大学分析化学—名词解释
分析化学名词解释
分析化学名词解释边缘效应:殿宇同意薄层的同一物质的斑点,在色谱展开过程中,靠薄层边缘处斑点的Rf值大于中心区域斑点的Rf值有所不同百分吸光系数E1%1cm:指浓度为1%(即1g/100L),液层厚度为1cm的吸光度.保留时间t R:从进样开始到某个组分的色谱峰极大点所需要的时间磁全同/磁等价:化学等价的一组核,若它们每个核对组外任何一个磁核的耦合常数彼此也相同(即以相同的大小耦合),则称这组核为磁等价的核弛豫:高能态的核经过非辐射途径而恢复低能态的过程称为~磁等价:化学位移等价的一组核,若它们每个核对组外任何一个磁核的耦合常数彼此也相同(即相同的大小耦合)参比电极:电极电位在一定条件下恒定不变,仅提供Φ位测量来表示的分配系数:在一定温度和压力下,组分在固定相和流动相中平衡浓度的比值,用K 表示分离度R:指相邻两组分保留时间之差与两组份基线宽度平均值的比值.费米共振:当泛频峰位于某一强基频峰附近时,原来较弱的泛频峰的吸收强度被明显强化,有时还发生谱带裂分.这种泛频峰与基频峰之间的振动耦合合称~发色团:有机化合物分子结构中含有π-π*或n-π*跃迁集团,如C=C,C=0,N=N,-NO2,C=S等,或能在紫外可见光波长范围产生吸收的原子团分离度R:指相邻两组分保留时间的差值与两组分基线宽度平均值的比值,用以衡量两组分的分离程度分子离子:有机化合物分子失去一个价电子而形成的带正电荷的离子称~化学键合相:用化学反应的方式将固定液的官能团键合在载体表面上,所形成的填料称为~,简称键合相化学位移:质子或其他种类的核,由于在分子中所处的化学环境不同,在不同的共红移(长移):由于化合物结构改变或溶剂效应等引起的吸收峰向长波方向移动.红外非活性振动:当振动过程中分子的瞬间偶极距不发生变化时,不产生红外光的吸收.化学等价:分子中两个相同的原子或基团处于相同的化学环境中,称它们化学等价,即化学位移相等化学键合相:用化学反应的方法将固定液的官能团键合在载体表面上,所形成的的填料称为化学键合相,简称键合相进动:核除绕自旋轴作自旋外,还要在垂直于外磁场的平面上作旋进运动,这种旋转称为~基频峰:是分子吸收某一频率的红外线后,振动能级由基态跃迁到第一激发态时产生的吸收峰检测限D:又称敏感度,是以检测器恰能产生3倍噪音信号时,单位时间引入检测器的组分量或单位体积载气中所含组分量来表示的简并:频率完全相同的振动在红外光谱中重叠,这种现象简称~交联度:表示离子交换树脂中交联剂的含量,通常以重量百分比表示交换容量:指每克干树脂中真正参加交换反应的基团数空白试验:在不加试样的情况下,按照与试样分析同样的操作和条件进行试验.蓝移(紫移):由于化合物结构改变或溶剂效应等引起的吸收峰向短波方向移动. lambent-beer定律:当一束平行单色光通过均匀吸光物质溶液时,溶液的吸收光度与溶液的浓度及液层厚度乘积成正比.(A=ε?C?l)灵敏度s:又称响应值或应和值,是用来评价检测器质量和其他类型检测器相比较的重要指标麦氏重排:当化合物中含有不饱和C=X(X为O、N、S、C)基团,而且与这个基团渡转移到X原子上,同时β键发生断裂脱掉一个中性分子摩尔吸光系数ε:指溶液浓度为1mol/L,液层厚度为1cm时的吸光度.浓色效应和淡色效应:由于化合物的结构改变或其他原因,使吸收强度增加的效应称浓色效应或增色效应;吸收强度减弱的效应称淡色效应或减色效应.能级分裂:在外磁场作用下,核磁距按一定方向排列,不同取向的核磁距的能级差随磁场强度的增大而增大此现象称~N律:凡不含N或含偶数个N原子的分子,其分子离子峰的质量数必为偶数,含奇数个N原子的分子,其分子离子峰的质量数必为奇数n+1律:某基团的H核与n个相邻的H核耦合时,将被分裂为n+1重峰,而与该基团本身H核数无关耦合常数J:在简单耦合中,由自旋耦合产生的谱线间的距离称~屏蔽效应:由于感应磁场的存在,使原子核实受磁场强度不同于外加磁场强度,稍有降低或增加的现象瑞利光/拉曼光:物质分子的电极与激发光光子相互作用时,分子受到瞬时变形,上升到非量子化能量区.在极短时间内,该分子向各个方向发射和激光相同的光,而回到原来能级,发射比激发光波长较长或较短的光.容量因子:在一定温度与压力下,组分在达到平衡时在固定相和流动相中的质量比,用K表示溶剂的极限波长:在某波长下,溶剂对光吸收,在此波长以上则无吸收,即溶液时透明的,该波长称~Rf比移值:指薄层色谱法中原点至斑点中心的距离与原点至溶剂前沿的距离的比值.RDA裂解:一个六元环烯化合物裂解一般都产生共轭二烯离子和一个中性分子,伸缩振动:指原子间的键长沿键轴方向发生周期性变化的一种振动调整保留时间t R↗:某组分由于溶解或被吸附于固定相,比不溶解或不吸附的组分在柱中多停留的时间吸收光谱:又称吸收曲线,是以波长λ(nm)为横标,以吸收光度A为纵坐标所绘制的曲线.吸附等温线:在一定温度下,组分在两相中达到平衡时,该组分在两相中浓度相对关系曲线,称~弯曲振动:指原子间键角发生周期性变化的一种振动,即原子垂直于价键方向的运动选择因子α:指难分离物质对的调整保留值之比.亚稳离子:在飞行过程中发生裂解的碎片离子助色团:本身不能吸收波长大于200nm的辐射,但与发色团相连时,可使发色团产生的吸收向长波长方向移动并使吸收强度增加的原子或原子团.如-OH,-NH2,-OR,-SH,-X等.指示电极:电极电位随待测组分浓度改变而变化,其值大小以指示待测组分浓度的电极振动耦合:分子中两个相同的基团靠的很近或者连接在同一个原子上时,由于其基本频率相同,形成振动相互作用,结果使频率发生改变,并使谱带分裂成双峰,其中一个高于原来的频率,另一个低于原来的频率,这种现象称为~自旋-自旋耦合:核自旋产生的核磁距间的相互干扰称作~自旋-自旋分裂:由自旋耦合引起的共振峰分裂的现象称~。
分析化学部分名词解释
1.分析化学:分析化学是发展和应用各种理论、方法、仪器和策略以获取有关物质在相对时空内的组成和性质的信息的一门科学,又被成为分析科学。
