条件概率与事件的独立性(一)

合集下载

条件概率与事件的独立性

条件概率与事件的独立性

P( AB)
P( A)
16 11
4 11
16
变式:若已知取得是玻璃球,求取得是篮球的概率.
4
P(A| B)
P( AB)
P(B)
16 6
4 6
16
例3.设 100 件产品中有 70 件一等品,25 件二等品, 规定一、二等品为合格品.从中任取1 件,求 (1) 取 得一等品的概率;(2) 已知取得的是合格品,求它是 一等品的概率.
∴P(A·B)=P(A)·P(B)=0.8×0.7=0.56
⑶1–P(A·B)=1-P(A)·P(B)=1-(1-0.8)(1-0.7)=0.94
⑷P(A·B)+P(A·B)=P(A)P(B)+P(A)P(B) =0.8(1-0.7)+(1-0.6)×0.7=0.38
答:两粒种子都能发芽的概率是0.56;至少有一粒种子能 发芽的概率是0.94;恰好有一粒种子能发芽的概率是0.38
P(A |
B)
P( AB) P(B)
52 1
1 13
P(A)
4
P(A | B) P(A)
P( AB) P( A) P(B)
B发生时A发生的条件概率
A发生的概率
P(AB) P(A)P(B)
则称A,B相互独立
相互独立事件 事件A(或B)是否发生对事件B(或A)发生的概率没 有影响,这样的两个事件叫做相互独立事件
中一等奖的概率为多少?
P
1
C
7 31
(2)如果在甲没有中一等奖后乙去买彩票,
则乙中一等奖的概率为多少?
P
1
C
ቤተ መጻሕፍቲ ባይዱ
7 31
2.一个袋子中有5个白球和3个黑球,从袋中分 两次取出2个球。设第1次取出的球是白球叫做 事件A,第2次取出的球是白球叫做事件B。

事件的独立性条件概率与全概率公式

事件的独立性条件概率与全概率公式

事件的独立性条件概率与全概率公式事件的独立性是概率论中一个非常重要的概念。

当两个事件A和B的发生与否不会相互影响时,我们称这两个事件是独立的。

具体来说,事件A的发生与否不会对事件B的发生概率造成影响,同样,事件B的发生与否也不会对事件A的发生概率造成影响。

独立性是概率论中一种核心的概念,它可以帮助我们简化计算过程,提高计算的效率。

在实际问题中,我们通常会用到一些已知的概率,利用独立性可以快速计算出我们所关心的概率。

条件概率是指在另一个事件已经发生的条件下,一些事件发生的概率。

具体来说,设A和B是两个事件,已知事件B已经发生,那么事件A发生的概率记作P(A,B),读作“A在B发生的条件下发生的概率”。

条件概率可以通过以下公式计算:P(A,B)=P(A∩B)/P(B)其中,P(A∩B)表示事件A和B同时发生的概率,P(B)表示事件B发生的概率。

条件概率在实际问题中非常常见,它可以帮助我们确定一些事件在给定条件下的概率。

例如,在进行疾病检测时,我们可以根据患者的年龄、性别、家族病史等条件,计算出患病的概率,为疾病的早期预防提供重要依据。

全概率公式是概率论中一个非常重要的公式,它可以帮助我们计算复杂事件的概率。

全概率公式的核心思想是将一个事件分解为不同的互斥事件,并将这些事件的概率加和起来。

具体来说,设B1、B2、…、Bn是一组互斥事件,且它们的并集构成了样本空间S,那么对于任意一个事件A,全概率公式可以表示为:P(A)=P(A,B1)P(B1)+P(A,B2)P(B2)+…+P(A,Bn)P(Bn)全概率公式的应用场景非常广泛。

例如,在市场调查中,我们希望了解其中一特定群体的消费习惯,但由于无法直接获取到该群体的信息,我们可以通过对不同市场细分的消费者进行调查,然后利用全概率公式将这些细分市场的调查结果综合起来,推断出整个特定群体的消费习惯。

总结起来,事件的独立性、条件概率和全概率公式都是概率论中非常重要的概念和工具。

概率的计算方法条件概率事件独立性的计算方法

概率的计算方法条件概率事件独立性的计算方法

概率的计算方法条件概率事件独立性的计算方法概率的计算方法——条件概率和事件独立性的计算方法概率是数学中的一个重要概念,用于描述事件发生的可能性。

在概率的计算过程中,条件概率和事件独立性是两个重要的概念。

本文将介绍概率中的条件概率和事件独立性的计算方法。

一、条件概率的计算方法条件概率是指在已知某个条件下,事件发生的概率。

表示为P(A|B),读作事件B发生的条件下事件A发生的概率。

计算条件概率的方法:1. 根据条件概率的定义,可以得出P(A|B) = P(AB) / P(B)。

即事件A和事件B同时发生的概率除以事件B发生的概率。

2. 利用频率法进行计算。

通过实验或观察,记录事件A在事件B发生的条件下出现的频次,再除以事件B发生的频次。

举例说明:假设有一个扑克牌的标准牌组,从中随机抽取一张牌。

事件A表示抽到一张红心牌,事件B表示抽到一张大于等于10的牌。

求在事件B发生的条件下,事件A发生的概率。

根据条件概率的计算方法,我们可以得到:P(A|B) = P(AB) / P(B)首先,我们需要计算事件A和事件B同时发生的概率P(AB)。

在扑克牌标准牌组中,红心牌有13张,大于等于10的牌有16张。

其中,大于等于10的红心牌有3张。

因此,P(AB) = 3 / 52。

接下来,计算事件B发生的概率P(B)。

在扑克牌标准牌组中,大于等于10的牌有16张,总共的牌数是52张,所以P(B) = 16 / 52。

将以上结果代入条件概率的计算公式,我们可以得到:P(A|B) = (3 / 52) / (16 / 52) = 3 / 16所以,在事件B发生的条件下,事件A发生的概率为3/16。

二、事件独立性的计算方法事件独立性是指事件A和事件B的发生与否互相独立,即事件A 的发生与否不受事件B的影响。

计算事件独立性的方法:1. 如果P(A|B) = P(A),则事件A和事件B互相独立。

2. 如果P(A|B) ≠ P(A),则事件A和事件B不独立。

概率与统计中的事件独立性与条件概率

概率与统计中的事件独立性与条件概率

概率与统计中的事件独立性与条件概率概率与统计是数学中的一个重要分支,用于研究随机现象和不确定性问题。

在概率与统计的基础概念中,事件的独立性与条件概率是两个核心概念。

本文将对这两个概念进行详细解释,并探讨它们在实际问题中的应用。

一、事件的独立性在概率与统计中,事件的独立性是指两个或多个事件之间的关联程度。

如果两个事件A和B相互独立,意味着事件A的发生与否不会对事件B的发生概率产生影响,反之亦然。

换句话说,事件A和B的发生概率是相互独立的,它们之间不存在任何关联。

为了判断两个事件A和B是否相互独立,可以通过下列公式进行计算:P(A∩B) = P(A) × P(B)其中,P(A∩B)表示事件A和B同时发生的概率,P(A)和P(B)分别表示事件A和B发生的概率。

如果上式成立,则事件A和B相互独立;如果不成立,则事件A和B不相互独立。

事件的独立性在实际问题中具有广泛的应用。

例如,假设有一批产品,每个产品的质量合格的概率为0.9。

如果从该批产品中随机选取两个产品,事件A表示第一个产品质量合格,事件B表示第二个产品质量合格。

根据事件的独立性,我们可以通过计算概率来判断同时选中两个质量合格产品的概率。

二、条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

条件概率通常用P(B|A)表示,其中P(B|A)表示在事件A发生的条件下,事件B发生的概率。

条件概率的计算公式为:P(B|A) = P(A∩B) / P(A)其中,P(A∩B)表示事件A和B同时发生的概率,P(A)表示事件A发生的概率。

通过计算条件概率,我们可以得出在某种条件下发生某个事件的概率。

条件概率在实际问题中非常有用。

例如,假设有一个班级,其中40%的学生会参加音乐比赛,30%的学生参加体育比赛。

如果我们知道某个学生参加了音乐比赛,那么他参加体育比赛的概率是多少?根据条件概率的计算公式,我们可以得出这个概率。

三、事件独立性与条件概率的关系事件的独立性与条件概率密切相关。

条件概率与事件的独立性例题和知识点总结

条件概率与事件的独立性例题和知识点总结

条件概率与事件的独立性例题和知识点总结在概率论中,条件概率和事件的独立性是两个非常重要的概念。

理解它们对于解决各种概率问题至关重要。

下面,我们将通过一些具体的例题来深入探讨这两个概念,并对相关知识点进行总结。

一、条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

其定义为:设 A、B 是两个事件,且 P(A)>0,在事件 A 发生的条件下,事件 B 发生的条件概率记为 P(B|A),且 P(B|A) = P(AB) /P(A) 。

