指数函数第3课时指数与指数幂的运算(三)
指数与指数运算
2.1.1 指数与指数幂的运算整体设计教学分析我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质.从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数.进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂.教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题.前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值.后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫.本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,体现数学的应用价值.根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.三维目标1.通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质.掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.培养学生观察分析、抽象类比的能力.2.掌握根式与分数指数幂的互化,渗透“转化”的数学思想.通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理.3.能熟练地运用有理指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力.4.通过训练及点评,让学生更能熟练掌握指数幂的运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美.重点难点教学重点:(1)分数指数幂和根式概念的理解.(2)掌握并运用分数指数幂的运算性质.(3)运用有理指数幂性质进行化简、求值.教学难点:(1)分数指数幂及根式概念的理解.(2)有理指数幂性质的灵活应用.课时安排3课时教学过程第1课时指数与指数幂的运算(1)导入新课思路 1.同学们在预习的过程中能否知道考古学家如何判断生物的发展与进化,又怎样判断它们所处的年代?(考古学家是通过对生物化石的研究来判断生物的发展与进化的,第二个问题我们不太清楚)考古学家是按照这样一条规律推测生物所处的年代的.教师板书本节课题:指数函数——指数与指数幂的运算.思路2.同学们,我们在初中学习了平方根、立方根,那么有没有四次方根、五次方根…n次方根呢?答案是肯定的,这就是我们本堂课研究的课题:指数函数——指数与指数幂的运算.推进新课新知探究提出问题(1)什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?(2)如x4=a,x5=a,x6=a根据上面的结论我们又能得到什么呢?(3)根据上面的结论我们能得到一般性的结论吗?(4)可否用一个式子表达呢?活动:教师提示,引导学生回忆初中的时候已经学过的平方根、立方根是如何定义的,对照类比平方根、立方根的定义解释上面的式子,对问题②的结论进行引申、推广,相互交流讨论后回答,教师及时启发学生,具体问题一般化,归纳类比出n次方根的概念,评价学生的思维.讨论结果:(1)若x2=a,则x叫做a的平方根,正实数的平方根有两个,它们互为相反数,如:4的平方根为±2,负数没有平方根,同理,若x3=a,则x叫做a的立方根,一个数的立方根只有一个,如:-8的立方根为-2.(2)类比平方根、立方根的定义,一个数的四次方等于a,则这个数叫a的四次方根.一个数的五次方等于a,则这个数叫a的五次方根.一个数的六次方等于a,则这个数叫a的六次方根.(3)类比(2)得到一个数的n次方等于a,则这个数叫a的n次方根.(4)用一个式子表达是,若x n=a,则x叫a的n次方根.教师板书n次方根的意义:一般地,如果x n=a,那么x叫a的n次方根(n-throot),其中n>1且n∈N*.可以看出数的平方根、立方根的概念是n次方根的概念的特例.提出问题(1)你能根据n次方根的意义求出下列数的n次方根吗?(多媒体显示以下题目).①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根.(2)平方根,立方根,4次方根,5次方根,7次方根,分别对应的方根的指数是什么数,有什么特点?4,±8,16,-32,32,0,a6分别对应什么性质的数,有什么特点?(3)问题(2)中,既然方根有奇次的也有偶次的,数a有正有负,还有零,结论有一个的,也有两个的,你能否总结一般规律呢?(4)任何一个数a的偶次方根是否存在呢?活动:教师提示学生切实紧扣n次方根的概念,求一个数a的n次方根,就是求出的那个数的n次方等于a,及时点拨学生,从数的分类考虑,可以把具体的数写出来,观察数的特点,对问题(2)中的结论,类比推广引申,考虑要全面,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:(1)因为±2的平方等于4,±2的立方等于8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分别是±2,±2,±2,2,-2,0,a2.(2)方根的指数是2,3,4,5,7…特点是有奇数和偶数.总的来看,这些数包括正数,负数和零. (3)一个数a的奇次方根只有一个,一个正数a的偶次方根有两个,是互为相反数.0的任何次方根都是0.(4)任何一个数a的偶次方根不一定存在,如负数的偶次方根就不存在,因为没有一个数的偶次方是一个负数.类比前面的平方根、立方根,结合刚才的讨论,归纳出一般情形,得到n次方根的性质:①当n为偶数时,a的n次方根有两个,是互为相反数,正的n次方根用n a表示,如果是负数,负的n 次方根用n a -表示,正的n 次方根与负的n 次方根合并写成±n a (a >0).②n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时a 的n 次方根用符号n a 表示.③负数没有偶次方根;0的任何次方根都是零. 上面的文字语言可用下面的式子表示:a 为正数:⎪⎩⎪⎨⎧±.,,,nn a n a n a n a n 次方根有两个为的为偶数次方根有一个为的为奇数a 为负数:⎪⎩⎪⎨⎧.,,,次方根不存在的为偶数次方根只有一个为的为奇数n a n a n a n n零的n 次方根为零,记为n 0=0.可以看出数的平方根、立方根的性质是n 次方根的性质的特例.思考根据n 次方根的性质能否举例说明上述几种情况? 活动:教师提示学生对方根的性质要分类掌握,即正数的奇偶次方根,负数的奇次方根,零的任何次方根,这样才不重不漏,同时巡视学生,随机给出一个数,我们写出它的平方根,立方根,4次方根等,看是否有意义,注意观察方根的形式,及时纠正学生在举例过程中的问题.解答:答案不唯一,比如,64的立方根是4,16的四次方根为±2,-27的5次方根为527-,而-27的4次方根不存在等.其中527-也表示方根,它类似于n a 的形式,现在我们给式子n a 一个名称——根式. 根式的概念:式子n a 叫根式,其中a 叫被开方数,n 叫根指数. 如327-中,3叫根指数,-27叫被开方数. 思考nn a 表示a n 的n 次方根,等式n n a =a 一定成立吗?如果不一定成立,那么n n a 等于什么?活动:教师让学生注意讨论n 为奇偶数和a 的符号,充分让学生多举实例,分组讨论.教师点拨,注意归纳整理.〔如33)3(-=327-=-3,44)8(-=|-8|=8〕.解答:根据n 次方根的意义,可得:(n a )n =a. 通过探究得到:n 为奇数,nna =a. n 为偶数,nna =|a|=⎩⎨⎧<-≥.0,,0,a a a a因此我们得到n 次方根的运算性质:①(n a )n =a.先开方,再乘方(同次),结果为被开方数.②n 为奇数,nna =a.先奇次乘方,再开方(同次),结果为被开方数.n 为偶数,nna =|a|=a,⎩⎨⎧<-≥.0,,0,a a a a 先偶次乘方,再开方(同次),结果为被开方数的绝对值.应用示例思路1例1求下列各式的值:(1)33)8(-;(2)2)10(-;(3)44)3(π-;(4)2)(b a -(a>b).活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析.观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药.求下列各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数.解:(1)33)8(-=-8;(2)2)10(-=10;(3)44)3(π-=π-3;(4)2)(b a -=a-b(a>b).点评:不注意n 的奇偶性对式子n na 的值的影响,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用. 变式训练求出下列各式的值:(1)77)2(-;(2)33)33(-a (a≤1);(3)44)33(-a .解:(1)77)2(-=-2,(2)33)33(-a (a≤1)=3a -3,(3)44)33(-a =⎩⎨⎧<-≥-.1,33,1,33a a a a点评:本题易错的是第(3)题,往往忽视a 与1大小的讨论,造成错解.思路2例1下列各式中正确的是( )(1)44a =a; (2)62)2(-=32-;(3)a 0=1;(4)105)12(-=)12(-.活动:教师提示,这是一道选择题,本题考查n 次方根的运算性质,应首先考虑根据方根的意义和运算性质来解,既要考虑被开方数,又要考虑根指数,严格按求方根的步骤,体会方根运算的实质,学生先思考哪些地方容易出错,再回答.解:(1)44a =a,考查n 次方根的运算性质,当n 为偶数时,应先写n na =|a|,故本题错. (2)62)2(-=32-,本质上与上题相同,是一个正数的偶次方根,根据运算顺序也应如此,结论为62)2(-=32,故本题错.(3)a 0=1是有条件的,即a≠0,故本题也错.(4)是一个正数的偶次方根,根据运算顺序也应如此,故本题正确.所以答案选(4).点评:本题由于考查n 次方根的运算性质与运算顺序,有时极易选错,选四个答案的情况都会有,因此解题时千万要细心.例223++223-=_________活动:让同学们积极思考,交流讨论,本题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式.正确分析题意是关键,教师提示,引导学生解题的思路. 解:223+=2)2(221++=2)21(+=2+1.223-=122)2(2+-=2)12(-=2-1.所以223++223-=22.点评:不难看出223-与223+形式上有些特点,即是对称根式,是B A 2±形式的式子,我们总能找到办法把其化成一个完全平方式. 思考上面的例2还有别的解法吗? 活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是+,一个是-,去掉一层根号后,相加正好抵消.同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法.另解:利用整体思想,x=223++223-,两边平方得x 2=3+22+3-22+2(223+)(223-)=6+222)22(3-=6+2=8,所以x=22.点评:对双重二次根式,特别是B A 2±形式的式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对B A B A 22-±+的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解. 变式训练若12a -a 2+=a-1,求a 的取值范围.解:因为12a -a 2+=a-1,而12a -a 2+=2)1(-a =|a-1|=a-1,即a-1≥0, 所以a≥1.点评:利用方根的运算性质转化为去绝对值符号,是解题的关键. 知能训练(教师用多媒体显示在屏幕上) 1.以下说法正确的是( ) A.正数的n 次方根是一个正数 B.负数的n 次方根是一个负数 C.0的任何次方根都是零D.a 的n 次方根用n a 表示(以上n >1且n ∈N *). 答案:C2.化简下列各式:(1)664;(2)42)3(-;(3)48x ;(4)636y x ;(5)2y)-(x .答案:(1)2;(2)9;(3)x 2;(4)|x|y ;(5)|x-y|.3.计算407407-++=__________. 解:407407-++=2222)2(252)5()2(252)5(+∙-++∙+ =22)25()25(-++=5+2+5-2- =25.答案:25 拓展提升问题:n na =a 与(n a )n =a (n >1,n ∈N )哪一个是恒等式,为什么?请举例说明.活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n 次方根的定义.