2.定性分析的任务是鉴定物质由哪些元素、原子团或化合物所组成;定量分析的任务是测定物质中有关成分的含量;结构分析的任务是研究物质的分子结构、晶体结构或综合形态。
3.滴定分析法要求:a. 反应必须具有确定的化学计量关系,即反应按一定的反应方程式进行。
这是定量计算的基础。
b. 反应必须定量的进行。
c. 必须具有较快的反应速率。
对于反应速率慢的反应,有时可加热或加入催化剂来加速反应的进行。
d. 必须有适当简便的方法确定滴定终点。
4种滴定方法:(1)直接滴定法满足上述要求的反应,都可以用直接滴定法,即用标准溶液直接滴定待测物质。
(2)返滴定法当反应很慢,或者反应不能立即完成的时候,可先准确的加入过量的标准溶液,使其与试液中的待测物质或固体试样进行反应,反应完成后再用另一种标准溶液滴定(3)置换滴定法当反应不按一定反应式进行或伴有副反应时,不能采用直接滴定法。
可先用适当试剂与待测组分反应,使其定量地置换为另一种物质,再用标准溶液滴定这种物质,这种成为……(4)间接滴定法不能滴定剂直接反应的物质,有时可以通过另外的化学反应,以滴定法间接进行测定【P11】4.基准物质:能用于直接配置标准溶液或标定溶液准确浓度的物质成为基准物质。
常用的基准物质有纯金属和纯化合物。
应符合下列要求:a.试剂的组成与化学式完全相符(比如结晶水的含量)b.试剂的纯度足够高(质量分数99.9%以上)c.性质稳定,不易于空气中的氧气及二氧化碳反应,亦不吸收空气中的水分。
d.试剂参加滴定反应时,应按反应式定量进行,没有副反应。
5.滴定度:滴定度是指每毫升滴定剂相当于被测物质的质量(g或mg)6.熔融法是指将试样与酸性或碱性固体熔剂混合,在高温下让其进行复分解反应,使欲测组分转变为可溶于水或酸的化合物。
不溶于水、酸或碱的无机试样一般可采用这种方法分解。
分析化学名词解释
Байду номын сангаас
突跃范围。
指示剂:滴定分析中通过其颜色的变化来指示化学计量点到达的试剂。一般有两种不同颜色的存在型体。
指示剂的理论变色点:指示剂具有不同颜色的两种型体浓度相等时,即[In]=[XIn]时,溶液呈两型体的中间过渡颜色,这点为理论变色点。
绝对误差(absolute error):测量值与真值之差称为绝对误差(δ)。
相对误差(relative error):绝对误差与真值的比值称为相对误差。
偶然误差:是由某些偶然因素所引起的误差,其大小和正负均不固定。
有效数字:是指在分析工作中实际上能测量到的数字。通常包括全部准确值和最末一位欠准值(有±1个单位的误差)。
准确度:分析结果与真实值接近的程度,其大小可用误差表示。
精密度:平行测量的各测量值之间互相接近的程度,其大小可用偏差表示。
系统误差:是由某种确定的原因所引起的误差,一般有固定的方向(正负)和大小,重复测定时重复出现。包括方法误差、仪器或试剂误差及操作误差三种。
滴定终点:滴定终止(指示剂改变颜色)的一点。
滴定误差:滴定终点与化学计量点不完全一致所造成的相对误差。可用林邦误差公式计算。
滴定曲线:描述滴定过程中溶液浓度或其相关参数随加入的滴定剂体积而变化的曲线。
滴定突跃和突跃范围:在化学计量点前后±0.1%,溶液浓度及其相关参数发生的急剧变化为滴定突跃。突跃所在的范围称为
置信区间与置信限:指在一定的置信水平时,以测定结果x为中心,包括总体平均值μ在内的可信范围,即 μ=x±uσ,式中uσ为置信限。分为双侧置信区间与单侧置信区间。
显著性检验:用于判断某一分析方法或操作过程中是否存在较大的系统误差和偶然误差的检验。包括t检验和F检验。
分析化学名词解释
第一部分误差和分析数据处理1.准确度(accuracy):测量值与真实值接近的程度(用误差来表示)。
2.精密度(precision):测定条件相同时,一组平行测定值之间相互接近的程度(用偏差来表示)。
3.偏差(deviance):测量值与平均值之差。
4.绝对误差(absolute error):测量值与真实值之差。
5.方法误差:由于不适当的实验设计或所选方法不恰当所引起的误差。
6.仪器或试剂误差:由于仪器未经过校准或试剂不合规格所引起的误差。
7.操作误差:由于分析者操作不符合要求所造成的误差。
8.相对误差(relative error):绝对误差与真实值的比值。
9.系统误差(systematic error):由某种确定原因引起的误差,一般具有固定的方向和大小,重复测定时重复出现。
10.恒定误差:在多次测定中绝对值保持不变,但相对值随被测组分含量的增大而减少,这种系统误差叫做恒定误差。
11.比例误差:在多次测定中,绝对值随样品量的增大而成比例的增大,但相对值保持不变,这样的系统误差叫做比例误差。
12.偶然误差(accidental error):也叫随机误差,是由于偶然的原因引起的误差。
13.有效数字(significant figure):指在分析工作中实际能测量到的数字(保留1位欠准数字)。
14.置信区间(confidence intervals):在一定置信水平时,以测量结果为中心,包括总体均值在内的可信范围。
15.相关系数(correlation coefficient):描述两个变量间相关性的参数。
第二部分容量分析法1.酸碱:凡能给出质子的物质是酸,能接受质子的物质是碱。
2.酸的浓度:在一定体积的溶液中含某种酸溶质的量称为酸的浓度。
3.碱的浓度:在一定体积的溶液中含某种碱溶质的量称为碱的浓度。
4.酸度:溶液中氢离子的浓度,严格讲是氢离子活度,用pH表示。
5.碱度:溶液中氢氧根离子的浓度,严格讲是氢氧根离子的活度,用pOH表示。
分析化学名词解释
标准溶液:已知准确浓度的溶液。
在滴定分析中常用作滴定剂。
在其他的分析方法中用标准溶液绘制工作曲线或作计算标准。
标定:标定包含两方面的意思:一是使用标准的计量仪器对所使用仪器的准确度(精度)进行检测是否符合标准,一般大多用于精密度较高的仪器。
二是有校准的意思。
滴定误差:分析化学中,由滴定终点和化学计量点不一致而引起的相对误差基准物质:分析化学中用于直接配制标准溶液或标定滴定分析中操作溶液浓度的物质。