例 1:一个盒子里有 5 个红球和 3 个白球。

从中随机取出一个球,已知取出的是红球,求它是第二个红球的概率。

解:设 A 表示“第一次取出红球”,B 表示“第二次取出红球”。

则P(A) = 5/8 。

P(AB) 表示“第一次和第二次都取出红球”,其概率为 5/8 × 4/7 = 5/14 。

所以 P(B|A) = P(AB) / P(A) =(5/14) /(5/8) =4/7 。

例 2:某班级学生的数学成绩及格率为 80%,英语成绩及格率为70%,已知某学生数学成绩及格,求他英语成绩也及格的概率。

解:设 A 表示“数学成绩及格”,B 表示“英语成绩及格”。

P(A) =08 ,P(AB) 表示“数学和英语成绩都及格”,假设两者相互独立,则P(AB) = 08 × 07 = 056 。

所以 P(B|A) = P(AB) / P(A) = 056 / 08 =07 。

二、事件的独立性如果事件 A 的发生不影响事件 B 发生的概率,事件 B 的发生也不影响事件 A 发生的概率,那么称事件 A 和事件 B 相互独立。

即 P(B|A) = P(B) 且 P(A|B) = P(A) ,等价于 P(AB) = P(A)P(B) 。

例 3:抛掷两枚均匀的硬币,设事件 A 为“第一枚硬币正面朝上”,事件 B 为“第二枚硬币正面朝上”,判断 A、B 是否独立。

事件的相互独立性

事件的相互独立性

设 A, B 是两事件 , 如果满足等式 P( AB) P( A) P(B)
则称事件 A, B 相互独立,简称 A, B 独立.
注. 1º若 P( A) 0,则
P(B A) P(B) P( AB) P( A)P(B)
说明 事件 A 与 B 相互独立,是指事件 A 的 发生与事件 B 发生的概率无关.
例4 若每个人血清中含有肝炎病毒的概率为 0.4%, 假设每个人血清中是否含有肝炎病毒 相互独立,混合100个人的血清,求此血清 中含有肝炎病毒的概率. 解
Ai {第i人的血清含有肝炎病毒},i 1, 2,...100
B {100个人的混合血清中含有肝炎病毒} 则 P( Ai ) 0.004
[r(2 r)]n rn(2 r)n
(2) 问:哪个系统的可靠性更大?
令 f ( x) xn (n 2),则
0r1
f ( x) n(n 1)xn2 0 ( x 0)
(2 r)n 2 rn
故曲线y f ( x)是凹的,从而 f (2 r) f (r) f ( (2 r) r ) f (1) 1
P(BC ) P(B)P(C ),
P(
AC
)
P( A)P(C ),
P( ABC ) P( A)P(B)P(C ),
则称事件 A, B,C 相互独立 .
3. n 个事件的独立性
定义 若事件 A1,A2 ,… ,An 中任意两个事件 相互独立,即对于一切 1 ≤i< j ≤n, 有
P( Ai Aj ) P( Ai )P( Aj )
通路上各元件
都正常工作
而 系统Ⅰ正常工作
两条通路中至少
有一条正常工作
B1 C D A1A2 An An1An2 A2n

事件的相互独立性与条件概率

事件的相互独立性与条件概率

TANJIUHEXINTIXING
探究核心题型
题型一 条件概率
例1 (1)某公司为方便员工停车,租了6个停车位,编号如图所示.公司规
定:每个车位只能停一辆车,每个员工只允许占用一个停车位.记事件A
为“员工小王的车停在编号为奇数的车位上”,事件B为“员工小李的
车停在编号为偶数的车位上”,则P(A|B)等于
思维升华
求相互独立事件同时发生的概率的方法 (1)相互独立事件同时发生的概率等于他们各自发生的概率 之积. (2)当正面计算较复杂或难以入手时,可从其对立事件入手 计算.
跟踪训练2 溺水、触电等与学生安全有关的问题越来越受到社会的关注
和重视,为了普及安全教育,某市组织了一次学生安全知识竞赛,规定
条件下,第二次拿到红球的概率为
√ 3
1
3
2
A.10 B.3 C.8 D.9
设A={甲第一次拿到白球}, B={甲第二次拿到红球}, 则 P(AB)=AA12A21013=115,P(A)=CC11120=15, 所以 P(B|A)=PPAAB=13.
思维升华
求条件概率的常用方法 (1)定义法:P(B|A)=PPAAB . (2)样本点法:P(B|A)=nAB .
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)对于任意两个事件,公式P(AB)=P(A)P(B)都成立.( × ) (2)若事件A,B相互独立,则P(B|A)=P(B).( √ )
(3)抛掷2枚质地均匀的硬币,“第一枚为正面”为事件A,“第2枚为正
面”为事件B,则A,B相互独立.( √ )
第十章
考试要求
1.了解两个事件相互独立的含义. 2.理解随机事件的独立性和条件概率的关系,会利用全概率公式计算概率.

