串联谐振和并联谐振的10大区别

合集下载

论串联谐振与并联谐振区别

论串联谐振与并联谐振区别

论串联谐振与并联谐振区别在电阻、电容、电感串联电路中,出现电源、电压、电流同相位现象、叫做串联谐振,其特点是:电路呈纯电阻性,电源、电压和电流同相位,电抗X等于O,抗阻Z等于电阻R。

此时电路的阻抗最小,电流最大,在电感和电容上可能产生比电源电压大很多倍的高电压,因此串联谐振也称为电压谐振。

谐振电压与原电压叠加,并联谐振:在电阻、电容、电感并联电路中,出现电路端电压和总电流同相位的现象,叫做并联谐振,其特点是:并联谐振时一种完全的补偿,电源无需提供无功功率,只提供电阻所需要的有功功率,谐振时,电路的总电流最小,而支路电流往往大于电路中的总电流,因此,并联谐振也叫电流谐振。

串联谐振和并联谐振区别一1. 从负载谐振方式划分,可以为并联逆变器和串联逆变器两大类型,下面列出串联逆变器和并联逆变器的主要技术特点及其比较:串联逆变器和并联逆变器的差别,源于它们所用的振荡电路不同,前者是用L、R和C串联,后者是L、R和C并联。

(1)串联逆变器的负载电路对电源呈现低阻抗,要求由电压源供电。

因此,经整流和滤波的直流电源末端,必须并接大的滤波电容器。

当逆变失败时,浪涌电流大,保护困难。

并联逆变器的负载电路对电源呈现高阻抗,要求由电流源供电,需在直流电源末端串接大电抗器。

但在逆变失败时,由于电流受大电抗限制,冲击不大,较易保护。

串联谐振和并联谐振区别二(2)串联逆变器的输入电压恒定,输出电压为矩形波,输出电流近似正弦波,换流是在晶闸管上电流过零以后进行,因而电流总是超前电压一φ角。

并联逆变器的输入电流恒定,输出电压近似正弦波,输出电流为矩形波,换流是在谐振电容器上电压过零以前进行,负载电流也总是越前于电压一φ角。

这就是说,两者都是工作在容性负载状态。

(3)串联逆变器是恒压源供电,为避免逆变器的上、下桥臂晶闸管同时导通,造成电源短路,换流时,必须保证先关断,后开通。

即应有一段时间(t )使所有晶闸管(其它电力电子器件)都处于关断状态。

串联谐振电路与并联谐振电路的异同点

串联谐振电路与并联谐振电路的异同点

串联谐振电路与并联谐振电路的异同点串联谐振电路与并联谐振电路是电路中常见的两种谐振电路,它们在一些特定的应用中具有重要的作用。

本文将从谐振电路的定义、特点、结构和应用等方面讨论串联谐振电路与并联谐振电路的异同点。

我们来看一下串联谐振电路。

串联谐振电路是由电感、电容和电阻组成的,其中电感和电容串联连接,而电阻则与电感串联或与电容并联。

串联谐振电路的特点是在特定的频率下,电感和电容的阻抗相等,电路呈现出纯电阻。

串联谐振电路的特点是电流共享,电压不共享,即电感和电容上的电压不相等。

串联谐振电路常用于频率选择电路、滤波器等方面。

接下来,我们来看一下并联谐振电路。

并联谐振电路是由电感、电容和电阻组成的,其中电感和电容并联连接,而电阻则与电感并联或与电容串联。

并联谐振电路的特点是在特定的频率下,电感和电容的阻抗相等,电路呈现出纯电抗。

并联谐振电路的特点是电压共享,电流不共享,即电感和电容上的电流不相等。

并联谐振电路常用于频率选择电路、滤波器等方面。

接下来,我们来比较一下串联谐振电路和并联谐振电路的异同点。

1. 结构不同:串联谐振电路的电感和电容是串联连接的,而并联谐振电路的电感和电容是并联连接的。

2. 阻抗特性不同:串联谐振电路在谐振频率时,电感和电容的阻抗相等,电路呈现出纯电阻;而并联谐振电路在谐振频率时,电感和电容的阻抗相等,电路呈现出纯电抗。

3. 电流和电压分布不同:串联谐振电路的电流共享,电压不共享,即电感和电容上的电压不相等;而并联谐振电路的电压共享,电流不共享,即电感和电容上的电流不相等。

4. 谐振频率计算方式不同:串联谐振电路的谐振频率由电感和电容的数值决定,可以通过公式计算得到;而并联谐振电路的谐振频率由电感和电容的数值决定,可以通过公式计算得到。

5. 应用不同:由于串联谐振电路和并联谐振电路的特性不同,它们在应用上也有所不同。

串联谐振电路常用于频率选择电路、滤波器等方面,而并联谐振电路常用于频率选择电路、振荡器等方面。

串联谐振和并联谐振有什么区别?

串联谐振和并联谐振有什么区别?

串联谐振和并联谐振有什么区别?
华天电力为大家介绍串联谐振和并联谐振有什么区别?
RLC并联谐振电路:
在低频率下,电感器将具有较低的阻抗和将主导C和R.这意味着大多数的较高阻抗电流经过电感器。

