《电路分析基础》(第3版)[俎云霄][电子课件]§1-9 电源的等效变换

合集下载

《电路分析基础》(第3版)[俎云霄][电子课件]§1-8 电阻的等效变换 输入电阻

《电路分析基础》(第3版)[俎云霄][电子课件]§1-8 电阻的等效变换 输入电阻

解:i u 2i RL u
Ri i RL
u i
RL
i A+
u
RL
B-
2i
结论:对于不含独立源但含有受控源的单口网络可 以等效为一个电阻,而且等效电阻还可能为负值。
返回
X
R3 R1
i1'
u12 R12
u31 R31
i
' 2
u23 R23
u12 R12
i
' 3
u31 R31
u23 R23
若 i1 i1'
i2
i
' 2
i3
i
' 3
则T、Π网络等效,对应系数相等,故得:
X
2.电阻元件的等效变换
T Π
ΠT
R12
R1
R2
R1 R2 R3
R1
R12
R12 R31 R23
R31
§1-8 电阻的等效变换 输入电阻
北京邮电大学电子工程学院
电阻元件的等效变换 输入电阻
X
1.等效的概念
由非时变线性无源元件、线性受控源和独立源组
成的电路称为非时变线性电路,简称线性电路。
如果组成线性电路的无源元件均为线性电阻,则称
为线性电阻电路,简称电阻电路。电阻电路包含有
结论:n个电阻串联时,等效电阻消耗的功率等于
每个串联电阻消耗的功率之和。
X
2.电阻元件的等效变换
2.3 并联
i
i
+
i1 i2
in
+
u
G1 G2
Gn
u
Geq
-
-
n个电阻并联的等效电导为:Geq G1 G2 Gn

电路分析基础第一章(李瀚荪)ppt课件

电路分析基础第一章(李瀚荪)ppt课件

10V
5
-
U=?
5
+
-
+ 4V + 3A
2
U =? I
-
-
2I2
5. I1
I =?
+
10 1A
Байду номын сангаас
解 10I1 10 (10) 0 I1 2A
+
10V
-
-10V
I I1 1 2 1 3A
-
解 I 10 3 7 A 6.
4 U 2I 0
10A
U 2 I 4 14 4 10V
1.1 电路和电路模型(model)
1. 集总电路
由电阻、电容、电感等集总参 数元件组成的电路
实际元件与集总元件关系
1 0 B A S E - T w a ll p la te
2. 电路模型 (circuit model)
开关 灯泡
电 池
导线
电路图
Rs
RL
Us
电路模型
反映实际电路部件的主要电磁
性质的理想电路元件及其组合。
(4) KCL、KVL只适用于集总参数的电路。
编辑版pppt
35
思考:

I =0
1.
2.
+ 3 _
B
1 1
1 1
+1
i1
_2 1
? UA =UB
A
3.
+ _3
i1
1
1
1
1
B +1
i2
_2 1
? i1=i2
i1=800mA
A
i2 =1A
1。 3A

概论-电路分析基础ppt

概论-电路分析基础ppt
在规定的参考方向下,电流
为正值时,其实际方向与其
参考方向相同,否则相反。
20

电压的定义及其参考方向
dW
u
dq
实际方向:电位降低的方向。
电压的参考方向:
假设的电压降的方向。电压的参考方向也可以随意规定。
21

电压参考方向的表示
➢ 箭头
➢ +-号
➢ 双下标 Uab=-Uba
( Uab , a参考极性为+,b
参数元件构成。

分布参数电路
--当实际电路部件和电路的各向尺寸远大于电路最高工作频
率所对应的波长时,必须考虑分布参数。
14
1-1 电路与电路模型

理想电路元件(元件模型)
当实际电路的尺寸远小于最高工作频率所对应的波长时,可以
定义出几种“集总参数元件”(Lumped Parameter elements),
KCL的另一种描述:任意瞬时,流入某节点的电流之和等于流出电流之和。
27
KCL示例
注意:首先需规定各支路电流的参考方向,
可规定流入节点为— ,流出为+ 。
节点① :
i1 (t ) i6 (t ) i4 (t ) 0
节点⑤ :
i3 (t ) i6 (t ) i7 (t ) 0
采用关联参考方向 / 一致参考方向更为方便,也更为常
18


