人教新课标九年级数学上册正多边形和圆(2)教案
人教版九年级数学上册24.3.2《正多边形和圆(2)》说课稿
人教版九年级数学上册24.3.2《正多边形和圆(2)》说课稿一. 教材分析人教版九年级数学上册24.3.2《正多边形和圆(2)》这一节主要介绍了正多边形的性质以及正多边形与圆的关系。
在教材中,通过图形的观察和推理,引导学生发现正多边形的性质,并且能够运用这些性质解决实际问题。
教材内容紧凑,逻辑清晰,通过丰富的例题和练习题,帮助学生巩固所学知识。
二. 学情分析九年级的学生已经具备了一定的数学基础,对图形的认识和推理能力有一定的掌握。
但是,对于正多边形的性质以及与圆的关系的理解还需要进一步的引导和培养。
因此,在教学过程中,需要关注学生的学习情况,针对学生的特点进行教学设计和调整。
三. 说教学目标1.知识与技能:通过学习,使学生了解正多边形的性质,能够运用这些性质解决实际问题;培养学生对圆的性质的理解,能够运用圆的性质解决几何问题。
2.过程与方法:通过观察、推理、交流等方法,培养学生的图形认知能力和逻辑思维能力。
3.情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 说教学重难点1.教学重点:正多边形的性质,以及正多边形与圆的关系。
2.教学难点:正多边形的性质的证明,以及如何运用这些性质解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法等,引导学生主动探究,积极思考。
2.教学手段:利用多媒体课件,直观展示图形的性质和变化,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过展示一些生活中的正多边形和圆的图形,引导学生对正多边形和圆的性质产生兴趣,激发学生的学习热情。
2.新课导入:介绍正多边形的定义和性质,通过示例和练习,使学生掌握正多边形的性质。
3.知识拓展:引导学生发现正多边形与圆的关系,通过示例和练习,使学生理解正多边形与圆的性质。
4.课堂练习:设计一些具有挑战性的练习题,引导学生运用所学的知识解决实际问题。
5.小结:通过总结本节课所学的内容,帮助学生巩固知识,提高学生的总结能力。
人教版数学九年级上册24.3《正多边形和圆(共2课时)》参考教案
24.3 正多边形和圆〔共2课时〕第一课时:正多边形和圆教学目标1、了解正多边形与圆的关系,了解正多边形的中心、半径、边心距、中心角等概念.重点:探索正多边形与圆的关系,了解正多边形的有关概念,并能进展计算.难点:探索正多边形与圆的关系.教学过程一、问题与情境,引入新课观看以下美丽的图案.问题1这些美丽的图案,都是在日常生活中我们经常能看到的、利用正多边形得到的物体.你能从这些图案中找出正多边形来吗?问题2你知道正多边形和圆有什么关系吗?你能借助圆做出一个正多边形吗?引入新课。
二、探究新知探究一:将一个圆五等分,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是请你证明这个结论.关注〔1〕学生能否看出:将圆分成五等份,可以得到5段相等的弧,这些弧所对的弦也是相等的,这些弦就是五边形的各边,进而证明五边形的各边相等;〔2〕学生能否观察发现圆内接五边形的各内角都是圆周角;〔3〕学生能否发现每一个圆周角所对弧都是三等份的弧;〔4〕学生能否利用这些圆周角所对的弧都相等,证明五边形的各内角相等,从而证明圆内接五边形是正五边形.探究二如果将圆n等分,依次连接各分点得到一个n边形,这n边形一定是正n边形吗?将圆n等分,依次连接各分点得到一个n边形,这n边形一定是正n边形.探究三各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形呢?如果是,说明为什么?如果不是,举出反例.[活动3]学生观看课件,理解概念.例题1 有一个亭子〔如图〕它的地基是半径为4 m的正六边形,求地基的周长和面积〔准确到0.1 m2〕.解:如下图,由于ABCDEF是正六边形,所以它的中心角等于3606=60°,•△OBC是等边三角形,从而正六边形的边长等于它的半径.因此,所求的正六边形的周长为6a在Rt △OAM 中,OA=a ,AM=12AB=12a 利用勾股定理,可得边心距∴所求正六边形的面积=6×12×AB ×OM=6×12×a ×2a=32三、 课堂练习完成教材第105练习页习题24.3第1题. 四、课堂小结1.正多边和圆的有关概念:正多边形的中心,正多边形的半径,•正多边形的中心角,正多边的边心距.2.正多边形的半径、正多边形的中心角、边长、•正多边的边心距之间的等量关系. 五、布置作业1.教科书第107页习题24.3第3、5、6题.2.思考题1、正n 边形的一个内角的度数是多少?中心角呢?正多边形的中心角与外角的大小有什么关系?2、正n 边形的半径,边心距,边长又有什么关系?第二课时:正多边形和圆教学内容1、在经历探索正多边形与圆的关系过程中,学会运用圆的有关知识解决问题,并能运用正多边形的知识解决圆的有关计算问题.2.在正多边形和圆中,圆的半径、边长、边心距中心角之间的等量关系.3.正多边形的画法.重点:并能运用正多边形的知识解决圆的有关计算问题.难点:通过例题使学生理解四者:正多边形半径、中心角、•弦心距、边长之间的关系.教学过程一、复习回忆:1、一个正多边形的外接圆的圆心叫做这个多边形的中心.2、外接圆的半径叫做正多边形的半径.3、正多边形每一边所对的圆心角叫做正多边形的中心角.4、中心到正多边形的一边的距离叫做正多边形的边心距.二、探究新知:现在我们利用正多边形的概念和性质来画正多边形.例2.利用你手中的工具画一个边长为3cm的正五边形.分析:要画正五边形,首先要画一个圆,然后对圆五等分,因此,•应该先求边长为3的正五边形的半径.解:正五边形的中心角∠AOB=3605=72°,如图,∠AOC=30°,OA=12AB÷sin36°÷sin36°≈2.55〔cm〕画法〔1〕以O为圆心,OA=为半径画圆;〔2〕在⊙O上顺次截取边长为3cm的AB、BC、CD、DE、EA.〔3〕分别连结AB、BC、CD、DE、EA.那么正五边形ABCDE就是所要画的正五边形,如下图.三、稳固练习教材P107 练习四、应用拓展例3.在直径为AB 的半圆内,划出一块三角形区域,如下图,使三角形的一边为AB ,顶点C 在半圆圆周上,其它两边分别为6和8,现要建造一个内接于△ABC•的矩形水池DEFN ,其中D 、E 在AB 上,如图24-94的设计方案是使AC=8,BC=6.