高三第一轮复习条件概率与事件的相互独立性

高三第一轮复习条件概率与事件的相互独立性

条件概率与事件的相互独立性【提纲挈领】(请阅读下面文字,并在关键词下面记着重号)主干知识归纳 1.条件概率(1)一般地,若有两个事件A 和B ,在已知事件A 发生的条件下考虑事件B 发生的概率,称此概率为A 已发生的条件下B 的 ,记作 .(2)设A ,B 为两个事件,且P(A)>0,则事件A 已发生的条件下,事件B 发生的条件概率是P(B|A)= .(3)条件概率的性质: ①P(B|A)∈ ;②如果B 和C 是两个互斥事件,则P(B ∪C|A)=P(B|A)+P(C|A). 2.事件的相互独立性(1)设A ,B 为两个事件,如果P(AB)= ,则称事件A ,B 独立.(2)设A ,B 为两个事件,A 与B 相互独立,那么A 与B ,A 与B 、A 与B 也都 . (3)两个事件的独立性可以推广到n(n>2)个事件的独立性,且若事件A 1,A 2,…,A n 相互独立,则这n 个事件同时发生的概率P(A 1A 2…A n )= .3.独立重复试验(1)一般地,在 下重复做的n 次试验称为n 次独立重复试验.(2)在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率均为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P(X =k)= . 方法规律总结1.计算条件概率时,可按如下步骤进行:第一步,判断是否为条件概率,若题目中出现“已知”“在……前提下”等字眼,一般为条件概率.题目中若没有出现上述字眼,但已知事件的出现影响所求事件的概率时,也需注意是否为条件概率.第二步,计算概率,这里有两种思路. 思路一:缩小样本空间计算条件概率.如求P(A|B),可分别求出事件B ,AB 包含的基本事件的个数,再利用公式P(A|B)=n ABn B 计算.思路二:直接利用条件概率的计算公式计算条件概率,即先分别求出P(AB),P(B),再利用公式P(A|B)=P ABP B 计算.2.相互独立事件的概率计算要注意在应用相互独立事件的概率乘法公式时,要认真审题,注意关键词“至少有一个发生”、“至多有一个发生”、“恰有一个发生”的意义,正确地将其转化为互斥事件进行求解;正面计算较繁或难于入手时,可以从其对立事件入手进行计算.3.在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率均为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P(X =k)=C k n p k(1-p)n -k,k =0,1,2,…,n.在利用该公式时一定要审清公式中的n ,k 各是多少.【指点迷津】【类型一】条件概率【例1】:(2014·新课标卷Ⅱ)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.45【解析】:设“某天的空气质量为优良”为事件A ,“后一天空气质量为优良”为事件B ,则P(A)=0.75,P(AB)=0.6, 所以P(B|A)=P AB P A =0.60.75=0.8.答案:A【例2】:甲、乙两地都位于长江下游,根据一百多年的气象记录,知道甲、乙两地一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%.则(1)乙地为雨天时,甲地也为雨天的概率是 ; (2)甲地为雨天时,乙地也为雨天的概率是 .【解析】:设A 表示“甲地为雨天”,B 表示“乙地为雨天”,根据题意P(A)=0.20,P(B)=0.18,P(AB)=0.12.(1)乙地为雨天时,甲地也为雨天的概率是 P(A|B)=P AB P B =0.120.18=23≈0.67.(2)甲地为雨天时,乙地也为雨天的概率是 P(B|A)=P AB P A =0.120.20=0.6.答案: (1) 0.67 (2) 0.6【例3】:如右图△ABC 和△DEF 是同一圆的内接正三角形,且BC ∥EF .将一颗豆子随机地扔到该圆内,用M 表示事件“豆子落在△ABC 内”,N 表示事件“豆子落在△DEF 内”,则P (N |M )=( )A.334π B.32πC.13D.23【解析】:如下图作三条辅助线,根据已知条件得这些小三角形都全等,△ABC 包含9个小三角形,满足事件MN 的有6个小三角形,故P (N |M )=69=23.答案:23.【类型二】相互独立事件的概率【例1】:(2014·安徽卷改编)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲恰好4局赢得比赛的概率;(2)求甲在4局以内(含4局)赢得比赛的概率.【解析】:用A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P(A k )=23,P(B k )=13,k =1,2,3,4,5.(1)用A 表示“甲恰好4局赢得比赛”,则A =A 1B 2A 3A 4.根据事件的相互独立性得P(A)=P(A 1B 2A 3A 4)=P(A 1)P(B 2)P(A 3)P(A 4)=23×13×23×23=881.(2)用B 表示“甲在4局以内(含4局)赢得比赛”,则B =A 1A 2+B 1A 2A 3+A 1B 2A 3A 4.所以P(B)=P(A 1A 2)+P(B 1A 2A 3)+P(A 1B 2A 3A 4)=P(A 1)P(A 2)+P(B 1)P(A 2)P(A 3) +P(A 1)P(B 2)·P(A 3)P(A 4)=23×23+13×23×23+23×13×23×23=5681. 答案:(1) 881. (2) 5681.【例2】:某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).图9-61-3(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C :“A 地区用户的满意度等级高于B 地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率. 【解析】:(1)两地区用户满意度评分的茎叶图如下:通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散.(2)记C A1表示事件:“A 地区用户的满意度等级为满意或非常满意”; C A2表示事件“A 地区用户的满意度等级为非常满意”; C B1表示事件“B 地区用户的满意度等级为不满意”; C B2表示事件“B 地区用户的满意度等级为满意”.则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,C =C B1C A1∪C B2C A2, 所以P (C )=P (C B1C A1∪C B2C A2) =P (C B1C A1)+P (C B2C A2) =P (C B1)P (C A1)+P (C B2)P (C A2).由所给数据得C A1,C A2,C B1,C B2发生的频率分别为1620,420,1020,820,故P (C A1)=1620,P (C A2)=420,P (C B1)=1020,P (C B2)=820, 所以P (C )=1020×1620+820×420=0.48. 答案:(1)通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散.(2) 0.48.【类型三】n 次独立重复实验的概率【例1】:一同学投篮每次命中的概率是12,该同学连续投篮5次,每次投篮相互独立.(1)求连续命中4次的概率; (2)求命中4次的概率【解析】:(1)设“连续命中4次”的事件为A ,则A 包含“第1至第4次命中第5次没有命中”和“第1次没有命中但第2至第5次命中”两种情况,所以P(A)=(12)4·(1-12)+(1-12)·(12)4=2×(12)5=(12)4=116.(2)5次独立重复试验,恰好命中4次的概率为P(X =4), 所以P(X =4)=C 45(12)4·(1-12)=5×(12)5=532.答案:(1) 116. (2) 532.【例2】:某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.求顾客抽奖1次能获奖的概率【解析】:记事件A 1={从甲箱中摸出的1个球是红球},A 2={从乙箱中摸出的1个球是红球},B 1={顾客抽奖1次获一等奖},B 2={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖}.由题意,A 1与A 2相互独立,21A A 与21A A 互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=21A A +21A A ,C =B 1+B 2.因为P (A 1)=410=25,P (A 2)=510=12,所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2)=25×12=15,P (B 2)=P (21A A +21A A )=P (21A A )+P (21A A )=P (A 1)P (2A )+P (1A )P (A 2)=P (A 1)(1-P (A 2))+(1-P (A 1))P (A 2)=25×1-12+1-25×12=12.故所求概率P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710.答案:710.【同步训练】【一级目标】基础巩固组一.选择题1.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P(B|A)=( )A.18B.14C.25D.12【解析】:P(AB)=1C 25=110,P(A)=1+C 23C 25=410,由条件概率公式得P(B|A)=P (AB )P (A )=110410=14.答案:B.2.甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球.现分别从甲、乙两袋中各随机抽取1个球,则取出的两球都是红球的概率为( )A.13B.12C.19D.16【解析】:用A ,B 表示分别表示从甲、乙袋子中随机抽取1个球,抽出的球是红球的事件,则P(A)=46,P(B)=16,因为分别从甲、乙两袋中各随机抽取1个球,取出的两球都是红球所对应事件为AB , 所以P(AB)=P(A)·P(B)=46×16=19.答案:C.3.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是( )A.512 B.12 C.712 D.34【解析】:用间接法考虑.事件A ,B 一个都不发生的概率为P(A -B -)=P(A -)·P(B -)=12×C 15C 16=512,所以所求的概率为1-P(A -B -)=1-512=712.答案:C.4.在6次独立重复试验中,每一次试验中成功的概率为12,则恰好成功3次的概率为( )A.316 B.516 C.716 D.58【解析】:P(X =3)=C 36(12)3(12)3=516.答案:B.5.(2015·新课标卷Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312【解析】:根据独立重复试验公式得,该同学通过测试的概率为C 230.62×0.4+0.63=0.648. 答案:A . 二.填空题6.在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题,则在第一次抽到理科题的条件下,第二次抽到理科题的概率为________.【解析】:设“第一次抽到理科题”为事件A ,“第二次抽到理科题”为事件B ,则“第一次和第二次都抽到理科题”就是事件AB .依题意可得P (A )=A 31·A 41A 52=35,P (AB )=A 32A 52=310,所以P (B |A )=P (AB )P (A )=31035=12. 答案:12.7.已知某高三学生在某次数学考试中,A 和B 两道解答题同时做对的概率为13,在A 题做对的情况下,B 题也做对的概率为59,则A 题做对的概率为________.【解析】:设“做对A 题”为事件E ,“做对B 题”为事件F ,根据题意知P (EF )=13,P (F |E )=P (EF )P (E )=59,则P (E )=35,即A 题做对的概率为35. 答案:35.8.将一个半径适当的小球放入如图K61­1所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入甲袋或乙袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12,则小球落入甲袋中的概率为________.图K61­1【解析】:记“小球落入甲袋中”为事件A ,“小球落入乙袋中”为事件B ,则事件A 的对立事件为B .若小球落入乙袋中,则小球必须一直向左或一直向右落下,故P (B )=()123+()123=14,从而P (A )=1-P (B )=1-14=34. 答案:34.三、解答题9.某旅游景点为方便游客游玩,设置自行车骑游出租点,收费标准如下:租车时间不超过2小时收费10元,超过2小时的部分按每小时10元收取(不足一小时按一小时计算).现甲、乙两人独立来该租车点租车骑游,各租车一次.设甲、乙不超过两小时还车的概率分别为13,12,2小时以上且不超过3小时还车的概率分别为12,13,且两人租车的时间都不超过4小时.求甲、乙两人所付租车费用相同的概率; 【解析】:甲、乙所付费用可以为10元、20元、30元.甲、乙两人所付费用都是10元的概率P 1=13×12=16,甲、乙两人所付费用都是20元的概率P 2=12×13=16,甲、乙两人所付费用都是30元的概率为 P 3=1-13-12×1-12-13=136,故甲、乙两人所付费用相等的概率P =P 1+P 2+P 3=1336.答案:1336. 10.有一种舞台灯,外形是正六棱柱,在其每一个侧面(编号为①②③④⑤⑥)上安装5只颜色各异的灯,假设每只灯正常发光的概率为12.若一个侧面上至少有3只灯发光,则不需要更换这个面,否则需要更换这个面,假定更换一个面需要100元。

数学课件:2.3《事件的独立性(1)》

数学课件:2.3《事件的独立性(1)》

(1)2人都击中目标的概率;0.36
0.48 (2)其中恰有1人击中目标的概率;
(3)2人都没有击中目标的概率;0.16
(4)至少有一人击中目标的概率
0.84
练习1、若甲以10发8中,乙以10发7中的命中率打靶, 两人各射击一次,则他们都中靶的概率是( D )
(A)
3 5
(B)
3 4
(C)
12 25
例1.口袋中有a只黑球b只白球,连摸两次,每次
一球.记A={第一次摸时得黑球},B={第二次摸时 得黑球}.问A与B是否独立?就两种情况进行讨论: ① 放回抽取;② 不放回抽取.
① 放回抽取 a 解:P(A) =
ab
a P(B)= ab
a P(B|A)= a b
② 不放回抽取.
a P(A)= P(B)= a b a 1 a a 1 P(AB)= P(B|A)= a b 1 a b a b 1 a ab
A、B中至多有一个发生的概率
独立重复试验
(一) 形成概念
掷一枚图钉,针尖向上的概 率为0.6,则针尖向下的概率为 1-0.6=0.4
问题(1)第1次、第2次、第3次… 第n次针尖向上的概率是多少?
第1次、第2次、第3次…第n次针尖向----在同样条 件下进行的,各次之间相互独立的一种试验。
解 设A表示“活到20岁”(即≥20),B表示 “活到25岁” (即≥25) 则 P( A) 0.7, P( B) 0.56 所求概率为
P( AB) P( B) P( B A) 0.8 P( A) P( A)

B
5
0.56
0.7
A
, 2. 根据以往的临床记录某种诊断癌症的试 验具有如下的效果: 若以 A 表示事件" 试验反应 为阳性" , 以 C 表示事件" 被诊断者患有癌症 , 则 " 有 P( A C ) 0.95, P( A C ) 0.95.现在对自然人群 进行普查, 设被试验的人患有癌症 的概率为 .005, 0 即 P(C ) 0.005, 试求 P(C A).