随着频率增加,L的阻抗增加,电流减小。

在高频率下,电容器将具有较低的阻抗和将主导L的更高的阻抗和R.这意味着大部分的电流通过所述电容器。

随着频率增加,C的阻抗减小,电流增加。

在共振时,L的阻抗等于C的阻抗,除非它们彼此异相180度,然后取消以创建无限阻抗,而您将R保留为阻抗。

这意味着所有电流都流经电阻。

这是针对并联RLC谐振的阻抗与频率的关系图。

RLC系列串联谐振电路:
在低频率下,电容器将具有更高的阻抗和将主导下将L的阻抗和R.这意味着电容器确定的电流流过电路的量。

随着频率增加,C的阻抗减小,电流增加。

在高频率下,电感器将具有更高的阻抗和将主导下的C和R的阻抗这意味着,电感器确定的电流流过电路的量。

随着频率增加,L的阻抗增加,电流减小。

在共振时,L的阻抗等于C的阻抗,只有它们彼此异相180度,然后抵消以创建零阻抗,并且剩下R作为阻抗。

这是串联谐振的阻抗与频率的关系图(忽略高频处的怪异扭结)。

串联谐振电路与并联谐振电路的异同点

串联谐振电路与并联谐振电路的异同点

1. 序串联谐振电路与并联谐振电路是电工电子领域常见的两种谐振电路。

它们在电路工程中有着重要的应用,能够实现信号调理、滤波、放大等功能。

本文将就串联谐振电路与并联谐振电路的异同点展开讨论,以便读者更好地理解并应用这两种电路。

2. 串联谐振电路的特点及工作原理串联谐振电路是指电感、电容以及电阻按一定方式相串联连接的谐振电路。

它的特点在于在谐振频率下有较大的阻抗,能够实现对输入信号的放大和频率的选择性放大。

其工作原理主要包括通过电感和电容的能量存储和释放实现对特定频率的选择性增强,即对特定频率的输入信号放大。

3. 并联谐振电路的特点及工作原理并联谐振电路是指电感、电容以及电阻按一定方式相并联连接的谐振电路。

它的特点在于在谐振频率下有较小的阻抗,能够实现对输入信号的衰减和频率的选择性衰减。

其工作原理主要包括通过电感和电容的能量存储和释放实现对特定频率的选择性衰减,即对特定频率的输入信号衰减。

4. 串联谐振电路与并联谐振电路的异同点4.1 谐振频率特性串联谐振电路和并联谐振电路在谐振频率特性上有明显不同。

串联谐振电路的谐振频率由电感和电容的参数来决定,而并联谐振电路的谐振频率也由电感和电容的参数来决定。

不同之处在于,串联谐振电路在谐振频率下有较大的阻抗,而并联谐振电路在谐振频率下有较小的阻抗。

4.2 阻抗特性串联谐振电路和并联谐振电路在阻抗特性上也有明显不同。

串联谐振电路在谐振频率下有较大的阻抗,能够实现对输入信号的放大和频率的选择性放大;而并联谐振电路在谐振频率下有较小的阻抗,能够实现对输入信号的衰减和频率的选择性衰减。

4.3 应用特点由于其不同的谐振频率特性和阻抗特性,串联谐振电路和并联谐振电路在应用特点上也有所不同。

串联谐振电路常用于在特定频率下对输入信号进行放大和选择性放大的应用,如滤波器、频率选择性放大等;而并联谐振电路常用于在特定频率下对输入信号进行衰减和选择性衰减的应用,如滤波器、频率选择性衰减等。

串联谐振频率和并联谐振频率

串联谐振频率和并联谐振频率

串联谐振频率和并联谐振频率摘要:一、串联谐振频率和并联谐振频率的定义二、串联谐振频率和并联谐振频率的计算方法三、串联谐振频率和并联谐振频率在实际应用中的区别和联系正文:一、串联谐振频率和并联谐振频率的定义串联谐振频率和并联谐振频率是电学中常见的两个概念,它们都与电容和电感有关。

在电学中,谐振频率是指电路中的电容和电感相互作用,使得电路的阻抗呈现出共振现象的频率。

串联谐振频率是指在串联电路中,电容和电感依次串联,电路中的电流和电压呈现出共振现象的频率。

而并联谐振频率则是指在并联电路中,电容和电感并联,电路中的电流和电压呈现出共振现象的频率。

二、串联谐振频率和并联谐振频率的计算方法计算串联谐振频率和并联谐振频率的方法相同,都是利用电路中的电容和电感计算出电路的阻抗,然后根据阻抗的实部和虚部的比值求出谐振频率。

在串联电路中,电容和电感依次串联,阻抗为Z = R + jωL + 1/jωC,其中R为电阻,L为电感,C为电容,ω为角频率。

当阻抗的实部等于零时,即R + jωL = -1/jωC,求解得到ω = 1/√(LC)。

在并联电路中,电容和电感并联,阻抗为Z = R + jωL - 1/jωC,其中R 为电阻,L为电感,C为电容,ω为角频率。

当阻抗的实部等于零时,即R +jωL = 1/jωC,求解得到ω = 1/√(LC)。

三、串联谐振频率和并联谐振频率在实际应用中的区别和联系在实际应用中,串联谐振频率和并联谐振频率的区别主要体现在电路的连接方式和电路的阻抗特性上。

串联谐振频率是指在串联电路中,电容和电感依次串联,电路中的电流和电压呈现出共振现象的频率;而并联谐振频率则是指在并联电路中,电容和电感并联,电路中的电流和电压呈现出共振现象的频率。

虽然串联谐振频率和并联谐振频率的计算方法相同,但在实际应用中,它们的电路特性不同,因此需要根据具体的电路需求选择合适的谐振频率。

串并联谐振电路的公式区别

串并联谐振电路的公式区别

串并联谐振电路的公式区别
摘要:
一、谐振电路基本概念
二、串并联谐振电路的公式区别
1.串联谐振电路
2.并联谐振电路
三、公式应用实例
四、结论与建议
正文:
一、谐振电路基本概念
谐振电路是指在特定频率下,电路中的电容器和电感器共同作用,使得电流和电压呈正弦波振荡的电路。