通过归纳,得出问题结果,对a 是正数和零,n 为偶数时,n 为奇数时讨论一下.再对a 是负数,n 为偶数时,n 为奇数时讨论一下,就可得到相应的结论. 解答:①(n a )n =a (n >1,n ∈N ).如果x n =a (n >1,且n ∈N )有意义,则无论n 是奇数或偶数,x=n a 一定是它的一个n 次方根,所以(n a )n =a 恒成立.例如:(43)4=3,33)5(-=-5.②n na =⎩⎨⎧.|,|,,为偶数当为奇数当n a n a当n 为奇数时,a ∈R ,nna =a 恒成立.例如:552=2,55)2(-=-2.当n 为偶数时,a ∈R ,a n ≥0,n n a 表示正的n 次方根或0,所以如果a≥0,那么n n a =a.例如443=3,40=0;如果a <0,那么n n a =|a|=-a,如2(-3)=23=3.即(n a na )n =a (n >1,n ∈N )是恒等式,nna =a (n >1,n ∈N )是有条件的. 点评:实质上是对n 次方根的概念、性质以及运算性质的深刻理解. 课堂小结学生仔细交流讨论后,在笔记上写出本节课的学习收获,教师用多媒体显示在屏幕上. 1.如果x n =a,那么x 叫a 的n 次方根,其中n >1且n ∈N *.用式子n a 表示,式子n a 叫根式,其中a 叫被开方数,n 叫根指数.(1)当n 为偶数时,a 的n 次方根有两个,是互为相反数,正的n 次方根用n a 表示,如果是负数,负的n 次方根用-n a 表示,正的n 次方根与负的n 次方根合并写成±n a (a >0).(2)n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时a 的n 次方根用符号n a 表示.(3)负数没有偶次方根.0的任何次方根都是零.2.掌握两个公式:n 为奇数时,(n a )n =a,n 为偶数时,n na =|a|=⎩⎨⎧<-≥.0,,0,a a a a作业课本P 59习题2.1A 组 1. 补充作业:1.化简下列各式: (1)681;(2)1532-;(3)48x ;(4)642b a .解:(1)681=643=323=39;(2)1532-=1552-=32-;(3)48x =442)(x =x 2;(4)642b a =622)|(|b a ∙=32||b a ∙.2.若5<a<8,则式子22)8()5(---a a 的值为__________.分析:因为5<a<8,所以22)8()5(---a a =a-5-8+a=2a-13.答案:2a-13.3.625625-++=__________.分析:对双重二次根式,我们觉得难以下笔,我们考虑只有在开方的前提下才可能解出,由此提示我们想办法去掉一层根式,不难看出625+=22)(3+=3+2.同理625-=22)(3-=3-2.所以625++625-=23.答案:23设计感想学生已经学习了数的平方根和立方根,根式的内容是这些内容的推广,本节课由于方根和根式的概念和性质难以理解,在引入根式的概念时,要结合已学内容,列举具体实例,根式n a 的讲解要分n 是奇数和偶数两种情况来进行,每种情况又分a>0,a<0,a=0三种情况,并结合具体例子讲解,因此设计了大量的类比和练习题目,要灵活处理这些题目,帮助学生加以理解,所以需要用多媒体信息技术服务教学. (设计者:路致芳)第2课时 指数与指数幂的运算(2)导入新课思路1.碳14测年法.原来宇宙射线在大气层中能够产生放射性碳14,并与氧结合成二氧化碳后进入所有活组织,先为植物吸收,再为动物吸收,只要植物和动物生存着,它们就会不断地吸收碳14在机体内保持一定的水平.而当有机体死亡后,即会停止吸收碳14,其组织内的碳14便以约5 730年的半衰期开始衰变并消失.对于任何含碳物质只要测定剩下的放射性碳14的含量,便可推断其年代(半衰期:经过一定的时间,变为原来的一半).引出本节课题:指数与指数幂的运算之分数指数幂.思路 2.同学们,我们在初中学习了整数指数幂及其运算性质,那么整数指数幂是否可以推广呢?答案是肯定的.这就是本节的主讲内容,教师板书本节课题——指数与指数幂的运算之分数指数幂. 推进新课 新知探究 提出问题(1)整数指数幂的运算性质是什么? (2)观察以下式子,并总结出规律:a >0, ①510a=352)(a =a 2=a510;②8a =24)(a =a 4=a 28; ③412a =443)(a =a 3=a412; ④210a=225)(a =a 5=a210.(3)利用(2)的规律,你能表示下列式子吗?435,357,57a ,n m x (x>0,m,n ∈N *,且n>1).(4)你能用方根的意义来解释(3)的式子吗? (5)你能推广到一般的情形吗?活动:学生回顾初中学习的整数指数幂及运算性质,仔细观察,特别是每题的开始和最后两步的指数之间的关系,教师引导学生体会方根的意义,用方根的意义加以解释,指点启发学生类比(2)的规律表示,借鉴(2)(3),我们把具体推广到一般,对写正确的同学及时表扬,其他学生鼓励提示.讨论结果:(1)整数指数幂的运算性质:a n =a·a·a·…·a,a 0=1(a≠0);00无意义; a -n =n a1(a≠0);a m ·a n =a m+n ;(a m )n =a mn ;(a n )m =a mn ;(ab)n =a n b n. (2)①a 2是a 10的5次方根;②a 4是a 8的2次方根;③a 3是a 12的4次方根;④a 5是a 10的2次方根.实质上①510a =a510,②8a =a 28,③412a=a412,④210a=a210结果的a 的指数是2,4,3,5分别写成了510,28,412,510,形式上变了,本质没变. 根据4个式子的最后结果可以总结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式(分数指数幂形式). (3)利用(2)的规律,435=543,357=735,57a =a 57,nmx =x nm .(4)53的四次方根是543,75的三次方根是735,a 7的五次方根是a 57,x m 的n 次方根是x nm .结果表明方根的结果和分数指数幂是相通的.(5)如果a>0,那么a m 的n 次方根可表示为n a m =a n m ,即a nm =n a m (a>0,m,n ∈N *,n>1). 综上所述,我们得到正数的正分数指数幂的意义,教师板书: 规定:正数的正分数指数幂的意义是a mn =n a m (a>0,m,n ∈N *,n>1).提出问题①负整数指数幂的意义是怎样规定的? ②你能得出负分数指数幂的意义吗?③你认为应怎样规定零的分数指数幂的意义? ④综合上述,如何规定分数指数幂的意义?⑤分数指数幂的意义中,为什么规定a >0,去掉这个规定会产生什么样的后果?⑥既然指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质是否也适用于有理数指数幂呢?活动:学生回想初中学习的情形,结合自己的学习体会回答,根据零的整数指数幂的意义和负整数指数幂的意义来类比,把正分数指数幂的意义与负分数指数幂的意义融合起来,与整数指数幂的运算性质类比可得有理数指数幂的运算性质,教师在黑板上板书,学生合作交流,以具体的实例说明a >0的必要性,教师及时作出评价. 讨论结果:①负整数指数幂的意义是:a -n =n a1(a≠0),n ∈N *. ②既然负整数指数幂的意义是这样规定的,类比正数的正分数指数幂的意义可得正数的负分数指数幂的意义.规定:正数的负分数指数幂的意义是amn -=mn a1=nma 1(a>0,m,n ∈N *,n>1).③规定:零的分数指数幂的意义是:零的正分数次幂等于零,零的负分数指数幂没有意义. ④教师板书分数指数幂的意义.分数指数幂的意义就是: 正数的正分数指数幂的意义是a mn =n ma (a>0,m,n ∈N *,n>1),正数的负分数指数幂的意义是amn -=mn a1=nma 1(a>0,m,n ∈N *,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义.⑤若没有a >0这个条件会怎样呢?如(-1)31=3-1=-1,(-1)62=6(-1)2=1具有同样意义的两个式子出现了截然不同的结果,这只说明分数指数幂在底数小于零时是无意义的.因此在把根式化成分数指数时,切记要使底数大于零,如无a >0的条件,比如式子3a 2=|a|32,同时负数开奇次方是有意义的,负数开奇次方时,应把负号移到根式的外边,然后再按规定化成分数指数幂,也就是说,负分数指数幂在有意义的情况下总表示正数,而不是负数,负数只是出现在指数上.⑥规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数. 有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质: (1)a r ·a s =a r+s (a>0,r,s ∈Q ), (2)(a r )s =a rs (a>0,r,s ∈Q ),(3)(a·b)r =a r b r (a>0,b>0,r ∈Q ).我们利用分数指数幂的意义和有理数指数幂的运算性质可以解决一些问题,来看下面的例题. 应用示例思路1 例1求值:①832;②2521-③(21)-5;④(8116)43-.活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8写成23,25写成52,21写成2-1,8116写成(32)4,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来. 解:①832=(23)32=2323⨯=22=4; ②2521-=(52)21-=5)21(2-⨯=5-1=51; ③(21)-5=(2-1)-5=2-1×(-5)=32; ④(8116)43-=(32))43(4-⨯=(32)-3=827.点评:本例主要考查幂值运算,要按规定来解.在进行幂值运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如832=328=364=4. 例2用分数指数幂的形式表示下列各式.a 3·a ;a 2·32a ;3a a (a>0).活动:学生观察、思考,根据解题的顺序,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,鼓励学生注意总结. 解:a 3·a =a 3·a 21=a 213+=a 27;a 2·32a =a 2·a 32=a232+=a 38;3a a =(a·a 31)21=(a 34)21=a 32.点评:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先把根式化为分数指数幂,再由幂的运算性质来运算.对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.例3计算下列各式(式中字母都是正数): (1)(2a 32b 21)(-6a 21b 31)÷(-3a 61b 65);(2)(m 41n83-)8.活动:先由学生观察以上两个式子的特征,然后分析,四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号内的,整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序,再解答,把自己的答案用投影仪展示出来,相互交流,其中要注意到(1)小题是单项式的乘除运算,可以用单项式的乘除法运算顺序进行,要注意符号,第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算,熟悉后可以简化步骤.解:(1)原式=[2×(-6)÷(-3)]a 612132-+b653121-+=4ab 0=4a;(2)(m 41n83-)8=(m 41)8(n83-)8=m841⨯n883⨯-=m 2n -3=32nm .点评:分数指数幂不表示相同因式的积,而是根式的另一种写法.有了分数指数幂,就可把根式转化成分数指数幂的形式,用分数指数幂的运算法则进行运算了. 本例主要是指数幂的运算法则的综合考查和应用. 变式训练 求值:(1)33·33·63; (2)6463)12527(nm . 解:(1)33·33·63=3·321·331·361=36131211+++=32=9;(2)6463)12527(n m =(6463)12527(n m =(646333)53(n m =646643643643)()5()()3(n m =42259nm =42259-n m . 例4计算下列各式: (1)(125253-)÷425; (2)322aa a ∙(a >0).活动:先由学生观察以上两个式子的特征,然后分析,化为同底.利用分数指数幂计算,在第(1)小题中,只含有根式,且不是同次根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算,最后写出解答. 