基准物质应符合五项要求:一是纯度(质量分数)应≥99.9%;二是组成与它的化学式完全相符,如含有结晶水,其结晶水的含量均应符合化学式;三是性质稳定,一般情况下不易失水、吸水或变质,不与空气中的氧气及二氧化碳反应;四是参加反应时,应按反应式定量地进行,没有副反应;五是要有较大的摩尔质量,以减小称量时的相对误差。
氧化还原滴定:氧化还原滴定法是以溶液中氧化剂和还原剂之间的电子转移为基础的一种滴定分析方法。
与酸碱滴定法和配位滴定法相比较,氧化还原滴定法应用非常广泛,它不仅可用于无机分析,而且可以广泛用于有机分析,许多具有氧化性或还原性的有机化合物可以用氧化还原滴定法来加以测定。
朗伯比尔定律:光被透明介质吸收的比例与入射光的强度无关;在光程上每等厚层介质吸收相同比例值的光。
检测限:指某一分析方法在给定的可靠程度内可以从样品中检测待测物质的最小浓度或最小量。
所谓检测是指定性检测,即断定样品中确定存在有浓度高于空白的待定物质。
指示剂:指示剂是一类在其特定的PH值范围内,随溶液PH值改变而变色的化合物,通常是有机弱酸或有机弱碱。
盐效应:往弱电解质的溶液中加入与弱电解质没有相同离子的强电解质时,由于溶液中离子总浓度增大,离子间相互牵制作用增强,使得弱电解质解离的阴、阳离子结合形成分子的机会减小,从而使弱电解质分子浓度减小,离子浓度相应增大,解离度增大,这种效应称为盐效应(salt effect)。
当溶解度降低时为盐析效应(saltingout);反之为盐溶效应(saltingin)。
分析化学 名词解释
名词解释第二章误差和分析数据处理:准确度:分析结果与真实值接近的程度,其大小可用误差表示。
精密度:平行测量的各测量值之间互相接近的程度,其大小可用偏差表示。
系统误差:是由某种确定的原因所引起的误差,一般有固定的方向(正负)和大小,重复测定时重复出现。
包括方法误差、仪器或试剂误差及操作误差三种。
偶然误差:是由某些偶然因素所引起的误差,其大小和正负均不固定。
空白试验:在不加入试样的情况下,按与测定试样相同的条件和步骤进行的分析试验,称为空白试验。
有效数字:是指在分析工作中实际上能测量到的数字。
通常包括全部准确值和最末一位欠准值(有±1个单位的误差)。
t分布:指少量测量数据平均值的概率误差分布。
可采用t分布对有限测量数据进行统计处理。
置信水平与显著性水平:指在某一t值时,测定值x落在μ±tS范围内的概率,称为置信水平(也称置信度或置信概率),用P表示;测定值x落在μ±tS范围之外的概率(1-P),称为显著性水平,用α表示。
置信区间与置信限:系指在一定的置信水平时,以测定结果x为中心,包括总体平均值μ在内的可信范围,即μ=x±uσ,式中uσ为置信限。
分为双侧置信区间与单侧置信区间。
显著性检验:用于判断某一分析方法或操作过程中是否存在较大的系统误差和偶然误差的检验。
包括t检验和F检验。
第三章滴定分析法概论:滴定度:是每毫升标准溶液相当于被测物质的质量(g或mg),以符号T T/B表示,其下标中T、B分别表示标准溶液中的溶质、被测物质的化学式。
T T/B=m B /V T,单位为g/ml或mg/ml分布系数:是溶液中某型体的平衡浓度在溶质总浓度中所占的分数,又称为分布分数以δi表示。
化学计量点:滴定剂的量与被测物质的量正好符合化学反应式所表示的计量关系的一点。
滴定终点:滴定终止(指示剂改变颜色)的一点。
滴定误差:滴定终点与化学计量点不完全一致所造成的相对误差。
可用林邦误差公式计算。
分析化学名词解释
名词解释(上册)总论1.分析化学:研究物质化学组成与结构分析方法及有关理论的一门学科,主要包括定量、定性与结构分析。
2.定量分析:准确测定试样中组分含量的方法。
3.误差:测量值与真实值之差,有正负。
根据误差的性质和产生的原因分为系统误差和偶然误差。
4.偏差:测量值平均值与真实值之差。
5.系统误差:某种确定原因造成,重复测定中以固定方向、大小重复出现,又称可测误差。
根据产生原因分为方法误差、仪器误差、试剂误差、操作误差。
6.有效数字:指在分析工作中实际上能测量得到、有实际意义的数字。
及反应测量数据大小,还反映所使用方法及使用仪器的准确度。
7.对照试验:一种用标准试样或纯物质等一直含量的样品代替试样,用相同的测定法方测定;另一种选定方法与公认经典方法对同一试样测定,分别将结果进行显著性测验。
8.空白试验:不加试样,同方法相同条件下进行的平行试验。
(空白值为系统噪音,系统误差)9.准确度:测量值与真实值接近的程度。
10.精密度:相同条件下,平行测量的各测量值之间相互接近的程度。
重量分析法1.恒重:药物连续两次干燥或灼烧后称得的重量差在0.3mg以下。
2.沉淀重量法:以沉淀反应为基础的化学分析法。
加入沉淀剂,使待测组分以沉淀形式析出,经过滤、洗涤、烘干或灼烧,转化为称量形式,称取质量以计算待测组分含量。
3.沉淀形式:将试样溶解后,在一定条件下加入适当的沉淀剂与被测组分生成的沉淀。
4.称量形式:将沉淀形式在一定温度下干燥或灼烧,转化为可以直接称量的形式。
5.配位效应:难容化合物的溶液中存在着能与构晶离子生成配合物的配危机,会使沉淀溶解度上升,甚至不沉淀的现象。
6.共沉淀:一种难溶化合物沉淀时,某些可溶性杂质同时沉淀下来的现象。
7.均相沉淀法:8.换算因数:被测组分的摩尔质量及系数的乘积与称量形式的摩尔质量及系数的乘积之比为一常数。
滴定绪论1.滴定分析法:简称滴定法。
也成容量分析法,将标准溶液滴加到待测物溶液中,直到化学计量点,然后根据标准溶液所消耗体积和浓度,计算待测组分含量的分析方法。
分析化学名词解释
1.分析化学:是研究物质化学组成的分析方法及有关理论的一门科学。
2.化学计量点:当加入的标准溶液物质的量与被测组分物质的量按化学计量关系定量反应完全时,称反应达到了化学计量点。
3.系统误差:也称可定误差,它是由于分析过程中某些确定的原因造成的,对分析结果的影响比较固定,在同一条件下重复测定时,它会重复出现,使测定结果总是偏高或偏低,并可以设法减小或加以校正。