根据电路元件的连接方式,谐振电路可分为串联谐振电路和并联谐振电路。

二、串并联谐振电路的公式区别
1.串联谐振电路
串联谐振电路中,电容器和电感器依次串联连接,电路总阻抗为RLC串联。

根据谐振条件,电路的电流最大,电压最小。

串联谐振电路的谐振频率公式为:
f_s = 1 / (2π√(LC))
2.并联谐振电路
并联谐振电路中,电容器和电感器并联连接,电路总阻抗为RLC并联。


据谐振条件,电路的电压最大,电流最小。

并联谐振电路的谐振频率公式为:f_p = 1 / (2π√(LC))
三、公式应用实例
以一个串联谐振电路为例,若已知电感器L=100μH,电容器C=100pF,求谐振频率。

f_s = 1 / (2π√(LC)) = 1 / (2π√(100μH×100pF)) ≈ 159.2 Hz
四、结论与建议
谐振电路在电子设备中应用广泛,了解串并联谐振电路的公式区别有助于更好地分析和设计电路。

在实际应用中,可根据需求选择合适的谐振电路类型,并利用公式计算谐振频率,从而满足系统性能要求。

串联谐振与并联谐振

串联谐振与并联谐振
谐振现象是正玄交流电路的一种特定现象,它在电子和通讯工程中得到广泛应用,但在电力系统中,发生谐振有可能破坏系统的正常工作。
一、 串联谐振


+

+

+
– jXC
R
jXL
1. 谐振条件
I

U

UR

UL

Uc

即:
电压与电流同相,电路 中发生串联谐振。
谐振角频率
谐振频率
(3)电流的频率特性
(幅频特性)
6. 电路的选择特性
突出 O 及其附近频率所对应的电流而抑制远离 O 的频率所对应的电流的性能称为电路的选频特性。
0
曲线越尖锐,选择性越好,稍有偏离谐振频率的信号就大大减弱。
令:
整理得:
相对抑制比
0
通频带
应用举例:无线电接收设备的输入调谐电路如图。
第五章 谐振与互感电路
第一节 谐振电路
在含有电阻、电感和电容的交流电路中,电路两端电压与其电流一般是不同相的,若调节电路参数或电源频率使电流与电 源电压同相,电路呈电阻性,称这时电路的工作状态为谐振。
谐振现象
谐振
串联谐振:在串联电路中发生的谐振。
并联谐振:在并联电路中发生的谐振。
(1)电压一定时,谐振时电流最小;
(3)电路呈电阻性,支路电流可能会大于总电流。
(2)总阻抗最大;
通过对电路谐振的分析,掌握谐振电路的特点,在生产实践中,应该用其所长,避其所短。
作业:5-4、5-6
高电压可能会损坏设备。在电力系统中应避免发生串联谐振。而串联谐振在无线电工程中有广泛应用。
频率特性

串联谐振和并联谐振有什么区别

串联谐振和并联谐振有什么区别

串联谐振和并联谐振有什么区别
串联谐振和并联谐振由什么区别?从字面上分析两者便不同,都是谐振现象,只是并联、串联之分。

简而言之,在电阻、电容、电感串联电路中,出现电源、电压、电流同相位现象,叫做串联谐振。

谐振电压与原电压叠加,是并联谐振。

具体区别有以下几点:
1.逆变器供电不同。

串联谐振逆变器是恒压源供电,并联谐振则是恒流源供电。

2.逆变器的工作频率要求不同。

串联谐振逆变器的工作频率必须低于负载电路的固有振荡频率,而并联谐振逆变器的工作频率必须高于负载电路的固有振荡频率。

3.功率调节方式不一样。

并联谐振逆变器的功率调节方式只有改变直流电源电压Ud 一种,而串联谐振则多一种改变晶闸管的触发频率的方式。

4.逆变器在换流时,晶闸管关断时间和方式不同。

串联谐振逆变器在换流时,晶闸管是自然关断的,关断时间短。

而并联谐振逆变器在换流时,晶闸管是被强迫关断的,关断时间长。

5.串联谐振逆变器可以自激工作,也可以他激工作。

而并联谐振逆变器一般只能工作在自激状态。

6.逆变器启动难易程度不一样。

串联谐振逆变器起动容易,适用于频繁起动工作的场合;而并联谐振逆变器需附加起动电路,起动较为困难。

串联谐振装置与并联谐振装置的区别以及特点

串联谐振装置与并联谐振装置的区别以及特点

串联谐振装置与并联谐振装置的区别以及特点
串联谐振装置与并联谐振装置的的概述
在日常工作中,售后部门在解决客户关于串联谐振装置的相关问题时,有时候会问到,什么是并联谐振?可见,还是有一部分客户分不清串联谐振装置与并联谐振装置的区别所在,据我们了解,这部分客户可能认为串联谐振装置和并联谐振装置只是两种相关的设备,并不能相互兼顾,下面华天电力为您解决串联谐振与并联谐振的装置的作用,特点和现场的实际应用相关案例。

串联谐振装置与并联谐振装置的作用和区别
首先,串联谐振与并联谐振的装置的作用都是用于电力系统中高压电气设备的绝缘性试验,名字上只有一字之差,“差”就差在电抗器的组合方式不同,从原理上同属一套试验装置,简单的说,一套设备两种接线方法,即串联接法和并联接法,不同的接法又对应不同的试验对象,下面我将分别解释他们之间的特点。

串联谐振装置与并联谐振装置的特点
A,串联谐振装置特点:串联谐振装置是指在整个串联谐振电路中,电感呈串联关系,串联最大特点是电压叠加,电流不变,所以,这种方式适用于高电压的电气设备,比如:变压器主绝缘,开关断开绝缘,母线等等。

B,并联谐振装置的特点:并联谐振装置是指在串联谐振电路中,电感呈并联状态,此时,电压不变,电流叠加,这种方式比较适用于高压电缆的绝缘试验,比如:以为
27kvA电抗器,35kv电力系统电缆为例,我们可以采用2节电抗器并联,两节电抗器串联即可完成试验要求。