〔1〕求△ABC 的边AB 上的高h . 〔2〕设DN=x ,且h DN NFh AB-=,当x 取何值时,水池DEFN 的面积最大? 〔3〕实际施工时,发现在AB 上距B 点1.85的M 处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为了保护大树,请设计出另外的方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树.hFDEC ANG分析:要求矩形的面积最大,先要列出面积表达式,再考虑最值的求法,初中阶段,尤其现学的知识,应用配方法求最值.〔3〕的设计要有新意,•应用圆的对称性就能圆满解决此题. 解:〔1〕由AB ·CG=AC ·BC 得h=8610AC BC AB ⨯= 〔2〕∵h=h DN NF h AB -=且DN=x ∴NF=10(4.8)4.8x - 那么S 四边形DEFN =x ·104.8〔4.8-x 〕=-2512x 2+10x =-2512〔x 2-12025x 〕=-2512 [〔x-6025〕2-3600625]=-25x 〔x-2.4〕2+12∵-25x 〔x-2.4〕2≤0 ∴-25x〔x-2.4〕2+12≤12 且当x=2.4时,取等号 ∴当x=2.4时,S DEFN 最大.〔3〕当S DEFN 最大时,x=2.4,此时,F 为BC 中点,在Rt △FEB 中,EF=2.4,BF=3.∴BE=2222-=-3 2.4DE EF∵BM=1.85,∴BM>EB,即大树必位于欲修建的水池边上,应重新设计方案.∵当x=2.4时,DE=5∴AD=3.2,由圆的对称性知满足条件的另一设计方案,如下图:此时,•AC=6,BC=8,AD=1.8,BE=3.2,这样设计既满足条件,又避开大树.五、归纳小结〔学生小结,教师点评〕1.画正多边形的方法.2.运用以上的知识解决实际问题.六、布置作业一、选择题1.如图1所示,正六边形ABCDEF内接于⊙O,那么∠ADB的度数是〔〕.A.60° B.45° C.30° D.22.5°(1) (2) (3)2.圆内接正五边形ABCDE中,对角线AC和BD相交于点P,那么∠APB的度数是〔〕.A.36° B.60° C.72° D.108°3.假设半径为5cm的一段弧长等于半径为2cm的圆的周长,•那么这段弧所对的圆心角为〔〕A.18° B.36° C.72° D.144°二、填空题1.正六边形边长为a,那么它的内切圆面积为_______.2.在△ABC中,∠ACB=90°,∠B=15°,以C为圆心,CA长为半径的圆交AB于D,如图2所示,假设AC=6,那么AD的长为________.3.四边形ABCD为⊙O的内接梯形,如图3所示,AB∥CD,且CD为直径,•如果⊙O的半径等于r,∠C=60°,那图中△OAB的边长AB是______;△ODA的周长是_______;∠BOC的度数是________.三、综合提高题1.等边△ABC的边长为a,求其内切圆的内接正方形DEFG的面积.2.如下图,•⊙O•的周长等于6 cm,•求以它的半径为边长的正六边形ABCDEF的面积.3.如下图,正五边形ABCDE的对角线AC、BE相交于M.〔1〕求证:四边形CDEM是菱形;〔2〕设MF2=BE·BM,假设AB=4,求BE的长.。
人教版九年级上册24.3正多边形和圆(教案)
-对难点的突破方法:
-采用直观教具或动态软件,帮助学生建立几何图形的空间概念,直观感受正多边形的性质。
-通过小组合作和讨论,让学生在互动中识别对称轴,互相解释推理过程。
-通过例题和练习,逐步引导学生掌握周长和面积的计算方法,特别是无理数的运算。
-创设生活情境,将数学问题具体化,提高学生解决实际问题的能力。
2.提高学生的逻辑推理能力,在学习正多边形性质和计算方法的过程中,引导学生运用严密的逻辑推理解决问题。
3.增强学生的数学应用意识,将正多边形和圆的知识应用于实际情境,提高解决实际问题的能力。
4.培养学生的数学审美,通过探讨正多边形和圆在生活中的应用,激发学生对数学美的感知和欣赏。
5.培养学生的团队合作精神,在小组讨论和探究活动中,鼓Βιβλιοθήκη 学生相互交流、协作,共同解决问题。
关于学生小组讨论,我觉得效果还是不错的。学生们能够积极思考,提出自己的观点。但在引导与启发环节,我意识到有些问题可能设置得不够明确,导致学生的思考方向出现偏差。以后在设置问题时,我需要更注重问题的针对性和引导性。
在总结回顾环节,我觉得学生对正多边形和圆的知识点掌握得还不错,但在实际应用方面,可能还需要进一步的巩固。在今后的教学中,我会多设计一些与实际生活相关的练习题,帮助学生更好地将所学知识应用于解决实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用圆规和直尺画出正五边形,演示正多边形的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
人教版九年级数学上册《正多边形和圆》教学案
正多边形和圆 ( 一)素质教育目标1.使学生理解正多边形观点;使学生认识挨次连接圆的n 平分点所得的多边形是正多边形;过圆的n 平分点作圆的切线,以相邻切线的交点为极点的多边形是正多边形.2,经过正多边形定义教课培育学生概括能力;经过正多边形与圆关系定理的教课培育学生察看、猜想、推理、迁徙能力.3,向学生浸透“特别——一般”再“一般——特别”的唯物辩证法思想.教课要点、难点、疑点及解决方法1.要点:正多边形的定义;n 平分圆周 (n ≥ 3) 可得圆的内接正n 边形和圆的外切正n 边形.2.难点:对正n 边形中泛指“n”的理解.3.疑点及解决方法:揭露定理证明的思路和步骤,说明取n=5 的特别状况证明定理具有代表性.教法学法和教具1.教法:指引学生探究研究发现法。
2.学法:学生主动探究研究发现法。
3.教具:三角尺、圆规、投影仪(或小黑板)。
