,请写出所有的租船方案.家庭作业:1.(2019春•西湖区校级月考)某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方形形状的无盖纸盒.(1)现有正方形纸板150张,长方形纸板300张,若这些纸板恰好用完,则可制作横式、竖式两种纸盒个多少个?(2)若有正方形纸板32张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完,已知70<a<75.求a的值.2.(2018秋•沈河区校级期中)列二元一次方程组解应用题甲、乙两件服装的成本共500元,商店老板为获取利润,将甲服装按50%的利润定价,乙服装按40%利润定价,在实际出售时,应顾客要求,两件服装均按定价的9折出售,这样商店共获利157元,求若两件服装都打8折,商店共可获利多少元?3.(2019春•鄞州区期末)滴滴快车是一种便捷的出行工具,计价规则如下表计费项目里程费时长费运途费单价2元/千米0.4元/分钟1元/千米注:1.车费=里程费+时长费+运途费2.里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取标准为:行车7千米以内(含7千米)不收费,若超过7千米,则超出部分每千米加收1元.(1)若小林乘车9千米,耗时30分钟,则车费是元;(2)小王与小林各自乘坐滴滴快车,行车里程共15千米,其中小王乘车里程少于7公里,乘车时间比小林多10分钟.如果下车时所付车费相同,两人共支付43.2元,求小王的乘车里程数和乘车时间.4.用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有34吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.5.(2019秋•南岗区校级月考)某公司需要粉刷一些相同的房间,经调查3名师傅一天粉刷8个房间,还剩40m2刷不完;5名徒弟一天可以粉刷9个房间;每名师傅比徒弟一天多刷30m2的墙面.(1)求每个房间需要粉刷的面积;(2)该公司现有36个这样的房间需要粉刷,若只聘请1名师傅和2名徒弟一起粉刷,需要几天完成?(3)若来该公司应聘的有3名师傅和10名徒弟,每名师傅和每名徒弟每天的工资分别是240元和200元,该公司要求这36个房间要在2天内粉刷完成,问人工费最低是多少?。

初一上下册初中数学应用题100题练习与答案

初一上下册初中数学应用题100题练习与答案

列方程解应用题百题-学生练习一、多位数的表示1、有一个三位数,百位上的数字是1,若把1放在最后一位上,而另两个数字的顺序不变,则所得的新数比原数大234,求原三位数。

解:(多位数表示) 设后两位数(即十位与个数)为x ,100+x+234=10x+12、一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字的3倍少2.若将三个数字顺序倒过来,所得的三位数与原三位数的和是1171,求这个三位数。

解:(多位数表示)设十位数字为x,则百位数字为x+1,个位数字为3x-2100(x+1)+10x+3x-2+100(3x-2)+10(x+1)+x=11713、有大小两个两位数,在大数的右边写上一个0后写上小的数,得到一个五位数,又在小数的右边写上大数,然后再写上一个零,也得到一个五位数,第一个五位数除第二个五位数得到的商为2,余数为599,此外,大数的2倍与小数3倍的和为72,求这两个两位数。

解:(多位数表示)设大的两位数为x ,小的两位数为y大○小y x +⇒1000, 小大○x y 101000+⇒∴⎩⎨⎧=+++=+7232599)101000(21000y x x y y x 4、有一个三位数,各数位上的数字的和是15,个位数字与百位数字的差是5,如果颠倒各数位的数字顺序,则所用到的新数比原数的3倍少39,求这个三位数。

解:(多位数表示) 百 十 个X+5 10-2x x原数=100(x+5)+10(10-2x)+x , 新数=100x+10(10-2x)+x+5∴3[100(x+5)+10(10-2x)+x]-39=100x+10(10-2x)+x+55、两个三位数,它们的和加1得1000,如果把较大的数放在小数的左边,点一个小数点在两数之间所成的数,正好等于把小数放在大数的左边,中间点一个小数点所成的数的6倍,求两个三位数。