串联谐振频率和并联谐振频率

串联谐振频率和并联谐振频率

串联谐振频率和并联谐振频率一、引言谐振是物理学中一个重要的概念,它在电路、声学、光学等领域中都有广泛的应用。

在电路中,谐振频率是指电路中的电感和电容元件在特定频率下达到最大响应的频率。

串联谐振和并联谐振是两种常见的谐振方式,它们在电路中具有不同的特点和应用。

本文将详细探讨串联谐振频率和并联谐振频率的定义、计算方法以及它们的应用。

二、串联谐振频率2.1 定义串联谐振是指电路中的电感和电容元件按照串联的方式连接,形成一个谐振回路。

当电路中的电感和电容元件的阻抗相等时,电路会在特定频率下达到最大电流响应。

这个特定频率就是串联谐振频率。

2.2 计算方法串联谐振频率的计算方法如下: 1. 首先,计算电感元件的电感值(单位:亨利)和电容元件的电容值(单位:法拉)。

2. 根据串联谐振电路的特点,计算串联谐振电路的总阻抗(单位:欧姆)。

3. 通过总阻抗和电感元件的电感值计算谐振频率(单位:赫兹)。

2.3 应用串联谐振频率在电路中有广泛的应用。

例如,在无线电通信中,串联谐振电路可以用来选择特定的频率进行信号的放大和传输。

此外,在音频设备中,串联谐振电路也可以用来调节音频信号的频率响应。

三、并联谐振频率3.1 定义并联谐振是指电路中的电感和电容元件按照并联的方式连接,形成一个谐振回路。

当电路中的电感和电容元件的阻抗相等时,电路会在特定频率下达到最小电流响应。

这个特定频率就是并联谐振频率。

3.2 计算方法并联谐振频率的计算方法如下: 1. 首先,计算电感元件的电感值(单位:亨利)和电容元件的电容值(单位:法拉)。

2. 根据并联谐振电路的特点,计算并联谐振电路的总阻抗(单位:欧姆)。

3. 通过总阻抗和电容元件的电容值计算谐振频率(单位:赫兹)。

3.3 应用并联谐振频率在电路中也有广泛的应用。

例如,在无线电通信中,并联谐振电路可以用来选择特定的频率进行信号的滤波。

此外,在音频设备中,并联谐振电路也可以用来调节音频信号的频率响应。

串联谐振和并联谐振区别

串联谐振和并联谐振区别

串联谐振和并联谐振区别华意电力是一家专业研发生产串联谐振的厂家,公司生产的串联谐振设备在行业内都广受好评,以打造最具权威的“串联谐振“高压设备供应商而努力。

(一)串联谐振和并联谐振区别一1、串联逆变器的工作频率必须低于负载电路的固有振荡频率,即应确保有合适的t时间,否则会因逆变器上、下桥臂直通而导致换流的失败。

并联逆变器的工作频率必须略高于负载电路的固有振荡频率,以确保有合适的反压时间t,否则会导致晶闸管间换流失败;但若高得太多,则在换流时晶闸管承受的反向电压会太高,这是不允许的。

2、串联逆变器的功率调节方式有二:改变直流电源电压Ud或改变晶闸管的触发频率,即改变负载功率因数cosφ。

并联逆变器的功率调节方式,一般只能是改变直流电源电压Ud。

改变cosφ虽然也能使逆变输出电压升高和功率增大,但所允许调节范围小。

3、串联逆变器在换流时,晶闸管是自然关断的,关断前其电流已逐渐减小到零,因而关断时间短,损耗小。

在换流时,关断的晶闸管受反压的时间(t+tγ)较长。

(二)串联谐振和并联谐振区别一1、串联逆变器的输入电压恒定,输出电压为矩形波,输出电流近似正弦波,换流是在晶闸管上电流过零以后进行,因而电流总是超前电压一φ角。

并联逆变器的输入电流恒定,输出电压近似正弦波,输出电流为矩形波,换流是在谐振电容器上电压过零以前进行,负载电流也总是越前于电压一φ角。

这就是说,两者都是工作在容性负载状态。

2、串联逆变器是恒压源供电,为避免逆变器的上、下桥臂晶闸管同时导通,造成电源短路,换流时,必须保证先关断,后开通。

即应有一段时间(t)使所有晶闸管(其它电力电子器件)都处于关断状态。

此时的杂散电感,即从直流端到器件的引线电感上产生的感生电势,可能使器件损坏,因而需要选择合适的器件的浪涌电压吸收电路。

此外,在晶闸管关断期间,为确保负载电流连续,使晶闸管免受换流电容器上高电压的影响,必须在晶闸管两端反并联快速二极管。

并联逆变器是恒流源供电,为避免滤波电抗Ld上产生大的感生电势,电流必须连续。

串联谐振与并联谐振的区别

串联谐振与并联谐振的区别

一..并;联谐振电路:当外来频率加于一并联谐振电路时,它有以下特性:
二. 1.当外加频率等于其谐振频率时其电路阻抗呈纯电阻性,且有最大值,它这个特性在实际应用中叫做选频电路. 三. 2.当外加频率高于其谐振频率时,电路阻抗呈容性,相当于一个电容. 四. 3.当外加频率低于其谐振频率时,这时电路呈感性,相当于一个电感线圈.
五.所以当串联或并联谐振电路不是调节在信号频率点时,信号通过它将会产生相移.(即相位失真)
二.串联谐振电路:当外来频率加于一串联谐振电路时,它有以下特性:
1.当外加频率等于其谐振频率时其电路阻抗呈纯电阻性,且有最少值,它这个特性在实际应用中叫做陷波器.
2.当外加频率高于其谐振频率时,电路阻抗呈感性,相当于一个电感线圈.
3.当外加频率低于其谐振频率时,这时电路呈容性,相当于一个电容.
s
r
=
I rC
=
谐振曲线相同相位特性
曲线
相同P
V
V。