4.萃取法:是利用被测组分在两种互不相容的溶剂中溶解度大小不同,使它从原来的溶剂中定量的转入萃取剂中,然后蒸干萃取剂,称量残留物的质量,进行被测组分含量的计算。
5.恒重:系指物品连续两次干燥或灼烧后称得的质量相差不超过规定量,即可认为已达恒重。
6.标准溶液:已知准确浓度的试剂溶液称为标准溶液(又称滴定溶液)7.滴定度:有两种表示方法 1.指每毫升标准溶液中所含溶质的质量(g/ml)以T B表示;2.又指每毫升标准溶液相当于被测物质的质量,以T T/A表示。
式中T表示标准溶液的化学式,A表示被测物质的化学式。
8.突跃范围:这种化学计量点±0.1%相对误差范围内溶液PH值的突变,称为滴定突越。
突跃所在的PH值范围称为滴定突越范围。
9.掩蔽作用:在配位滴定时,常用控制酸度的方法来消除部分离子对配位滴定的干扰。
10.色散:让一束白光通过棱镜,便可分解为红、橙、黄、绿、青、蓝、紫七种颜色的光,这种现象称为光的色散。
11.滴定终点:在滴定过程中,指示剂发生颜色变化的转变点称为滴定终点。
12.偶然误差:又称随机误差,它是由某些难以控制或无法避免的偶然因素造成的误差。
13.滴定液:又称标准溶液,即已知准确浓度的试剂溶液。
14.滴定曲线:把滴定过程中溶液PH值的变化情况用曲线表示出来,这一曲线称为滴定曲线。
15.封闭现象:在配位滴定中要求指示剂在化学计量点附近有敏锐的颜色改变,但由于某些金属离子与指示剂生成极为稳定的配合物,因而看不到指示剂变色,这种现象称为指示剂的封闭现象。
分析化学名词解释
自身指示剂:在分析化学中,指应用有色标准溶液本身终点时颜色发生显著变化指示终点。
滴定度:滴定度是指每1mL某摩尔浓度的滴定液(标准溶液)所相当的被测药物的质量(g/mL)。
分子离子:分子失去一个电子所形成的正离子称为分子离子,它的质荷比值即代表了试样分子所对应的分子量数值。
小进行分离记录其信息,从而进行物质结构分析的方法。
多普勒效应:由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象,称为多普勒效应。
如果二者相互接近,观察者接收到的频率增大;如果二者远离,观察者接收到的频率减小。
盐效应:往弱电解质的溶液中加入与弱电解质没有相同离子的强电解质时,由于溶液中离子总浓度增大,离子间相互牵制作用增强,使得弱电解质解离的阴、阳离子结合形成分子的机会减小,从而使弱电解质分子浓度减小,离子浓度相应增大,解离度增大,这种效应称为盐效应(salt effect)。
当溶解度降低时为盐析效应(saltingout);反之为盐溶效应(saltingin)。
滴定突跃:分析化学中,在化学计量点前后±0.1%(滴定分析允许误差)范围内,溶液参数将发生急剧变化,这种参数(如酸碱滴定中的pH)的突然改变就是滴定突跃,突跃所在的范围称为突跃范围。
化学位移:即是原子核如质子由于化学环境所引起的核磁共振信号位置的变化。
重量分析法:通过物理或化学反应将试样中待测组分与其他组分分离,然后用称量的方法测定该组分的含量。
化学计量点:在滴定过程中, 当滴入的标准溶液的物质的量与待测定组分的物质的量恰好符合化学反应式所表示的化学计量关系时,称反应到达了化学计量点,用pM’sp来表示。
原子化器:使试样干燥,蒸发并使被测元素转化为气态的基态原子。
屏蔽效应(Shielding effect):由于其他电子对某一电子的排斥作用而抵消了一部分核电荷,从而引起有效核电荷的降低,削弱了核电荷对该电子的吸引,这种作用称为屏蔽作用或屏蔽效应。
分析化学名词解释
1.分析化学:是研究物质化学组成的分析方法及有关理论的一门科学。
2.化学计量点:当加入的标准溶液物质的量与被测组分物质的量按化学计量关系定量反应完全时,称反应达到了化学计量点。
3.系统误差:也称可定误差,它是由于分析过程中某些确定的原因造成的,对分析结果的影响比较固定,在同一条件下重复测定时,它会重复出现,使测定结果总是偏高或偏低,并可以设法减小或加以校正。
4.萃取法:是利用被测组分在两种互不相容的溶剂中溶解度大小不同,使它从原来的溶剂中定量的转入萃取剂中,然后蒸干萃取剂,称量残留物的质量,进行被测组分含量的计算。
5.恒重:系指物品连续两次干燥或灼烧后称得的质量相差不超过规定量,即可认为已达恒重。
6.标准溶液:已知准确浓度的试剂溶液称为标准溶液(又称滴定溶液)7.滴定度:有两种表示方法 1.指每毫升标准溶液中所含溶质的质量(g/ml)以T B表示;2.又指每毫升标准溶液相当于被测物质的质量,以T T/A表示。
式中T表示标准溶液的化学式,A表示被测物质的化学式。
8.突跃范围:这种化学计量点±0.1%相对误差范围内溶液PH值的突变,称为滴定突越。
突跃所在的PH值范围称为滴定突越范围。
9.掩蔽作用:在配位滴定时,常用控制酸度的方法来消除部分离子对配位滴定的干扰。
10.色散:让一束白光通过棱镜,便可分解为红、橙、黄、绿、青、蓝、紫七种颜色的光,这种现象称为光的色散。
11.滴定终点:在滴定过程中,指示剂发生颜色变化的转变点称为滴定终点。
12.偶然误差:又称随机误差,它是由某些难以控制或无法避免的偶然因素造成的误差。
13.滴定液:又称标准溶液,即已知准确浓度的试剂溶液。
14.滴定曲线:把滴定过程中溶液PH值的变化情况用曲线表示出来,这一曲线称为滴定曲线。
15.封闭现象:在配位滴定中要求指示剂在化学计量点附近有敏锐的颜色改变,但由于某些金属离子与指示剂生成极为稳定的配合物,因而看不到指示剂变色,这种现象称为指示剂的封闭现象。
分析化学名词解释
系统误差:由某些确定的、经常性的原因造成的可定误差(有重现单一可测性)。
偶然误差:由一些难以察觉和控制的、变化无常的、不可避免的偶然因素造成的。
过失误差:由于操作人员粗心大意、过度疲劳、精神不集中等引起的。
准确度:测量值与真实值得接近程度。
准确度好坏用误差测量。
精密度:在相同条件下多次测量结果相互接近的程度,精密度好坏用误差衡量。