教课步骤复习准备部分同学们思虑以下问题:1.等边三角形的边、角各有什么性质?2.正方形的边、角各有什么性质?[ 安排中下生回答]3.等边三角形与正方形的边、角性质有什么共同点?[ 中上生回答:各边相等、各角相等] .教师:我们今日学习的内容“7.15 正多边形和圆”.讲堂讲练部分一,正多边形的观点教师发问:1,什么是正多边形?[ 安排中下生回答:各边相等、各角也相等的多边形叫做正多边形.]师重申:假如一个正多边形有 n(n ≥ 3) 条边,就叫正 n 边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.[ 教师展现图形]2,上边这些图形都是正几边形?[ 安排中下生回答:正三角形,正四边形,正五边形,正六边形. ]3,矩形是正多边形吗?为何?菱形是正多边形吗?为何?[ 安排中下生回答:矩形不是正多边形,因为边不必定相等.菱形不是正多边形,因为角不必定相等.] 4,哪位同学记得在同圆中,圆心角、弧、弦、弦心距关系定理?[ 安排记起来的学生回答:在同圆中,圆心角、弧、弦、弦心距有一组量相等,那么其他量都相等.] 5,要将圆三平分,那么此中一等份的弧所对圆心角度数是多少?要将圆四平分、五等分、六平分呢?[ 安排中下生回答:将圆三平分,此中每等份弧所对圆心角120°、将圆四平分,每等份弧所对圆心角90°、五平分,圆心角72°、六平分,圆心角60° ] 6,哪位同学能用量角器将黑板上的圆三平分、四平分、五平分、六平分?[ 接排四名上等生上黑板达成,其他学生在下边练习本上用量角器平分圆周.]7,大家挨次连接各分点看所得的圆内接多边形是什么样的多边形?[ 学生答:正多边形.二,平分圆周法定理求证:五边形ABCDE是⊙ O的内接正五边形.教师指引学生剖析:1,以五边形为例,哪位同学能证明这五边形的五条边相等?[ 安排中等生回答:]2,哪位同学能明五形的五个角相等?[ 安排中等生回答:]3,前方的明明“挨次的五平分点所得的内接五形是正五形”的察后的猜想是正确的.假如n 平分周, (n ≥ 3) 、 n=6, n=8⋯⋯能否也正确呢?[ 安排学生充足] .教: 因在同中,弧等弦等,n 平分就获得n 条弦等,也就是n 形的各都相等.又n 形的每个内角的(n-2)条弧,而每一内角所的弧都相等,依据弧等、周角相等,了然n 形的各角都相等,所以内接正五形的明拥有代表性.定理:把圆分红 n(n ≥ 3) 等份:(1) 挨次连接各分点所得的多边形是这个圆的内接正n 边形;教:1,何要“挨次” 各分点呢?缺乏“挨次”二字会出什么象?大家看看.2,的五平分点作的切,大家察以相切的交点点的五形能否是正五形?PQ、 QR、 RS、 ST 分是分点A、 B、 C、 D、 E 的⊙ O的切.求:五形PQRST是⊙ O的外切正五形教引学生剖析:1, 由弧等推得弦等、弦切角等,哪位同学能明五形PQRST的各角都相等?[ 安排中上生回答]2, 哪位同学能明五形PQRST的各都相等?[ 安排中等生回答.]教:前方同学的明,明“ 的五平分点作的切,以相切的交点点的多形是个的外切正五形.”同依据弧等弦等、弦切角等便可明的n 平分点作的切,以相切的交点点的n 个等腰三角形全等,进而了然个的以它n 平分点切点的外切n 形是正n 形.(2)经过各分点作圆的切线,以相邻切线的交点为极点的多边形是这个圆的外切正 n 边形.教师重申:定理(2) 中少“相邻”两字行不可以?少“相邻”两字会出现什么现象?同学们相互间议论研究看看.总结、扩展、反省本堂课我们学习的知识:1.学习了正多边形的定义.2. n 平分圆周 (n ≥ 3) 可得圆的内接正n 边形和圆的外切正n 边形.讲堂作业:教材P.143 .练习 2、 3部署作业:P.157 中 2、 3.板书设计教后札记:学生对正多边形的观点能够理解,会用平分圆周法作图,可是,因为对多边形接触较少,应用有难度,解题不周祥,要指导学生对正多边形的观点作图和定理的反省学习。
人教版九年级数学上册《24.3 正多边形和圆》 教案 第2课时
第二十四章圆24.3 正多边形和圆第2课时一、教学目标1.巩固正多边形与圆的关系.2.掌握用尺规画图作正多边形.二、教学重点及难点重点:画特殊的正多边形.难点:利用直尺与圆规作特殊的正多边形.三、教学用具多媒体课件,三角板、直尺、圆规、量角器.四、相关资源五、教学过程【复习回顾,引入新课】师生活动:教师展示复习的课件,让学生回顾上节课所学知识.设计意图:通过复习正多边形与圆相关定义,为本节课学习正多边形画法作好铺垫.【合作探究,形成新知】实际生活中,经常遇到画正多边形的问题,比如画一个六角螺帽的平面图、画一个五角星等,这些问题都与等分圆周有关,我们一起探究正六边形的画法.我们可以用量角器画正六边形吗?如果可以,请说说作图原理.师生活动:四人一组,小组讨论、交流,一名学生回答,全班订正.学生回答不足的地方,教师补充.归纳用“量角器等分圆”:依据:同圆中相等的圆心角所对应的弧相等.操作:两种情况:其一是依次画出相等的圆心角来等分圆,这种方法比较准确,但是麻烦;其二是先用量角器画一个圆心角,然后在圆上依次截取等于该圆心角所对弧的等弧,于是得到圆的等分点,这种方法比较方便,但画图的误差积累到最后一个等分点,使画出的正多边形的边长误差较大.【例题分析,深化提升】例有没有其他作正六边形的方法?你能用尺规作出圆的内接正六边形吗?试试看.师生活动:教师组织学生思考作图的方法,先让学生独立思考,再与小组同学协作完成,有方法的小组通过实物投影展示,对完成较好的同学给予表扬.教师引导学生观察正六边形,从而使其回忆起正六边形的边长等于半径,找到作图的方法,然后学生自己动手作图.设计意图:充分发挥学生的发散思维,让学生充分利用手中的工具,实际操作,认真思考,从而培养学生的动手能力.【练习巩固,综合应用】已知⊙O的半径为1 cm,求作⊙O的内接正八边形.解:(1)如图所示,作直径AC,使AC=2 cm.(2)作AC的中垂线BD交⊙O于B,D两点.(3)连接AD,作AD的中垂线交AD于M点.,,的中点E,F,G.(4)用同样的方法作出AB BC CD(5)依次连接各分点,即得正八边形.正八边形AEBFCGDM即为所求作的⊙O的内接正八边形.设计意图:巩固正多边形画法.六、课堂小结学完这节课你有哪些收获?1.量角器画正多边形2.尺规作正多边形师生活动:学生自己总结,不全面的由其他学生补充完善.教师重点关注:不同层次学生对本节知识的理解、掌握程度.设计意图:让学生总结出自己的收获,理清思路、整理经验,从而形成良好的学习习惯,同时也提出自己的疑问和困惑便于教师及时反馈.七、板书设计24.3 正多边形和圆(2)1.量角器画正多边形2.尺规作正多边形。
人教版数学九年级上册24.3正多边形和圆(第2课时)教学设计
4.强调数学知识在实际生活中的应用,激发学生学习数学的兴趣。
五、作业布置
为了巩固本节课所学的正多边形和圆的知识,以及提高学生的应用能力和思维能力,特布置以下作业:
1.基础巩固题:请同学们完成课本第XX页的练习题1-5,重点复习正多边形的性质、内角和、外角和的计算方法,以及正多边形与圆的相互关系。
4.思考题:请同学们思考以下问题,下节课进行分享和讨论:
(1)为什么正多边形的外角和为360°?