解:(1)原式=(2531-12521)÷2541=(532-523)÷521 =52132--52123-=561-5=65-5;(2)322a a a ∙=32212aa a ∙=a32212--=a 65=65a .思路2例1比较5,311,6123的大小.活动:学生努力思考,积极交流,教师引导学生解题的思路,由于根指数不同,应化成统一的根指数,才能进行比较,又因为根指数最大的是6,所以我们应化为六次根式,然后,只看被开方数的大小就可以了.解:因为5=635=6125,311=6121,而125>123>121,所以6125>6123>6121. 所以5>6123>311.点评:把根指数统一是比较几个根式大小的常用方法. 例2求下列各式的值:(1)432981⨯; (2)23×35.1×612.活动:学生观察以上几个式子的特征,既有分数指数幂又有根式,应把根式转化为分数指数幂后再由运算法则计算,如果根式中根指数不同,也应化成分数指数幂,然后分析解答,对(1)应由里往外432981⨯=421344)3(3⨯,对(2)化为同底的分数指数幂,及时对学生活动进行评价.解:(1)432981⨯=[34×(334)21]41=(3324+)41=(3314)41=367=633;(2)63125.132⨯⨯=2×321×(23)31×(3×22)61=231311++·3613121++=2×3=6.例3计算下列各式的值: (1)[(a23-b 2)-1·(ab -3)21(b 21)7]31;(2)1112121-+-++--a a a aa;(3)14323)(---÷a b b a.活动:先由学生观察以上三个式子的特征,然后交流解题的方法,把根式用分数指数幂写出,利用指数的运算性质去计算,教师引导学生,强化解题步骤,对(1)先进行积的乘方,再进行同底数幂的乘法,最后再乘方,或先都乘方,再进行同底数幂的乘法,对(2)把分数指数化为根式,然后通分化简,对(3)把根式化为分数指数,进行积的乘方,再进行同底数幂的运算.解:(1)原式=(a23-b 2)31-(ab -3)61·(b 21)37=a 21b32-a 61b21-b 67=a6121+b672132+--=a 32b 0=a 32;另解:原式=(a 23b -2a 21b 23-·b 27)31=(a2123+b27232+--)31=(a 2b 0)31=a 32;(2)原式=11111-+-++a aa a a =)1(1-+a a a =)1(11-+-a a a a=)111(1-+-a a a= )1(2--a a =)1(2a a a-;(3)原式=(a 21b 32)-3÷(b -4a -1)21=a23-b -2÷b -2a21-=a2123+-b -2+2=a -1=a1. 例4已知a >0,对于0≤r≤8,r ∈N *,式子(a )8-r ·)1(4ar能化为关于a 的整数指数幂的情形有几种? 活动:学生审题,考虑与本节知识的联系,教师引导解题思路,把根式转化为分数指数幂后再由运算法则计算,即先把根式转化为分数指数幂,再进行幂的乘方,化为关于a 的指数幂的情形,再讨论,及时评价学生的作法.解:(a )8-r·)1(4ar =a28r -·a4r-=a448rr --=a4316r -.16-3r 能被4整除才行,因此r=0,4,8时上式为关于a 的整数指数幂. 点评:本题中确定整数的指数幂时,可由范围的从小到大依次验证,决定取舍.利用分数指数幂进行根式运算时,结果可以化为根式形式或保留分数指数幂的形式. 例5已知f (x )=e x -e -x ,g (x )=e x +e -x . (1)求[f (x )]2-[g (x )]2的值; (2)设f (x )f (y )=4,g (x )g (y )=8,求)()(y x g y x g -+的值.活动:学生观察题目的特点,说出解题的办法,整体代入或利用公式,建立方程,求解未知,如果学生有难度,教师可以提示引导,对(1)为平方差,利用公式因式分解可将代数式化简,对(2)难以发现已知和未知的关系,可写出具体算式,予以探求. 解:(1)[f (x )]2-[g (x )]2=[f (x )+g (x )]·[f (x )-g (x )] =(e x -e -x +e x +e -x )(e x -e -x -e x -e -x )=2e x (-2e -x )=-4e 0=-4; 另解:(1)[f (x )]2-[g (x )]2=(e x -e -x )2-(e x +e -x )2 =e 2x -2e x e -x +e -2x-e 2x -2e x e -x -e -2x =-4e x -x=-4e 0=-4; (2)f (x )·f (y )=(e x -e -x )(e y -e -y )=e x +y+e -(x+y)-e x -y -e -(x-y)=g (x+y )-g (x -y )=4, 同理可得g (x )g (y )=g (x+y )+g (x -y )=8,。
指数函数小结
第三课时 指数函数小结学情分析:本节要解决的问题是:运用幂的运算性质进行化简、求值,利用指数函数的定义、图象和性质解决有关问题。
解决上述问题的关键是:类比整数指数幂的运算性质记忆分数指数幂的运算公式,能实现根式和分数指数幂的转化,通过指数函数的图象牢记指数函数的定义域、值域、单调性等性质,注意底数对指数函数性质的影响。
一、利用幂的运算性质进行化简、求值:例120)a > 解:原式125222362132a a a a a --==⋅。
说明:对于计算题的结果,不要求用什么形式来表示,没有特别要求,就用分数指数幂的形式表示,如果有特殊要求,可根据要求给出结果,但结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数。
练习1: 1020.5231(2)2(2)(0.01)54--+⨯-。
二、指数函数的图象例2:函数()x b f x a -=的图象如图所示,其中a 、b 为常数,则下列结论正确的是( ) (A )a > 1,b > 0 (B )a > 1,b < 0 (C )0 < a < 1,b > 0 (D )0 < a < 1,b < 0练习:如图所示曲线是指数函数的图象,已知a 的43、310、15,则相应于曲线C 1、C 2、C 3、C 4的a 依次为( ) (A )4315、310 (B43、310、15(C )310、15、43 (D )15、310、43三、指数函数性质的综合应用例3:已知)(x f 是定义在(– 1,1)上的奇函数,当x ∈(0,1)时,2()41xx f x =+, (1)求)(x f 在(– 1,1)上的解析式;(2)研究)(x f 的单调性;(3)求)(x f 的值域。
练习3:已知函数1()1x x a f x a -=+(a > 0且1a ≠)。
(1)求)(x f 的定义域和值域;(2)讨论)(x f 的单调性。
指数对数幂函数知识点汇总
指数函数、对数函数、幂函数单元复习与巩固一、知识框图二、知识要点梳理知识点一:指数及指数幂的运算1.根式的概念的次方根的定义:一般地,如果,那么叫做的次方根,其中当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为.负数没有偶次方根,0的任何次方根都是0.式子叫做根式,叫做根指数,叫做被开方数.2.n次方根的性质:(1)当为奇数时,;当为偶数时,(2)3.分数指数幂的意义:;注意:0的正分数指数幂等与0,负分数指数幂没有意义.4.有理数指数幂的运算性质:(1) (2) (3)知识点二:指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.2.指数函数函数性质:函数指数函数名称定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向象的影响看图象,逐渐减小.知识点三:对数与对数运算1.对数的定义(1)若,则叫做以为底的对数,记作,其中叫做底数,叫做真数.(2)负数和零没有对数.(3)对数式与指数式的互化:.2.几个重要的对数恒等式,,.3.常用对数与自然对数常用对数:,即;自然对数:,即(其中…).4.对数的运算性质如果,那么①加法:②减法:③数乘:④⑤⑥换底公式:知识点四:对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.2.对数函数性质:函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小.知识点六:幂函数1.幂函数概念 形如的函数,叫做幂函数,其中为常数.2.幂函数的性质(1)图象分布:幂函数图象分布在第一、二、三象限,第四象限 无图象.幂函数是偶函数时,图象分布在第一、二象限(图象 关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象 限.(2)过定点:所有的幂函数在都有定义,并且图象都通过点.(3)单调性:如果,则幂函数的图象过原点,并且在上为增函数.如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴.(4)奇偶性:具体函数具体讨论(5)图象特征:幂函数当时,在第一象限,图像与32,x y x y ==的图像大致趋势一样,当10<<α时,在第一象限,图像与21x y =的图像大致趋势一样,当0<α时,在第一象限,图像与1-=xy 的图像大致趋势一样一元二次方程、一元二次不等式与二次函数的关系设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表: 0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根)(,2121x x x x < 有两相等实根ab x x 221-==无实根 的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02>≥++a c bx ax{}21x x x x x ≥≤或RR 的解集)0(02><++a c bx ax {}21x x x x <<∅ ∅ 的解集)0(02>≤++a c bx ax{}21x x xx ≤≤⎭⎬⎫⎩⎨⎧-=a b x x 2∅。
幂函数与指数函数的运算
幂函数与指数函数的运算幂函数与指数函数是高中数学中常见的函数类型,它们具有各自的特点和运算规律。
本文将详细讨论幂函数与指数函数的运算,并给出相关例题和解答。
一、幂函数的定义及运算规律1. 幂函数的定义:幂函数是指函数y=x^a,其中a为常数,且a≠0。
在幂函数中,x称为底数,a称为指数。
2. 幂函数的运算规律:(1)相同底数幂相乘:若x不等于0时,x^a * x^b = x^(a+b)。
(2)相同底数幂相除:若x不等于0时,x^a / x^b = x^(a-b)。
(3)幂的幂:(x^a)^b = x^(a*b)。
(4)零幂:任何非零数的0次幂等于1,即x^0 = 1(x≠0)。
(5)负指数的幂:x^(-a) = 1 / x^a。
二、指数函数的定义及运算规律1. 指数函数的定义:指数函数是指函数y=a^x,其中a为常数,且a>0且a≠1。
在指数函数中,a称为底数,x称为指数。
2. 指数函数的运算规律:(1)指数相加:若a>0且a≠1,a^x * a^y = a^(x+y)。
(2)指数相减:若a>0且a≠1,a^x / a^y = a^(x-y)。
(3)指数的幂:(a^x)^y = a^(x*y)。
(4)指数函数的倒数:(1/a)^x = a^(-x)。
三、幂函数与指数函数的运算1. 幂函数与幂函数的运算:若x不等于0时,(x^a)^(x^b) = x^(a*b)。
2. 幂函数与指数函数的运算:(1)指数函数作为底数与幂函数的乘法:(a^x) * x^b = (a^x*b)。
(2)指数函数作为底数与幂函数的除法:(a^x) / x^b = (a^x/b)。
例题1:计算并化简下列表达式:2^3 * 2^(-2)。
解:根据幂函数的运算规律,2^3 * 2^(-2) = 2^(3-2) = 2^1 = 2。
例题2:计算并化简下列表达式:3^(2x) / 3^x。
解:根据指数函数的运算规律,3^(2x) / 3^x = 3^(2x-x) = 3^x。
北师版高中数学必修第一册精品课件 第3章 指数运算与指数函数 1 指数幂的拓展
②0的任意正实数指数幂都等于0;
③0的零指数幂和任意负实数指数幂都没有意义.
探究一 求分数指数幂
【例 1】 计算:(1)
;(2)
.
解:(1)由负分数指数幂的定义,得
设 b=
即
,由定义,得 b2=
b= (b>0),所以
§1
指数幂的拓展
自主预习·新知导学
合作探究·释疑解惑
一、分数指数幂
【问题思考】
1.观察下列各式,你能得出什么结论?
( ) =22= .
( ) =44= .
(1) =
(2) =
提示:通过观察题中两式可以得出,当根式的被开方数的指数
能被根指数整除时,根式可以表示为分数指数幂的形式.
A.
(2)计算:2
解析:(1)
).
B.
=
-
=
C.
.
=
.
-
(2)由负分数指数幂的定义,可得 2 =
设
b=2 ,则
答案:(1)C
b3=272=所以
(2)
.
-
b=9.故 2 =
.
D.