电流的定义及其参考方向
电流的实际方向:正电荷运动的方向。
参考方向:
假设的电流方向,参考方向可以随意规定。
为什么有了电流的实际方向还要提出参考方向呢?
19

电流参考方向的表示
➢箭头

《电路分析基础(第三版)》(沈元隆 刘栋 编著) 第1章

《电路分析基础(第三版)》(沈元隆 刘栋 编著) 第1章

u
i
注意:
u
i
u与 i 非关联时 ,欧姆定理应改写为
u Ri
i G u
例4 分别求下图中的电压V或电流I。
3A 2 Ω + u
解:关联
-
I 2Ω + -6v
非关联
-
U RI 2 3 6V
Hale Waihona Puke I U / R 6 3A 2
瞬时功率:
u 2 p u i i R0 R
(2)R=10 Ω
Is= 1A + u R
(3) R=100 Ω
U IS R 1 V U IS R 10 V U IS R 100 V
-
电流源上电压由外电路确定。
1-3-3 受控电源
可对外提供能量,输出电压或电 流受电路中其他支路的电压或电流控 制,是四端元件。
VCR即欧姆定律: 单位:欧姆(Ω ) 也称线性电阻元件的约束关系。 u确定时,R 增大,则 i 减小。
u R i
体现电阻阻碍电流的能力大小。
i u / R G u
其中,G=1/R 称为电导,单位:西门子(S)
当 R=∞(G=0)时,相当于断开,“开路”
当 G=∞(R=0)时,相当于导线,“短路”
1-2 电路分析的变量
电路变量: 描述电路工作状态或元件 工作特性的物理量。 电流 i(t) 与 电压 u(t) ; 电荷 q(t) 与 磁链 ψ (t) ; 功率 p(t) 与能量 w(t) 。 i,u为常用基本变量,p,w为复合基 本变量。
1-2-1电流及其参考方向
电荷在导体中的定向移动形成电流。 电流强度,简称电流i(t),

电路分析基础第四章(李瀚荪)ppt课件

电路分析基础第四章(李瀚荪)ppt课件
结论: 继电器触点闭合。
编辑版pppt
41
例3 10 10
20 +
15V -
解:
20 2A
+ 5V-
10 10
5 + -85V
R多大时能从电路中
R 获得最大功率,并求 此最大功率。
20 20
+ 15V
-
5V+-
5
10 10
2A
+ -85V
R
10 +
2A
5
+
R
10V -
-85V
编辑版pppt
42
10 10
例1、求 ab 端钮的等效电阻。(也叫ab端输入电阻)
I 100 a
+
Uab
10
_
50 I
b
解: Uab = 100I +10(I + 50I ) = 610I
\ R = Uab = 610W
I
编辑版pppt
30
例2、 求 ab 端钮的等效电阻。
a
I1
1.5k
1.5k 1.5k
结论
Rab =600
对电源内部则是不等效的。
例:当RL= 时,电压源的内阻 R0 中不损耗功率, 而电流源的内阻 R0 中则损耗功率。
(2) 等效变换时,两电源的参考方向要一一对应。
+
a
E
– R0
IS
b
a–
a
E
R0
+ R0
IS
b
b
a R0
b
(3) 理想电压源与理想电流源之间无等效关系。
(4) 任何一个电动势 E 和某个电阻 R 串联的电路,

电路分析基础 李瀚荪版 配套课件 第三章

电路分析基础 李瀚荪版 配套课件  第三章
rtutritp22一求电阻功率一求电阻功率36v36v9a9a1212ww66ww8a8a1a1a1iups电压源吸收功率2siup电流源提供功率电流源p电压源p总p提供功率二求电源功率二求电源功率1只含独立源对只含独立源的电阻电路本例中对只含独立源的电阻电路本例中同时含有电压源和电流源叠加方法可用于求解电源对电路提供的总叠加方法可用于求解电源对电路提供的总同时含有电压源和电流源功率即每个独立源各自提供的功率的叠加功率即每个独立源各自提供的功率的叠加
例5:在图中所示电路中,(1)若us=1V,计算u和i; (2)若us=10V,计算u和i;(3)若图中每个1Ω电阻换 为10Ω电阻,us为10V,计算u和i 。
i2
i1
i
§ 叠加原理
一、叠加原理:
在任何由线性电阻、线性受控源及独立源组成 的电路中,每一元件的电流或电压可以看成是 每一个独立源单独作用时,在该元件上产生的 电流或电压的代数和。当某一独立源单独作用 时,其他独立源为零值,即独立电压源短路, 独立电流源开路。
策动点电导Gi 策动点电阻Ri
转移电导GT 转移电阻RT 转移电流比Hi 转移电压比Hu
例 :求电阻RL的电压UL。
R1
R3
++
Us –
U¢ -
R2
R4
R5
IL
+
RL UL –
例 :求各支路电流和电压。
例 :电桥电路如图,若输出电压为uo,求转 移电压比Hu= uo us。
例 :求转移电压比Hu= uo us。
例 :求图中电压u。
6W
+
+
10V
4W u
4A