(2)如何判断一个多边形是否为正多边形?
(3)正多边形与圆的性质在解决实际问题时有什么优势?
5.预习作业:预习下一节课的内容,了解圆的内接多边形和外切多边形的性质,为课堂学习做好准备。
作业要求:
1.请同学们按时完成作业,保持字迹工整,确保作业质量。
4.借助几何画板等教学工具,直观展示正多边形和圆的性质,加深学生对知识的理解。
(三)学生小组讨论,500字
在学生小组讨论环节,我将组织学生进行以下活动:
1.将学生分成若干小组,每组讨论一个问题,如正多边形内角和的计算方法、正多边形与圆的关系等。
2.每个小组派代表汇报讨论成果,其他小组进行补充和评价。
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-正多边形的性质及其与圆的关系。
-运用圆的性质解决正多边形相关问题。
-正多边形周长和面积的计算方法。
2.教学难点:
-正多边形内角和、外角和的计算。
-正多边形与圆结合的综合问题解决。
-空间想象能力的培养。
(二)教学设想
1.教学方法:
-采用启发式教学法,引导学生通过观察、探索、讨论等方式发现正多边形的性质,培养学生自主学习能力。
九年级数学上册24.3正多边形和圆(第2课时)教案新人教版
24.3 正多边形和圆教学内容24.3 正多边形和圆(2).教学目标1.理解正多边形的性质.2.会画正多边形,了解依次连结圆的n等分点所得的多边形是正多边形,过圆的n等分点作圆的切线,以相邻切线的交点为顶点的多边形是正多边形.教学重点正多边形的画法.教学难点对正n边形中泛指“n”的理解.教学步骤一、导入新课实际生活中,经常遇到画正多边形的问题,比如画一个六角螺帽的平面图、画一个五角星等,这些问题都与等分圆周有关.二、新课教学我们知道,依次连结圆的五等分点所得的圆内接五边形是正五边形.如果n等分圆周,(n ≥3)、n=6,n=8……是否也正确呢?教师引导学生充分讨论.因为在同圆中,弧等弦等,n等分圆就得到n条弦等,也就是n边形的各边都相等.又n 边形的每个内角对圆的(n-2)条弧,而每一内角所对的弧都相等,根据弧等、圆周角相等,证明了n边形的各角都相等,因此圆内接正五边形的证明具有代表性.定理:把圆分成n(n≥3)等份,依次连结各分点所得的多边形是这个圆的内接正n边形.为何要“依次"连结各分点呢?缺少“依次”二字会出现什么现象?大家讨论讨论看看.我们还可以用圆心角来等分圆周.由于同圆中相等的圆心角所对的弧相等,因此作相等的圆心角就可以等分圆周,从而得到相应的正多边形.例如,画一个边长为1。
5 cm 的正六边形时,可以以 1.5 cm为半径作一个⊙O,用量角器画一个等360 =60°的圆心角,它对着一段弧,然后在圆上依次截取与这条弧于6相等的弧,就得到圆的6个等分点,顺次连接各分点,即可得到正六边形(如下图).对于一些特殊的正多边形,还可以用圆规和直尺来作.如,用直尺和圆规作两条互相垂直的直径,就可以把圆四等分,从而作出正方形(下图).三、巩固联系教材第108页练习.四、课堂小结今天学习了什么,有什么收获?五、布置作业习题24.3 第4、6题.尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
九年级数学上册《正多边形和圆》教案、教学设计
a.提问:同学们,你们在生活中都见过哪些正多边形和圆形的物体呢?