解:(多位数表示+已知和)设大三位数=x ,小三位数为999- x.9991000x x -•=+大小 999-1000x x •=+小大 9996(999)10001000x x x x -∴+=-+ 6、一个两位数,个位上的数字比十位上的数字大5,且个位上的数字与十位上的数字的和比这个两位数的大6,求这个两位数。

七年级上册数学题应用题

七年级上册数学题应用题

七年级上册数学题应用题一、行程问题1. 甲、乙两人从相距20千米的两地同时出发,相向而行,甲每小时走6千米,乙每小时走4千米,几小时后两人相遇?解析:设小时后两人相遇。

根据路程 = 速度×时间,甲走的路程为千米,乙走的路程为千米。

由于两人是相向而行,总路程为20千米,所以可列方程。

合并同类项得,解得。

2. 一艘轮船在两个码头间航行,顺水航行需4小时,逆水航行需5小时,水流速度为2千米/时,求轮船在静水中的速度。

解析:设轮船在静水中的速度为千米/时。

顺水速度 = 静水速度+水流速度,即千米/时;逆水速度=静水速度 - 水流速度,即千米/时。

根据两个码头间的距离不变,可列方程。

去括号得,移项得,合并同类项得,解得。

二、工程问题1. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?解析:把这项工程的工作量看作单位“1”。

甲的工作效率为,乙的工作效率为。

两人合作4天的工作量为。

剩下的工作量为。

乙单独完成剩下部分需要的时间为天。

2. 某工程队承建一项工程,要用12天完成。

如果只让其中的甲、乙两个小队交换一下工作内容,那么全工程就要推迟3天完成;如果让其中甲、乙两个小队交换一下工作内容的同时,也让丙、丁两个小队交换工作内容,仍然可以按期完成全工程。