例 :求图中电压U。

《电路分析基础(第三版)

《电路分析基础(第三版)

三相电源的表示方法
三相电源可以用相电压、线电压和相量来表 示。相电压是指各相与中性点之间的电压, 线电压是指任意两相之间的电压。相量是一 种复数表示方法,可以方便地表示三相电压 和电流。
三相负载
三相负载的分类
三相负载可以分为三相平衡负载和三相不平衡负载。 三相平衡负载是指三相的阻抗相等,如三相电阻炉; 三相不平衡负载是指三相的阻抗不等,如电动机。
基尔霍夫定律
总结词
基尔霍夫定律是电路分析的基本定律之一,包括基尔霍夫电流定律和基尔霍夫电压定律。
详细描述
基尔霍夫电流定律指出,对于任意一个封闭的电路,流入节点的电流之和等于流出节点的电流之和;基尔霍夫电 压定律指出,对于任意一个封闭的电路,绕行一周的总电压降为零。这两个定律是分析电路的基本依据,可以解 决各种复杂的电路问题。
详细描述
电压源能够在其两端维持一个恒定的电压值,而与流过它的电流无关。电流源则能够在其输出端维持 一个恒定的电流值,而与其两端的电压无关。这两种电源模型在电路分析和设计中具有重要应用。
04
电容与电感
电容元件
01
02
03
04
电容元件
是容纳电荷的元件,其基本特 性是隔直流通交Байду номын сангаас。
电容的种类
包括固定电容、可变电容和电 解电容等。
重要概念
初始值、稳态值、时间常数等。
二阶电路的暂态分析
二阶电路
由两个储能元件(一个电感和一个电容)和一个电阻组成的电路。
分析方法
采用二阶微分方程描述二阶电路的暂态过程,通过求解微分方程得 到电路中各元件的电压和电流。
重要概念
固有频率、阻尼比等。
08
磁路与变压器

《电路分析基础》(第3版)[俎云霄][电子课件]§1-6 电流源

《电路分析基础》(第3版)[俎云霄][电子课件]§1-6 电流源
注意 理想电流源不能开路!
返回
X
2.非理想电流源(实际电流源模型)
理想电流源是由实际电流源抽象而来的理想化模
型。实际电流源可以看作是理想电流源 is和一个电
导Gs或电阻 Rs的并联组合。
i
输出特性: 开路电压:
i
uoc
is uGs
= is = Gs
Rs
is Rs
=
1 Gs
短路电流:isc is
§1-6 电流源
北京邮电大学电子工程学院
退出 开始
内容提要
理想电流源 非理想电流源
X
1.理想电流源
1.1 基本性质:(1)供出的电流是定值或是固定的时
间函数,与其两端的电压无关;(2)电流源两端
的电压由与之相连接的外电路决定。
1.2 伏安特性 is
u
u
o
Is
i
is可以是直流信号 (Is,) 也可以是交变信号。
is
u uo c
+
Gs u
-
uGs
is
O
isc i
X
例题1
求图(a)所示电路中的电流
图(b)中的电压uຫໍສະໝຸດ 和 u。2i1、i2和
及i
i
3
i1
i2
2V 3 1A
+ u1 -
2V
1A + u2 -
(a)
(b)
解:
(a)i1
2 3
A
i2
1A
21 i i1 i2 3 1 3 0.33A
(b)u1 31 3V u2 2 u1 2 ( 3) 5V
返回
X