并联谐振和串联谐振

并联谐振和串联谐振

并联谐振和串联谐振一、概述谐振电路是一种能够在特定频率下实现高效能量传输的电路。

谐振电路分为并联谐振和串联谐振两类,它们的共同点是在特定频率下具有较大的阻抗,从而实现了高效能量传输。

本文将详细介绍并联谐振和串联谐振的原理、特点、应用等方面。

二、并联谐振1. 原理并联谐振电路由一个电感L和一个电容C组成,如图1所示。

当交流信号通过该电路时,如果信号频率与电感和电容的共振频率相同,则会在该频率下形成高阻抗状态,从而实现了高效能量传输。

2. 特点(1)具有较大的输入阻抗,在输入端不会对信号源造成负载影响;(2)输出端阻抗小,适合驱动低阻抗负载;(3)对于变化较小的负载变化具有一定的稳定性。

3. 应用(1)用于滤波器设计中,可以实现对某一特定频率进行滤波;(2)用于无线通信系统中,可以实现对信号进行选择性放大;(3)用于音频放大器中,可以实现对特定频率的信号进行放大。

三、串联谐振1. 原理串联谐振电路由一个电感L和一个电容C组成,如图2所示。

当交流信号通过该电路时,如果信号频率与电感和电容的共振频率相同,则会在该频率下形成低阻抗状态,从而实现了高效能量传输。

2. 特点(1)具有较小的输入阻抗,在输入端会对信号源造成一定的负载影响;(2)输出端阻抗大,适合驱动高阻抗负载;(3)对于变化较小的输入信号变化具有一定的稳定性。

3. 应用(1)用于无线通信系统中,可以实现对信号进行选择性滤波;(2)用于音频放大器中,可以实现对特定频率的信号进行放大;(3)用于LC振荡器中,可以实现产生稳定的正弦波输出。

四、总结并联谐振和串联谐振是两种常见的谐振电路,在特定应用场景下具有各自独特的优势。

并联谐振适合驱动低阻抗负载,具有较大的输入阻抗和对负载变化的稳定性;串联谐振适合驱动高阻抗负载,具有较小的输入阻抗和对输入信号变化的稳定性。

在实际应用中,需要根据具体情况选择合适的谐振电路。

串联谐振和并联谐振

串联谐振和并联谐振

串联谐振和并联谐振首先讲一下什么是谐振,在含有电阻、电感和电容的交流电路中,电路两端电压与其电流一般是不同相的,若调节电路参数或电源频率使电流与电源电压同相,电路呈电阻性,称这时电路的工作状态为谐振。

谐振又分为串联谐振和并联谐振,在串联电路中发生的谐振即为串联谐振,在并联电路中发生的谐振即为并联谐振,谐振现象是正玄交流电路的一种特定现象,它在电子和通讯工程中得到广泛的应用,但是在电力系统中,发生谐振有可能破坏系统的正常工作。

接下来我们再来分别介绍一下串联谐振和并联谐振的特电路特点。

串联谐振的电路特点1.总阻抗值最小;2.电源电压一定时,电流最大;3. 电路呈电阻性,电容或电感上的电压可能高于电源电压。

并联谐振电路的特点1.电压一定时,谐振时电流最小;2.总阻抗最大;3.电路呈电阻性,支路电流可能会大于总电流。

串联谐振与并联谐振的区别1. 从负载谐振方式划分,可以为并联谐振和串联谐振两大类型,下面列出串联谐振和并联谐振的主要技术特点及其比较:串联谐振和并联谐振的差别,源于它们所用的振荡电路不同,前者是用L、R和C串联,后者是L、R和C并联。

(1)串联谐振的负载电路对电源呈现低阻抗,要求由电压源供电。

因此,经整流和滤波的直流电源末端,必须并接大的滤波电容器。

当逆变失败时,浪涌电流大,保护困难。

并联谐振的负载电路对电源呈现高阻抗,要求由电流源供电,需在直流电源末端串接大电抗器。

但在逆变失败时,由于电流受大电抗限制,冲击不大,较易保护。

串联谐振和并联谐振区别2(2)串联谐振的输入电压恒定,输出电压为矩形波,输出电流近似正弦波,换流是在晶闸管上电流过零以后进行,因而电流总是超前电压一φ角。

并联谐振的输入电流恒定,输出电压近似正弦波,输出电流为矩形波,换流是在谐振电容器上电压过零以前进行,负载电流也总是越前于电压一φ角。

这就是说,两者都是工作在容性负载状态。

(3)串联谐振是恒压源供电,为避免逆变器的上、下桥臂晶闸管同时导通,造成电源短路,换流时,必须保证先关断,后开通。

中频炉串联谐振与并联谐振的比较

中频炉串联谐振与并联谐振的比较

中频炉串联谐振与并联谐振的比较目前行业内,从控制系统上主要存在两种结构:串联谐振,并联谐振。

以下就从几个方面分别进行阐述:1、原理并联谐振:谐振电压与原电压叠加,并联谐振:在电阻、电容、电感并联电路中,出现电路端电压和总电流同相位的现象,叫做并联谐振,其特点是:并联谐振是一种完全的补偿,电源无需提供无功功率,只提供电阻所需要的有功功率,谐振时,电路的总电流最小,而支路电流往往大于电路中的总电流,因此,并联谐振也叫电流谐振。

串联谐振:串联谐振装置就用运用串联谐振原理设计的最新型交流耐压试验设备。

一套串联谐振耐压试验设备,可兼顾电力变压器、交联电缆、开关柜、电动机、发电机、GIS和SF6开关、母线、套管、CT、PT等试品的交流耐压试验,是全能型的交流耐压设备。

串联谐振也较电压谐振。

2、使用并联谐振俗称一拖一,就是一台中频电源对一台中频炉进行供电。

此种用法是大众的使用方法,在设备使用过程中炉衬寿命存在周期,因此厂家在推荐用户购买时多备用一个炉体。

但是,并联谐振在工作时容易产生高次谐波:5,7,11,17次,对电网产生污染;另外功率因数也偏低,最好效果能达到0.88,达不到国家电网关于无用功的标准0.9.因此很多用户提出,并联谐振设备是电老虎。