二、无理数指数幂
【问题思考】
1.无理数是无限不循环小数,课本中是如何用有理数指数幂来
【例2】 将下列分数指数幂与根式进行互化:(式中字母均为
高一数学上册 指数函数知识点及练习题含答案
课时4指数函数一. 指数与指数幂的运算(1)根式的概念 ①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n表示;当n 是偶数时,正数a 的正的nn次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n(0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r r ab a b a b r R =>>∈二.指数函数及其性质(4)指数函数a 变化对图象影响在第一象限内,a 越大图象越高,越靠近y 轴; 在第二象限内,a 越大图象越低,越靠近x 轴. 在第一象限内,a 越小图象越高,越靠近y 轴; 在第二象限内,a 越小图象越低,越靠近x 轴.三.例题分析1.设a 、b 满足0<a<b<1,下列不等式中正确的是(C) A.a a <a b B.b a <b b C.a a <b a D.b b <a b解析:A 、B 不符合底数在(0,1)之间的单调性;C 、D 指数相同,底小值小.故选C. 2.若0<a<1,则函数y=a x 与y=(a-1)x 2的图象可能是(D)解析:当0<a<1时,y=a x为减函数,a-1<0,所以y=(a-1)x 2开口向下,故选D.3.设指数函数f(x)=a x (a>0且a ≠1),则下列等式中不正确的是(D) A.f(x+y)=f(x)f(y)B.f(x-y)=)()(y f x f C.f(nx)=[f(x)]n D.f [(xy)n ]=[f(x)]n [f(y)]n (n ∈N *) 解析:易知A 、B 、C 都正确. 对于D,f [(xy)n]=a(xy)n,而[f(x)]n·[f(y)]n=(a x )n·(a y)n=anx+ny,一般情况下D 不成立.4.设a=31)43(-,b=41)34(-,c=43)23(-,则a 、b 、c 的大小关系是(B)A.c<a<bB.c<b<aC.b<a<cD.b<c<a解析:a=413131)34()34()43(>=-=b,b=434141)23()278()34(-=>=c.∴a>b>c.5.设f(x)=4x -2x+1,则f -1(0)=______1____________. 解析:令f -1(0)=a,则f(a)=0即有4a-2·2a=0.2a·(2a-2)=0,而2a>0,∴2a=2得a=1.6.函数y=a x-3+4(a>0且a ≠1)的反函数的图象恒过定点______(5,3)____________.解析:因y=a x的图象恒过定点(0,1),向右平移3个单位,向上平移4个单位得到y=a x-3+4的图象,易知恒过定点(3,5).故其反函数过定点(5,3).7.已知函数f(x)=xx xx --+-10101010.证明f(x)在R 上是增函数.证明:∵f(x)=1101101010101022+-=+---x x xx x x , 设x 1<x 2∈R ,则f(x 1)-f(x 2)=)110)(110()1010(21101101101101010101010101010212122112222111122222222++-=+--+-=+--+-----x x x x x x x x x x x x x x x x . ∵y=10x 是增函数, ∴21221010x x -<0. 而1210x +1>0,2210x +1>0, 故当x 1<x 2时,f(x 1)-f(x 2)<0, 即f(x 1)<f(x 2). 所以f(x)是增函数.8.若定义运算a ⊗b=⎩⎨⎧<≥,,,,b a a b a b 则函数f(x)=3x ⊗3-x 的值域为(A)A.(0,1]B.[1,+∞)C.(0,+∞)D.(-∞,+∞)解析:当3x ≥3-x ,即x ≥0时,f(x)=3-x ∈(0,1];当3x<3-x,即x<0时,f(x)=3x∈(0,1).∴f(x)=⎩⎨⎧<≥-,0,3,0,3x x x x 值域为(0,1).9.函数y=a x 与y=-a -x (a>0,a ≠1)的图象(C) A.关于x 轴对称B.关于y 轴对称 C.关于原点对称D.关于直线y=-x 对称解析:可利用函数图象的对称性来判断两图象的关系.10.当x ∈[-1,1]时,函数f(x)=3x -2的值域为_______[-35,1]___________. 解析:f(x)在[-1,1]上单调递增.11.设有两个命题:(1)关于x 的不等式x 2+2ax+4>0对一切x ∈R 恒成立;(2)函数f(x)=-(5-2a)x 是减函数.若命题(1)和(2)中有且仅有一个是真命题,则实数a 的取值范围是_______(-∞,-2)__________.解析:(1)为真命题⇔Δ=(2a)2-16<0⇔-2<a<2.(2)为真命题⇔5-2a>1⇔a<2.若(1)假(2)真,则a ∈(-∞,-2].若(1)真(2)假,则a ∈(-2,2)∩[2,+∞]=∅. 故a 的取值范围为(-∞,-2).12.求函数y=4-x -2-x +1,x ∈[-3,2]的最大值和最小值. 解:设2-x =t,由x ∈[-3,2]得t ∈[41,8],于是y=t 2-t+1=(t-21)2+43.当t=21时,y 有最小值43.这时x=1.当t=8时,y 有最大值57.这时x=-3. 13.已知关于x 的方程2a 2x-2-7a x-1+3=0有一个根是2,求a 的值和方程其余的根. 解:∵2是方程2a 2x-2-9a x-1+4=0的根,将x=2代入方程解得a=21或a=4. (1)当a=21时,原方程化为2·(21)2x-2-9(21)x-1+4=0.① 令y=(21)x-1,方程①变为2y 2-9y+4=0, 解得y 1=4,y 2=21.∴(21)x-1=4⇒x=-1,(21)x-1=21⇒x=2. (2)当a=4时,原方程化为2·42x-2-9·4x-1+4=0.② 令t=4x-1,则方程②变为2t 2-9t+4=0.解得t 1=4,t 2=21. ∴4x-1=4⇒x=2, 4x-1=21⇒x=-21. 故方程另外两根是当a=21时,x=-1; 当a=4时,x=-21. 14.函数y=243)31(x x -+-的单调递增区间是(D) A.[1,2]B.[2,3]C.(-∞,2]D.[2,+∞)解析:因为y=3x2-4x+3,又y=3t 单调递增,t=x 2-4x+3在x∈[2,+∞)上递增,故所求的递增区间为[2,+∞).15.已知f(x)=3x-b (2≤x ≤4,b 为常数)的图象经过点(2,1),则F(x)=f 2(x)-2f(x)的值域为(B) A.[-1,+∞)B.[-1,63) C.[0,+∞)D.(0,63]解析:由f(2)=1,得32-b =1,b=2,f(x)=3x-2. ∴F(x)=[f(x)-1]2-1=(3x-2-1)2-1. 令t=3x-2,2≤x≤4.∴g(t)=(t -1)2-1,t∈[1,9]. ∴所求值域为[-1,63].2.1指数函数练习1.下列各式中成立的一项()A .7177)(m n mn= B .31243)3(-=-C .43433)(y x y x +=+D .3339=2.化简)31()3)((656131212132b a b a b a ÷-的结果()A .a 6B .a -C .a 9-D .29a3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是() A .f (x +y )=f(x )·f (y ) B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)(+∈=N n y f x f xy f n n n4.函数21)2()5(--+-=x x y()A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或5.若指数函数x a y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于 ()A .251+B .251+- C .251± D .215± 6.当a ≠0时,函数y ax b =+和y b ax =的图象只可能是 ()7.函数||2)(x x f -=的值域是()A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ()A .)1,1(-B .),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.函数22)21(++-=x x y 得单调递增区间是 ()A .]21,1[-B .]1,(--∞C .),2[+∞D .]2,21[10.已知2)(xx e e x f --=,则下列正确的是 ()A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数 11.已知函数f (x )的定义域是(1,2),则函数)2(x f 的定义域是. 12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点. 三、解答题:13.求函数y x x =--1511的定义域.14.若a >0,b >0,且a +b =c ,求证:(1)当r >1时,a r +b r <c r ;(2)当r <1时,a r +b r >c r .15.已知函数11)(+-=x x a a x f (a >1).(1)判断函数f (x )的奇偶性;(2)证明f (x )在(-∞,+∞)上是增函数.16.函数f(x)=a x(a>0,且a ≠1)在区间[1,2]上的最大值比最小值大,求a 的值.参考答案一、DCDDDAADDA二、11.(0,1);12.(2,-2); 三、13.解:要使函数有意义必须:∴定义域为:{}x x R x x ∈≠≠且01,14.解:rrrrr c b c a c b a ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+,其中10,10<<<<cbc a . 当r >1时,1=+<⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr,所以a r +b r <c r; 当r <1时,1=+>⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr ,所以a r +b r >c r . 15.解:(1)是奇函数.(2)设x 1<x 2,则1111)()(221121+--+-=-x x x x a a a a x f x f 。
第三章-§1-指数幂的拓展-§2-指数幂的运算性质高中数学必修第一册北师大版
想什么
2
要证
=
2
2
1
+ ,可转化为证底数是的幂的形式,即证
1
1
1
差什么 如何用 , , 表示和
找什么
2 1
+
2 1
= =
1
2 1
2 1
+
2
,想到 =
1
2
= 32 × 4 = 36,即得证.
= 36,
=
2 1
+
.
4
) =
有负指数幂的形式)
=
1
1 2
−4
2
⋅
7
8
3
−
1
8
⋅
1
2
3
2
1
2
=
2
⋅
3
2
1
2
1
2
=
2
⋅
3
4
1
4
=
2
⋅
3
4
1
4
1
2
=
= .(【明易错】化简的结果中不可出现既有分式又
方法2 (由外向内化) 原式
=
1
8
3
8
1
2
2
3
7
8
1
−8
= .
6
−5
1
2
2
【解析】当是正偶数时, = ,故A错误;
2
指数函数与幂函数运算
指数幂的形式呢?
2. 分数指数幂:
能否把下列根式写为:
2
3 a 2 a 3 ( a > 0),
1
b b 2 ( b > 0),
5
4 c5 c 4 ( c > 0 ).
如果可以,那么整数指数幂的运算性质 (ak )n akn
式子 n a 叫根式,
n 叫根指数 ,a 叫被开方数.
问:(n a)n a成立吗? n an a 成立吗?
答: 根据 n 次方根的意义, (n a)n a成立.
n an a 不一定成立.
当n为奇数时,n a n a.
当n为偶数时,n
an
|
a
|
a a
(a 0), (a 0).
归纳:
(1)若xn a,
那么 x 叫做 a 的 n 次方根 .
记作xn a(n为奇数,或 )n a(a0,n为偶数. )
例如:
3 27 3 , 5 32 2 , 3 a 6 a 2 , 4 16 2 .
正数的奇次方根是正数,负数的奇次方根
是负数,用符号 n a 表示.
正数的偶次方根是两个互为相反数的数,用 符号 n a (a0) 表示. 负数没有偶次方根. 0的任何次方根都是0, 记作n 00.
(3) 4 34 3 3;
(4) ab2 a b ab(ab).
2. 分数指数幂:
请大家看下列式子:
5
a10
5
(a2 )5
a2
10
a5
(a > 0),
3 a12
3
12
(a 4 ) 3 a4 a 3
新教材高中数学第三章指数运算与指数函数1指数幂的拓展2指数幂的运算性质课件北师大版必修第一册
1
1
典例已知 pa3=qb3=rc3,且 + + =1.
1
2
2
2
求证:(pa +qb +rc )3
=
1
3
+
1
3
+
1
3.
分析看见三个式子连等,立刻想到赋中间变量,通过中间变量去构
建能用到题干中已知值的式子.
探究一
探究二
探究三
探究四
证明:令pa3=qb3=rc3=k,
则 pa2=,qb2=,rc2= ,
2
1
(y>0).
反思感悟解与分数指数幂有关的方程时,一般是利用分数指数幂与
根式的对应关系,转化求解.