电路分析基础 (俎云霄等 著) 电子工业出版社 课后答案

电路分析基础 (俎云霄等 著) 电子工业出版社 课后答案
点火开关 30A保险丝 1 2 R1 R2 R3 R4
12V
3 转换开关 4 风扇电动机
题图 1-44
解:令开关分别置于 1、2、3、4 时通过风扇电动机的电流分别为 i1 、 i2 、 i3 和 i4 。则有
同理
i2 3i1
ww
8 R1 i 1 1 R2 i 1 解上述方程得: R 3 3 5i1 R 12 100 4 5i1
kh
i1 i2
u2 u1
10V
10V
da
6A
题图 1-4
1-6 求题图 1-4 所示部分电路中的电流 i1 和 i2 。

后 答
对于元件 B, PB ui 5 (2 10 ) 0.01W
6V
题图 1-6
w.
案 网
co

1-5 已知在题图 1-3 所示电压、电流参考方向下,元件 A 的电压、电流分别为 u 3V , i 5A ,元件 B 的电压、电流分别为 u 5V , i 2mA ,试求两元件吸收的功率。
w.
im1 2 A i 1.4 A m2 im3 1.8 A ,所以,受控源吸收功率为 2 ui 2.08W u 5.2V i 0.2 A
案 网
co
im1 2 A im 2 im 3 2i ,可解得 列写网孔电流方程 2im1 2im 2 4 u ,补充条件 im3 im1 i i 4i u m3 m1
G11un1 G21un1 G u 31 n1 G21un 2
da
题图 2-8+ 2u后 答1课
w.
G22un 2 G32un 2

电路分析基础第三章(李瀚荪)ppt课件

电路分析基础第三章(李瀚荪)ppt课件

US US US 5V 2.5V 7.5V
编辑版pppt
9
例2 求电压Us 。
I1 6
+ 10 I1 –
+ 10V

+
4
Us 4A

解: (1) 10V电压源单独作用:
I1' 6
+ 10 I1'–
+
10V –
+
+
4 U1' Us'


(2) 4A电流源单独作用:
I1'' 6
+10 I1''–
编辑版pppt
7
例1:电路如图,已知 E =10V、IS=1A ,R1=10 ,
R2= R3= 5 ,试用叠加原理求流过 R2的电流 I2和理
想电流源 IS 两端的电压 US。
R2
R2
R2
+
I2
++
I2'
+
E –
R1
R3 IS
–US –
R1
R3
US'

I2
R1
R3
IS
+ U– S
(a)
解:由图( b)
+ RL UL

iL
ห้องสมุดไป่ตู้
R2
us
R2
R3
RL
R1
R2 (R3 RL ) R2 R3 RL
R2us
R2 R3
R
2
R

L
R1
R
2
R1
R

3

电路分析基础第三版 课后答案 俎云霄 (2)

电路分析基础第三版 课后答案 俎云霄 (2)

电路分析基础第三版课后答案俎云霄第一章1.1题解答:根据题目给出的电压和电流值,我们可以使用基尔霍夫定律进行求解。

根据基尔霍夫定律,我们可以得到以下两个方程:方程1: V1 = i1 * R1方程2: V1 + V2 + V3 = 0将方程1代入方程2中,我们可以得到以下方程:i1 * R1 + V2 + V3 = 0根据题目给出的电压和电流值,带入以上方程中可以得到:10 * 5 + V2 + V3 = 0解方程得到:V2 + V3 = -50所以,电压V2 + V3的值为-50V。

1.2题解答:根据题目给出的电压和电流值,我们可以使用欧姆定律进行求解。

根据欧姆定律,我们可以得到以下方程:V1 = i1 * R1将题目给出的电压和电流值代入以上方程中,可以得到:5 = i1 * 100解方程得到:i1 = 0.05A所以,电流i1的值为0.05A。

1.3题解答:根据题目给出的电阻值和电流值,我们可以使用欧姆定律进行求解。

根据欧姆定律,我们可以得到以下方程:V1 = I * R将题目给出的电阻值和电流值代入以上方程中,可以得到:12 = I * 6解方程得到:I = 2A所以,电流I的值为2A。

1.4题解答:根据题目给出的电压和电流值,我们可以使用欧姆定律进行求解。

根据欧姆定律,我们可以得到以下方程:V = I * R将题目给出的电压和电流值代入以上方程中,可以得到:20 = I * 4解方程得到:I = 5A所以,电流I的值为5A。