如果只让丙、丁两个小队交换工作内容,那么可以使全工程提前几天完成?解析:设甲、乙、丙、丁的工作效率分别为、、、。

正常情况下工作效率为。

甲、乙交换工作内容后,工作效率为。

两式相减可得,即(这里说明甲、乙交换工作内容后效率降低了)。

当甲、乙交换且丙、丁交换时能按期完成,说明丙、丁交换后弥补了甲、乙交换带来的效率降低。

设丙、丁交换工作内容后,全工程需要天完成,则,因为且,所以丙、丁交换工作内容后效率提高了。

如果只让丙、丁交换工作内容,工作效率变为,所以需要10天完成,提前天。

三、销售问题1. 某商品的进价为200元,标价为300元,折价销售时的利润率为5%,求此商品是按几折销售的?解析:设此商品是按折销售的。

初一数学重难点应用题专题(附答案)家长可下载打印

初一数学重难点应用题专题(附答案)家长可下载打印

一元一次方程与分段计费问题,市场销售问题初一数学重难点题型:分段计费应用专题1.(2012•淮安)某省公布的居民用电阶梯电价听证方案如下:第一档电量第二档电量第三档电量月用电量210度以下,每度价格0.52元月用电量210度至350度,每度比第一档提价0.05元月用电量350度以上,每度比第一档提价0.30元例:若某户月用电量400度,则需交电费为210×0.52+(350﹣210)×(0.52+0.05)+(400﹣350)×(0.52+0.30)=230(元)(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量;(2)以此方案请你回答:若小华家某月的电费为a元,则小华家该月用电量属于第几档?2.某市为更有效地利用水资源,制定了居民用水收费标准:如果一户每月用水量不超过15立方米,每立方米按1.8元收费;如果超过15立方米,超过部分按每立方米2.3元收费,其余仍按每立方米1.8元计算.另外,每立方米加收污水处理费1元.若某户一月份共支付水费58.5元,求该户一月份用水量?3.供电公司分时电价执行时段分为平、谷两个时段,平段为8:00~22:00,14小时,谷段为22:00~次日8:00,10小时.平段用电价格在原销售电价基础上每千瓦时上浮0.03元,谷段电价在原销售电价基础上每千瓦时下浮0.25元,小明家5月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费42.73元.(1)问小明该月支付的平段、谷段电价每千瓦时各为多少元?(2)如不使用分时电价结算,5月份小明家将多支付电费多少元?4.水源透支令人担忧,节约用水迫在眉睫,针对居民用水浪费现象,某城市制定了居民每月每户用水标准8m3,超标部分加价收费,某户居民连续两个月的用水和水费分别是12m3,22元;10m3,16.2元,试求该市居民标准内用水每立方米收费是多少?超标部分每立方米收费是多少?5.为庆祝第29届北京奥运圣火在泉州站传递,甲、乙两校联合准备文艺汇演.甲、乙两校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装(一人买一套)参加演出,下面是服装厂给出的演出服装的价格表:购买服装的套数1套至45套46套至90套91套及以上每套服装的价格60元50元40元如果两所学校分别单独购买服装,一共应付5000元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两校各有多少学生准备参加演出?(3)如果甲校有9名同学抽调去参加迎奥运书法比赛不能参加演出,那么你有几种购买方案,通过比较,你该如何购买服装才能最省钱?6..公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?7..某商场在促销期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额后,还可按如下方案获得相应金额的奖券:消费金额a(元)200≤a<400 400≤a<500 500≤a<700 700≤a<900 …获奖券金额(元)30 60 100 130 …根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:400×(1﹣80%)+30=110(元).购买商品得到的优惠率=购买商品获得的优惠额÷商品的标价.试问:(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到的优惠率?8. “水是生命之源”,某市自来水公司为鼓励企业节结用水,按以下规定收取水费:若每户每月用水不超过40吨,则每吨水按1元收费,若每户用水超过40吨,则超过部分按每吨1.5元收费.