b.学生回答后,教师总结:正多边形和圆在我们的生活中无处不在,它们具有很多独特的性质和美感。今天我们就来学习正多边形和圆的相关知识。
2.学生在解决实际问题时,可能难以将正多边形的性质与实际问题相结合,需要教师通过举例、引导,帮助学生建立知识间的联系。
3.部分学生对数学学习存在恐惧心理,需要教师关注学生的情感态度,激发学生的学习兴趣,增强他们的自信心。
4.学生在团队合作、交流表达方面有待提高,教师应创造更多机会让学生进行讨论交流,培养他们的沟通能力。
a.设计一道具有实际背景的问题,运用正多边形和圆的知识进行解决,要求学生将解题过程和答案以书面形式提交。
b.学生以小组为单位,共同探讨生活中的正多边形和圆的应用,完成一份小报告,内容包括:应用实例、性质分析、解题方法等。
3.拓展与思考:
a.阅读相关资料,了解正多边形和圆在历史、文化、艺术等领域的应用,撰写一篇心得体会。
b.探究正多边形与圆在建筑设计中的应用,结合实际案例进行分析,提出自己的看法。
4.口头作业:
a.与家人分享本节课所学知识,讲解正多边形和圆的性质,以及它们在生活中的应用。
b.与同学进行交流,讨论解决正多边形和圆相关问题时的策略和方法。
5.预习作业:
a.预习下一节课内容,提前了解与正多边形和圆相关的其他几何知识。
b.采用问题驱动法,设计具有启发性的问题,引导学生主动探究正多边形的性质及其与圆的关系。
c.以小组合作的形式,让学生共同解决正多边形与圆的实际问题,培养学生的团队合作意识和问题解决能力。
人教版九年级数学上册《正多边形和圆(第2课时)》示范教学设计
正多边形和圆(第2课时)教学目标1.掌握用等分圆周的方法画正多边形,并能借助圆或正多边形设计一些美丽的图案.2.经历借助圆画正多边形的过程,感受数学来源于生活,又服务于生活,体会事物之间是相互联系、相互作用的.教学重点能用不同的方法画正多边形,并能设计一些美丽的图案.教学难点掌握用等分圆周的方法画正多边形.教学准备量角器、圆规、直尺.教学过程新课导入实际生活中,经常遇到画正多边形的问题,比如画一个六角螺帽的平面图、画一个五角星等,这些问题都与等分圆周有关.要制造下图中的零件,也需要等分圆周.新知探究一、探究学习【问题】正多边形在生产和生活中有着广泛的应用,会画正多边形是我们必备的能力之一.想一想:如何画一个正六边形?【分析】要作半径为R的正n边形,只要把半径为R的圆周n等分,然后顺次连接各分点即可.【师生活动】教师给出分析,提出问题:如何等分圆周?学生认真思考、交流,得出答案;教师在学生回答的基础上进行补充:因为同圆中相等的圆心角所对的弧相等,所以作相等的圆心角就可以等分圆周.教师提出问题:利用你手中的工具如何画一个正六边形?学生思考、交流,教师组织学生进行作图,方法不限.【答案】解:方法1:(1)作一个⊙O;(2)用量角器依次作∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=3606︒=60°,将360°圆心角六等分,即可得到6个等分点;(3)顺次连接各分点,即可得到正六边形,如图所示.方法2:(1)作一个⊙O;(2)用量角器画∠AOB=3606︒=60°,再用圆规依次截取BC=CD=DE=EF=FA=AB,就得到圆的6个等分点;(3)顺次连接各分点,即可得到正六边形,如图所示.【追问】还有其他方法吗?【师生活动】教师提示学生用尺规作图,学生小组讨论,教师组织学生作图、归纳.【答案】解:方法3:先作一个⊙O,因为正六边形的边长等于半径,所以在⊙O上用圆规依次截取等于半径的弦,就可以把圆六等分,顺次连接各分点即可得到正六边形,如图所示.【设计意图】学生通过思考、交流、操作,利用圆和正多边形的相关知识探索正多边形的画法,初步掌握用等分圆周的方法画正多边形.【问题】如图,作⊙O 的内接正方形.【师生活动】学生组内交流,每组派出代表发言,然后教师给出正确答案.【答案】解:用直尺和圆规作两条相互垂直的直径,就可以把圆四等分,从而作出⊙O 的内接正方形,如图所示.【归纳】用等分圆周画正多边形的方法:1.只用量角器:在半径为R 的圆中,用量角器把360°圆心角n 等分,即可把半径为R 的圆周n 等分,顺次连接各分点即可得到正n 边形.2.用量角器和圆规:在半径为R 的圆中,先用量角器画出一个等于360n 的圆心角,这个角所对的弧就是圆周的1n;再用圆规在圆周上依次截取与这条弧相等的弧,就得到圆周的n 等分点,顺次连接各分点即可得到正n 边形.3.用圆规和直尺:用尺规等分圆周,只能作正方形、正六边形等特殊正多边形.【思考】这三种方法的优点和缺点各是什么?【归纳】方法1可以将圆周任意等分,但当边数很多时,容易有较大的误差,而且操作比较麻烦;方法2相对比较简单,但当边数很多时,容易产生较大的误差;方法1和方法2限制条件少,可以作为画圆内接正多边形的通法.方法3是一种比较准确的等分圆周的方法,但由于它不能将圆周任意等分,故有很大的局限性.【设计意图】学生经历画正六边形和正方形的过程,总结出正多边形的不同画法,并掌握不同画法的优点和缺点.二、典例精讲【例1】如图,画⊙O的内接正三角形.【师生活动】学生组内交流,每组派出代表展示成果,教师进行评价.【答案】解:先画⊙O的内接正六边形,再在正六边形的基础上,选择不相邻的三个顶点,顺次连接,即可作正三角形.如图,△DBF是⊙O的内接正三角形.【例2】如图,画⊙O的内接正八边形.【师生活动】教师引导学生独立思考作答,然后给出正确答案.【答案】解:先画圆的内接正四边形,再在正四边形的基础上用直尺和圆规分别作与正四边形相邻两边垂直的直径,即可作正八边形.如图,八边形AHBFCGDE是⊙O的内接正八边形.【归纳】按照例2的方法可以作出正十六边形、正三十二边形、正六十四边形……也可以作出正十二边形、正二十四边形……【设计意图】通过例题,巩固学生对用等分圆周的方法画正多边形的掌握,让学生会用不同的方法画正多边形,培养学生利用所学内容解决问题的能力.三、知识应用【新知】许多图案设计都和圆有关,下图就是一些利用等分圆周设计出的图案.其中一个图案的设计过程如下:利用某些正多边形可以镶嵌整个平面的性质,还可以设计出一些美丽的图案,如图.【练习】试一试:利用圆或正多边形设计一些图案.【师生活动】学生独立画图,小组之间进行展示、交流,教师给出示例.【设计意图】通过练习,学生独立设计图案,让学生体会数学的美.课堂小结板书设计一、等分圆周二、设计图案课后任务完成教材第108页练习第1~2题.。