第二章2.1题解答:根据题目给出的电压和电流值,我们可以使用基尔霍夫定律进行求解。

根据基尔霍夫定律,我们可以得到以下两个方程:方程1: V1 + V2 - V3 = 0方程2: I1 + I2 - I3 = 0根据题目给出的电压和电流值,带入以上方程中可以得到:10 + V2 - V3 = 0I1 + 4 - I3 = 0解方程得到:V2 = V3 - 10I1 = I3 - 4所以,电压V2可表示为V3 - 10,电流I1可表示为I3 - 4。

《电源的等效变换》课件

《电源的等效变换》课件

变换原则
变换前后,电源的功率应 相等。
Y-Δ等效变换的计算方法
01
计算步骤
注意事项
02
03
计算实例
首先找出Y形和Δ形网络中对应元 件的数值关系,然后根据这些关 系计算出新的元件数值。
在变换过程中,应保持电路的结 构不变,即支路电流和支路电压 的数值和方向均应保持不变。
以实际电路为例,详细介绍如何 进行Y-Δ等效变换的计算。
实例三
一个电路中有两个电源,一个为10V的直流电源,另一个为5A的直流 电源,求总电压和总电流。
03
电源的Y-Δ等效变换
Y-Δ等效变换的基本原理
01
02
03
定义
将一个Y形网络变换为Δ形 网络,或反之,以便简化 电路的分析和计算。 Nhomakorabea前提条件
变换前后电路的伏安关系 应保持不变,即对外电路 来说,变换前后的电压和 电流应分别相等。
02
电源的串并联等效变换
电源串联等效变换
串联等效变换的概念
当多个电源串联时,总电压等于各电源电压之和,总电流等于各 电源电流之和。
串联等效变换的公式
总电压 (V_{total} = V_1 + V_2 + ... + V_n),总电流 (I_{total} = I_1 + I_2 + ... + I_n)。
电源等效变换的应用场景
在电子工程中,电源的等效变换广泛应用于电路的分析和设计中。例如 ,在模拟电路、数字电路、电力电子等领域中,都需要用到电源的等效 变换。
在电力工程中,电源的等效变换可以帮助我们更好地理解电力系统的运 行原理,提高电力系统的稳定性。
在实际生活中,电源的等效变换也广泛应用于各种电子设备和电器的设 计和优化中。例如,在电视、电脑、手机等各种电子设备中,都需要用 到电源的等效变换来提高设备的性能和稳定性。

《电源等效变换》课件

《电源等效变换》课件

03 电源等效变换的方法与技 巧
电源等效变换的步骤
01
ห้องสมุดไป่ตู้
02
03
04
05
确定原始电路
列出原始电路的 电压和电…
进行电源等效变 换
重新列写电压和 电流关系
化简电路
首先明确原始电路的结构 和参数,包括电源、电阻 、电容、电感等元件及其 连接方式。
根据电路结构和参数,列 出原始电路的电压和电流 方程,以便后续分析。
自动控制系统
在自动控制系统中,电源等效变换 可用于模拟不同阻抗元件对系统性 能的影响,优化系统设计和控制效 果。
02 电源等效变换的基本原理
线性电阻电路的等效变换
总结词
线性电阻电路的等效变换是指通过改变电路中电阻的连接方 式,使得电路在输入和输出端表现出相同的电压和电流特性 。
详细描述
线性电阻电路的等效变换基于欧姆定律和基尔霍夫定律,通 过改变电阻的连接方式,使得电路在输入和输出端表现出相 同的电压和电流特性。这种变换可以简化电路的分析和设计 过程。
互感与理想变压器电路的等效变换
总结词
互感与理想变压器电路的等效变换是指将互感线圈和理想变压器转换为等效的电路元件,以便于分析 和计算。
详细描述
互感与理想变压器电路的等效变换是电路分析中的重要方法,可以将互感线圈和理想变压器转换为等 效的电路元件。这种变换可以简化电路的分析和设计过程,并且有助于理解电路的工作原理。互感与 理想变压器电路的等效变换需要考虑磁场耦合和电压、电流的比例关系等因素。
根据需要,将电路中的电 源进行等效变换,如串并 联电阻、电容、电感等元 件,以简化电路。
在完成电源等效变换后, 重新列写电压和电流方程 ,确保变换的正确性。