另外,每吨用水加收0.2元的城市污水处理费.自来水公司收费处规定用户每两个月交一次用水费用(注:用水费用=水费+城市污水处理费).某企业每月用水都超过40吨,已知今年三、四两个月一共交水费640元,问:(1)该企业三、四两个月共用水多少吨?(2)这两个月平均用水费用每吨多少元?9.某市居民生活用电基本价格为每度0.40元,若每月用电量超过a度,超过部分按基本电价的70%收费.(1)某户5月份用电84度,共交电费30.72元,求a的值.(2)若该户6月份的电费平均每度为0.36元,求6月份共用电多少度应该交电费多少元?10..赣州市出租车收费标准是起步价为5元,3千米后的价格为1.5元/千米,不足1千米的以1千米计算.(1)若行驶x千米(x>3),试用式子表示应收多少的车费?(2)我乘坐出租车行驶5.8千米,应付多少元?(3)如果我付12.5元,那么出租车行驶了大约多少路程?11..阅读以下材料:滨江市区内的出租车从2004年“5•1”节后开始调整价格.“5•1”前的价格是:起步价3元,行驶2千米后,每增加1千米加收1.4元,不足1千米的按1千米计算.如顾客乘车2.5千米,需付款3+1.4=4.4元;“5•1”后的价格是:起步价2元,行驶1.4千米后,每增加600米加收1元,不足600米的按600米计算,如顾客乘车2.5千米,需付款2+1+1=4元.(1)以上材料,填写下表:顾客乘车路程(单位:千米)1 1.5 2.5 3.5需支付的金额(单位:元)“5.1”前 4.4“5.1”后 4(2)小方从家里坐出租车到A地郊游,“5•1”前需10元钱,“5•1”后仍需10元钱,那么小方的家距A地路程大约_________.(从下列四个答案中选取,填入序号)①5.5千米②6.1千米③6.7千米④7.3千米.12..《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过1600元的部分不纳税,超过1600元的部分为全月纳税所得税,此项税款按小表分段累计计算:若某人1月份应交纳此项税款为115元,则他的当月工资、薪金为多少?全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%超过5000元至20000元的部分20%……13..某城市按以下规定收取每月的水费:用水量如果不超过6吨,按每吨1.2元收费;如果超过6吨,未超过的部分仍按每吨1.2元收取,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.4元,那么该用户5月份应交水费多少元?14..为了合理利用电力资源,缓解用电紧张状况,某市电力部门出台了使用“峰谷电”的政策及收费标准(见下表).已知王老师家4月份使用“峰谷电”95千瓦时,缴电费43.40元,问王老师家4月份“峰电”和“谷电”各用了多少千瓦时?用电时间段收费标准峰电08:00~22:00 0.56元/度谷电22:00~08:00 0.28元/度15.小王去新华书店买书,书店规定花20元办优惠卡后购书可享受8.5折优惠.小王办卡后购买了一些书,购书优惠后的价格加上办卡费用比这些书的原价还少了10元钱,问小王购买这些书的原价是多少?16..2006年“五•一”节,小华、小颖、小明相约到“心连心”超市调查“农夫山泉”矿泉水的日销售情况.下图是调查后三位同学进行交流的情景.请你根据上述对话,解答下列问题:(1)该超市的每瓶“农夫山泉”矿泉水的标价为多少元;(2)该超市今天销售了多少瓶“农夫山泉”矿泉水.(温馨提示:利润=售价﹣进价,利润率=利润÷进价×100%)17..某小店老板从面包厂购进面包的价格是每个0.6元,按每个面包1.0元的价格出售,卖不完的以每个0.2元于当天返还厂家,在一个月(30天)里,小店有20天平均每天卖出面包80个,其余10天平均每天卖出面包50个,这样小店老板获纯利600元,如果小店老板每天从面包厂购进相同数量的面包,求这个数量是多少?18..甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?19..某企业生产一种产品,每件成本为400元,销售价为510元,本季度销售了m件,为进一步扩大市场,该企业决定在降低销售价的同时降低成本,经过市场调研,预测下季度这种产品每件销售价降低4%,销售将提高10%,要使销售利润(销售利润=销售价﹣成本价)保持不变,该产品每件的成本价应降低多少元?20..某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?