九年级数学上册(243 正多边形和圆(二))教案 新人教版 教案
正多边形和圆素质教育目标(一)知识教育点1.使学生了解用量角器等分圆心角来等分圆,从而可以作出圆内接或圆外切正多边形.2.使学生会用尺规作圆内接正方形和正六边形,在这个基础上能作圆内接正八边形、正三角形、正十二边形.(二)能力训练点1.通过画图培养学生的画图能力;2.通过画正方形到会画正八边形,通过画六边形到画三角形、正十二边形,培养学生观察、抽象、迁移能力.3.通过画图中需减小积累误差的思考与操作,培养学生解决实际问题的能力.(三)德育渗透点1.通过画正方形到画正八边形,画正六边形到画正三角形、正十二边形,渗透从“特殊到一般,再由一般到特殊”的认识观,从正多边形边数的增加越来越接近于圆,渗透了量变到质变的运动观点.2.通过学习画图实践渗透理论联系实际的观点以及创新、选优意识.教学重点、观点、疑点及解决方法1.重点:(1)用量角器等分圆心角来等分圆,然后作出圆内接或圆外切正多边形;(2)用尺规作圆内接正方形和正六边形.2.难点:准确作图.3.疑点及解决方法:尺规等分圆法,理论上正确,但实际应用画图时却并非如此,学生对此产生疑惑,为此在教师示范过程中要演示出误差的积累过程与解决的方法.教学步骤(一)明确目标前几课我们学习了正多边形的定义、概念、性质、判定,尤其学习了正多边形与圆关系的两个定理,而后我们又学习了正多边形的有关计算,本堂课我们一起学习画正多边形.(二)整体感知由于正多边形在生产、生活实际中有广泛的应用性,所以会画正多边形应是学生必备能力之一,前面已学习了正多边形和圆的关系的第一个定理,即把圆分成n(n≥3)等份,依次连结各分点所得的多边形是这个圆的内接正n边形;过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形,所以想到只要知道外接圆半径R或内切圆半径r n,画出圆来,然后n等分圆周就能画出所需的正n边形.n等分圆周的方法有两种,一种是量角器法,这一种方法简单易学,它是一种常用的方法.其根据是因为相等的圆心角所对弧相等,所以使用量角器等分圆心角,可以达到把圆任意等分的目的,由于学生已具备使用量角器的能力,所以只要讲明根据,让学生动手操作即可.另一种方法是用尺规等分圆周法,其实质也是等分圆心角,但尺规不能任意等分圆,只适用于一些特殊情况,其中重点是正方形和正六边形的作法,这是因为正八边形、正三角形、正十二边形都是由此作基础而画出来的.由于尺规作图在理论上准确,但在实际操作中有误差积累,如何减少误差使图形趋于准确?这是一个锻炼学生解决问题的好时机,应让学生亲手实验、观察对比,从而得出结论.(三)重点、难点的学习与目标完成过程复习提问:1.哪位同学记得正多边形与圆关系的第一个定理?(安排中下生回答)2.哪位同学记得在同圆或等圆中,相等的圆心角所对的弧有什么性质?(安排中下生回答:相等的圆心角所对的弧相等) 现在我们要画半径为R的正n边形,从正多边形与圆关系的第一个定理中,你有什么启发?(安排学生相互讨论后,让中等生回答:只要把半径为R的圆n等分,依次连结n个等分点就得正n边形)那么怎样把半径为R的圆n等分呢?从刚才复习的第二问题中,你又受到什么启发?大家相互间讨论.(安排中等生回答:把360°的圆心角n等分)如果要作半径2cm的正九边形,你打算如何作呢?大家互相讨论看看.(安排中等生回答:先画半径2cm的圆,然后把360°的圆心角9等份,每一份40°),用什么工具可得到40°角呢?(安排中下生回答:量角器)我们本堂课所讲画正多边形的第一种方法就是用量角器等分圆,大家用量角器画出半径为2的内接正九边形.学生在画图实践中必然出现两种情况:其一是依次画出相等的圆心角来等分圆,这种方法比较准确,但是麻烦;其二是先用量角器画一个40°的圆心角,然后在圆上依次截取40°圆心角所对弧的等弧,于是得到圆的9等分点,这种方法比较方便,但画图的误差积累到最后一个等分点,使画出的正九边形的边长误差较大.对此学生必然迷惑不解,在此教师应肯定作法理论上的正确性,然后讲出图形不够准确的原因是由于误差积累的结果,然后引导学生讨论,研究减小误差积累的二个途径:其一,调整圆规两脚间的距离,使之尽可能准确的等于所画正九边形的边长.其二,若有可能,尽可能减少操作次数,减少产生误差的机会.大家想想如何画一个半径为2cm的正方形呢?(安排中下生回答:先画半径2cm的圆,用量角器作90°的圆心角.)画出∠AOB=90°后,方法1,可依次作90°圆心角;方法2,用圆规依次截取等于AB的弧,大家观察有没有更好的方法?(安排中等生回答:将AO与BO边延长交⊙O于C、D).正方形一边所对的圆心角是90°角,不用量角器用尺规能不能做出90°的圆心角呢?用尺规如何作半径为2cm的正方形?(安排中上等生回答,先作半径2cm的圆,然后画两条互相垂直的直径)请同学们用尺规画出半径为2cm的正方形.大家想想看,借助这个图形,能否作出⊙O的内接正八边形?同学们互相研究研究,(安排中上生回答:能,过圆心O作正方形各边的垂线与圆相交即得⊙O的八等分点)为什么?根据什么定理?(安排中上等生回答:垂径定理)还有什么方法?(安排中上等生作各直角的角平分线.)请同学们用此二法在图上画出正八边形.