电路分析基础完整ppt课件

电路分析基础完整ppt课件

可否短路?
恒压源特性中不变的是:__ __U_S________
恒压源特性中变化的是:_____I________
___外__电__路__的__改__变____ 会引起 I 的变化。
I 的变化可能是 _大__小____ 的变化,
或者是__方__向___ 的变化。
22.04.2020
.
24
电工基础教学部
电路的基本分析方法。
22.04.2020
.
电工基础教学部
4
目录
电工电子技术
1.1 电路元件
1.1.1 电路及电路模型
电路——电流流通的路径。
1.电路的组成和作用
电路是由若干电路元件或设备组成的,能够传输能 量、转换能量;能够采集电信号、传递和处理电信号 的有机整体。
①电路的组成:
电源 信号源
中间环节
目录
电工电子技术
②理想电流源(恒流源): RO= 时的电流源.
Ia
Uab

Is
U RL

I性
b
o
IS
特点:(1)输出电流 I 不变,即 I IS (2)输出电压U由外电路决定。
22.04.2020
.
电工基础教学部
25
目录
电工电子技术
(3)恒流源的电流 IS为 零时,恒流源视为开路。
IS=0
(4)与恒流源串联的元件对外电路而言为可视为短路。
E
+ _
R2
Is
a
R1 b
Is
a R1
b
例 设: IS=1 A
则: R=1 时, U =1 V Is R=10 时, U =10 V
I UR

电路分析基础(俎云霄主编)

电路分析基础(俎云霄主编)