(提示:商品售价=商品进价+商品利润)求:(1)每件服装的标价是多少元?(2)为保证不亏本,最多能打几折?22.某商店销售一种衬衫,四月份的营业额为5000元.为了扩大销售,在五月份将每件衬衫按原价的8折销售,销售比在四月份增加了40件,营业额比四月份增加了600元.求四月份每件衬衫的售价.23..在商品市场经常可以听到小贩的叫卖声和顾客的讨价还价声:“10元一个的玩具赛车打八折,快来买哪!”“能不能再便宜2元”如果小贩真的让利(便宜)2元卖了,他还能获利20%,根据下列公式求一个玩具赛车进价是多少?(公式=进价×利润率=销售价×打折数﹣让利数﹣进价)24.某商场因换季,将一品牌服装打折销售,每件服装如果按标价的六折出售将亏10元,而按标价的七五折出售将赚50元,问:(1)每件服装的标价是多少元?(2)每件服装的成本是多少元?(3)为保证不亏本,最多能打几折?25..某电器销售商为促销产品,将某种电器打折销售,如果按标价的六折出售,每件将亏本36元;如果按标价的八折出售,每件将盈利52元,问:(1)这种电器每件的标价是多少元?(2)为保证盈利不低于10%,最多能打几折?26.某商店到苹果产地去收购苹果,收购价为每千克1.2元,从产地到商店的距离是400km,运费为每吨货物每运1km收1.50元,如果在运输及销售过程中的损耗为10%,商店要想获得其成本的25%的利润,零售价应是每千克多少元?27..某商场按定价销售某产品,每件可获利润45元.现在按定价的85%出售8件该产品所获得的利润,与按定价每件减价35元出售12件所获利润一样.那么,该产品每件定价多少元?〔销售利润=(销售单价﹣进货单价)×销售数量〕解:设这一商品,每件定价x元.(1)该商品的进货单价为_________元;(2)定价的85%出售时销售单价是_________元,出售8件该产品所能获得的利润是_________元;(3)按定价每件减价35元出售时销售单价是_________元,出售12件该产品所获利润是_________元;(4)现在列方程解应用题.28..某厂生产一种零件,每个成本为40元,销售单价为60元.该厂为鼓励客户购买这种零件,决定当一次购买零件数超过100个时,每多购买一个,全部零件的销售单价均降低0.02元,但不能低于51元.(3)当客户一次购买500个零件时,该厂获得的利润是多少?(利润=售价﹣成本)29.利民商店购进一批电蚊香,原计划每袋按进价加价40%标价出售.但是,按这种标价卖出这批电蚊香的90%时,夏季即将过去.为加快资金周转,商店以打7折(即按标价的70%)的优惠价,把剩余电蚊香全部卖出. (1)剩余的电蚊香以打7折的优惠价卖出,这部分是亏损还是盈利请说明理由.(2)按规定,不论按什么价格出售,卖完这批电蚊香必须交税费300元(税费与购进蚊香用的钱一起作为成本),若实际所得纯利润比原计划的纯利润少了15%.问利民商店买进这批电蚊香用了多少参考答案与试题解析一.解答题(共30小题) 1.(2012•淮安)某省公布的居民用电阶梯电价听证方案如下: 第一档电量 第二档电量 第三档电量 月用电量210度以下,每度价格0.52元 月用电量210度至350度,每度比第一档提价0.05元 月用电量350度以上,每度比第一档提价0.30元例:若某户月用电量400度,则需交电费为210×0.52+(350﹣210)×(0.52+0.05)+(400﹣350)×(0.52+0.30)=230(元)(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量; (2)以此方案请你回答:若小华家某月的电费为a 元,则小华家该月用电量属于第几档?考点: 一元一次方程的应用;分段函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、二次函数型 例 4. (河北省)研究所对某种新型产品的产销情况进行了研究,为了投资商在甲、乙两
地生产并销售该产品提供了如下成果: 第一年的年产量为 x(吨) 时,所需的全部费用 y(万 元)与 x 满足关系式 y 1 x 2 5x 90 ,投入市场后当年能全部售出,且在甲、乙两地每
10
吨的售价 P甲 、 P乙 (万元)均与 x 满足一次函数关系。 (注:年利润 =年销售额 -全部费用)
1 x 2 14x 万元, 20
W甲
3 x 2 9x 90 。
20
( 2)在乙地生产并销售时,年利润
W乙
1 x 2 nx ( 1 x 2 5x 90)
10
10
1 x 2 ( n 5) x 90 5
4
1 ( 90) ( n 5) 2