相对误差:绝对误差在真实值中所占的比例。
对照试验:采用已知含量的标准试样与被测试样同一分析方法进行测定,或用公认的可靠的分析方法与选定方法对同一试样进行测定的一种试验。
回收试验:在试样组成不清楚时,向试样中或标准试样中加入已知含量的被测组分的纯物质,然后用同一方法进行测定,计算回收率的一种试验。
空白试验:在不加试样的情况下,按照与测定试样相同的分析步骤和条件进行测定的一种试验。
置信区间:指在一定的置信度下,以测量值为中心,包括真值在内的范围.沉淀法:利用沉淀反应,将被测组分转化成难溶化合物,以沉淀从试液中分离出来,再将析出的沉淀经过过滤、洗涤、烘干或灼烧,转化为可以供最后称量的化学组成,根据该化学组成的质量,计算被测组分百分含量的方法。
共沉淀:指一种难溶化合物沉淀时,某些可溶性杂质同时沉淀下来的现象。
后沉淀:当溶液中某种组分的沉淀析出后,另一本来难以析出的组分,也在沉淀表面逐渐沉积的现象,称为后沉淀。
均匀沉淀法:均相沉淀法,是为了改进沉淀结构而发展的新的沉淀方法。
换算因数:指被测组分的摩尔质量与称量形式的摩尔质量之比乘以他们之间的系数比。
滴定分析:又称容量分析,是将一种已知准确浓度的试剂溶液即标准溶液滴加到被测物质的溶液中去,直到标准溶液与被测组分按化学计量关系,恰好反应完全为止,然后根据标准溶液的浓度,体积及试液的体积计算出被测物质的含量的一类方法。
化学计量点:加入的滴定剂与被测物质按反应式的化学计量关系恰好反应完全时的点。
滴定终点:在滴定过程中,利用被滴溶液的颜色或电位、电导、电流等发生突变之点。
分析化学名词解释
边缘效应:殿宇同意薄层的同一物质的斑点,在色谱展开过程中,靠薄层边缘处斑点的Rf值大于中心区域斑点的Rf值有所不同百分吸光系数E1%1cm:指浓度为1%(即1g/100L),液层厚度为1cm的吸光度.保留时间t R:从进样开始到某个组分的色谱峰极大点所需要的时间磁全同/磁等价:化学等价的一组核,若它们每个核对组外任何一个磁核的耦合常数彼此也相同(即以相同的大小耦合),则称这组核为磁等价的核弛豫:高能态的核经过非辐射途径而恢复低能态的过程称为~磁等价:化学位移等价的一组核,若它们每个核对组外任何一个磁核的耦合常数彼此也相同(即相同的大小耦合)参比电极:电极电位在一定条件下恒定不变,仅提供Φ位测量来表示的分配系数:在一定温度和压力下,组分在固定相和流动相中平衡浓度的比值,用K 表示分离度R:指相邻两组分保留时间之差与两组份基线宽度平均值的比值.费米共振:当泛频峰位于某一强基频峰附近时,原来较弱的泛频峰的吸收强度被明显强化,有时还发生谱带裂分.这种泛频峰与基频峰之间的振动耦合合称~发色团:有机化合物分子结构中含有π-π*或n-π*跃迁集团,如C=C,C=0,N=N,-NO2,C=S等,或能在紫外可见光波长范围产生吸收的原子团分离度R:指相邻两组分保留时间的差值与两组分基线宽度平均值的比值,用以衡量两组分的分离程度分子离子:有机化合物分子失去一个价电子而形成的带正电荷的离子称~化学键合相:用化学反应的方式将固定液的官能团键合在载体表面上,所形成的填料称为~,简称键合相化学位移:质子或其他种类的核,由于在分子中所处的化学环境不同,在不同的共红移(长移):由于化合物结构改变或溶剂效应等引起的吸收峰向长波方向移动.红外非活性振动:当振动过程中分子的瞬间偶极距不发生变化时,不产生红外光的吸收.化学等价:分子中两个相同的原子或基团处于相同的化学环境中,称它们化学等价,即化学位移相等化学键合相:用化学反应的方法将固定液的官能团键合在载体表面上,所形成的的填料称为化学键合相,简称键合相进动:核除绕自旋轴作自旋外,还要在垂直于外磁场的平面上作旋进运动,这种旋转称为~基频峰:是分子吸收某一频率的红外线后,振动能级由基态跃迁到第一激发态时产生的吸收峰检测限D:又称敏感度,是以检测器恰能产生3倍噪音信号时,单位时间引入检测器的组分量或单位体积载气中所含组分量来表示的简并:频率完全相同的振动在红外光谱中重叠,这种现象简称~交联度:表示离子交换树脂中交联剂的含量,通常以重量百分比表示交换容量:指每克干树脂中真正参加交换反应的基团数空白试验:在不加试样的情况下,按照与试样分析同样的操作和条件进行试验.蓝移(紫移):由于化合物结构改变或溶剂效应等引起的吸收峰向短波方向移动. lambent-beer定律:当一束平行单色光通过均匀吸光物质溶液时,溶液的吸收光度与溶液的浓度及液层厚度乘积成正比.(A=ε•C•l)灵敏度s:又称响应值或应和值,是用来评价检测器质量和其他类型检测器相比较的重要指标麦氏重排:当化合物中含有不饱和C=X(X为O、N、S、C)基团,而且与这个基团渡转移到X原子上,同时β键发生断裂脱掉一个中性分子摩尔吸光系数ε:指溶液浓度为1mol/L,液层厚度为1cm时的吸光度.浓色效应和淡色效应:由于化合物的结构改变或其他原因,使吸收强度增加的效应称浓色效应或增色效应;吸收强度减弱的效应称淡色效应或减色效应.能级分裂:在外磁场作用下,核磁距按一定方向排列,不同取向的核磁距的能级差随磁场强度的增大而增大此现象称~N律:凡不含N或含偶数个N原子的分子,其分子离子峰的质量数必为偶数,含奇数个N原子的分子,其分子离子峰的质量数必为奇数n+1律:某基团的H核与n个相邻的H核耦合时,将被分裂为n+1重峰,而与该基团本身H核数无关耦合常数J:在简单耦合中,由自旋耦合产生的谱线间的距离称~屏蔽效应:由于感应磁场的存在,使原子核实受磁场强度不同于外加磁场强度,稍有降低或增加的现象瑞利光/拉曼光:物质分子的电极与激发光光子相互作用时,分子受到瞬时变形,上升到非量子化能量区.在极短时间内,该分子向各个方向发射和激光相同的光,而回到原来能级,发射比激发光波长较长或较短的光.