探究一
探究二
探究三
变式训练 1 已知 x>0,
2
3 =4,则
-
x 等于(
3
1
A.
8
B.8
C.
答案:A
2
3
1
1
1
-
解析:由 =4,得 3
3
探究四
x2
=4,
1
∴ 2 = 4,∴x2=64,∴x=8(x>0).
, ≥ 0,
算, =|a|=
-, < 0.
激趣诱思
知识点拨
二、指数幂的运算性质
对于任意正数a,b和实数α,β,指数幂均满足下面的运算性质:
aα·aβ=aα+β,
(aα)β=aαβ,
(a·b)α=aα·bα.
名师点析1.实数指数幂的运算性质除了上述三个外,还有如下两个
北师大版高中数学课件必修第1册第三章 指数运算与指数函数
2.
3.1 指数函数的概念+ 3.2 指数函数的图象和性质
刷基础
3.[江苏镇江 2021 高一期中]已知指数函数 f(x)的图象过点(-2,4),则 f(6)=( B )
3
1
4
A.
B.
C.
4
64
3
1 D.
12
解析
1
设
f(x)=ax(a>0
且
a≠1),∴f(-2)=a-2=4,解得
1 a= ,∴f(6)=
3.1 指数函数的概念+ 3.2 指数函数的图象和性质
刷基础
6.[宁夏大学附属中学 2021 高一期中]已知 f(x)=ka-x(k,a 为常数,a>0 且 a≠1)的图象过点 A(0,1),B(- 3,8). (1)求 f(x)的解析式;
f(x)-1
(2)若函数 g(x)=
,试判断 g(x)的奇偶性并给出证明.
10
解析
103x-2y=103x=(10x)3=33=27,故选 C. 102y (10y)2 42 16
§2 指数幂的运算性质
刷能力
5.已知 ab=-5,则 a
A.2 5 C.-2 5
解析
b - +b
a
a - 的值是( B )
b
B.0
D.±2 5
由题意知 ab<0,a 故选 B.
b - +b
a
a - =a
2
6=
1
.故选
B.
2
64
3.1 指数函数的概念+ 3.2 指数函数的图象和性质
刷基础
4.[福建福州第三中学 2021 高一期中]以下关于函数 f(x)=2x 的说法正确的是( D ) A.f(mn)=f(m)f(n) B.f(mn)=f(m)+f(n) C.f(m+n)=f(m)+f(n) D.f(m)f(n)=f(m+n)
指数与指数幂的运算说课稿
指数与指数幂的运算说课稿(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--指数与指数幂的运算(2)从容说课指数是指数函数的预备知识,初中已经学习了整数指数幂的概念及其运算性质.为了讲解指数函数,需要把指数的概念扩充到有理数指数幂、实数指数幂.为了完成这个扩充,必须先学习分数指数幂的概念和运算性质,了解无理数指数幂的概念.分数指数是指数概念的又一次推广,分数指数概念是本课教学中的一个难点.教学中要让学生反复理解分数指数幂的意义,它不表示相同因式的乘积,而是根式的一种新的写法.教学中可以通过根式和分数指数幂的互化来巩固加深对这一概念的理解.由于学生已经有了负整数指数幂的学习经历,正分数指数幂的概念引入后,学生不难理解负分数指数幂的意义,教学中,可以引导学生自己得出anm=nma1(a >0,m 、n 均为正整数,且n >1).三维目标一、知识与技能1.理解分数指数幂的含义,了解有理数指数幂的意义.2.掌握有理指数幂的运算性质,灵活地运用乘法公式进行有理指数幂的运算和化简,会进行根式与分数指数幂的相互转化.二、过程与方法1.教学时不仅要关注幂运算的基本知识的学习,同时还要关注学生思维迁移能力的培养.2.通过指数幂概念及其运算性质的拓展,引导学生认真体会数学知识发展的逻辑合理性、严谨性.3.通过学习根式、分数指数幂、有理数指数幂之间的内在联系,培养学生能辩证地分析问题、认识问题.三、情感态度与价值观1.通过分数指数幂概念的学习,使学生认清基本概念的来龙去脉,加深对人类认识事物的一般规律的理解和认识,体会知识之间的有机联系,感受数学的整体性,激发学生的学习兴趣.2.教学过程中,通过教师与学生、学生与学生之间的相互交流,加深理解分数指数幂的意义.3.通过研究指数由“整数指数幂→根式→分数指数幂→有理数指数幂→实数指数幂”这一不断扩充、不断完善的过程,使学生认同科学是在不断的观察、实验、探索和完善中前进的.教学重点1.分数指数幂的含义的理解.2.根式与分数指数幂的互化.3.有理指数幂的运算性质的掌握. 教学难点1.分数指数幂概念的理解.2.有理指数幂的运算和化简.教具准备多媒体课件、投影仪、打印好的作业. 教学过程一、回顾旧知,探索规律,引入新课师:上节课学习了n 次方根的有关知识,请同学们根据有关知识快速完成下列练习. (多媒体显示如下练习,生口答)①532=________;②481=________;③102=________;④3123=________. 生:①2 ②3 ③25④34.师:注意观察最终化简结果的指数、被开方数的指数以及根指数这三者之间有什么关系?(组织学生交流,及时捕捉与以下结论有关的信息并板书)102=25=2210,3123=34=3312.师:你对上面的总结是什么呢?生:当根式的被开方数的指数能被根指数整除时,根式可以写成分数指数幂的形式. 师:当根式的被开方式的指数不能被根指数整除时,是否也可将根式写成分数指数幂的形式?(生思考片刻,师继续阐述)师:这个问题我们的先辈早已解决了,人们在不断探索中发现,这么做不但是可以的,并且还会给计算带来很大方便.于是就建立了分数指数幂的概念.这就是我们本课所要研究的内容.二、讲解新课(一)分数指数幂的意义师:32a ,b ,45c 等通过类比可以写成什么形式说明了什么问题生:a 32,b 21,c 45.当根式的被开方式的指数不能被根指数整除时,也可以写成分数指数幂的形式.师:通过上面的例子你能给出一般性的结论吗? (生在师的指导下,得出一般性的结论) (师板书正分数指数幂的意义)规定:正数的正分数指数幂的意义是a nm =n m a (a >0,m 、n ∈N *,且n >1).师:初中我们学习了负整数指数幂的意义,你还能说出来吗?生:负整数指数幂的意义为a -n =n a1(a ≠0,n ∈N *).师:负分数指数幂的意义如何规定呢你能否根据负整数指数幂的意义,类比出正数的负分数指数幂的意义呢(组织学生讨论交流,得出如下结论)正数的负分数指数幂的意义和正数的负整数指数幂的意义相仿.规定:anm =nm a1=nma 1(a >0,m 、n ∈N *,且n >1).我们规定:0的正分数指数幂等于0;0的负分数指数幂没有意义.师:细心的同学可能已经发现了,我们这里讨论分数指数幂的意义时,对底数都是有大于0这个规定的,为什么要作这个规定呢如果去掉这个规定会产生怎样的局面合作探究:在规定分数指数幂的意义时,为什么底数必须是正数? (组织学生讨论,通过具体例子说明规定底数a >0的合理性)若无此条件会引起混乱,例如,(-1)31和(-1)62应当具有同样的意义,但由分数指数幂的意义可得出不同的结果:(-1)31=31-=-1;(-1)62=62)1(-=61=1.这就说明分数指数幂在底数小于0时无意义.方法引导:在把根式化成分数指数幂时,要注意使底数大于0,在例子32a =a 32(a >0)中,若无a >0这个条件,32a =|a |32;同时,负数开奇次方根是有意义的,所以当奇数次根式要化成分数指数幂时,先要把负号移到根号外面去,然后再按规定化成分数指数幂,例如,53)2(-=-532=-253.知识拓展:负分数指数幂在有意义的情况下总表示正数,而不是负数,负号只是出现在指数上.(二)有理数指数幂的运算法则师:规定分数指数幂的意义之后,指数幂的概念就从整数指数推广到有理数指数.对有理数指数幂,原整数指数幂的运算性质依然可以进行推广,请回顾一下它们共同的运算性质.(生口答,师板书)对于任意的有理数r 、s ,均有下面的运算性质: ①a r a s =a r +s(a >0,r 、s ∈Q );②(a r )s =a rs(a >0,r 、s ∈Q );③(ab )r =a r b r(a >0,b >0,r 、s ∈Q ). (三)例题讲解【例1】 求值:832;2521-;(21)-5;(8116)43-.(师多媒体显示,生板演,师组织学生评析,强调严格按照解题步骤书写) 解:832=(23)32=23×32=22=4;2521-=(52)21-=5)21(2-⨯=5-1=51; (21)-5=(2-1)-5=25=32; (8116)43-=(32))43(4-⨯=(32)-3=827. 【例2】 用分数指数幂的形式表示下列各式(其中a >0):a 3·a ;a 2·32a ;3a .(生板演,师组织学生总结解决此类问题的一般方法和步骤) 解:a 3·a =a 3·a 21=a213+=a 27;a 2·32a =a 2·a 32=a322+=a 38;3a =(a ·a 31)21=(a 34)21=a 32.方法引导:利用分数指数幂进行根式运算时,其顺序是先把根式化为分数指数幂,再根据幂的运算性质进行计算.对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.【例3】 计算下列各式(式中字母都是正数):(1)(2a 32b 21)(-6a 21b 31)÷(-3a 61b 65); (2)(m 41n83-)8.解:(1)(2a 32b 21)(-6a 21b 31)÷(-3a 61b 65)=[2×(-6)÷(-3)]a612132-+b653121-+=4ab 0=4a ;(2)(m 41n 83-)8=(m 41)8(n83-)8=m 2n -3=32nm .【例4】 计算下列各式: (1)(325-125)÷425; (2)322aa a ⋅(a >0).解:(1)(325-125)÷425=(532-523)÷521=532÷521-523÷521=52132--52123-=561-5=65-5; (2)322a a a ⋅=32212a a a ⋅=a32212--=a 65=65a .三、巩固练习课本P 63练习:1,2,3.(生完成后,同桌之间互相交流解答过程) 解:21=a ;a 43=43a ;a53-=531a;a32-=321a.2.(1)32x =x 32;(2)43)(b a +=(a +b )43;(3)32)(n m -=(m -n )32; (4)4)(n m -=(m -n )24=(m -n )2; (5)56q p =(p 6q 5)21=p 216⨯q215⨯=|p |3q 25;(6)mm 3=m213-=m 25.3.(1)(4936)23=[(76)2]23=(76)3=343216;(2)23×35.1×612=2×321×(32)31×(22×3)61=231311+-×3613121++=2×3=6;(3)a 21a 41a 83-=a834121-+=a 83(a >0);(4)2x31-(21x 31-2x 32)=2×21×x 3131+--2×2×x )32(31-+-=x 0-4x -1=1-x4. 四、课堂小结师:本节课你有哪些收获能和你的同桌互相交流一下你们各自的收获吗请把你们的交流过程作简单记录.(生交流,师投影显示如下知识要点) 1.分数指数幂的意义规定:正数的正分数指数幂的意义是a nm =n m a (a >0,m 、n ∈N *,且n >1).正数的负分数指数幂的意义和正数的负整数指数幂的意义相仿,规定:a nm =nm a1=nma 1(a >0,m 、n ∈N *,且n >1).我们规定:0的正分数指数幂等于0;0的负分数指数幂没有意义.2.分数指数幂意义的一种规定,规定了分数指数幂的意义以后,指数的概念就从整数指数推广到有理数,并把整数指数幂的运算性质推广到有理指数幂的运算性质.3.有理数指数幂的运算法则 ①a r a s =a r +s(a >0,r 、s ∈Q );②(a r )s =a rs(a >0,r 、s ∈Q );③(ab )r =a r b r(a >0,b >0,r 、s ∈Q ). 五、布置作业课本P 69习题组第2,4题. 板书设计指数与指数幂的运算(2)1.分数指数幂的意义0的正分数指数幂等于0;0的负分数指数幂没有意义2.有理数指数幂的运算法则3.例题讲解与学生训练4.课堂小结5.布置作业。