5
35,
4
1
5
解得 n=15 或 -5。
经检验, n=-5 不合题意,舍去,所以 n=15 。
( 1)成果表明,在甲地生产并销售 x 吨时, P甲
1 x 14 ,请你用含 x 的代数式表 20
示甲地当年的年销售额,并求年利润 W甲 (万元)与 x 之间的函数关系式;
( 2)成果表明,在乙地生产并销售 x 吨时, P乙 年的最大年利润为 35 万元。试确定 n 的值;
1 x n ( n 为常数),且在乙地当 10
(1) 共有几种符合题意的购票方案 ?写出解答过程; (2) 根据计算判断:哪种购票方案更省钱 ? 解: (1)根据题意,得
x 15 x 2
600x 120(15 x ) 5000 解得 5 x 20
3 所以满足条件的 x 为 5 或 6。 所以共有两种购票方案: 方案一: A 种票 5 张, B 种票 10 张。 方案二: A 种票 6 张, B 种票 9 张。 ( 2)方案一购票费用为
①顺水速度=静水速度+水速
②逆水速度=静水速度-水速
顺水速度-逆水速度= 2×水速
( 7)比例类应用题:若甲、乙的比为 2: 3,可设甲为 2x,乙为 3x。
( 8)数字类应用题基本关系:若一个三位数,百位数字为 为 c,则这三位数为: 100a 10 b c 。
a,十位数字为 b,个位数字
( 9)浓度类问题: 溶质=溶液×浓度 ( 浓度
x 41 解得
y 32
答:略 ( 2)由 3( 4 41 5 32) 972 1000 知,即使工厂满负荷全面转产,也不能如期完成
任务.
可以从加班生产、 改进技术等方面进一步挖掘生产潜力, 尽早完成生产任务,为灾区人民多做贡献.
或动员其他厂家支援等, 想法
二、不等式型 例 2、(青岛市 )2008 年 8 月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆
3 条童装生产线,一天可生产帐篷 178 顶.
(1) 每条成衣生产线和童装生产线每天生产帐篷各多少顶
?
(2) 工厂满负荷全面转产,是否可以如期完成任务 ?如果你是厂长,你会怎样体现你的社
会责任感?
解: (1)设每条成衣生产线和童装生产线平均每天生产帐篷
x、y 顶,则
x 2y 105 2x 3y 178
y 500x 400(16 x) 300(15 x) 600(x 3) 400x 9100. 因为 x 3 0 且 15 x 0 , 即3 x 5。 又 y 随 x 增大而增大, 所以当 x=3 时,能使运这批挖掘机的总费用最省。 运送方案是 A 地的挖掘机运往甲地 3 台,运往乙地 13 台; B 地的挖掘地运往甲地 12 台,运往乙地 0 台。
x 800
, 解得
2x y 2450
y 850
答:略 ( 2)设租用甲型汽车 z 辆,由题意,得
16z 18( 6 z) 100 800z 850(6 z) 5000
解得 2 z 4。
因为 z 是整数,所以 z=2 或 3 或 4. 所以共有 3 种方案,分别是 方案一:租用甲型汽车 2 辆,租用乙型汽车 4 辆; 方案二:租用甲型汽车 3 辆,租用乙型汽车 3 辆; 方案三:租用甲型汽车 4 辆,租用乙型汽车 2 辆. 三个方案的费用依次为 5000 元, 4950 元, 4900 元,所用最低费用为
(1)求 y 与 x 的函数关系式及自变量 x 的取值范围;
( 1)等积类应用题的基本关系式:变形前的体积(容积)=变形后的体积(容积)