而串联谐振是针对并联谐振出现的种种问题而诞生的,在任意功率下功率因数都能达到0.95,而且5,7次谐波可以消除。

但是一拖二串联谐振设备价格昂贵,技术属于摸索阶段,调试周期长。

IGBT更是如此,国产IGBT性能不好用,国外的IGBT价格昂贵。

3、与并联谐振共存的中频炉消谐无功补偿装置并联谐振的问题确实存在,但是经过我们的研究。

消谐无功补偿装置诞生了。

他主要针对:功率因数、高次谐波而产生的。

为此,电力系统和谐波源用户都有责任和必要的对谐波装置加大限制和治理,以保证电力系统和用户的安全可靠运行,提高整个电网运行的经济效益。

从一般中频电源工作原理可知,它是通过三相桥式整流装置再进行脉冲调频来进行变频的,它的正常运行必然产生较大的谐波电流,且功率因数也达不到0.90的要求。

串联谐振和并联谐振的10大区别

串联谐振和并联谐振的10大区别

谐振的定义:谐振是在由电容器和电感器组成的电路中发生的现象。

当电路的电容性阻抗等于电感性阻抗时,就会发生谐振。

根据电容器,电感器和电阻器的布置,实现谐振的条件在不同类型的电路之间变化。

串联谐振(也叫变频谐振)是指在电容器和电感器串联连接的电路中发生的谐振,而并联谐振是指在电容器和电感器并联连接的电路中发生的谐振。

串联谐振与并联谐振之间的关系是,当元件的排列产生最小阻抗时发生串联谐振,而当元件的排列产生最大阻抗时发生并联谐振。

谐振是在由电容器和电感器组成的电路中发生的现象。

当电路的电容性阻抗等于电感性阻抗时,就会发生谐振。

根据电容器,电感器和电阻器的布置,实现谐振的条件在不同类型的电路之间变化。

串联谐振:1.串联谐振的介绍串联谐振(也叫变频谐振)是指在电容器和电感器串联连接的电路中发生的谐振。

在回路频率时,回路产生谐振,此时试品上的电压是励磁变高压端输出电压的Q倍。

Q为系统品质因素,即电压谐振倍数,一般为几十到一百以上。

先通过调节变频电源的输出频率使回路发生串联谐振,再在回路谐振的条件下调节变频电源输出电压使试品电压达到试验值。

由于回路的谐振,变频电源较小的输出电压就可在试品CX上产生较高的试验电压。

采用变频串联谐振的方法进行耐压试验,用多级叠加的方式,多台电抗器可并联、串联使用,分压器既用来测量试验电压。

2.串联谐振的计算公式串联谐振时电路的阻抗虚部等于0,Z=R+jX,X=0,Z=R所以I=U/Z=U/R。

a、谐振定义:电路中L、C两组件之能量相等,当能量由电路中某一电抗组件释出时,且另一电抗组件必吸收相同之能量,即此两电抗组件间会产生一能量脉动。

b、电路欲产生谐振,应当具备有电感器L及电容器C两组件。

c、谐振时其所对应之频率为谐振频率(resonance),或称共振频率,以fr表示之。

d、串联谐振电路之条件如下:I2XL=I2XC也就是XL=XC时,为R-L-C串联电路产生谐振之条件。

e、无论是串联还是并联谐振,在谐振发生时,L、C之间都实现了完全的能量交换。

并联谐振和串联谐振的区别

并联谐振和串联谐振的区别

并联谐振和串联谐振的区别
并联谐振是⼀种完全的补偿,电源⽆需提供⽆功功率,只提供电阻所需要的有功功率。

谐振时,电路的总电流最⼩,⽽⽀路的电流往往⼤于电路的总电流,因此,并联谐振也称为电流谐振。

串联谐振是⼀种电路性质。

同时也是串联谐振试验装置。

串联谐振产品优点
1.所需电源容量⼤⼤减⼩。

系列串联谐振试验装置是利⽤谐振电抗器和被试品电容产⽣谐振,从⽽得到所需⾼电压和⼤电流的,在整个系统中,电源只需要提供系统中有功消耗的部分,因此,试验所需的电源功率只有试验容量的1/Q倍(Q为品质因素)。

2.设备的重量和体积⼤⼤减⼩。

串联谐振电源中,不但省去了笨重的⼤功率调压装置和普通的⼤功率⼯频试验变压器,⽽且,谐振激磁电源只需试验容量的1/Q,使得系统重量和体积⼤⼤减⼩,⼀般为普通试验装置的1/5~1/10。