照此方法,同学们想想看,你还能画出边数为几的正多边形?(安排中下生回答:16边形等)综上所述及同学们的画图实践可知:只要作出已知⊙O的互相垂直的直径即得圆内接正方形,再过圆心作各边的垂线与⊙O相交,或作各中心角的角平分线与⊙O相交,即得圆接正八边形,照此方法依次可作正十六边形、正三十二边形、正六十四边形……大家再思考一个问题:如何画半径为2cm的正六边形呢?你都有哪些方法?大家讨论.方法1.画半径2cm的⊙O,然后用量角器画60°的圆心角,依次画下去即六等分圆周.方法2.画半径2cm的⊙O,然后用量角器画出60°的圆心角,如果有同学想到方法3更好,若无则提示学生:前面在研究正多边形的有关计算时,得到正六边形的半径与边长有一种什么样的数量关系?(安排中下生回答:相等)那么哪位同学可不用量角器,仅用尺规作出半径2cm的圆内接正六边形?(安排一名中等生到黑板画图,其余在下面画图)在学生画图完毕后展示两种不同的画法:其一,在⊙O上依次截取AB=BC=CD=DE=EF,由于误差积累AB ≠FA,其二,首先画出⊙O的直径AD,然后分别以A、D为圆心,2cm长为半径画弧交⊙O于B、F、C、E.画出图形比较准确.请同学们用第二种方法画半径3cm的圆内接正六边形(安排学生在练习本上画)如果我们沿用由正方形画正八边形的思路同学们想想看,会画正六边形就应会画正多少边形?(安排中下生回答:正十二边形,正二十四边形…)理论上我们可以一直画下去,但大家不难发现,随着边数的增加,正多边形越来越接近于圆,正多边形将越来越难画.大家再观察,会画正六边形,除上述正多边形外,还可得到正几边形?(安排中等生回答:正三角形)画半径为2cm的正三角形,尺规作图时必得先画出正六边形吗?哪位同学有好方法?(安排举手同学回答:画出⊙O直径AB,以A为圆心,2cm为半径画弧交⊙O于C、D,连结B、D、C即可)请同学们按此法画半径为2cm的正三角形.请同学们思考一下如何用尺规画半径为2cm的正十二边形?在学生充分讨论研究的多种方案中送出:先作互相垂直的直径,然后分别以直径的四个端点为圆心2cm 长为半径画弧,交⊙O的各点即得⊙O的12等分点.引导学生观察∠DOE=∠DOB-∠EOB∠DOB=90°,∠EOB=60°∴∠DOE=30°.∴ DE是⊙O内接正12边形一边.(四)总结、扩展这堂课你学了哪些知识?(安排中等生回答:1.用量角器等分圆周作正n边形;2.用尺规作正方形及由此扩展作正八边形、用尺规作正六边形及由此扩展作正12边形、正三角形)四、布置作业教材P107中练习1、2;P107习题24.3中第2、7、8题.五、课后反思。
352.九年级新人教版数学上册24.3 正多边形和圆2-教案
24.3 正多边形和圆教学目标1. 了解正多边形和圆的有关概念;理解并掌握正多边形半径、中心角、边心距、边长之间的关系,会应用正多边形和圆的有关知识解决实际问题。
2. 通过正多边形与圆的关系的教学培养学生观察、猜想、推理、迁移的能力。
3. 通过探究正多边形在生活中的实际应用,增强对生活的热爱。
重点:1.正多边形的有关概念,特殊正多边形的有关计算。
2.掌握圆内接正多边形的半径、边心距、边长三者之间的联系。
难点:1.正多边形的半径、中心角、边心距、边长之间关系的正确理解与计算。
2.会作圆和正多边形的辅助性,构造直角三角形,运用勾股定理。
课前准备师:多媒体课件、圆形纸片生:直尺、圆规、圆形纸片教学过程一、复习回顾,引入新课问题1:观察下面多边形,找出它们的边、角有什么特点?(幻灯3)问题2:观看大屏幕上这些美丽的图案,都是在日常生活中我们经常能看到的.你能从这些图案中找出正多边形来吗? (幻灯4)问题3:圆具有哪些对称性?(幻灯5)二、目标导学,探索新知目标导学1:理解正多边形的定义(幻灯6~8)问题1:什么叫正多边形?问题2:矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?【教师强调】判断一个多边形是否是正多边形,必须同时具备两个必备条件:①各边相【教学备注】【设计意图】让学生观察、归纳出正多边形的特点等;②各角相等。
二者缺一不可。
问题3:正三角形、正四边形、正五边形、正六边形都是轴对称图形吗?都是中心对称图形吗?【教师强调】正n边形都是轴对称图形,都有n条对称轴,且只有边数为偶数的正多边形才是中心对称图形。
目标导学2:了解正多边形和圆的密切关系,借助圆可以画正多边形(幻灯9~11)问题1:怎样把一个圆进行四等分?问题2:依次连接各等分点,得到一个什么图形?归纳:像上面这样,只要把一个圆分成相等的一些弧,就可以作出这个圆的正多边形,这个圆就是这个正多形的外接圆,这个正多边形也称为这个圆的内接正多边形。
九年级数学人教版上册24.3正多边形和圆教学设计
1.学生需独立完成作业,确保作业质量。
2.作业完成后,认真检查,确保解答过程正确、书写规范。
3.教师批改作业后,学生要认真对待反馈,及时改正错误,巩固知识点。
4.鼓励学生积极参与课堂讨论,分享自己的学习心得和作业成果。
4.通过正多边形在实际生活中的应用,让学生认识到数学与生活的紧密联系,增强学生学以致用的意识。
二、学情分析
九年级的学生已经具备了一定的几何知识和逻辑思维能力,他们已经熟悉了三角形、四边形等基本多边形的性质和计算方法。在此基础上,学习正多边形和圆的相关知识,对学生来说是几何学习的深入和拓展。学生在这个阶段好奇心强,求知欲旺盛,对新鲜事物充满探索欲望。因此,本章节的教学应注重激发学生的兴趣,引导他们通过观察、思考、实践,发现正多边形的规律和性质,提高学生的几何素养和解决问题的能力。同时,考虑到学生的个体差异,教学中应关注不同层次学生的需求,设置适宜的难度,使每个学生都能在原有基础上得到提高。
4.小组合作:
-以小组为单位,讨论以下问题:正多边形与圆有哪些互为内外切的关系?这些关系在实际问题中如何应用?