条件概率与事件的独立性【题集】-讲义(教师版)

条件概率与事件的独立性【题集】-讲义(教师版)

条件概率与事件的独立性【题集】1. 条件概率A.B.C.D.1.根据历年气象统计资料,某地四月份吹东风的概率,下雨的概率为,既吹东风又下雨的概率为,则在吹东风的条件下下雨的概率为( ).【答案】D【解析】事件:四月份下雨,事件:四月份吹东风,,,,条件概率公式有,故选.【标注】【知识点】条件概率A.B.C.D.2.某小区有名歌手,其中名男歌手,名女歌手.从中选出人参加区组织的社区演出.在男歌手甲被选中的情况下,女歌手乙也被选中的概率为( ).【答案】D【解析】若从中选出人参加区组织的社区演出,在男歌手甲被选中的情况下,又因为小区有名歌手,其中名男歌手,名女歌手,此时若女歌手乙被选择,则被选中的概率为.故选.【标注】【知识点】条件概率A.B.C.D.3.同时抛掷一颗红骰子和一颗蓝骰子,观察向上的点数,记“红骰子向上的点数小于”为事件,“两颗骰子的点数之和等于”为事件,则( ).【答案】D【解析】由题意,为抛掷两颗骰子,红骰子的点数小于时两骰子的点数之和等于的概率,∵抛掷两颗骰子,红骰子的点数小于,基本事件有个,红骰子的点数小于时两骰子的点数之和等于,基本事件有个,分别为,,,∴.故选:.【标注】【知识点】条件概率;古典概型A. B. C. D.4.从装有个红球个白球的袋子中先后取个球,取后不放回,在第一次取到红球的条件下,第二次取到红球的概率为().【答案】C【解析】因为共有个红球个白球,所以先后取个球,取后不放回,第一次取到红球的取法数为:,第一、二次都取到红球的取法数为:,故所求的概率.故选:.【标注】【知识点】条件概率A. B. C. D.5.小赵、小钱、小孙、小李到个景点旅游,每人只去一个景点,设表示事件“个人去的景点各不相同”,表示事件“小赵独自去一个景点”,则().【答案】A【解析】小赵独自去一个景点,则有个景点可选,其余人只能在小赵剩下的个景点中选择,可能性为种,所以小赵独自去一个景点的可能性为种.因为个人去的景点不相同的可能性为种,所以.故选.【标注】【知识点】条件概率(1)(2)6.某中学为了迎接即将在武汉市召开的世界中学生运动会,学生篮球队准备假期集训,集训前共有个篮球队,其中个是新球(即没有用过的球),个是旧球(即至少用过次的球).每次训练,都从中任意取出个球,用完后放回.设第次训练时至少取到个新球,第次训练时也取到个新球的概率.在第次训练时至少取到个新球的条件下,求第次训练时恰好取到个新球的概率.【答案】(1)(2)..【解析】(1)设“第次训练时取到个新球”为事件,则,.设“从个球中任意取出个球,恰好取到个新球”为事件,则“第次训练时恰好取到个新球”就是事件,而事件,互斥,于是.由条件概率公式,得,又因为,所以,第次训练时恰好取到个新球的概率为(2).设在第次训练时至少取到个新球,第次训练时恰好取到个新球,则在第次训练时至少取到个新球的条件下,第次训练时恰好取到个新球的概率为.因为,又,所以.【标注】【知识点】条件概率2. 乘法公式7.已知,,.【答案】【解析】∵,∴.【标注】【知识点】条件概率;相互独立事件的概率乘法公式A. B. C. D.8.已知号箱中有个白球和个红球,号箱中有个白球和个红球,现随机地从号箱中取出个球放入号箱中,然后从号箱中随机地取出个球,则两次都取到红球的概率是().【答案】C【解析】设从号箱取到红球为事件,从号箱取到红球为事件.由题意,可得,,所以.所以两次都取到红球的概率是.故选.【标注】【知识点】古典概型的概率计算(不涉及计数原理);条件概率【素养】数学运算;数据分析3. 事件的独立性A.B.C.D.9.甲、乙两名射击运动员进行射击比赛,甲中靶的概率为,乙中靶的概率为.甲、乙各射击一次,则两人都中靶的概率为( ).【答案】B【解析】设甲中靶为事件,乙中靶为事件,,为相互独立事件,根据相互独立事件的乘法公式可得:.故选.【标注】【知识点】相互独立事件的概率乘法公式A.B.C.D.10.已知盒中装有个红球、个白球、个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,在他第一次拿到白球的条件下,第二次拿到红球的概率( ).【答案】B【解析】设“第一次拿到白球”为事件,“第二次拿到红球”为事件B∴,,则所求概率为,故选:.【标注】【知识点】条件概率11.A.B.C.D.袋中有红黑个大小形状相同的小球,从中依次摸出两个小球,则在第一次摸得红球的条件下,第二次仍是红球的概率为().【答案】B【解析】设”第一次摸到红球”为事件,”第二次摸到红球”为事件.∴,∴.故选.【标注】【知识点】条件概率4. 互斥事件与独立事件A.事件和互斥B.事件和互相对立C.事件和相互独立D.事件和相等12.抛掷两枚硬币,设事件“第一枚正面朝上”,“第二枚反面朝上”,则( ).【答案】C【解析】A 选项:B 选项:C 选项:D 选项:由于事件,能同时发生,则事件,不为互斥事件,故错误;由于事件,能同时发生,则事件,不为对立事件,故错误;第一枚正面朝上和第二枚反面朝上是相互独立事件,故正确;由于事件,中有不同的样本点,则事件,不相等,故错误;故选 C .【标注】【知识点】相互独立事件13.甲罐中有个红球,个白球和个黑球,乙罐中有个红球,个白球和个黑球.先从甲罐中随机取出一个球放入乙罐,分别以,,表示由甲罐取出的球是红球、白球和黑球的事件,再从乙罐中随机取出一个球,以表示由乙罐取出的球是红球的事件,下列结论中的是( ).不.正.确.A.B.C.D.事件与事件不相互独立,,是两两互斥的事件【答案】D【解析】由题意、、是两两互斥事件,,,,,,,,所以不正确.故选.【标注】【知识点】条件概率14.甲乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中胜的概率为;且各局比赛结果相互独立,则在甲获得冠军的条件下,比赛进行了局的概率为.【答案】【解析】由题意,甲获得冠军的概率为,其中比赛进行了局的概率为,∴所求概率为.故答案为:.【标注】【知识点】相互独立事件的概率乘法公式A. B. C. D.15.两个实习生每人加工一个零件,加工为一等品的概率分别为和,两个零件是否加工为一等品互不影响,则这两个零件中恰有一个一等品的概率为().【答案】B【解析】根据题意得:恰有一个一等品的概率.故选.【标注】【知识点】互斥事件的概率加法公式;相互独立事件的概率乘法公式16.为积极应对新冠肺炎疫情,提高大家对新冠肺炎的认识,某企业举办了“抗击疫情,共克时艰”预防新冠肺炎知识竞赛,知识竞赛规则如下:在预设的个问题中,选手若能连续正确回答出个问题,即停止答题,晋级下一轮.假定某选手正确回答每个问题的概率都是,且每个问题的回答结果相互独立,则该选手至少回答了个问题晋级下一轮的概率等于.【答案】【解析】该选手至少回答了个问题晋级,包含两种情况:回答了五个或者留六个问题.一、回答了五个问题晋级,则第三、四、五个问题都回答正确,而第二个问题回答错误..二、回答了六个问题晋级,则第四、五、六个问题都回答正确,而第三个问题回答错误.,综上:,该选手至少回答了个问题晋级的概率为.【标注】【知识点】相互独立事件的概率乘法公式A. B. C. D.17.首届中国国际进口博览会期间,甲、乙、丙三家中国企业都有意向购买同一种型号的机床设备,他们购买该机床设备的概率分别为,,,且三家企业的购买结果相互之间没有影响,则三家企业中恰有家购买该机床设备的概率是().【答案】C【解析】甲、乙、丙三家中国企业都有意向购买同一种型号的机床设备,他们购买该机床设备的概率分别为,,,且三家企业的购买结果相互之间没有影响,则三家企业中恰有家购买该机床设备的概率:.故选.【标注】【知识点】相互独立事件的概率乘法公式A. B. C. D.18.某地有,,,四人先后感染了传染性肺炎,其中只有到过疫区,确定是受感染的.对于因为难以判定是受还是受感染的,于是假定他受和感染的概率都是.同样也假定受,和感染的概率都是.在这种假定下,,,中恰有两人直接受感染的概率是().【答案】C【解析】根据题意得出:因为直接受感染的人至少是,而,二人也有可能是由感染的,,设,,直接受感染为事件,,,则,,是相互独立的,并且,,,表明除了外,,二人中恰有人是由感染的,∴,∴、、中直接受传染的人数为的概率为.故答案为:.故选.【标注】【知识点】相互独立事件的概率乘法公式A. B. C. D.19.甲、乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制(无平局),甲在每局比赛中获胜的概率均为,且各局比赛结果相互独立,则在甲获得冠军的条件下,比赛进行了三局的概率为().【答案】B【解析】由题意,甲获得冠军的概率为,其中比赛进行了局的概率,∴所以概率为.故选.【标注】【知识点】条件概率A. B.C. D.以上都不对20.甲、乙、丙三名同学用计算机联网学习数学,每天上课后独立完成道自我检测题,甲及格的概率为,乙及格的概率为,丙及格的概率为, 三人各检测一次,则三人中只有一人及格的概率为().【答案】C【解析】由题意可知分三种情况且三人及格与否相互独立,则.故选.【标注】【知识点】相互独立事件的概率乘法公式A. B. C. D.21.已知在个电子元件中,有个次品,个合格品,每次任取一个测试,测试完后不再放回,直到两个次品都为止,则经过次测试恰好将个次品全部的概率().【答案】C【解析】找.到.找.出.11由题意可得:前次抽到了一个次品,且第四次抽到第二个次品,或前次抽到的全是正品,若前次抽到了一个次品,且第四次抽到第二个次品,概率为,若前四次抽到的全是正品,概率为,故所求事件的概率为.故选.【标注】【知识点】相互独立事件的概率乘法公式;古典概型;互斥事件与对立事件的概念辨析;互斥事件的概率加法公式5. 全概率公式22.(敏感性问题调查)要调查蔡老板在学生心目中是不是一个胖子,制作问卷 :蔡老板是胖子么?回答方式为“是”和“否”.由于这是一个敏感性问题学生没法当面回答,现采取如下策略进行调查.现同时制作问卷 :蔡老板是胖子么?问卷 :给你一枚硬币,你丢一次是正面朝上么?学生将从一个只装有红球和白球的盒子中抽球决定回答哪个问题,如果抽到红球,回答 问题,抽到白球,回答 问题,假设抽到红球的概率是.现在对名学生进行调查,发现收到的答案中有个是,你认为根据统计结果,蔡老板是一个胖子么?【答案】是.【解析】 :抽到的球是红球, :回答是,设选择蔡老板是胖子的概率为,,,,,,解得.【标注】【素养】数学运算【知识点】条件概率。