《电路分析基础》(俎云霄主编)◆内容简介本书主要介绍电路的基本概念、基本定律和定理及电路的基本分析方法。

本书共包含3大部分内容——直流电阻电路、直流动态电路和正弦交流稳态电路。

直流电阻电路部分共4章,主要介绍电路的基本变量和几种基本元件,电路的基本分析方法、基本定律和定理,简单非线性电阻电路。

直流动态电路部分有2章,主要介绍电容和电感这两种动态元件,分析由动态元件构成的一阶动态电路和二阶动态电路的瞬态过程。

正弦交流稳态电路部分共6章,主要介绍正弦稳态电路、三相电路、非正弦周期稳态电路和有耦合的电感电路的分析,介绍电路的频率特性和二端口网络。

另外,本书的最后一章介绍了电路仿真软件——Multisim,给出了仿真示例。

◆目录第1章电路模型和电路元件1. 1 电路和电路模型1.2 电路变量1.3 基尔霍夫定律1.4 电阻元件1.5 电压源1.6 电流源1.7 受控源1.8 电阻的等效变换输入电阻1.9 电源的等效变换1.10 工程应用——散热风扇的速度控制本章小结习题第2章电阻电路的基本分析方法2.1 图论的初步知识2.2 支路电流法2.3 完备的独立电路变量2.4 节点电压法2.5 网孔分析法2.6 回路分析法2.7 运算放大器及其外部特性2.8 含运算放大器的电阻电路2.9 工程应用——模数和数模转换电路本章小结习题第3章电路的基本定理3.1 齐性定理3.2 叠加定理3.3 替代定理3.4 戴维南定理和诺顿定理3.5 最大功率传输定理3.6 特勒根定理3.7 互易定理3.8 对偶关系3.9 工程应用——万用表内阻的确定本章小结习题第4章简单非线性电阻电路4.1 非线性电阻电路4.2 图解法4.3 分段线性化法4.4 小信号分析法4.5 工程应用——限幅电路本章小结习题第5章一阶动态电路5.1 电容元件5.2 电感元件5.3 忆阻元件5.4 换路定则及初始值的确定5.5 一阶电路的零输入响应5.6 一阶电路的零状态响应5.7 一阶电路的全响应5.8 一阶电路的三要素法5.9 一阶电路的阶跃响应 5.10 微分电路和积分电路 5.11 工程应用——瞬态分析在数字电路中的应用本章小结习题第6章高阶动态电路6.1 二阶电路的微分方程6.2 RLC并联电路的零输入响应6.3 RLC并联电路的零状态响应和全响应6.4 RLC串联电路6.5 一般二阶电路和高阶动态电路6.6 工程应用——电火花加工电路本章小结习题第7章正弦稳态电路7.1 正弦量7.2 正弦量的相量相量法7.3 基尔霍夫定律和 R、L、C 元件VCR的相量形式 7.4 阻抗和导纳7.5 正弦稳态电路的相量分析7.6 正弦稳态电路的等效7.7 正弦稳态电路的功率7.8 复功率7.9 正弦稳态最大功率传输定理7.10 工程应用——功率因数的提高本章小结习题第8章三相电路8.1 三相电源8.2 对称三相电路的计算8.3 不对称三相电路的概念8.4 三相电路的功率8.5 工程应用——三相电源相序的确定本章小结习题第9章非正弦周期稳态电路9.1 非正弦周期信号有效值平均值 9.2 非正弦周期稳态电路的分析9.3 非正弦周期稳态电路的功率9.4 工程应用——适配器本章小结习题第10章电路的频率特性10.1 网络函数及频率特性10.2 RC电路的频率特性10.3 RLC串联电路的谐振10.4 RLC并联电路的谐振10.5 工程应用——按键式电话系统本章小结习题第11章耦合电感电路11.1互感互感电压11.2耦合电感的电压、电流关系11.3耦合电感的去耦11.4含耦合电感电路的分析11.5线性变压器电路的分析11.6全耦合变压器11.7理想变压器的VCR及其特性11.8 工程应用——全波整流电路本章小结习题第12章二端口网络12.1 二端口网络12.2 二端口网络的VCR及参数12.3 二端口网络各参数间的关系12.4 互易二端口和对称二端口12.5 二端口网络的等效电路12.6 有端接的二端口网络12.7 二端口网络的特性阻抗12.8 二端口网络的互连12.9 工程应用——双极型晶体管的等效电路本章小结习题第13章 Multisim使用指南及仿真应用13.1 一个简单的例子13.2 部分菜单栏简介13.3 工具栏简介13.4 常用仪器仪表的使用13.5 仿真示例本章小结习题附录A 特勒根定理的证明附录B 复数及其运算附录C 常见信号的傅里叶级数展开部分习题参考答案参考文献。

最新电路分析基础电路等效及电路定理复习课程精品课件

最新电路分析基础电路等效及电路定理复习课程精品课件

19
第十九页,共58页。
《电路分析基础》
第3章 电路等效及电路定理
2、从星形连接(liánjiē)变换为三角形连接
(liánjiē) R1
u12i1R1i2R2 u31i3R3i1R1
u12 u31 R12 R31
R31 R12
R3
R2
i1i2i3 0
R23
1
R3
i1R1RR 23 u1R22RR 32u3R13R1
第五页,共58页。
U
R2 R1 R2
Us
U
R2R1 R1 R2
Is
I Us
R1 R2 I
R15
R1 R2
Is
《电路分析基础》
3.1.2 叠加定理
第3章 电路等效及电路定理
1、定理:在线性电路中,任一条支路电流或电压(diànyā) 等于各个独立电源单独作用时在该支路所产生的电流或电 压(diànyā)的代数和。
为:
Ri 接于 形 i端 三 两 电 电 阻 阻 之 之 和 乘积
21
第二十一页,共58页。
《电路分析基础》
举例(jǔ lì):图示电路,求i1、i2。
第3章 电路等效及电路定理
解将: 三角形连接(liánjiē)变换为星形连接(liánjiē):
R1
R12R31 R12R23R31
5040 504010
并联:
多个电阻首端相连、末端相连,施加同一电压的连接方式。
特点:
1)所有电阻施加同一
(t2ó)ng等yī效)电(d压ěn;ɡ
N
xiGào)电导:
Gk
k 1
3)所有(suǒyǒu)电阻消耗的总
功率:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1-9 电源的等效变换
北京邮电大学电子工程学院
退出 开始
内容提要
电压源的等效变换 电流源的等效变换 实际电压源模型与实际电流源模型 的等效变换
X
1.电压源的等效变换
1.1 电压源的串联
i us1
+ +-
u
-
us2 +-
usn
+-
i
+
u
n
-
+
- us
us us1 us2 usn usi
R2 R2
2
i1
u R2
2i1
i1
u R1
i
R1
R2
2 u
2i1
R1 R2
R2
Rab
u i
R1
R1R2 R2 2
R2
i
i1 + a
R1 u
-b
(a)
i
a
i1
+
R2
R1 u
-b (b)
X
说明
当 R1 R2 2 时,Rab 0 当 R1 R2 2 时,Rab 0 (为负电阻) 该题中对图(b)不能再进行化简,因为继续化简将 使控制量 i1消失。在含有受控源的电路中一定要保留 控制量。
推论:任何元件与电压源并联,其对外电路的作用 与一个电压源的作用等效。
返回
X
2.电流源的等效变换Βιβλιοθήκη 2.1 电流源的并联i
+
u
is1
is2
i
+
isn
u
is
-
-
n
is is1 is2 isn isi
i 1
结论:n个并联的电流源可以用一个电流源等效置换
(替代),等效电流源的电流是相并联的各电流源电
X
模型的等效变换
i A
Rs
u
us
B
u us Rsi
Rs' Rs , is Russ
Rs Rs' , us Rs' is
如果
Rs Rs' us Rs' is
则二者等效
is
i +A
Rs' u
B
u i is Rs' u Rs' is Rs' i
X
例题1 将如图所示的单口 (二端)网络化为最简形式。
流的代数和。
思考:电流源能否串联?
X
2.电流源的等效变换
2.2 电流源的串联
演示
结论:电流值不同的电流源不能串联,电流值相同 且电流方向也相同的n个电流源串联时,其对外电 路的作用与一个电流源的作用等效。
推论:任何元件与电流源串联,其对外电路的作用 与一个电流源的作用等效。
返回
X
3.实际电压源模型与实际电流源
(3)实际中的两种近似情况
当电源内阻Rs负载电阻RL时,可以近似为电压源; 而当Rs RL时,可以近似为电流源。
X
例题2 求下图所示电路中的电流i。
解:利用电源的等效变换将图(a)所示电路逐步化
简为图(d)所示电路,变换过程如图(b)、 (c)所示。
2 2
2
6A
6V
2A 2
i 7
3A 2 6A
2A