指数函数教案(优秀5篇)
指数函数教案(优秀5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!指数函数教案(优秀5篇)作为一名优秀的教育工作者,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。
指数与指数函数 --南彦宁
聚智堂名师教育学科教师辅导讲义(四)、指数函数的性质1、定义域:R2、值域:()+∞,03、共点性:()1,04、单调性:1>a 增函数 10<<a 减函数5、近轴性:1>a 时a 越大越近轴 10<<a 时a 越小越近轴6、对称性:x a y =与x a y -=()1.0≠>a a 的图像关于y 轴对称(自变量的取值互为相反数时函数值相等)二、典例分类讲解题型一:实数指数幂及其运算【例1】 64-23 的值是__________.[解析] 64-23 =(26)-23 =2-4=116.【例2】 (a -1)2+-a2+3-a3=____________.[解析] 要使此式有意义,需a -1≥0,∴a ≥1. ∴原式=a -1+a -1+1-a =a -1. 【例3】计算: (1)3-3-(12)0+0.2512 ×(-12)-4; (2)(0.064)-13 -(-59)0+[(-2)3] -43 +16-0.75+(0.01) 12 . [解析] (1)3-3-(12)0+0.2512 ×(-12)-4=-4-1+12×(2)4=-5+12×4=-3. (2)(0.064)-13-(-59)0+[(-2)3] -43 +16-0.75+(0.01) 12 =[(0.4)3] -13 -1+(-2)-4+(24) -34 +[(0.1)2] 12=0.4-1-1+(-2)-4+2-3+0.1=52-1+116+18+110=14380.【例4】计算[(-2)2]-12 的结果是( )A.2 B .-2 C .22D .-22[解析] [(-2)2]-12 =[(2)2] -12 =(2)-1=22. 选C【例5】要使4a -2+(a -4)0有意义,则a 的取值范围是( ) A .a ≥2 B .2≤a <4或a >4 C .a ≠2D .a ≠4[解析] 要使原式有意义,需满足:⎩⎪⎨⎪⎧a -2≥0a -4≠0,解得2≤a <4或a >4. 选B【例6】计算:=32-1-94+49=-4736. (2)∵x 12+x -12=3,∴x +1x=3, ∴x +x -1=x +1x =(x +1x )2-2=9-2=7.(x 12-x -12)2=(x -1x)2=x +1x -2=7-2=5,∴x 12-x -12=±5. 巩固练习1.下列运算正确的是( ) A .a ·a 2=a 2 B .(ab )3=ab 3 C .(a 2)3=a 6 D .a 10÷a 2=a 5[解析] a ·a 2=a 3,故A 错;(ab )3=a 3b 3,故B 错;a 10÷a 2=a 8,故D 错,只有C 正确.2.(36a 9)4·(63a 9)4的结果是( )A .a 16B .a 8C .a 4D .a 2[解析] (36a 9)4·(63a 9)4=(3a 32)4·(6a 3)4=(a -12 )4·(a 12 )4=a 4. 选C3.下列等式36a 3=2a ;3-2=6-22;-342=4-34×2中一定成立的有( )A .0个B .1个C .2个D .3个[解析]36a 3=613 ·a ≠2a ,3-2=-6-2≠6-2,-342=-4-4×2.∴以上等式都不成立,故选A.4.若m =(2+3)-1,n =(2-3)-1,则(m +1)-2+(n +1)-2的值是( )A .1B .14 C.22 D .23[解析] ∵m =(2+3)-1=2-3,n =(2-3)-1=2+ 3.∴(m +1)-2+(n +1)-2=(3-3)-2+(3+3)-2=+32+-32-32+32=2436=23. 选D 5.481×923的值为( )A .363 B .3 C .3 3 D . 3选A提高训练1.计算(2a -3b -23 )·(-3a -1b )÷(4a -4b -53 ),得( )A .-32b 2B .32b 2C .-32b 73D .32b 73[解析] (2a-3b -23 )·(-3a -1b )÷(4a -4b -53 ). 选A2.将3-22化简成不含根号的式子是( )A .-212B .-2-15C .-213D .-223[解析] ∵-22=-(2)3=-232 , 原式=(-232 )13 =-212 .故选A.3.若m <0,n >0,则m n 等于( )A .-m 2nB .-m 2nC .-mn2D .m 2n[解析] ∵m <0,∴m =-m 2, ∴m n =-m 2n ,故选A. 4.23×31.5×612的值为__________..7.求下列各式的值:(1)⎝⎛⎭⎫2790.5+0.1-2+⎝⎛⎭⎫21027-23 -3π0+3748; (2)(0.0081)-14-⎣⎡⎦⎤3×⎝⎛⎭⎫780-1×[81-0.25+(338)-13 ]-12 -10×0.02712题型二:指数函数的概念题【例1】若函数y =(2a -1)x +a -2为指数函数,则A .0 B .12C .1 [解析] 要使函数y =(2a -1)x +a -2为指数函数,应满足=(12)x 是减函数,且过点(0,1),故选B.上是减函数,则实数a 的取值范围是( ) B .(0,1) D .(-1,1),+∞)上是减函数, ∴0<1-a <1,∴的图像是( ).B .一条下降的连续曲线 D .一系列下降的孤立的点的图像是由y=2x的图像向右平移1个单位长度得到的;的图像是由y=2x的图像向上平移1个单位长度得到的;的图像是保留y=2x的图像中位于y轴及其右侧的部分,去掉位于y轴左侧的部分,再将右侧部分以轴为对称轴翻折到左侧而得到的;的图像是由y=2x的图像向下平移1个单位长度,然后将其x轴下方的图像对称到的图像与y=2x的图像关于x轴对称;的图像与y=2x的图像关于原点对称.】下图是指数函数(1)y=a x;(2)y=b x;(3)y=c x;(4)y=d x的图像,则a,b,c,d与1的大小关系是的底数小于1,(3)(4)的底数大于与指数函数的图像的交点位置比较底数的大小.如图是四个指数函数在同一直角坐标系中的图像.作出直线x=1,则其与四个函数交点的纵坐标恰好是相应函数的底数,根据数轴上实数的大小关系可直观地得到底数的大小为a>b>1>c>d>0.可简记为:在第一象限内,指数函数的底数|=12,0,22,0,xxxxx-⎧⎛⎫=≥⎪ ⎪⎨⎝⎭⎪<⎩而且12xy⎛⎫= ⎪⎝⎭与y=2x的图像关于y轴对称,y⎛=⎝∞,0)上是增函数,所以函数y=2-|x|的示意图是D. >0且a≠1)对于任意的实数x、y都有()C .2D .9[解析] ∵f (0)=20+1=2, ∴f [f (0)]=f (2)=4+2a =4a ,解得a =2. 选C4.已知f (x )、g (x )都是定义在R 上的函数,且满足以下条件:①f (x )=a x ·g (x )(a >0,且a ≠1);②g (x )≠0.若fg +f -g -=52,则a 等于________. [解析] 由f (x )=a x ·g (x ),得f x g x =a x . ∵fg +f -g -=52,∴a +a -1=52. 解得a =2或12. 5. 函数f (x )=12(a x +a -x ),(a >0且a ≠1).(1)讨论f (x )的奇偶性; (2)若函数f (x )的图象过点(2,419),求f (x ). [解析] (1)函数f (x )的定义域为(-∞,+∞),f (-x )=12(a -x +a x )=f (x ), ∴函数f (x )为偶函数.(2)∵函数f (x )的图象过点(2,419), ∴419=12(a 2+a -2)=12(a 2+1a2), 整理得9a 4-82a 2+9=0, ∴a 2=19或a 2=9. ∴a =13或a =3. 故f (x )=12(3x +3-x ).能力提升1.下图是指数函数:①y =a x ;②y =b x ;③y =c x ;④y =d x 的图象,则a 、b 、c 、d 与1的大小关系是( )A .a <b <1<c <dB .b <a <1<d <cC .1<a <b <c <dD .a <b <1<d <c[解析] 直线x =1与四个指数函数图象交点的坐标分别为(1,a )、(1,b )、(1,c )、(1,d ),由图象可知纵坐标的大小关系. 选B2.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域为R ,则( )A .f (x )与g (x )均为偶函数B .f (x )为偶函数,g (x )为奇函数C .f (x )与g (x )均为奇函数D .f (x )为奇函数,g (x )为偶函数[解析] f (-x )=3-x +3x =f (x ),∴f (x )为偶函数,g (-x )=3-x -3x =-(3x -3-x )=-g (x ),∴g (x )为奇函数,故选B.3.函数f (x )=3x -x -4的零点,所在的大致区间为( ) A .(-1,0) B .(0,1) C .(1,2)D .(2,3)[解析] ∵f (-1)=3-1-1-4=13-1-4=-143<0,f (0)=30-4=1-4=-3<0,f (1)=3-1-4=-2<0, f (2)=32-2-4=9-2-4=3>0,∴函数f (x )的零点所在的大致区间为(1,2). 选C4.定义运算:a *b =⎩⎪⎨⎪⎧a ,a ≤b b ,a >b ,则函数f (x )=1*(12)x 的图象为( )[解析] 由题意,得f (x )=⎩⎪⎨⎪⎧1 x 12xx.∵x ≤0时,f (x )=1,排除A 、C , 又∵x >0时,f (x )=(12)x ,∴f (1)=12<1,排除B ,故选D.5.已知a >b ,ab ≠0,下列不等式①a 2>b 2;②2a >2b ; ③0.2-a >0.2-b ;④(13)a <(13)b 中恒成立的有________.[解析] ①若0>a >b ,则a 2<b 2,故①不正确; ②y =2x 为增函数,∴2a >2b ,②正确; ③y =0.2x 为减函数,∴0.2-a >0.2-b ,③正确;④y =(13)x 为减函数,∴(13)a <(13)b ,④正确.选②③④6.函数y =2x -12x +1的奇偶性是__________.[解析] f (-x )=2-x -12-x +1=1-2x 1+2x =-2x -12x +1=-f (x ), ∴f (x )为奇函数.7.已知a >0且a ≠1,y 1=a 3x +1,y 2=a-2x,问当x 取何范围内的值时,①y 1=y 2;②y 1>y 2.[解析] (1)若y 1=y 2,则a 3x +1=a-2x,即3x +1=-2x ,解得x =-15, 因此当x =-15时,y 1=y 2.(2)由y 1>y 2得a 3x +1>a-2x,当a >1时,由3x +1>-2x ,得x >-15,当0<a <1时,由3x +1<-2x ,得x <-15,利用函数的图像也可解决与指数型方程和不等式有关的问题,如观察两个函数的解的个数,观察函数y=f(x)与x轴的交点情况,可以确定不等式[解析] f (-1)=2,∴f [f (-1)]=f (2)=4a =1,∴a =14.