-小组共同完成一份关于正多边形与圆的性质、应用的研究报告。
5.创新思维:
-鼓励学生运用正多边形的知识,设计一个独特的几何图案,并说明其寓意。
-学生可以尝试利用正多边形制作一个简易的装饰品或模型,培养动手能力和创新能力。
2.讨论主题:正多边形的性质、正多边形与圆的关系、正多边形周长与面积的计算方法等。
3.教师指导:在学生讨论过程中,教师巡回指导,引导学生发现规律,解答学生的疑问。
(四)课堂练习
1.设计不同难度的练习题,让学生独立完成,巩固所学知识。
-基础题:计算给定正多边形的周长、面积。
人教版九年级数学上册24.3.2《正多边形和圆(2)》教案
人教版九年级数学上册24.3.2《正多边形和圆(2)》教案一. 教材分析人教版九年级数学上册第24章《圆》中的第3节《正多边形和圆(2)》是本章的重要内容。
本节主要让学生了解并掌握圆的性质,以及正多边形与圆的关系。
通过本节的学习,学生能够更深入地理解圆的性质,提高解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的几何基础,对圆的概念有一定的了解。
但是,对于圆的性质和正多边形与圆的关系的理解还有待提高。
因此,在教学过程中,教师需要引导学生通过观察、思考、操作、讨论等方式,自主探索并掌握圆的性质,以及正多边形与圆的关系。
三. 教学目标1.了解圆的性质,掌握圆的基本概念。
2.理解正多边形与圆的关系,提高解决问题的能力。
3.培养学生的观察能力、思考能力和合作能力。
四. 教学重难点1.圆的性质的理解和运用。
2.正多边形与圆的关系的理解。
五. 教学方法采用问题驱动法、合作学习法和操作实践法。
通过提出问题,引导学生思考和探索;通过合作学习,培养学生之间的交流和合作能力;通过操作实践,让学生亲身体验和理解圆的性质和正多边形与圆的关系。
六. 教学准备1.准备相关的教学材料,如课件、黑板、粉笔等。
2.准备一些实际的例子,以便引导学生进行观察和操作。
七. 教学过程1.导入(5分钟)通过提出问题,如“什么是圆?圆有哪些性质?”引导学生回顾圆的基本概念,激发学生的学习兴趣。
2.呈现(10分钟)通过课件或黑板,呈现圆的性质,如圆的直径、半径、圆心等。
同时,给出一些实际的例子,让学生观察和理解圆的性质。
3.操练(10分钟)让学生进行一些实际的操作,如画圆、测量圆的直径、半径等。
通过操作,让学生更深入地理解圆的性质。
4.巩固(10分钟)通过一些练习题,让学生巩固所学的圆的性质。
同时,引导学生将这些性质与正多边形联系起来,理解正多边形与圆的关系。
5.拓展(10分钟)引导学生思考和探索正多边形与圆的更深层次的关系。
例如,讨论在给定边长的情况下,如何找到一个正多边形,使其与给定的圆相切。
人教初中数学九年级上册 24.3 正多边形和圆教案
24.3 正多边形和圆第二课时教学目标:1知识与技能:(1)了解正多边形的中心、半径、边心距、中心角等概念。
(2)能运用正多边形的知识解决圆的有关计算问题。
2过程与方法:(1)学生在探讨正多边形有关计算过程中,体会到要善于发现问题,解决问题,发展学生的观察、比较、分析、概括及归纳的逻辑思维能力和逻辑推理能力。
(2)在探索正多边形有关过程中,学生体会化归思想在解决问题中的重要性,能综合运用所学的知识和技能解决问题。
3情感、态度与价值观:(1)学生经历观察、发现、探究等数学活动,感受到数学来源于生活,又服务于生活,体会到事物之间是相互联系,相互作用的。
(2)运用已有的正多边形的知识解决问题的活动中获得成功的体验,建立学习自信心。
教学重点:理解正多边形和圆中心正多边形半径、中心角、边心距、边长之间的关系,并能进行有关计算。
教学难点:理解正多边形和圆中心正多边形半径、中心角、边心距、边长之间的关系以及把正多边形的计算问题转化为解直角三角形的问题。
教学过程:一、教学前置:1、温故知新:请同学们口答下面两个问题.问题1:相等, 也相等的多边形是正多边形。
以下列图形是正多边形吗?问题2,菱形是正多边形吗?矩形是正多边形吗?为什么?2、概念描述:(1)通过预习,在正六边形对应的地方分别填写正多边形的中心、半径、中心角、边心距。
(2)概括正多边形有关概念:正多边形的中心: 。
正多边形的半径: 。
正多边形的中心角: 。
正多边形的边心距:。
二、巩固练习1:1、如图1,点O是正△ABC的中心,它是△ABC的___圆与___圆的圆心,OB叫正△ABC 的___,它是正△ABC的__圆的半径,OD叫作正△ABC的______,它是正△ABC 的__圆的半径。
2、如图2,∠ BOC是正方形ABCD的一个___角,它是___度,正方形ABCD一共有__个中心角,正方形ABCD的内角和是___度,外角和是___度。
3、如图3,正五边形ABCDE的一个中心角是__度,∠ABC是正五边形ABCDE的一个__角,它是___度,∠CBG是正五边形ABCDE的一个__角,它是___度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教新课标版(2013教材)初中九上正多边形和圆(2)教案【学习目标】
1.会通过等分圆心角的办法等分圆周,画出所需的正多边形.
2.能够用圆规和直尺等分圆周,画出所需的正多边形.
【学习重点】怎样等分圆周.
【学习难点】怎样等分圆周.
【学习过程】
1、创设情境,引入新课:
展示两组图片,引入新课。
2、新授:
由于正多边形在生产、生活实际中有广泛的应用性,所以会画正多边形应是学生必备能力之一。
怎样画一个正多边形呢?
问题:已知⊙O的半径为2cm,求作圆的内接正三角形.
作法:①用量角器度量,使∠AOB=∠BOC=∠COA=120°.
②用量角器或30°角的三角板度量,使∠BAO=∠CAO=30°.
你能尺规作出正四边形、正八边形吗?
只要作出已知⊙O的互相垂直的直径即得圆内接正方形,再过圆心作各边的垂线与⊙O 相交,或作各中心角的角平分线与⊙O相交,即得圆接正八边形,照此方法依次可作正十六边形、正三十二边形、正六十四边形……
归纳:
说说作正多边形的方法有哪些?
(1)用量角器等分圆心角作正n边形;
(2)用尺规作正方形及由此扩展作正八边形, 用尺规作正六边形及由此扩展作正十二边形、正三角形.
3、练习:
(1)你能用等分圆心角的方法画出正四边形、正五边形、正六边形吗?
(2)你能尺规作出正六边形、正三角形、正十二边形吗?
以半径长在圆周上截取六段相等的弧,依次连结各等分点,则作出正六边形.
先作出正六边形,则可作正三角形,正十二边形,正二十四边形………
4、小结:通过本节课的学习,你有什么收获?。