3.改善输出电压波形。

谐振电源是谐振式滤波电路,能改善输出电压的波形畸变,获得很好的正弦波,有效地防⽌了谐波峰值引起的对被试品的误击穿。

4.防⽌⼤的短路电流烧伤故障点。

在谐振状态,当被试品的绝缘弱点被击穿时,电路⽴即脱谐(电容量变化,不满⾜谐振条件),回路电流迅速下降为正常试验电流的1/Q。

⽽采⽤并联谐振或者传统试验变压器的⽅式进⾏交流耐压试验时,击穿电流⽴即上升⼏⼗倍,两者相⽐,短路电流与击穿电流相差数百倍。

所以,串联谐振能有效地找到绝缘弱点,⼜不存在⼤的短路电流烧伤故障点的忧患。

5.不会出现任何恢复过电压。

被试品发⽣击穿闪络时,因失去谐振条件,⾼电压也⽴即消失,电弧⽴刻熄灭,装置的保护回路动作,切断输出。

并联谐振和串联谐振现象及特点详解

并联谐振和串联谐振现象及特点详解

并联谐振和串联谐振现象及特点详解串联谐振和并联谐振是电路中常见的两种谐振现象,它们在电路中产生谐波并影响信号的传输。

本文将详细介绍这两种谐振现象及其特点。

一、串联谐振简介串联谐振是指在电路中,信号源与电阻、电容、电感等元件串联,使电流流过每个元件,产生谐波的一种谐振现象。

串联谐振通常在高频电路中比较常见,其特点如下:电流与信号源频率相关:当信号源频率与电路的固有频率相等时,电路发生串联谐振,此时电流最大。

如果信号源频率偏离电路的固有频率,则电流会减小。

电阻、电容、电感对电流的影响:在串联谐振电路中,电阻、电容和电感对电流都有一定的影响。

电阻会消耗能量,使电流减小;电容和电感会存储能量,与电阻相互作用,产生谐波。

电压增益:在串联谐振电路中,电压增益是指输出电压与输入电压之比。

当电路发生谐振时,电压增益最大,输出电压最强。

选择性:串联谐振电路具有选择性,即当信号源频率与电路固有频率相等时,电路才会发生谐振。

如果信号源频率偏离电路固有频率,则电路不会发生谐振。

二、并联谐振简介并联谐振是指在电路中,信号源与电阻、电容、电感等元件并联,使电压在每个元件上分配,产生谐波的一种谐振现象。

并联谐振通常在低频电路中比较常见,其特点如下:电压与信号源频率相关:当信号源频率与电路的固有频率相等时,电路发生并联谐振,此时电压最大。

如果信号源频率偏离电路的固有频率,则电压会减小。

电阻、电容、电感对电压的影响:在并联谐振电路中,电阻、电容和电感对电压都有一定的影响。

电阻会使电压降低;电容和电感会使电压升高,与电阻相互作用,产生谐波。

电流增益:在并联谐振电路中,电流增益是指输出电流与输入电流之比。

当电路发生谐振时,电流增益最大,输出电流最强。

选择性:并联谐振电路也具有选择性,即当信号源频率与电路固有频率相等时,电路才会发生谐振。

如果信号源频率偏离电路固有频率,则电路不会发生谐振。

总之,串联谐振和并联谐振是电路中常见的两种谐振现象,它们具有不同的特点和应用场景。

串联和并联谐振回路的谐振频率

串联和并联谐振回路的谐振频率

串联和并联谐振回路的谐振频率引言谐振是指在某个系统中,当外加的周期性激励频率等于系统本身的固有频率时,系统会发生共振现象,此时系统的振幅会达到最大值。

谐振现象在电路中也是很常见的,特别是在谐振回路中。

谐振回路是由电感、电容和电阻组成的电路,分为串联谐振回路和并联谐振回路两种形式。

本文将详细介绍串联和并联谐振回路的谐振频率及其相关知识。

串联谐振回路的谐振频率串联谐振回路是指电感、电容和电阻依次串联在一起的电路。

在串联谐振回路中,电感和电容构成了一个谐振回路,而电阻则对回路的品质因数和幅频特性起到了影响作用。

串联谐振回路的谐振频率可以通过以下公式计算得到:f=12π√LC其中,f为谐振频率,L为电感的值,C为电容的值,π为圆周率。

串联谐振回路的谐振频率与电感和电容的值有关,当电感或电容的值改变时,谐振频率也会相应改变。

当电感和电容的值较小时,谐振频率较高;反之,当电感和电容的值较大时,谐振频率较低。

并联谐振回路的谐振频率并联谐振回路是指电感、电容和电阻并联在一起的电路。

在并联谐振回路中,电感和电容构成了一个谐振回路,而电阻则对回路的品质因数和幅频特性起到了影响作用。

并联谐振回路的谐振频率可以通过以下公式计算得到:f=12π√LC其中,f为谐振频率,L为电感的值,C为电容的值,π为圆周率。

与串联谐振回路相同,并联谐振回路的谐振频率也与电感和电容的值有关。

当电感或电容的值改变时,谐振频率也会相应改变。

当电感和电容的值较小时,谐振频率较高;反之,当电感和电容的值较大时,谐振频率较低。

串联和并联谐振回路的区别串联谐振回路和并联谐振回路在谐振频率计算公式上是完全相同的,但它们在结构和特性上有一些区别。

首先,串联谐振回路中的电感和电容是串联连接的,而并联谐振回路中的电感和电容是并联连接的。

其次,串联谐振回路的电感和电容需要具有相同的谐振频率,而并联谐振回路的电感和电容则需要具有相同的谐振阻抗。

另外,串联谐振回路的电阻对谐振频率的影响较大,而并联谐振回路的电阻对谐振频率的影响较小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