容量因子:在一定温度与压力下,组分在达到平衡时在固定相和流动相中的质量比,用K表示溶剂的极限波长:在某波长下,溶剂对光吸收,在此波长以上则无吸收,即溶液时透明的,该波长称~Rf比移值:指薄层色谱法中原点至斑点中心的距离与原点至溶剂前沿的距离的比值.RDA裂解:一个六元环烯化合物裂解一般都产生共轭二烯离子和一个中性分子,伸缩振动:指原子间的键长沿键轴方向发生周期性变化的一种振动调整保留时间t R↗:某组分由于溶解或被吸附于固定相,比不溶解或不吸附的组分在柱中多停留的时间吸收光谱:又称吸收曲线,是以波长λ(nm)为横标,以吸收光度A为纵坐标所绘制的曲线.吸附等温线:在一定温度下,组分在两相中达到平衡时,该组分在两相中浓度相对关系曲线,称~弯曲振动:指原子间键角发生周期性变化的一种振动,即原子垂直于价键方向的运动选择因子α:指难分离物质对的调整保留值之比.亚稳离子:在飞行过程中发生裂解的碎片离子助色团:本身不能吸收波长大于200nm的辐射,但与发色团相连时,可使发色团产生的吸收向长波长方向移动并使吸收强度增加的原子或原子团.如-OH,-NH2,-OR,-SH,-X等.指示电极:电极电位随待测组分浓度改变而变化,其值大小以指示待测组分浓度的电极振动耦合:分子中两个相同的基团靠的很近或者连接在同一个原子上时,由于其基本频率相同,形成振动相互作用,结果使频率发生改变,并使谱带分裂成双峰,其中一个高于原来的频率,另一个低于原来的频率,这种现象称为~自旋-自旋耦合:核自旋产生的核磁距间的相互干扰称作~自旋-自旋分裂:由自旋耦合引起的共振峰分裂的现象称~。
分析化学名词解释
分析化学名词解释分析化学名词解释1.物理分析:根据被测物质的某种物理性质与组分的关系,不经过化学反应直接进行定性或定量的方法叫物理分析。
2.吸收光谱法:利用物质的吸收光谱进行定性、定量及结构分析的方法称为吸收光谱法。
3.发射光谱:是指构成物质的原子、离子或分子受到辐射能、热能、电能或化学能的激发,跃迁到激发态后,由激发态回到基态时以辐射的方式释放能量,而产生的光谱。
4.发色团:是指能在能在紫外-可见波长范围内产生吸收的原子团。
5.助色团:是指本身不能吸收波长大于200nm的辐射,但与发色团相连时,可使发色团产生的吸收峰向长波方向移动,并使吸收强度强加的原子或原子团。
6.吸光度:溶液吸收光的强度,等于透光率的负对数。
7.峰值吸收:峰值吸收系数法是直接测量吸收线中心频率所对应的峰值吸收系数来确定待测原子浓度的方法,简称为峰值吸收。
8.长移和短移:因化合物的结构改变或溶剂效应引起的吸收峰向短波方向移动的现称为篮移(或紫移或称短移),向长波方向移动的现象称为红移或长移。
9.浓色效应、淡色效应:因某些原因使化合物吸收强度增加的效应称为浓色效应,使吸收强度减弱的效应称为淡色效应。
、10.试剂空白:在相同条件下只是不加试样溶液,而依次加入各种试剂或溶剂所得到的空白溶液。
11.共振吸收线:如果吸收的辐射能使电子从基态跃迁到能量最低的激发态,所产生的谱线称为共振吸收线。
12.基频峰:分子吸收红外吸收后,由振能级的基态跃迁到第一激发态时所产生的吸收峰称为基频峰。
13.倍频峰:分子吸收红外吸收后,由振能级的基态跃迁到第二激发态、第三激发态……时,所产生的吸收峰称为倍频峰。
14.泛频峰:倍频峰、合频峰与差频峰统称为泛频峰。
15.相关峰:由一个官能团所产生的一组相互依存的特征峰,互称为相关吸收峰。
16.红外活性振动:振动周期内发生偶极矩变化的振动,称为红外活性振动。
17.自旋偶合:分子中邻近的自旋核的核磁矩之间的相互干扰,称为自旋偶合。
分析化学
名词解释1、相界电位:在金属与溶液的两相面上,由于带点质点的迁移形成了双电层,双电层之间的电位差称相界电位。
2、液接电位:在两个组成不同或组成相同但浓度不同的电解质溶液互相接触的界面间所产生的电位差,称液接电位3、酸差:用PH玻璃电极测定PH<1的溶液时,测得的PH 大于真实值而产生的误差。
4、不对称电位:玻璃电极膜内外溶液的PH相等时,φ膜应等于零,但实际上φ膜并不等于零,仍有1∽3mv的电位差,这种就称为不对称电位。
5、永停滴定法:又称双电流或双安培法,是根据滴定过程中电流的变化来确定滴定终点的方法,属于电流滴定法。
6、电位滴定法:根据在滴定过程中电池电动势的变化来确定滴定终点的一类滴定方法。
7、吸光度:是指光线通过溶液或某一物质的入射光强度与该光线通过溶液或物质后的透射光强度比值的以10为底的对数。
8、吸光系数:吸光物质在单位浓度及单位厚度时的吸光度。
9、摩尔吸光系数:在一定波长时,溶液浓度为1mol/L,厚度为1cm的吸光度,用ε或E m标记。
10、百分吸光系数:在一定波长时,溶液质量浓度为1%,厚度为1cm的吸光度。
用E100%1cm表示。
Ee 1%1cm/10m*11、助色团:含有非键电子的杂厚子饱和基团,当他们与生色团或饱和烃相连时,能使该生色团或饱和烃的吸收峰向长波方向移动,并使吸收强度加强。
12、红移:亦称长移,是由于化合物的结构改变,如发生共轭作用,引入助色团,以及溶剂改变等,是吸收峰向长波方向移动的现象。
13、屏蔽效应:核外电子及其他因素对抗外加磁场的现象14、化学位移:由于屏蔽效应的存在,不同化学环境的氢核的共振频率不同,这种现象称化学位移。
15、自旋偶合:是核自旋产生的核磁矩间的相互干扰,又称自旋-自旋偶合。
16、自旋分裂:由于自旋偶合引起共振峰分裂的现象,又称自旋-自旋分裂。
17、化学等价:在核磁共振谱中,有相同化学位移的核称为化学等价。
18、磁等价:分子中一组化学等价核与分子中的其他任何一个核都有相同强弱的偶合,则这组核为磁等价。
分析化学名词解释
分析化学名词解释1. 返滴定法:先加入一定量过量的滴定剂,又称第一标准溶液,使与试液中的物质或固体进行反应,待反应定量完成后,再用另一个标准溶液,又称第二标准溶液。
2. 酸效应曲线:配位滴定中,表示金属离子EDTA配合物的lgkfM 或lgY(H)与滴定允许的最小PH值的关系曲线。
3. 吸光系数:单位浓度、单位厚度的吸光度。
4. 内标法:选择样品中不含有的纯物质作参比物质,加入待测样品溶液中,以待测物质和残壁物质的响应信号对比,测定待测组分含量的方法称为内标法。
5. 均匀沉淀法:利用化学反应是溶液中缓慢而均匀的产生沉淀剂,达到一定浓度时,产生颗粒大结构紧密易滤过洗涤的沉淀。