条件概率与事件的独立性-讲义(学生版)

条件概率与事件的独立性-讲义(学生版)

条件概率与事件的独立性一、课堂目标1.掌握条件概率的定义和计算公式,以及条件概率与乘法公式之间的关系.2.掌握独立事件的定义和性质.3.掌握互斥事件和独立事件的综合应用.4.掌握全概率公式的定义及应用,了解贝叶斯公式.二、知识讲解1. 条件概率知识精讲(1)定义一般地,当事件发生的概率大于时(即),则事件发生的条件下事件发生的概率,称为条件概率,记作.(2)计算公式一般地,设为两个随机事件,且,则:.(3)性质①非负性:条件概率具有的性质,任何事件的条件概率都在0和1之间,即.②若事件A与B互斥,即与不可能同时发生,则.③可加性:如果和是两个互斥事件,则.(4)条件概率的求法①定义法,先求和,再求;②基本事件法,借助古典型概率公式,先求事件包含的基本事件数,再求事件所包含的基本事件数,得.注意:求复杂事件的条件概率时,可以把它分解为若干个互不相容的简单事件,求出这些简单事件的条件概率,再利用概率的可加性,得到最终结果.经典例题A. B.C.D.1.某地气象台预计,月日该地区下雨的概率为,刮风的概率为,既刮风又下雨的概率为,设表示下雨,表示刮风,则().巩固练习A.B.C.D.2.小明早上步行从家到学校要经过有红绿灯的两个路口,根据经验,在第一个路口遇到红灯的概率为,在第二个路口遇到红灯的概率为,在两个路口连续遇到红灯的概率是.某天早上小明在第一个路口遇到了红灯,则他在第二个路口也遇到红灯的概率是().经典例题A. B.C.D.3.一个盒子内装有个红球,个白球,从盒子中取出两个球,已知一个球是红球,则另一个也是红球的概率是().巩固练习A. B.C.D.4.某盒中装有只乒乓球,其中只新球,只旧球,不放回地依次摸出个球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为().经典例题A. B.C.D.5.袋中装有形状和大小完全相同的个黑球,个白球,从中不放回地依次随机摸取两个球,则在第一次摸到黑球的条件下,第二次摸到白球的概率是().巩固练习A.B.C.D.6.抛掷一颗质地均匀的骰子的基本事件构成集合,令事件,,则的值为().2.乘法公式知识精讲由条件概率的计算公式可知,这就是说,根据事件发生的概率,以及事件发生的条件下事件发生的概率,可以求出与同时发生的概率.一般地,这个结论称为乘法公式.经典例题7.甲袋中有个白球,个红球;乙袋中有个白球,个红球,从两个袋子中任取一袋,然后从所取到的袋子中任取一球 ,则取到白球的概率是.巩固练习A.B.C.D.8.市场上供应的灯泡中,甲厂产品占,乙厂占,甲厂产品的合格率是,乙厂产品的合格率是,则从市场上买到一个是甲厂生产的合格灯泡的概率是().A.B.C.D.9.已知箱中有红球个,白球个,箱中有白球个,(、箱中所有的球除颜色外完全相同).现随意从箱中取出个球放入箱,将箱中的球充分搅匀后,再从箱中随意取出个球放入箱,则红球从箱移到箱,再从箱返回箱中的概率等于().3. 事件的独立性知识精讲(1)定义当时,与独立的充要条件是这时,我们称事件、相互独立,并把这两个事件叫做相互独立事件.(2)独立事件的性质对于两个独立事件和,有如下两个性质:①与,与,与也相互独立;②.经典例题A. B.C.D.10.袋中有大小形状都相同的个黑球和个白球.如果不放回地依次取次球,每次取出个,那么在第次取到的是黑球的条件下,第次取到白球的概率为().巩固练习A. B.C.D.11.已知件次品和件正品混在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,则在第一次取出次品的条件下,第二次取出的也是次品的概率是().经典例题12.甲、乙、丙三人独立地去破译一个密码,他们能译出的概率分别为,,,则此密码能被译出的概率为.巩固练习13.某学生在上学的路上要经过三个路口,假设在各路口是否遇到红绿灯是相互独立的,遇到红灯的概率都是,则这名学生在上学的路上到第三个路口时第一次遇到红灯的概率为.4. 互斥事件与独立事件知识精讲互斥事件与独立事件的区别:“互斥事件”和“相互独立事件”是两个不同的概念,前者表示两个事件不可能同时发生,后者指一个事件是否发生对另一个事件发生的概率没有影响.知识点睛已知两个事件,它们的概率分别为.将中至少有一个发生记为事件,都发生记为事件,都不发生记为事件,恰有一个发生记为事件,至多有一个发生记为事件,则它们的概率间的关系见下表.概率互斥相互独立1经典例题A.不相互独立事件B.相互独立事件C.互斥事件D.对立事件14.一袋中装有只白球,只黄球,在有放回地摸球中,用表示第一次摸得白球,表示第二次摸得白球,则事件与是( ).巩固练习A.互斥但不相互独立B.相互独立但不互斥C.互斥且相互独立D.既不相互独立也不互斥15.掷一颗骰子一次,设事件:“掷出奇数点”,事件:“掷出点或点”,则事件,的关系( ).经典例题A.B.C.D.16.甲、乙两名学生通过某种听力测试的概率分别为和,两人同时参加测试,其中有且只有一人能通过概率是( ).(1)(2)17.某学生语、数、英三科考试成绩,在一次考试中排名全班第一的概率:语文为,数学为,英语为,并且该生各科取得第一名相互独立.问一次考试中:三科成绩均未获得第一名的概率是多少?恰有一科成绩未获得第一名的概率是多少?巩固练习18.从应届高中生中选拔飞行员,已知这批学生体型合格的概率为,视力合格的概率为,假设各项标准互不影响,从中任选一名学生,则该学生恰有一项合格的概率为( ).A.B. C.D.A.B.C.D.19.社区开展“建军周年主题活动——军事知识竞赛”,甲乙两人能荣获一等奖的概率分别为和,两人是否获得一等奖相互独立,则这两人中至少有一人获得一等奖的概率为().5. 全概率公式知识精讲(1)公式公式的推导:一般地,如果样本空间为,而为事件,则与是互斥的,且,所以,当且时,由乘法公式得:,所以,.(2)全概率公式的一般结论前面提到的全概率公式,本质上是将样本空间分成互斥的两部分(即与)后得到的.如果将样本空间分成更多互斥的部分,从而得到更一般的结论,如下:定理:若样本空间中的事件满足:①任意两个事均互斥,即;②;③.则对中的任意事件,都有,且.上述公式也称为全概率公式.经典例题20.某射击小组共有名射手,其中一级射手人, 二级射手人, 三级射手人, 四级射手人. 一、二、三、四级射手能通过选拔进入比赛的概率分别是、、、. 求任选一名射手能通过选拔进入比赛的概率.巩固练习(1)(2)21.某仓库有同样规格的产品箱,其中箱、箱、箱依次是由甲、乙、丙三个厂生产的,且三个厂的次品率分别为、、.现从这箱中任取一箱,再从取得的一箱中任意取出一件产品,求:取得一件产品是次品的概率.若已知取得的一件产品为次品,这件次品是乙厂生产的概率.6. 贝叶斯公式知识精讲(1)贝叶斯公式一般地,当且时,有.这称为贝叶斯公式.(2)贝叶斯公式的推广同全概率公式一样,贝叶斯公式也可以进行推广.定理:若样本空间中的事件满足:①任意两个事件均互斥,即;②;③.则对中的任意概率非零事件,有.上述公式也称为贝叶斯公式.经典例题22.甲、乙两厂生产同一种商品.甲厂生产的此商品占市场上的,乙厂生产的占;甲厂商品的合格率为,乙厂商品的合格率为.若某人购买了此商品发现为次品,则此次品为甲厂生产的概率为 .巩固练习23.某地区居民的肝癌发病率为 ,现用甲胎蛋白法进行普查医学研究表明,化验结果是存在错误的已知患有肝癌的人其化验结果呈阳性(有病),而没患肝癌的人其化验结果呈阴性(无病).现某人的检查结果呈阳性,问他真的患肝癌的概率有多少?三、思维导图你学会了吗?画出思维导图总结本课所学吧!四、出门测A.B.C.D.24.下面结论正确的是( ).若,则事件与是互为对立事件若,则事件与是相互独立事件若事件与是互斥事件,则与也是互斥事件若事件与是相互独立事件,则与也是相互独立事件25.根据某地区气象台统计,该地区下雨的概率是,刮风的概率为,既刮风又下雨的概率为,则在刮风天里,下雨的概率为 ,在下雨天里,刮风的概率为 .26.已知件产品中有件次品,现逐一不放回的检验,直到件次品都能被确认为止,则检验次数为的概率为 .27.甲、乙、丙的投篮命中率分别为,,.三人各投篮一次,假设三人投篮相互独立,则至少有一人命中的概率是 .。