谐振的定义:
谐振是在由电容器和电感器组成的电路中发生的现象。

当电路的电容性阻抗等于电感性阻抗时,就会发生谐振。

根据电容器,电感器和电阻器的布置,实现谐振的条件在不同类型的电路之间变化。

串联谐振(也叫变频谐振)是指在电容器和电感器串联连接的电路中发生的谐振,而并联谐振是指在电容器和电感器并联连接的电路中发生的谐振。

串联谐振与并联谐振之间的关系是,当元件的排列产生最小阻抗时发生串联谐振,而当元件的排列产生最大阻抗时发生并联谐振。

谐振是在由电容器和电感器组成的电路中发生的现象。

当电路的电容性阻抗等于电感性阻抗时,就会发生谐振。

根据电容器,电感器和电阻器的布置,实现谐振的条件在不同类型的电路之间变化。

串联谐振:
1.串联谐振的介绍
串联谐振(也叫变频谐振)是指在电容器和电感器串联连接的电路中发生的谐振。

在回路频率时,回路产生谐振,此时试品上的电压是励磁变高压端输出电压的Q倍。

Q为系统品质因素,即电压谐振倍数,一般为几十到一百以上。

先通过调节变频电源的输出频率使回路发生串联谐振,再在回路谐振的条件下调节变频电源输出电压使试品电压达到试验值。

由于回路的谐振,变频电源较小的输出电压就可在试品CX上产生较高的试验电压。

采用变频串联谐振的方法进行耐压试验,用多级叠加的方式,多台电抗器可并联、串联使用,分压器既用来测量试验电压。

2.串联谐振的计算公式
串联谐振时电路的阻抗虚部等于0,Z=R+jX,X=0,Z=R所以I=U/Z=U/R。

a、谐振定义:电路中L、C两组件之能量相等,当能量由电路中某一电抗组件释出时,且另一电抗组件必吸收相同之能量,即此两电抗组件间会产生一能量脉动。

b、电路欲产生谐振,应当具备有电感器L及电容器C两组件。

c、谐振时其所对应之频率为谐振频率(resonance),或称共振频率,以fr表示之。

d、串联谐振电路之条件如下:
I2XL=I2XC也就是XL=XC时,为R-L-C串联电路产生谐振之条件。

e、无论是串联还是并联谐振,在谐振发生时,L、C之间都实现了完全的能量交换。

即释放的磁能完全转换成电场能储存进电容;而在另一时刻电容放电,又转换成磁能由电感储存。

f、在串联谐振电路中,由于串联——L、C流过同一个电流,因此能量的交换以电压极性的变化进行;在并联电路中,L、C两端是同一个电压,故能量的转换表现为两个元件电流相位相反。

g、谐振时电感和电容还是两个元件,否则不能进行能量交换;但从等效阻抗的角度,是变成了一个元件:数值为零或无穷大的电阻。

并联谐振
并联谐振是指在电容器和电感器并联连接的电路中发生的谐振。

并联谐振:在电感和电容并联的电路中,当电容的大小恰恰使电路中的电压与电流同相位,即电源电能全部为电阻消耗,成为电阻电路时,叫作并联谐振。

1.并联谐振的原理
在电感、电容和外加交流电源相并联的振荡回路,通常电感线圈是用电阻和电感的串联组合来表示的,电容器的损耗及漏电流一般很小,在一定条件下可忽略
不计。

如果回路的感抗和容抗比电阻大得多,即ωL(ωC)>>R,并联回路的固有频率可近似为f=1/2πLC。

如果Q、L、C达到一定条件,使并联电路的感纳和容纳相等BL=BC(BL=ωL,BC=1/ωC),从而使电纳B等于零(B =BL——BC=0),则电流与电压将同相(ω=0),这种情况称为R、L、C 并联谐振。

2.并联谐振的产生条件
并联谐振是一种完全的补偿,电源无需提供无功功率,只提供电阻所需要的有功功率。

谐振时,电路的总电流小,而支路的电流往往大于电路的总电流,因此,并联谐振也称为电流谐振。

发生并联谐振时,在电感和电容元件中流过很大的电流,因此会造成电路的熔断器熔断或烧毁电气设备的事故;但在无线电工程中往往用来选择信号和消除干扰。

3.并联谐振的危害
当电力线路发生并联谐振时,支路电流往往大大超过电路总电流,造成熔断器熔断、开关跳闸或烧毁电气设备的事故。

所以电力线路中要避免发生谐振。

串联谐振和并联谐振的10大区别
1.串联逆变器的负载电路对电源呈现低阻抗,要求由电压源供电。

因此,经整流和滤波的直流电源末端,应当并接大的滤波电容器。

当逆变失败时,浪涌电流大,保护困难。

并联逆变器的负载电路对电源呈现高阻抗,要求由电流源供电,需在直流电源末端串接大电抗器。

但在逆变失败时,由于电流受大电抗限制,冲击不大,较易保护。

2.串联逆变器的输入电压恒定,输出电压为矩形波,输出电流近似正弦波,换流是在晶闸管上电流过零以后进行,因而电流总是超前电压一φ角。

3.串联逆变器是恒压源供电,为避免逆变器的上、下桥臂晶闸管同时导通,造成电源短路,换流时,要保证先关断,后开通。

即应有一段时间(t )使所有晶闸管(其它电力电子器件)都处于关断状态。

此时的杂散电感,即从直流端到器件的引线电感上产生的感生电势,可能使器件损坏,因而需要选择合适的器件的浪涌电压吸收电路。

此外,在晶闸管关断期间,为确保负载电流连续,使晶闸管免受换流电容器上高电压的影响,要在晶闸管两端反并联快速二极管。

4.串联逆变器的工作频率应当低于负载电路的固有振荡频率,即应确保有合适的t 时间,否则会因逆变器上、下桥臂直通而导致换流的失败。

5.串联逆变器的功率调节方式有二:改变直流电源电压Ud或改变晶闸管的触发频率,即改变负载功率因数cosφ。

6.串联逆变器在换流时,晶闸管是自然关断的,关断前其电流已逐渐减小到零,因而关断时间短,损耗小。

在换流时,关断的晶闸管受反压的时间(t +tγ)较长。

7.串联逆变器的晶闸管所需承受的电压较低,用380V电网供电时,采用1200V的晶闸管就行,但负载电路的全部电流,包括有功和无功分量,都需流过晶闸管。

逆变晶闸管丢失脉冲,只会使振荡停止,不会造成逆变颠覆。

8.串联逆变器可以自激工作,也可以他激工作。

他激工作时,只需改变逆变触发脉冲频率,即可调节输出功率;而并联逆变器一般只能工作在自激状态。

9.在串联逆变器中,晶闸管的触发脉冲不对称,不会引入直流成分电流而影响正常运行;而在并联逆变器中,逆变晶闸管的触发脉冲不对称,则会引入直流成分电流而引起故障。

10.串联逆变器中的晶闸管由于承受矩形波电压,故du /dt值较大,吸收电路起着关键作用,而对其di/dt要求则较低。

综上所述,并联谐振和串联谐振各有其自己的技术特点和应用领域。

就拿电力行业来说,串联谐振广泛运用于电力工程、成套厂家、科研院校、厂矿交通、供电局、计量院/所...
武汉三新电力设备制造有限公司以串联谐振,变频串联谐振,串联谐振设备,RLC串联谐振等电力设备和特种高压耐压仪器作为自己的支柱产业,以科技实力,服务于电力高压试验事业的研究与发展,成为集电力检测、调试及电力技术服务为一体的高科技、多元化公司。

相关文档
最新文档