( 2)调配类应用题的特点是:调配前的数量关系,调配后又有一种新的数量关系。
( 3)利息类应用题的基本关系式:本金×利率=利息,本金+利息=本息。
( 4)商品利润率问题:商品的利润率
商品利润 ,商品利润=商品售价-商品进价。
4900 元.答:略.
八、不等式与函数结合型
例 8、 (武汉市 )某商品的进价为每件 30 元,现在的售价为每件 40 元,每星期可卖出 150 件.市场调查反映:如果每件的售价每涨 1 元 (售价每件不能高于 45 元 ),那么每星期少卖
10 件.设每件涨价 x 元 (x 为非负整数 ),每星期的销量为 y 件.
表2 测试成绩
奥运知识



综合素质
85
60
70
75
80
60
解:( 1)甲民主得分 =100× 25% × 2=50, 乙民主得分 =100 ×30%× 2=70, 丙民主得分 =100 ×40%× 2=80。
甲三项平均成绩 = 85 75 50 70 , 3
乙三项平均成绩
60 80 70 70 , 3
丙三项平均成绩
70 60 80 70 。 3
S甲2 3.5,S乙2 2.5, S丙2 1. 5 ,
所以 S甲2 S乙2 S2丙 ,而甲、乙、丙三项考查平均成绩相同,故选择丙最合适。 如果用极差说明选丙也给分。
( 2)甲平均数 85 3 75 4 50 3 70.5 , 343
乙平均数 60 3 80 4 70 3 71 , 343
溶质 ,溶液
溶液
溶质 ),溶液=溶质+溶剂。
浓度
【题型汇总】
一、方程型
例 1、(长沙市 )“ 5·12”汶川大地震后,灾区急需大量帐篷.某服装厂原有
4 条成衣生
产线和 5 条童装生产线,工厂决定转产,计划用 3 天时间赶制 1000 顶帐篷支援灾区.若启
用 1 条成衣生产线和 2 条童装生产线, 一天可以生产帐篷 105 顶;若启用 2 条成衣生产线和
初中数学应用题复习专题
〖知识点〗
列出方程 ( 组 ) 解应用题的一般步骤是:
(1) 弄清题意和题目中的已知数、未知数,用字母表示题目中的一个
( 或几个 ) 未知数 ;
(2) 找出能够表示应用题全部含义的一个 ( 或几个 ) 相等关系 ;
(3) 根据找出的相等关系列出需要的代数式,从而列出方程
( 或方程组 );
质测试,测试成绩 (百分制 )如表 2;之后在 100 人中对三人进行了民主推选,要求每人只推
选 1 人,不准弃权,最后统计三人的得票率如图
1,一票得 2 分.
(1) 请计算甲、乙、丙三人各自关于奥运知识,综合素质,民主推选三项考查得分的平 均成绩,并参考 1000 米测试成绩的稳定性确定谁最合适.
商品进价
( 5)工程类应用题中的工作量并不是具体数量,因而常常把工作总量看作整体 中,工作效率=工作总量÷工作时间。
1,其
( 6)行程类应用题基本关系:路程=速度×时间。
相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程。
追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离。
(1) 求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元
?
(2) 若荣昌公司计划此次租车费用不超过 5000 元,通过计算求出该公司有几种租车方案 ?
请你设计出来,并求出最低的租车费用.
解: (1)设租用一辆甲型汽车的费用是 x 元,租用一辆乙型汽车的费用是 y 元,由题意,

x 2y 2500
(4) 解这个方程 ( 或方程组 ) ,求出未知数的值 ;
(5) 写出答案 ( 包括单位名称 ) .
〖考查重点与常见题型〗 考查列方程 (组)解应用题的能力, 其中重点是列一元二次方程或列分式方程解应用题,
习题以工程问题、行程问题为主,近几年出现了一些经济问题,应引起注意
应用题的类型和每个类型所用到的基本数量关系:
船比赛的船票分为两种: A 种船票 600 元/张, B 种船票 120 元/张. 某旅行社要为一个旅 行团代购部分船票,在购票费不超过 5000 元的情况下,购买 A 、B 两种船票共 15 张,要求 A 种船票的数量不少于 B 种船票数量的一半. 若设购买 A 种船票 x 张,请你解答下列问题:
600 5 120 10 4200( 元
方案二购票费用为
600 6 120 9 4680( 元)
所以方案一更省钱.
三、一次函数型
例 3、 (乌鲁木齐市 )某公司在 A 、 B 两地分别库存挖掘机 16 台和 12 台,现在运往甲、 乙两地支援建设,其中甲地需要 15 台,乙地需要 13 台.从 A 地运一台到甲、乙两地的费
(2)如果对奥运知识,综合素质、民主推选分别赋予
3,4, 3 的权,请计算每人三项考
查的平均成绩,并参考 1000 米测试的平均成绩确定谁最合适.
表1
侯选人 1000 米测试成绩(秒)平均数
甲 185 188 189 190 188
乙 190 186 187 189 188
丙 187 188 187 190 188 测试项目
丙平均数 70 3 60 4 80 3 69 。 343
所以乙平均数 >甲平均数 >丙平均数,而三人的平均测试成绩相同,所以选择乙最合适。
相关文档
最新文档