6. 自身指示剂:以滴定液自身的颜色改变指示剂终点的方法。
7. 吸收光谱:利用物质的吸收光谱进行定性、定量及结构分析的方法。
8. 边缘效应:同一物质的色谱斑点在同一薄层板上出现的两边边缘部,它的Rf值大于中间部分的Rf现象。
9. 组分效应:10.基准物质:分析化学中用于直接配制标准溶液或标定滴定分析中操作溶液浓度的物质。
11. 区分效应:指分析化学中,能区分酸碱强度的效应。
12. 伸缩振动:指原子沿键轴方向的伸长和缩短,振动时只有键长的变化而无键角的变化。
13.分配色谱法:固定相是液体,利用液体固定相对试样中诸组分的溶解能力不同,即试样中诸组分在流动相与固定相中分配系数的差异,而实现试样中诸组分分离的色谱法。
14. 不对称电位:如果玻璃膜电极两侧溶液的pH相同,则膜电位应等于零,但实际上仍有一微小的电位差存在,这个电位差称为不对称电位。
15. 酸碱指示剂:用于酸碱滴定的指示剂,称为酸碱指示剂。
16. 吸附色谱法:固定相是一种吸附剂,利用其对试样中诸组分吸附能力的差异,而实现试样中诸组分分离的色谱法。
17. 梯度洗脱:梯度性地改变洗脱液的组分(成分、离子强度等)或pH,以期将层析柱上不同的组分洗脱出来的方法。
18. 金属指示剂:一种能与金属离子生成有色配合物的有机染料显色剂,来指示滴定过程中金属离子浓度的变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学分析化学—名词解释误差和分析数据处理:准确度:分析结果与真实值接近的程度,其大小可用误差表示。
精密度:平行测量的各测量值之间互相接近的程度,其大小可用偏差表示。
系统误差:是由某种确定的原因所引起的误差,一般有固定的方向(正负)和大小,重复测定时重复出现。
包括方法误差、仪器或试剂误差及操作误差三种。
偶然误差:是由某些偶然因素所引起的误差,其大小和正负均不固定。
空白试验:在不加入试样的情况下,按与测定试样相同的条件和步骤进行的分析试验,称为空白试验。
有效数字:是指在分析工作中实际上能测量到的数字。
通常包括全部准确值和最末一位欠准值(有±1个单位的误差)。
t分布:指少量测量数据平均值的概率误差分布。
可采用t分布对有限测量数据进行统计处理。
置信水平与显著性水平:指在某一t值时,测定值x落在μ±tS范围内的概率,称为置信水平(也称置信度或置信概率),用P表示;测定值x落在μ±tS范围之外的概率(1-P),称为显著性水平,用α表示。
置信区间与置信限:系指在一定的置信水平时,以测定结果x为中心,包括总体平均值μ在内的可信范围,即μ=x±uσ,式中uσ为置信限。
分为双侧置信区间与单侧置信区间。
显著性检验:用于判断某一分析方法或操作过程中是否存在较大的系统误差和偶然误差的检验。
包括t检验和F检验。
滴定分析法概论:滴定度:是每毫升标准溶液相当于被测物质的质量(g或mg),以符号T T/B表示,其下标中T、B分别表示标准溶液中的溶质、被测物质的化学式。
T T/B=m B/V T,单位为g/ml或mg/ml 分布系数:是溶液中某型体的平衡浓度在溶质总浓度中所占的分数,又称为分布分数以δi 表示。
化学计量点:滴定剂的量与被测物质的量正好符合化学反应式所表示的计量关系的一点。
滴定终点:滴定终止(指示剂改变颜色)的一点。
滴定误差:滴定终点与化学计量点不完全一致所造成的相对误差。
可用林邦误差公式计算。
滴定曲线:描述滴定过程中溶液浓度或其相关参数随加入的滴定剂体积而变化的曲线。
滴定突跃和突跃范围:在化学计量点前后±0.1%,溶液浓度及其相关参数发生的急剧变化为滴定突跃。
突跃所在的范围称为突跃范围。
指示剂:滴定分析中通过其颜色的变化来指示化学计量点到达的试剂。
一般有两种不同颜色的存在型体。
指示剂的理论变色点:指示剂具有不同颜色的两种型体浓度相等时,即[In]=[XIn]时,溶液呈两型体的中间过渡颜色,这点为理论变色点。
指示剂的变色范围:指示剂由一种型体颜色变为另一型体颜色时溶液参数变化的范围。
标准溶液:浓度准确已知的试剂溶液。
常用作滴定剂。
基准物质:可用于直接配制或标定标准溶液的物质。
酸碱滴定法:(1)混合指示剂:两种或两种以上指示剂相混合,或一种指示剂与另一种惰性染料相混合。
利用颜色互补原理,使终点颜色变化敏锐。
(2)滴定反应常数(K t):是滴定反应平衡常数。
强碱(酸)滴定强酸(碱):K t=1/K w=1014;强碱(酸)滴定弱酸(碱):K t=K a(b)/K w。
K t值越大,该滴定反应越完全,滴定突跃越大。
(3)滴定曲线:以滴定过程中溶液pH值的变化对滴定体积(或滴定百分数)作图而得的曲线。
(4)滴定突跃:化学计量点附近(±0.1%)pH的突变。
(5)滴定误差:滴定终点与化学计量点不一致引起的误差,与指示剂的选择有关。
(6)质子溶剂:能给出质子或接受质子的溶剂。
包括酸性溶剂、碱性溶剂和两性溶剂。
(7)无质子溶剂:分子中无转移性质子的溶剂。
包括偶极亲质子溶剂和惰性溶剂。
(8)均化效应和均化性溶剂:均化效应是指当不同的酸或碱在同一溶剂中显示相同的酸碱强度水平;具有这种作用的溶剂称为均化性溶剂。
(9)区分效应和区分性溶剂:区分效应是指不同的酸或碱在同一溶剂中显示不同的酸碱强度水平;具有这种作用的溶剂称为区分性溶剂。
配位滴定法:酸效应:由于H+的存在,在H+与Y之间发生副反应,使Y参加主反应能力降低的现象称作酸效应。
稳定常数:为一定温度时金属离子与EDTA配合物的形成常数,以KMY表示,此值越大,配合物越稳定。
逐级稳定常数和累积稳定常数:逐级稳定常数是指金属离子与其它配位剂L逐级形成MLn 型配位化合物的各级形成常数。
将逐级稳定常数相乘,得到累积稳定常数。
副反应系数:表示各种型体的总浓度与能参加主反应的平衡浓度之比。
它是分布系数的倒数。
配位剂的副反应系数主要表现为酸效应系数αY(H)和共存离子效应αY(N)系数。
金属离子的副反应系数以αM表示,主要是溶液中除EDTA外的其他配位剂和羟基的影响。