A
u
RL 4
B
PL
15 5 4
2
4
3
4
5
5
2
4
100 9
W
电压源
电流源
X
几点说明
在电源内部: 电流源内阻消耗功率为:Pis
3
4
4
5
2
5
80 9
W
电压源内阻消耗功率为:Pus
15 2 4 5
5
125 W 9
(2)在分析电路时,与电压源相串的电阻,与电流源
相并的电阻都可视为电源的内阻 Rs 来处理。但在两种 情况下,Rs 消耗的功率是不同的。
u 1V
-
(c)
X
解续
对图(c)求端口的VCR,有:
6u
2 i
+
u 2i 6u i 1 1
即 u 1 3i
1V
u
77
-
等效电压源如图(d)所示。
(c)
i
3
+
7
u
1
7V
-
(d)
X
例题4 求图(a)所示单口网络的等效电阻。
解:先将电路等效变换为如图
(b)所示,由图可得:
i
i1
u R2
2i1 R2
解:
10V
2A
iA
5
1A
u
5V
B
i
1A
+A
5
u
B
10V
i
5
1A
3A
i +A
5 u
-
B
A
u
B
i
A +
5
+
u
15V
-B
X
几点说明
(1) 两种电源模型对于原电路可以等效替代,对外 负载提供相同的功率,但电源内部不等效。
在上例的AB端口接上一负载电阻 RL 4
通过运算可知:

对于原电路,电压源模型和电 流模型计算 RL 的吸收功率均为:
i 1
结论:n个串联的电压源可以用一个电压源等效置
换(替代),等效电压源的电压是相串联的各电压
源电压的代数和。
思考:电压源能否并联?
X
1.电压源的等效变换
1.2 电压源的并联
演示
结论:电压值不同的电压源不能并联,电压值相同 且电压极性一致的n个电压源并联时,其对外电路 的作用与一个电压源的作用等效。
2
i 7
(a)
(b)
X
解续
2
9A
2A
i
1
7
4V 1
9V
2
i
7
(c)
(d)
由图(d)可求得:i 9 4 0.5A
1 27
X
例题3 将图(a)所示电路简化成等效电压源。
解:先对电路进行等效变换,过程如图(b)、(c)所示。
3u
6u 2
+
+
2
1A
2
u
2 2
u
2V
2
-
-
(a)
6u
2 i
+ 1
(b)
相关文档
最新文档