条件概率与事件的独立性

条件概率与事件的独立性

条件概率与事件的独立性概率论中的条件概率和事件的独立性是两个基本概念,它们在统计学、机器学习等领域中具有重要的应用。

条件概率用于描述在给定另一个事件发生的条件下,某个事件发生的概率;而事件的独立性则描述了两个或多个事件之间的相互独立性。

在本文中,我们将深入探讨条件概率与事件的独立性的概念、性质以及应用。

一、条件概率条件概率是在已知事件B发生的条件下,事件A发生的概率。

用数学符号表示为P(A|B),读作"A在B发生的条件下发生的概率"。

其计算公式为:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A与事件B同时发生的概率,P(B)表示事件B发生的概率。

条件概率的概念在实际问题中广泛应用。

例如,假设一批产品中有10%的次品,现在从这批产品中随机抽取一件,已知这件产品是次品,求其实际上是某个特定厂家生产的概率。

这个问题就可以利用条件概率来求解,假设事件A表示该产品是某个特定厂家生产的事件,事件B表示这件产品是次品的事件,那么我们需要求解的就是P(A|B)。

二、事件的独立性事件的独立性是指两个或多个事件之间的发生没有相互影响,即一个事件的发生与否不会改变其他事件发生的概率。

具体地,对于两个事件A和B,如果满足以下条件,则称事件A和事件B是相互独立的:P(A∩B) = P(A) * P(B)其中,P(A∩B)表示事件A和事件B同时发生的概率,P(A)和P(B)分别表示事件A和事件B发生的概率。

事件的独立性在概率论中具有重要的应用。

例如,假设有两个骰子,求它们同时投掷时出现两个特定数字的概率。

我们可以将出现某个特定数字的事件定义为事件A和事件B,利用事件的独立性可以得到P(A∩B) = P(A) * P(B)。

三、条件概率与事件的独立性的关系条件概率与事件的独立性之间存在着紧密的联系。

如果事件A和事件B相互独立,那么有以下关系成立:P(A|B) = P(A)这表示在已知事件B发生的条件下,事件A的发生概率与事件B无关。

概率问题的条件概率与独立性

概率问题的条件概率与独立性

概率问题的条件概率与独立性概率论是数学的一个分支,研究随机事件的发生及其规律性。

在概率论中,条件概率与独立性是两个重要的概念。

本文将详细讨论条件概率与独立性的概念、性质以及应用。

一、条件概率的概念与计算方法条件概率是指在已知某一事件发生的前提下,另一事件发生的概率。

设A、B是两个事件,且P(A)>0,则在事件A发生的条件下,事件B发生的概率记为P(B|A),读作“在A发生的条件下B发生的概率”。

条件概率的计算方法如下:P(B|A) = P(A∩B) / P(A)其中,P(A∩B)表示事件A与事件B同时发生的概率,P(A)表示事件A发生的概率。

二、条件概率的性质1. 乘法定理:对于任意两个事件A和B,有P(A∩B) = P(A) × P(B|A) = P(B) × P(A|B)。

2. 独立事件的条件概率:对于独立事件A和B,有P(B|A) = P(B),P(A|B) = P(A),即事件A的发生与否不影响事件B的概率,反之亦然。

三、独立性的概念与判定方法独立性是指两个事件之间的发生与否相互独立,即一个事件的发生不受另一个事件的影响。

设A、B是两个事件,如果满足P(A∩B) =P(A) × P(B),则称事件A和事件B是独立事件,简写为A⊥B。

判定事件的独立性可以通过以下方法:1. 乘法法则:若P(A) × P(B) = P(A∩B),则可以推断A与B是独立事件。

2. 条件概率的性质:若P(B|A) = P(B),则A与B是独立事件。

四、条件独立性的概念与判定方法条件独立性是指在已知某一条件的前提下,两个事件之间仍然相互独立。

设A、B、C是三个事件,若满足P(A∩B|C) = P(A|C) × P(B|C),则称事件A和事件B在条件C下是条件独立的,简写为A⊥B|C。

我们可以通过以下方法判断事件的条件独立性:若满足P(A∩B|C) = P(A|C) × P(B|C),则可以推断在条件C下事件A 与事件B是条件独立的。

概率论中的条件概率与独立性

概率论中的条件概率与独立性

概率论中的条件概率与独立性概率论是数学中的一个重要分支,研究随机事件发生的规律及其可能性大小。

在概率论中,条件概率与独立性是两个基本概念,它们在解决实际问题中起着重要作用。

一、条件概率条件概率是指在已知事件B发生的条件下,事件A发生的概率。

用P(A|B)表示事件A在事件B发生的条件下发生的概率。

条件概率的计算公式为:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A与事件B同时发生的概率,P(B)表示事件B发生的概率。

条件概率的计算方法可以通过实际问题进行理解。

例如,某班级中男生占总人数的60%,女生占总人数的40%。

已知某学生是男生的条件下,他退学的概率为5%;已知某学生是女生的条件下,她退学的概率为8%。

现在要求某个学生退学的概率,可根据条件概率公式计算:P(退学) = P(退学|男生) * P(男生) + P(退学|女生) * P(女生)= 0.05 * 0.6 + 0.08 * 0.4= 0.03 + 0.032= 0.062因此,某学生退学的概率为6.2%。

二、独立性独立性是指两个事件A和B,事件A的发生与否不会对事件B的发生产生影响,反之亦然。

如果事件A和事件B相互独立,那么它们的概率满足以下条件:P(A∩B) = P(A) * P(B)即事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。

独立性的概念在实际问题中应用广泛。

例如,某班级中有60%的学生喜欢音乐,40%的学生喜欢运动。

已知某学生喜欢音乐的条件下,他喜欢运动的概率为50%;已知某学生喜欢运动的条件下,他喜欢音乐的概率为40%。

现在要求某学生既喜欢音乐又喜欢运动的概率,可根据独立性的概念计算:P(音乐∩运动) = P(音乐) * P(运动)= 0.6 * 0.4= 0.24因此,某学生既喜欢音乐又喜欢运动的概率为24%。

三、条件概率与独立性的关系条件概率与独立性是概率论中两个重要的概念,它们之间存在一定的关系。

概率论中的条件概率与事件独立性

概率论中的条件概率与事件独立性

条件概率与事件 独立性的实际案 例分析
天气预报的准确率与事件独立性分析
天气预报准确率与事件独立性的关系 不同天气预报模型对独立性的影响 实际案例分析:某地区连续两天的天气预报准确率 结论:提高天气预报准确率有助于更好地分析事件独立性
股票价格波动与事件独立性分析
股票价格波动与事件独立性的概念 股票价格波动与事件独立性的关系 股票价格波动与事件独立性的实际案例分析 股票价格波动与事件独立性的应用
掌握条件概率与事件独立性的概念和性质,对于理解概率论和统计学的基本原理、进行科学推断 和决策具有重要的意义。
未来研究方向与展望
深入研究条件概率 与事件独立性的关 系
探讨其在不同领域 的应用前景
探索如何更好地解 释和预测事件发生 的可能性
进一步研究条件概 率与事件独立性的 数学理论基础
感谢您的观看
汇报人:XX
条件概率与事件独立性
汇报人:XX
目录
添加目录标题
01
条件概率的定义与计 算
02
事件独立性的定义与 性质
03
条件概率与事件独立 性的关系
04
条件概率与事件独立 性的应用场景
05
条件概率与事件独立 性的实际案例分析
06
添加章节标题
条件概率的定义 与计算
条件概率的定义
条件概率是指在某 一事件B已经发生 的情况下,另一事 件A发生的概率,
在统计推断中,条件概率与事件独立性可用于构建复杂的概率模型,如贝叶斯推断和 马尔科夫链蒙特卡洛方法。
条件概率与事件独立性在统计推断中的应用有助于提高预测精度和决策的科学性。
在决策论中的应用
风险决策:根据条 件概率评估不同方 案的风险和收益