金属指示剂:一种能与金属离子生成有色配合物的有机染料显色剂,来指示滴定过程中金属离子浓度的变化。
金属指示剂必须具备的条件:金属指示剂与金属离子生成的配合物颜色应与指示剂本身的颜色有明显区别。
金属指示剂与金属配合物(MIn)的稳定性应比金属-EDTA配合物(MY)的稳定性低。
一般要求K MY'>K MIn'>102。
最高酸度:在配位滴定的条件下,溶液酸度的最高限度。
最低酸度:金属离子发生水解的酸度。
封闭现象:某些金属离子与指示剂生成极稳定的配合物,过量的EDTA不能将其从MIn中夺取出来,以致于在计量点附近指示剂也不变色或变色不敏锐的现象。
氧化还原滴定法:条件电位:在一定条件下,氧化态与还原态的分析浓度均为1mol/L或它们的浓度比为1时的实际电位。
其电位值只有在一定条件下,才是一个常数,故称为条件电位。
沉淀滴定法和重量分析法:共沉淀:当某种沉淀从溶液中析出时,溶液中共存的可溶性杂质也夹杂在该沉淀中一起析出的现象。
酸效应:是溶液的酸度改变使难溶盐溶解度改变的现象。
同离子效应:是当沉淀反应达到平衡后,增加适量构晶离子的浓度使难溶盐溶解度降低的现象。
电位法和永停滴定法:相界电位:将金属插入含有该金属离子的溶液中,在金属与溶液两相界面上,由于带电质点的迁移形成了双电层,双电层间的电位差称为相界电位。
液接电位:在两个组成不同或组成相同而浓度不同的电解质溶液互相接触的界面间所产生的电位差,称为液体接界电位,简称液接电位,又称扩散电位。
原电池:是一种将化学能转变为电能的装置。
残余液接电位:用“两次测量法”测溶液pH时,饱和甘汞电极浸入标准溶液与浸入待测溶液中所产生的液接电位不可能完全相等,二者差值即为残余液接电位,其电位值约相当于±0.01pH单位。
指示电极:是电极电位值随被测离子的活(浓)度变化而变化的一类电极。
参比电极:在一定条件下,电极电位基本恒定的电极。
膜电位:跨越整个玻璃膜的电位差。
不对称电位:在玻璃电极膜两侧溶液pH相等时,仍有1mV~3mV的电位差,这一电位差称为不对称电位。
是由于玻璃内外两表面的结构和性能不完全相同,以及外表面玷污、机械刻划、化学腐蚀等外部因素所致的。
酸差:当溶液pH<1时,pH测得值(即读数)大于真实值,这一正误差为酸差。
碱差:当溶液pH>9时,pH测得值(即读数)小于真实值,这一负误差为碱差,也叫钠差。
转换系数:指当溶液pH每改变一个单位时,引起玻璃电极电位的变化值。
离子选择电极:一般由电极膜(敏感膜)、电极管、内充溶液和内参比电极四个部分组成。
电位选择性系数:在相同条件下,同一电极对X和Y离子响应能力之比,亦即提供相同电位响应的X和Y离子的活度比。
可逆电对:电极反应是可逆的电对。
光谱分析法概论:电磁辐射:是一种以巨大速度通过空间而不需要任何物质作为传播媒介的光子流。
磁辐射性质:波动性、粒子性电磁波谱:所有的电磁辐射在本质上是完全相同的,它们之间的区别仅在于波长或频率不同。
若把电磁辐射按波长长短顺序排列起来,即为电磁波谱。
光谱和光谱法:当物质与辐射能相互作用时,物质内部发生能级跃迁,记录由能级跃迁所产生的辐射能强度随波长(或相应单位)的变化,所得的图谱称为光谱。
利用物质的光谱进行定性、定量和结构分析的方法称光谱法。
非光谱法:是指那些不以光的波长为特征讯号,仅通过测量电磁辐射的某些基本性质(反射、折射、干涉、衍射和偏振)的变化的分析方法。
原子光谱法:测量气态原子或离子外层电子能级跃迁所产生的原子光谱为基础的成分分析方法。
为线状光谱。
分子光谱法:以测量分子转动能级、分子中原子的振动能级(包括分子转动能级)和分子电子能级(包括振-转能级跃迁)所产生的分子光谱为基础的定性、定量和物质结构分析方法。
为带状光谱。
吸收光谱法:物质吸收相应的辐射能而产生的光谱,其产生的必要条件是所提供的辐射能量恰好满足该吸收物质两能级间跃迁所需的能量。
利用物质的吸收光谱进行定性、定量及结构分析的方法称为吸收光谱法。
发射光谱法:发射光谱是指构成物质的原子、离子或分子受到辐射能、热能、电能或化学能的激发跃迁到激发态后,由激发态回到基态时以辐射的方式释放能量,而产生的光谱。
利用物质的发射光谱进行定性定量及结构分析的方法称为发射光谱法。
紫外-可见分光光度法:末端吸收:只在图谱短波端呈现强吸收而不成峰形的部分。
透光率(T):透过样品的光与入射光强度之比。
T=I t/I0吸光度(A):透光率的负对数。
A=-lgT=lg(I0/I t)吸光系数(E):吸光物质在单位浓度及单位厚度时的吸光度。
根据浓度单位的不同,常有摩尔吸光系数ε和百分吸光系数之分。
电子跃迁类型:(1)σ-σ*跃迁:处于σ成键轨道上的电子吸收光能后跃迁到σ*反键轨道。
饱和烃中电子跃迁均为此种类型,吸收波长小于150nm。
(2)π-π*跃迁:处于π成键轨道上的电子吸收光能后跃迁到π*反键轨道上,所需的能量小于σ-σ*跃迁所需的能量。
孤立的π-π*跃迁吸收波长一般在200nm左右,共轭的π-π*跃迁吸收波长>200nm,强度大。
(3)n-π*跃迁:含有杂原子不饱和基团,其非键轨道中的孤对电子吸收能量后向π*反键轨道跃迁,这种吸收一般在近紫外区(200-400nm),强度小。
(4)n-σ*跃迁:含孤对电子的取代基,其杂原子中孤对电子吸收能量后向σ*反键轨道跃迁,吸收波长约在200nm。
以上四种类型跃迁所需能量σ-σ*>n-σ*≥π-π*>n-π*(5)电荷迁移跃迁和配位场跃迁生色团:有机化合物分子结构中含有π-π*或n-π*跃迁的基团,能在紫外-可见光范围内产生吸收的原子团。
助色团:含有非键电子的杂原子饱和基团,与生色团或饱和烃连接时,能使该生色团或饱和烃的吸收峰向长波方向移动,并使吸收强度增加的基团。
红移(长移):由于化合物的结构改变,如发生共轭作用、引入助色团以及溶剂改变等,使吸收峰向长波方向移动。
蓝移(紫移或短移):当化合物的结构改变或受溶剂影响使吸收峰向短波方向移动。
增色效应:由于化合物结构改变或其他原因,使吸收强度增加。