【例3】函数y =a |x |(a >1)的图象是下图中的( )[解析] ∵y =a |x |=⎩⎪⎨⎪⎧a xx a -xx ,又∵a >1,∴当x ≥0时,取函数y =a x (a >1)的图象的y 轴右侧部分,再作关于y 轴对称的图象,得y =a -x (x <0)的图象,故选B.【例4】函数y =(12)1-x 的单调增区间是( )A .(-∞,+∞)B .(0,+∞)C .(1,+∞)D .(0,1) [解析] 令u =1-x ,则y =(12)u .∵u =1-x 在(-∞,+∞)上是减函数,又∵y =(12)u 在(-∞,+∞)上是减函数,∴函数y =(12)1-x 在(-∞,+∞)上是增函数,故选A.【例5】已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0,且a ≠1).若g (2)=a ,则f (2)等于( )A .2B .154 C. 174 D .a 2[解析] ∵f (x )是奇函数,g (x )是偶函数, ∴由f (x )+g (x )=a x -a -x +2,①得-f (x )+g (x )=a -x -a x +2,② ①+②,得g (x )=2, ①-②,得f (x )=a x -a -x .又g (2)=a ,∴a =2,∴f (x )=2x -2-x ,∴f (2)=22-2-2=154. 故选B巩固练习1.下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( ) A .y =x 3 B .y =|x |+1 C .y =-x 2+1D .y =2-|x |[解析] ∵y =x 3在定义域R 上是奇函数,∴A 不对.,b<-1,所以g(x)的图象可以看作是由函数∴f(x1)-f(x2)<0, f(x1)<f(x2),∴f(x)为增函数,当0<a<1时,a x1>a x2,aa2-1<0,∴f(x1)-f(x2)<0, f(x1)<f(x2),∴f(x)为增函数,综上,f(x)在R上为增函数.提升训练1.定义运算:a *b =⎩⎪⎨⎪⎧a ,a ≤b b ,a >b,如f (x ) =2x * 2 - x ( )A .(-∞,+∞)B .(0,+∞)C .(0,1]D .(1,+∞)[解析] 由题意,得f (x )=⎩⎪⎨⎪⎧2xx 2-xx .当x ≤0时,2x ≤20=1,又2x >0,∴0<2x ≤1;当x >0时,2-x =(12)x <1,又(12)x >0,∴0<(12)x <1, ∴函数f (x )的值域为(0,1]. 2.(2014·陕西文,7)下列函数中,满足“f (x +y )=f (x )·f (y )”的单调递增函数是( )A .f (x )=x 3B .f (x )=3xC .f (x )=x 12 D .f (x )=(12)x[解析] 当f (x )=3x 时,f (x +y )=3x +y ,f (x )f (y )=3x ·3y =3x +y ,∴f (x +y )=f (x )+f (y );当f (x )=(12)x 时,f (x +y )=(12)x +y ,f (x )f (y )=(12)x ·(12)y =(12)x +y ,∴f (x +y )=f (x )f (y ),又f (x )=(12)x 为单调递减函数,f (x )=3x 为单调递增函数,故选B.3.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天.[解析] 假设第一天荷叶覆盖水面面积为1,则荷叶覆盖水面面积y 与生长时间的函数关系为y =2x -1,当x =20时,长满水面,所以生长19天时,荷叶布满水面一半.4.已知函数f (x )是定义在R 上的奇函数,当x >0时, f (x )=1-2-x ,则不等式f (x )<-12的解集是______________.[解析] ∵f (x )是定义在R 上的奇函数,∴f (0)=0. 当x <0时,f (x )=-f (-x )=-(1-2x )=2x -1. 当x >0时,由1-2-x <-12,(12)x >32,得x ∈∅;当x =0时,f (x )=0<-12不成立;当x <0时,由2x -1<-12,2x <2-1,得x <-1. 综上可知不等式的解集为(-∞,-1).5.已知函数f (x )=1-23x +1.(1)求函数f (x )的定义域,判断并证明f (x )的奇偶性; (2)用单调性定义证明函数f (x )在其定义域上是增函数; (3)解不等式f (3m +1)+f (2m -3)<0.[解析] (1)∵3x >0, ∴3x +1≠0, 函数f (x )的定义域为R .f (x )=1-23x +1=3x +1-23x +1=3x -13x +1, ∴f (-x )=3-x -13-x +1=1-3x3x 1+3x 3x =1-3x 1+3x=-f (x ),∴f (x )是定义在R 上的奇函数. (2)任取x 1,x 2∈R ,且x 1<x 2,则f (x 1)-f (x 2)=1-23x 1+1-(1-23x 2+1)=23x 2+1-23x 1+1=x 1+-x 2+x 1+x 2+=x 1-3x 2x 1+x 2+,∵x 1<x 2,∴3x 1<3x 2,∴3x 1-3x 2<0, 又3x 1+1>0,3x 2+1>0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), ∴函数f (x )在其定义域内是增函数.(3)由f (3m +1)+f (2m -3)<0得f (3m +1)<-f (2m -3), ∵函数f (x )为奇函数,∴-f (2m -3)=f (3-2m ),∴f (3m +1)<f (3-2m ). 由(2)已证得函数f (x )在R 上是增函数, ∴f (3m +1)<f (3-2m )⇔3m +1<3-2m ,∴m <25.不等式f (3m +1)+f (2m -3)<0的解集为{m |m <25}.6.已知函数f (x )=a x -1a x +1(a >0且a ≠1).(1)求f (x )的定义域和值域; (2)讨论f (x )的奇偶性; (3)讨论f (x )的单调性.[解析] (1)易得f (x )的定义域为{x |x ∈R }. 解法一:设y =a x -1a x +1,解得a x =-y +1y -1①∵a x >0,当且仅当-y +1y -1>0, 即-1<y <1时,方程①有解. ∴f (x )的值域为{y |-1<y <1}.解法二: f (x )=a x +1-2a x +1=1-2a x +1,∵a x +1>1,∴0<2a x+1<2, ∴-1<1-2a x +1<1, ∴f (x )的值域为{y |-1<y <1}. (2)∵f (-x )=a -x -1a -x +1=1-a x1+a x =-f (x )且定义域为R ,∴f (x )是奇函数.(3)解法一: f (x )=a x +-2a x+1=1-2a x +1.(注:此处用到分离常数法) ①当a >1时,∵y =a x +1为增函数,且a x +1>0, ∴y =2a x +1为减函数,从而f (x )=1-2a x +1=a x -1a x +1为增函数.②当0<a <1时,∵y =a x+1为减函数,且a x+1>0, ∴y =2a x +1为增函数, 从而f (x )=1-2a x +1=a x -1a x +1为减函数.解法二:设x 1、x 2∈R 且x 1<x 2, Δx =x 2-x 1>0,Δy =f (x 2)-f (x 1)=ax 2-1ax 2+1-ax 1-1ax 1+1=ax 2-ax 1+-ax 1-ax 2+ax 2+ax 1+.=2ax 2-2ax 1ax 2+ax 1+当a >1时,y =a x 为增函数,又x 2>x 1, ∴ax 2>ax 1,∴2ax 2-2ax 1>0, 又ax 2+1>0,ax 1+1>0,∴Δy >0, ∴当a >1时, f (x )=a x -1a x +1是增函数.同理,当0<a <1时, f (x )=a x -1a x +1为减函数.7.已知定义域为R 的函数f (x )=b -2x2x +a 是奇函数.(1)求a ,b 的值;(2)用定义证明f (x )在(-∞,+∞)上为减函数;(3)若对于任意t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的范围. [解析] (1)∵f (x )为R 上的奇函数, ∴f (0)=0,b =1.又f (-1)=-f (1),得a =1. (2)任取x 1,x 2∈R ,且x 1<x 2,则 f (x 1)-f (x 2)=1-2x 12x 1+1-1-2x 22x 2+1=-2x 1x 2+--2x 2x 1+x 1+x 2+=x 2-2x 1x 1+x 2+,∵x 1<x 2,∴2x 2-2x 1>0,又(2x 1+1)(2x 2+1)>0,f (x 1)-f (x 2)>0. ∴f (x )为R 上的减函数.(3)∵t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立, ∴f (t 2-2t )<-f (2t 2-k ).∵f (x )是奇函数,∴f (t 2-2t )<f (k -2t 2), 由于f (x )为减函数,∴t 2-2t >k -2t 2.。
人教版高一数学必修一2.指数与指数幂的运算第一、二、三课时
2.当根式的被开方数的指数不能被根指数整除 时,根式也可以写成分数指数幂的形式.
2
如: 3 a2 a3;
1
5
b b 2 (b 0); 4 c 5 c 4 (c 0).
分数指数幂
2.1.1 指数与指数幂的运算
1)规定正数的正分数指数幂的意义:
m
a n n a m (a 0, m`n N ,且n 1)
生 物 体 内 碳14含 量 与 死 亡 年 数t之 间 的 关 系
P
(
1
)
t 5730
由 此 可 知 2:
当 生 物 死 亡 了1年 ,2年 ,10年 , ,10000年 后 , 该
生 物 体 内 碳14的 含 量P的 值 分 别 是
P
(
1
)
1 5730
,
2
P
(
1
)
2 5730
,
2
P
(
1
)
10 5730
3.求下列各式的值 : (1)6 ( x y)6 ; (2)3 (27); (3) ( 2 3)2 ; (4) x6 .
4.下 列 各 式 中,正 确 的 是( C )
A.6 (2)2 3 2 B.4 (3 )4 3
C .(3 2 )3 2 D.6 (2a 1)6 2a 1
讨论:5 2的结果?
2.1.1 指数与指数幂的运算
由上表不难发现: 当 2的不足近似值从小于 2的方向逼近 2时,
5 2的近似值从小于5 2的方向逼近5 2; 当 2的过剩近似值从大于 2的方向逼近 2时,
5 2的近似值从大于5 2的方向逼近5 2.
结论:一般地,无理指数幂a (a 0,是无理数)是一个确定
【配套K12】2018版本高中数学必修一:2.1.1《指数与指数幂的运算》教案
《指数与指数幂的运算》教案
一、教材分析
本节是高中数学新人教版必修1的第二章2.1指数函数的内容
二、三维目标
1.知识与技能
(1)理解n 次方根与根式的概念; (2)正确运用根式运算性质化简、求值; (3)了解分类讨论思想在解题中的应用. 2.过程与方法
通过与初中所学的知识(平方根、立方根)进行类比,得出n 次方根的概念,进而学习根式的性质.
3.情感、态度与价值观
(1)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯; (2)培养学生认识、接受新事物的能力
三、教学重点
教学重点:(1)根式概念的理解;
(2)掌握并运用根式的运算性质 四、教学难点
教学难点:根式概念的理解 五、教学策略
发现教学法
1.经历由利用根式的运算性质对根式的化简,注意发现并归纳其变形特点,进而由特殊情形归纳出一般规律.