条件概率与事件的独立性

条件概率与事件的独立性
已知事件B发生,此时试验所 掷骰子
有可能结果构成的集合就是B,
B中共有3个元素, 它们的出现是等 可能的, 其中只有 1个在集A中,
于是P(A|B)= 1/3. 容易看到
P(A|B)116 P(AB) 3 36 P(B)
又如,10件产品中有7件正品,3件次品, 7件正品中有3件一等品,4件二等品. 现从这 10件中任取一件,记
第1个人抽到入场券的概率是1/5.
由于 A2 A1A2
由乘法公式
因为若第2个人抽到
了入场券,第1个人
P (A 2)P (A 1 )P (A 2|A 1 ) 肯定没抽到.
也就是要想第2个人抽到入场券,必须第1 个人未抽到,
计算得: P(A2)= (4/5)(1/4)= 1/5
同理,第3个人要抽到“入场券”,必须 第1、第2个人都没有抽到. 因此
下面四个结论中,正确的是:
1. P(B|A)>0 3. P(A|B)=0
2. P(A|B)=P(A) 4. P(AB)=P(A)P(B)
容易证明,若两事件A、B独立,则
A与 B,A与 B,A与 B也相互独立.
证明: 仅证A与 B 独立 概率的性质 P(AB )= P(A-A B)
A、B独立
= P(A)-P(AB)= P(A)-P(A) P(B)
的球具有相同颜色的球.
b个白球, r个红球
解: 设Wi={第i次取出是白球}, i=1,2,3,4
Rj={第j次取出是红球}, j=1,2,3,4
于是W1W2R3R4表示事件“连续取四个球,第 一、第二个是白球,第三、四个是红球. ”
用乘法公式容易求出 P(W1W2R3R4)
=P(W1)P(W2|W1)P(R3|W1W2)P(R4|W1W2R3)

条件概率与事件的独立性(1)

条件概率与事件的独立性(1)

2021/3/2
19
概率论与数理统计
例:市场上有甲,乙,丙三家工厂生产同一品牌 的产品;已知三家产品的市场占有率分别为 25%, 25% 及 50%, 且三家工厂的产品次品率分别为 2%, 1% 及 3%, 求此品牌产品的次品率?
解:设 B 买到一件产品是次品;A1 甲厂生产的产品 A2 乙厂生产的产品; A3 丙厂生产的产品
2021/3/2
3
概率论与数理统计
例:设箱中有 5 个红球和 3 个白球。现不放回 地取出 2 个球,假设每次抽取时,箱中各球被 取出是等可能的。第一次取出红球时,问:第
2 次仍取出红球的概率是多少?
解 一 : 缩 减 样 本 空 间 法
设 Ai 第 i 次取出红球,i 1, 2
由 于 A1 已 经 发 生 , 第 2 次 取 球 时 , 共 剩 下 7 个 球 , 其 中 有 4 个 红 球 , 故 P ( A2 | A1 ) 4 7 .
n
m
n
n
m m
n
m
n
1
n
m
n
n
2
m
n
mn
m
1
n
.
2021/3/2
22
概率论与数理统计
P32 题 7 解:设 B 取得该球是红球
A1 取自甲袋; A2 取自乙袋
则 1. P B P A1 P B A1 P A2 P B A2
1 6 1 8 41; 2 10 2 14 70
aa202132114概率论与数理统计复杂的事件分解成若干个互不相容的部人们在计算某一比较的概率时有时根据事件在不同情况或不同原因下发生而将它分别计算每一部分的概率然后求和这就是我们接下来要讨论的全概率公式

条件概率与事件的独立性

条件概率与事件的独立性

据此估计,该运动员三次投篮恰有两次命中的概率为(
)
A.0.35
C.0.20
B.0.25
D.0.15
[解析]
24 由随机数可估算出每次投篮命中的概率p≈ 60
2 = ,则三次投篮中两次为C32×P2×(1-P)≈0.25. 5
[答案] B
3 .(2009·湖北) 甲、乙、丙三人将参加某项测试,他们能
(1)求一投保人在一年度内出险的概率p;
(2) 设保险公司开办该项险种业务除赔偿金外的成本为 50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最 低保费(单位:元).
[解]
各投保人是否出险互相独立,且出险的概率都是
p,记投保的10 000人中出险的人数为ξ,则ξ-B(104,p). (1)记A表示事件:保险公司为该险种至少支付10 000元 赔偿金,则 A 发生当且仅当ξ=0, P(A)=1-P( A ) =1-P(ξ=0) =1-(1-p)104, 又P(A)=1-0.9999104, 故p=0.001.
=0.6×0.6+0.4×0.4=0.52.
P(ξ=3)=1-P(ξ=2)=1-0.52=0.48
ξ的分布列
ξ P
2 0.52
3 0.48
Eξ=2×P(ξ=2)+3×(ξ=3) =2×0.52+3×0.48=2.48.
(2009· 北京)某学生在上学路上要经过 4 个路口,假设在 1 各路口是否遇到红灯是相互独立的,遇到红灯的概率都是 3, 遇到红灯时停留的时间都是 2min.
4.在n次独立重复试验中,事件A恰好发生k次的概率为 P(X=k)=CnkPk(1-P)n-k,k=0,1,2,„,n,其中P是一次 试验中该事件发生的概率.实际上,CnkPk(1-P)n-k正好是二项 式[(1-P)+P]n的展开式中的第k+1项.

条件概率与事件的独立性

条件概率与事件的独立性

41.【2012高考真题广东理171 (本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图 所示,其中成绩分组区间是: [40,50][50,60][60,70][70,80][80,90][90,100].(1) 求图中x 的值; (2)从成绩不低于80分的学生中随机选取 2人,该2人中成绩在90分以上(含90分)的人数记为 分布列。

2.在一个盒子中,放有标号分别为 1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为 X 、y,记 E= |x — 2|+ |y — x|.(1)求随机变量E 的最大值,并求事件“ E 取得最大值”的概率; (2)求随机变量E 的分布列.(1)求该高中获得冠军个数 X 的分布列; (2)若球队获得冠军,则给其所在学校加5分,否则加2分,求该高中得分 n 的分布列.4.一名学生每天骑车上学,从他家到学校的途中有 6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立 的,并且概率都是3.3(1)设X 为这名学生在途中遇到红灯的次数,求X 的分布列;求©的3.(12分)某高中共派出足球、排球、篮球三个球队参加市学校运动会,它们获得冠军的概率分别为1 1 2,?,2 3(2)设丫为这名学生在首次停车前经过的路口数,求丫的分布列.4§2.2.1 &222条件概率与事件的独立性知识点一.条件概率及其性质(1)对于任何两个事件 A 和B ,在已知事件 A 发生的条件下,事件 B 发生的概率叫作条件概率,用符号 P(B|A)来表示,其公式为 P (B|A)=在古典概型中,若用 n(A)表示事件A 中基本事件的个数,则 P(B|A) =n(A )(2)条件概率具有的性质:① 0W P(B|A)W 1;②如果B 和C 是两个互斥事件,则P(BU CA)= P(B|A) + P(C|A),二、典型例题例1. 一枚硬币连续抛两次,记“第一次出现正面”为事件A, “第二次出现正面”为事件 B,则P(B|A)等于D.820岁的概率为0.8,活到25岁的概率是0.4,现有一个20岁的这种动物,问它例3.在100件产品中有95件合格品,5件不合格品.现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次再次取到不合格品的概率为例4. 1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放 入2号箱,然后1 1 A.2B.4例2.设某种动物由出生算起活到 能活到25岁的概率是多少?C.6 P(A)>0).从2号箱随机取出一球,则从2号箱取出红球的概率是变式1:一张储蓄卡的密码共 6位数字,每位数字都可从 0〜9中任选一个.某人在银行自动提款机上取钱时, 忘记了密码的最后一位数字,求:(1 )任意按最后一位数字,不超过2次就按对的概率;(2 )如果他记得密码的最后一位是偶数,不超过2次就按对的概率变式2:甲、乙两地都位于长江下游,根据一百多年的气象记录知道,甲、乙两地一年中雨天占的比例,分别为 20%和18%,两地同时下雨的比例为 12%.问:①乙地下雨时甲地也下雨的概率;②甲地下雨时乙地也下雨的概率 .知识点二.相互独立事件(1)对于事件A、B,若A的发生与B的发生互不影响,则称 A、B是相互独立事件.(2)若 A 与 B 相互独立,则 P(B|A) = P(B), P(AB)= P(B|A)P(A) = P(A)P(B) ⑶若A与B相互独立,则 A与B , A与B, A与B也都相互独立.(4)若P(AB) = P(A)P(B),则A与B相互独立例5.甲、乙二射击运动员分别对一目标射击 2人都射中目标的概率; 2人中恰有 2人至少有2人至多有 (1) (2) (3) (4)1人射中目标的概率;1人射中目标的概率;1人射中目标的概率?1次,甲射中的概率为 0.8,乙射中的概率为 0.9求:变式1:甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为 "2与P,且乙投球2次均未命中的概率⑴求乙投球的命中率 P ;⑵求甲投球2次,至少命中1次的概率;(3)若甲、乙两人各投球 2次,求共命中2次的概率.变式2:(2011山东)红队队员甲、乙、丙与蓝队队员 A 、B 、C 进行围棋比赛,甲对A 、乙对B 、丙对C 各一盘.已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立. (1)求红队至少两名队员获胜的概率; ⑵用E 表示红队队员获胜的总盘数,求 E 的分布列和数学期望 E( 3 . 例6.甲、乙两人参加一次英语口语考试,已知在备选的 10道题中,甲能答对其中的 6道,乙能答对其中的 8道,规定每次考试都从备选题中随机抽出 3道进行测试,至少答对 2题才算合格。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.古典定义法: 参课本P:126 ①基本思想:化归思想,化大为小 ②使用前提:①0有限性 ②0等可能性
3.几何定义法: 参课本P:136 ①基本思想:数形结合思想,事件图形化 ②使用前提:①0无限性 ②0等可能性
4.公理化定义法: 有待大学提高补充之
估计稳定是概率 古典概型个数比 几何概型测度比 有限无限是区分
(一)、定义法:
1.统计定义法 2.古典定义法 3.几何定义法 4.公理化定义法
(二)、模拟试验法:
1.物理机械法: 2.计算机(软件)法:
(三)、性质公式法:
1.性质法: ①范围性 ②总和性 2.公式法: ①加法公式 ②乘法公式 ③和积互补公式 ④对偶律
(三)、性质公式法:
1.性质法:
①范围性 0 P( A) 1
注:均匀分布是平等化概型
随机变量千千万 均匀分布平等化 多次成败伯努利 成分两类超几何
六大分布最常见 两点分布论成败 二项连续是正态 几何分布破天荒
两点分布(0-1分布)
形如 ξ 0 1 的分布列称为两点分布列 P 1-p p
又称0-1分布 ,称随机变量ξ服从两点分布 称 p 为成功概率 注:两点分布是结果“一分为二(成败,非黑即白)”概型
三、条件概率:
1.定义: 在事件A发生的条件下,事件B发生的概率称为条件概率 并记为P(B|A). 读作:A发生的条件下B发生的概率 2.性质:
① 0 P(B | A) 1;
②如果B和C是两个互斥事件,那么
P(B UC | A) P(B | A) P(C | A).
3.求法: ①定义法 P(B | A) P( AB)
§258 条件概率与事件的独立性(一)
一、求分布列的总思路:
繁 (大)
事 件
分类:互斥事件加法公式 分步:独立事件乘法公式
简 (小)
事 件
六大分布套公式 陌生事件三步法
二、事件的独立性:
1.定义: 2.性质: 3.判定:
三、条件概率: 1.定义: 2.性质: 3.求法:
随机变量及其分布列概述
随 细化数化分布列①