2.在学生掌握了有理指数幂的运算性质后,进一步推广到实数范围内.由此让学生体会发现规律,并由特殊推广到一般的研究方法. 六、教学准备
回顾初中时的整数指数幂及运算性质,
0,1(0)
n a a a a a a a =⋅⋅⋅⋅⋅=≠
七、教学环节。
(完整版)指数函数知识点总结
指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果a x n=,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. 负数没有偶次方根;0的任何次方根都是0,记作00=n 。
当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a n n2.分数指数幂正数的分数指数幂的意义,规定:)1,,,0(*>∈>=n N n m a a an m nm )1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质(1)ra ·sr raa += ),,0(R s r a ∈>;(2)rss r a a =)( ),,0(R s r a ∈>; (3)sr r a a ab =)( ),,0(R s r a ∈>.(二)指数函数及其性质1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2注意:利用函数的单调性,结合图象还可以看出:(1)在[a ,b]上,)1a 0a (a )x (f x≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈;(3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =;指数函数·例题解析【例1】求下列函数的定义域与值域:(1)y 3(2)y (3)y 12x===-+---213321x x解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3,∴值域是≤<.0y 3练习:(1)412-=x y ; (2)||2()3x y =; (3)1241++=+x x y ;【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ]A .a <b <1<c <dB .a <b <1<d <cC . b <a <1<d <cD .c <d <1<a <b解 选(c),在x 轴上任取一点(x ,0), 则得b <a <1<d <c . 练习:指数函数① ②满足不等式,则它们的图象是( ).【例3】比较大小:(1)2(2)0.6、、、、的大小关系是:.248163235894512--()(3)4.54.1________3.73.6解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.222242821621338254912284162123135258389493859=====解 (2)0.6110.6∵>,>,∴>.----451245123232()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6.说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 练习: (1)1.72.5与 1.73( 2 )0.10.8-与0.20.8-( 3 ) 1.70.3与 0.93.1(4)5.31.2和7.20.2【例4】解比较大小与>且≠,>.当<<,∵>,>,aa a aan n n n n n nn n nn n -+-+-=-11111111(a 0a 1n 1)0a 1n 10()()∴<,∴<当>时,∵>,>,∴>,>a a a n n aa a n n n n n n n n n n n n 1111111111()()()--+--+-1a 1n 101【例5】作出下列函数的图像:(1)y (2)y 22x ==-,()121x +(3)y =2|x-1| (4)y =|1-3x |解 (1)y (264)(0)(11)y 1=的图像如图.-,过点,及-,.是把函数=的图像向左平移个单位得到的.()()1212121x x+ 解 (2)y =2x -2的图像(如图2.6-5)是把函数y =2x 的图像向下平移2个单位得到的.解 (3)利用翻折变换,先作y =2|x|的图像,再把y =2|x|的图像向右平移1个单位,就得y =2|x-1|的图像(如图2.6-6).解 (4)作函数y =3x 的图像关于x 轴的对称图像得y =-3x 的图像,再把y=-3x 的图像向上平移1个单位,保留其在x 轴及x 轴上方部分不变,把x 轴下方的图像以x 轴为对称轴翻折到x 轴上方而得到.(如图2.6-7)【例8】已知=>f(x)(a 1)a a x x -+11(1)判断f(x)的奇偶性; (2)求f(x)的值域;(3)证明f(x)在区间(-∞,+∞)上是增函数.解 (1)定义域是R .f(x)f(x)-==-,a a a a x x x x ---+=--+1111∴函数f(x)为奇函数.(2)y y 1a 1y 1x 函数=,∵≠,∴有=>-<<,a a y y y y x x -+---=+-⇒1111110即f(x)的值域为(-1,1).(3)设任意取两个值x 1、x 2∈(-∞,+∞)且x 1<x 2.f(x 1)-f(x 2)==,∵>,<,<,++>,∴<,故在上为增函数.a a a a a a a a a a a a x l x l x x x l x x l xx x x x -+-+--++112121*********()()()a 1x x (1)(1)0f(x )f(x )f(x)R 1212单元测试题一、选择题:(本题共12小题,每小题5分,共60分)1、化简1111132168421212121212-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,结果是( )A 、11321122--⎛⎫- ⎪⎝⎭B 、113212--⎛⎫- ⎪⎝⎭ C 、13212-- D 、1321122-⎛⎫- ⎪⎝⎭2、44等于( )A 、16aB 、8aC 、4aD 、2a3、若1,0a b ><,且b ba a -+=则b b a a --的值等于( )A 、6B 、2±C 、2-D 、24、函数()2()1xf x a =-在R 上是减函数,则a 的取值范围是( )A 、1>aB 、2<aC 、a <、1a <<5、下列函数式中,满足1(1)()2f x f x +=的是( ) A 、1(1)2x + B 、14x + C 、2x D 、2x - 6、下列2()(1)x xf x a a -=+是( )A 、奇函数B 、偶函数C 、非奇非偶函数D 、既奇且偶函数7、已知,0a b ab >≠,下列不等式(1)22a b >;(2)22a b>;(3)ba 11<;(4)1133a b >;(5)1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭中恒成立的有( )A 、1个B 、2个C 、3个D 、4个8、函数2121x x y -=+是( )A 、奇函数B 、偶函数C 、既奇又偶函数D 、非奇非偶函数 9、函数121x y =-的值域是( ) A 、(),1-∞ B 、()(),00,-∞+∞ C 、()1,-+∞ D 、()(,1)0,-∞-+∞10、已知01,1a b <<<-,则函数xy a b =+的图像必定不经过( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 11、2()1()(0)21xF x f x x ⎛⎫=+⋅≠ ⎪-⎝⎭是偶函数,且()f x 不恒等于零,则()f x ( ) A 、是奇函数 B 、可能是奇函数,也可能是偶函数 C 、是偶函数 D 、不是奇函数,也不是偶函数12、一批设备价值a 万元,由于使用磨损,每年比上一年价值降低%b ,则n 年后这批设备的价值为( )A 、(1%)na b -B 、(1%)a nb -C 、[1(%)]na b - D 、(1%)na b - 二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上)13、若103,104xy==,则10x y-= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数函数第3课时指数与指数幂的运算(三)
(一)教学目标
1.知识与技能:
能熟练地运用有理指数幂运算性质进行化简,求值.
2.过程与方法:
通过训练点评,让学生更能熟练指数幂运算性质.
3.情感、态度、价值观
(1)培养学生观察、分析问题的能力;
(2)培养学生严谨的思维和科学正确的计算能力.
(二)教学重点、难点
1.重点:运用有理指数幂性质进行化简,求值.
2.难点:有理指数幂性质的灵活应用.
(三)教学方法
1.启发学生认识根式与分数指数幂实质是相同的.并能熟练应用有理指数幂的运算性质对根式与分数指数幂进行互化.
2.引导学生在化简求值的过程中,注意将根式转化为分数指数幂的形式和积累一些常用技巧.如凑完全平方、分解因式、化小数为分数等等.另外,在运用有理指数幂的运算性质化简变形时,应注意根据底数进行分类,以精简解题的过程.
(四)教学过程
教学环节教学内容师生互动设计意
图
复习引入复习
1.分数指数幂的概念.
*
(0,,)
m
n m
n
a a a m n N
=>∈
*
1
(0,,)
m
n
m
n
a a m n N
a
-
=>∈
2.分数指数幂的运算性质.
(0,,)
r s r s
a a a a r R s R
+
⋅=>∈∈
()(0,,)
r s rs
a a a r R s R
=>∈∈
()(0,)
r r r
a b a b a r R
⋅=>∈
师:提出问题
生:复习回顾
师:总结完善
复
习旧
知,为
新课作
铺垫.
应用举例
例1.(P56,例4)计算下列各式
(式中字母都是正数)
(1)
2115
11
3366
22
(2)(6)(3)
a b a b a b
-÷-
(2)
3
1
8
8
4
()
m n-
学生思考,口答,教师板演、点
评.
例 1 (先由学生观察以上两个
式子的特征,然后分析、提问、解答)
分析:四则运算的顺序是先算乘
方,再算乘除,最后算加减,有括号
的先算括号的.整数幂的运算性质
及运算规律扩充到分数指数幂后,其
运算顺序仍符合我们以前的四则运
算顺序.
我们看到(1)小题是单项式的
乘除运算;(2)小题是乘方形式的
运算,它们应让如何计算呢?
其实,第(1)小题是单项式的
乘除法,可以用单项式的运算顺序进
行.
第(2)小题是乘方运算,可先
按积的乘方计算,再按幂的乘方进行
计算.
解:(1)原式
=
211115
326236
[2(6)(3)]a b
+-+-
⨯-÷-
=0
4ab
=4a
(2)原式=
3
1
88
8
4
()()
m n-
=23
m n-
通
过这二
个例题
的解
答,巩
固所学
的分数
指数幂
与根式
的互
化,以
及分数
指数幂
的求
值,提
高运算
能力.
备选例题
例1 已知32
12
1=+-a
a ,求下列各式的值.
;+-1)1(a a ;)2(22-+a a
332
2112
2
(3)
.a a a a
--
--
【分析】从已知条件中解出a 的值,然后再代入求值,这种方法是不可取的,而应设法从整体寻求结果与条件32
12
1=+-a
a 的联系,进而整体代入求值.
【解析】(1)将3212
1=+-a
a 两边平方,
得.921=++-a a 即.71=+-a a
(2)将上式平方,有.49222=++-a a
.4722=+∴-a a
(3)由于3213
212
32
3)
()(-
--=-a a a
a
∴
332
2
112
2
a a a a
-
---
11111
22
2
2
112
2
()()
a a a a a a a a
-
-
---++⋅=
-
118.a a -=++=
【小结】对“条件求值”问题一定要弄清已知与未知的联系,然后采取“整体代换”或“求值后代换”两种方法求值.
例2 化简
.1
1
11
13
13
13
13
132---
+++
++-x x
x x x x x x
【分析】根据本题的特点,须注意到
)1()1(1)(13
13
23
13
3
31++⋅-=-=-x x x x x ,
=+1x 11213
3
3333
()1(1)(1),x x x x +=+-+
1111112
3
3
33
3
3
[()1](1)(1)x x x x x x x -=-=-+,
应对原式进行因式分解. 【解析】原式
1
1
1)(1
)(1
)(3
13
132313
13
3
313
12
313
3
31---
+++
++-=
x x x x x x x x x
121333
213
3
(1)(1)()1
x x x x x -++=
++
121333
13
(1)(1)
1x x x x +-++
+
1
)
1)(1(3
1313
13
1-+--
x x x x
1
212133333
11x x x x x =-+-+-- 13
.x =-
【小结】解这类题,要注意运用下列公式:
1111
2222,a b a b a b ⎛⎫⎛⎫+-=- ⎪⎪⎝⎭⎝⎭ 2
11112222
2,a b a a b b ⎛⎫±=±+ ⎪⎝⎭
112
112333333
.a b a a b b a b ⎛⎫⎛⎫
±+=± ⎪⎪⎝⎭⎝⎭。