的 以小代大 的




定义法 模拟试验法 性质公式法
统计定义 古典概型 几何概型
计算概率常用的方法
定义法
统计定义法 古典定义法 几何定义法
模拟试验法
物理机械法 计算机(软件)法
性质法
范围性 总和性
性质公式法
加法公式
公式法
乘法公式 和积互补公式
对偶律
(一)、定义法:
1.统计定义法: 参课本P:110 频率是概率的估计;频率的稳定值是概率
①超几何分布是“结构一分为二(成分两大类)” 概型
②超几何分布的模型是不放回抽样
随机变量千千万 均匀分布平等化 多次成败伯努利 成分两类超几何
六大分布最常见 两点分布论成败 二项连续是正态 几何分布破天荒
二项分布——独立重复n次,恰好发生k次的概率 一、定义:参课本P:57
注1:互不影响为独立 概率相等即重复 重复n 次恰好 k 通项公式后项 p
不能同时为互斥 互斥特例为对立 互不影响为独立 一对独立全独立 互斥独立不相干 概率相等即重复
(3)课本P:55 练习3 析:设A,B分别表示甲,乙地降雨.则P(A)=0.2,P(B)=0.3
① P(AB) P(A)P(B) 020.3 0.06 ② P(AB) P(A)P(B)
[1 P(A)][1 P(B)] (1 0.2)(1 0.3) 0.56 ③ P(A B) P(A) P(B) 0.5
六大分布套公式 陌生事件三步法
①加法公式 P(A B) P(A) P(B) P(AB) 注:若A,B互斥,则 P(A B) P(A) P(B)
②乘法公式 P(AB) P(A)P(B | A) P(B)P(A | B) 注:若A,B独立,则 P(AB) P(A)P(B)
不能同时为互斥 互斥特例为对立 互不影响为独立 一对独立全独立 互斥独立不相干 概率相等即重复
k=0,1,2,…,m; m=min{M,n}
X
0
1

m
即P
C0MCNn- -0M CnN
C1MCNn- -1M CnN

CmM
Cn- m N- M
CNn
称该分布列称为超几何分布
称随机变量X服从超几何分布. 并记X~ H (n,M,N)
注:元素属性两大类 质量抽检是范例


大 N总数抽小 n 次品 M 含小 k
注:若A,B独立,则有 P( AB) P( A)P(B)
③和积互补公式 P(A1 A2 An ) 1 P(A1 • A2 • • An ) 注:若A,B对立,则有 P( A) P(B) 1,反之则不然
④对偶律 P(A• B •C) P(A B C) P(A• B •C) P(A B C)
A、B都不发生 A、B、C都不发生
⑤ A·B = A+ B
A、B不都发生
A·B·C = A+B+C A、B、C不都发生
离散型随机变量的分布列求法: 一选二算三列表
一选:根据题意灵活的选取随机变量所有可能的取值 二算:根据题意灵活的计算各随机变量相应的概率
计算概率常用的方法


杂 化繁为简 单



注:必然事件的概率为1 不可能事件的概率为0 反之则不然
②总和性
若Ω=A1+A2+…+An,且 A1,A2,…,An两两互斥,则
P(A1)+P(A2)+…+P(An)=1
(三)、性质公式法:
1.性质法: ①范围性
2.公式法
②总和性
①加法公式 P(A B) P(A) P(B) P(AB) 注:若A,B互斥,则有 P( A B) P( A) P(B) ②乘法公式 P(AB) P(A)P(B | A) P(B)P(A | B)
3 5
, P(AB)
4
A61 A41 A120
4 15
故 P(B | A) P(AB)
P( A)
15 3
4 9
缩小样本空间法:
5
第一次取到白球,则袋中剩余5个白球和4个黑球
故第二次取到黑球的概率是
P( A)
C41 C91
4 9
(5)课本P:53 例1
(6)课本P:54

P
C31 C511
3 51
P( A)
②缩小样本空间法 P(B | A) n( AB) n( A)
练习2.条件概率:
(4)一袋中装有6个白球、4个黑球,每次从中不放回地 任取1个,求在第一次取到白球的条件下,第二次取到 黑球的概率.
定义法:记“第一次取到白球”为事件A “第二次取到黑球”为事件B

P( A)
C61 C110
随机变量及其分布列概述
随 细化数化分布列①

一选二算三列表 ② 六大分布公式化 ③
分 布

件 期望方差确定化④

注②:一选二算三列表 求分布列的操作步骤
注③:六大分布公式化
(1)均匀分布
(2)两点(0—1)分布
(3)几何分布
(4)超几何分布
(5)二项分布
(6)正态分布
随机变量及其分布列概述
随 细化数化分布列①
随机变量千千万 均匀分布平等化 多次成败伯努利 成分两类超几何
六大分布最常见 两点分布论成败 二项连续是正态 几何分布破天荒
几何分布
如果事件A每次发生的概率均为p,则事件A在第k次首次
发生的概率为P(ξ=k)= (1-p) k-1p (k=1,2,3,…) 则称ξ服从几何分布,并记ξ~ G (p)
法2: P(A B) 1 P(AB) 0.44
法3: P(AB) P(AB) P(AB) 0.44
加法公式: P(A B) P(A) P(B) P(AB) 注:若A,B互斥,则 P(A B) P(A) P(B)
和积互补公式 P(A1 A2 An ) 1 P(A1 • A2 • • An )
二、事件的独立性:
1.定义:
若 P( AB) P(A)P(B) ,则称事件A与事B相互独立
2.性质:
若事件A与B相互独立,则事件 A与B,A与B,A与B
也相互独立 3.判定:
A与B独立 P(AB) P(A)P(B)
不能同时为互斥 互斥特例为对立 互不影响为独立 一对独立全独立 互斥独立不相干 概率相等即重复
注2:频率代概率 总数一大批 抽取要放回 二项分布也
二、常用的公式:
若 ~ B(n , p) ,则
① P( k) Cnk pk (1 p)nk (k 0,1,2,..., n)
② E( ) np
③ D( ) np(1 p)
§258 条件概率与事件的独立性(一)
一、求分布列的总思路:
繁 (大)
加法公式: P(A B) P(A) P(B) P(AB) 注:若A,B互斥,则 P(A B) P(A) P(B)
(3)课本P:55 练习3
析:设A,B分别表示甲,乙地降雨.则P(A)=0.2,P(B)=0.3
① P(AB) 0.06
② P(AB) 0.56
③ 法1:P(A B) P(A) P(B) P(AB) 0.44
离散型随机变量的分布列求法: 一选二算三列表
一选:根据题意灵活的选取随机变量所有可能的取值 二算:根据题意灵活的计算各随机变量相应的概率 三列表:
格式①
X x1 x2 x3 x4 … xi … p p1 p2 p3 p4 … pi …
格式②
X x1 x2 x3 x4 … xi … p p1 p2 p3 p4 … pi …
相关文档
最新文档