流体力学第三章习题讲解
流体力学课后习题详解(第三、四章)
第三章 流体运动学3-1解:质点的运动速度1031014,1024,1011034=-=-==-=w v u 质点的轨迹方程1031,52,103000twt z z t vt y y t ut x x +=+=+=+=+=+=3-2 解:2/12/12/3222/12/12/3220375.0232501.02501.00375.0232501.02501.00t t t dt d dt y d a t t t dt d dt x d a a y x z =⨯⨯=⎪⎭⎫⎝⎛⨯===⨯⨯=⎪⎭⎫⎝⎛⨯===由501.01t x +=和10=Ax ,得19.1501.011001.015252=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=A x t故206.00146.0146.00,146.0,014619.150375.0222222/1=++=++=====⨯=zyxz x y x a a a a a a a a3-3解:当t=1s 时,点A (1,2)处的流速()()sm s m yt xt v s m s m y xt u /1/1211/5/2211222-=⨯-⨯=-==⨯+⨯=+=流速偏导数112221121,1,/12,1,/1-----=-=∂∂==∂∂==∂∂=∂∂==∂∂==∂∂s t yvs t x v s m t t v s yu s t x u s m x t u点A(1,2)处的加速度分量()[]()()[]222/11151/3/21151s m y v v x v u t v Dt Dv a s m s m yuv x u u t u Dt Du a y x -⨯-+⨯+=∂∂+∂∂+∂∂===⨯-+⨯+=∂∂+∂∂+∂∂==3-4解:(1)迹线微分方程为dt udy dt u dx ==, 将u,t 代入,得()tdtdy dt y dx =-=1利用初始条件y(t=0)=0,积分该式,得221t y =将该式代入到式(a ),得dx=(1-t 2/2)dt.利用初始条件x(t=0)=0,积分得361t t x -=联立(c )和(d )两式消去t,得过(0,0)点的迹线方程023492223=-+-x y y y (2)流线微分方程为=.将u,v 代入,得()tdx dy y tdyy dx =-=-11或将t 视为参数,积分得C xt y y +=-221 据条件x(t=1)=0和y(t=1)=0,得C=0.故流线方程为xt y y =-221 3-5 答:()(),满足满足002,0001=+-=∂∂+∂∂+∂∂++=∂∂+∂∂+∂∂k k zw y v x u zw y v x u()()()(),满足,满足000040223222222=++=∂∂+∂∂+∂∂=+-++=∂∂+∂∂+∂∂zw yv xu yxxyyxxyzw yv xu()()()()()()处满足,其他处不满足仅在,不满足,满足,满足满足,满足0,41049000018001760000522==∂∂+∂∂=∂∂+∂∂=++=∂∂++∂∂=++-=∂∂++∂∂=++=∂∂+∂∂+∂∂y y yv x u yv x u u r r u r u rk r k u r r u r u zw yv xu r r r rθθθθ3-6 解:max 02042020max 20320max 20200max 2020214222111000u r r r r u dr r r r r u rdrdr r u r udA r V r rAr =⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-==⎰⎰⎰⎰⎰πππππ3-7 证:设微元体abcd 中心的速度为u r ,u θ。
流体力学习题及答案-第三章
第三章 流体运动学3-1粘性流体平面定常流动中是否存在流函数? 答:对于粘性流体定常平面流动,连续方程为:()()0=∂∂+∂∂yv x u ρρ; 存在函数:v t y x P ρ-=),,(和()u t y x Q ρ=,,,并且满足条件:()()yP x Q ∂∂=∂∂。
因此,存在流函数,且为:()()()dy u dx v Qdy Pdx t y x ρρψ+-=+=⎰⎰,,。
3-2轴对称流动中流函数是否满足拉普拉斯方程?答:如果流体为不可压缩流体,流动为无旋流动,那么流函数为调和函数,满足拉普拉斯方程。
3-3 就下面两种平面不可压缩流场的速度分布分别求加速度。
(1)22222 ,2yx ym v y x x m u +⋅=+⋅=ππ (2)()()()222222222 ,yxKtxyv yxx y Kt u +-=+-=,其中m ,K 为常数。
答:(1)流场的加速度表达式为:yv v x v u t v a y u v x u u t u a x ∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=y ,。
由速度分布,可以计算得到:0 ,0=∂∂=∂∂tvt u ,因此: ()222222y x x y m x u +-⋅=∂∂π,()22222y x xy m y u +-⋅=∂∂π;()22222y x xy m x v +-⋅=∂∂π,()222222y x y x m y v +-⋅=∂∂π。
代入到加速度表达式中:()()()22222222222222222222220y x x m y x xym y x y m y x x y m y x x m a x +⋅⎪⎭⎫⎝⎛-=+-⋅⋅+⋅++-⋅⋅+⋅+=πππππ()()()22222222222222222222220y x y m y x y x m y x y m y x xym y x x m a y +⋅⎪⎭⎫⎝⎛-=+-⋅⋅+⋅++-⋅⋅+⋅+=πππππ(2)由速度分布函数可以得到:()()()322222222 ,y x Kxyt v y x x y K t u +-=∂∂+-=∂∂ ()()3222232y x y x Ktx x u +-⋅=∂∂,()()3222232y x y x Kty y u +-⋅=∂∂; ()()3222232y x x y Kty x v +-⋅-=∂∂,()()3222232yx y x Ktx y v +-⋅-=∂∂。
《流体力学》徐正坦主编课后答案第三章解析
第三章习题简答3-1 已知流体流动的速度分布为22y x u x -= ,xy u y 2-=,求通过1,1==y x 的一条流线。
解:由流线微分方程yx u dyu dx =得dy u dx u x y =则有 dy y x xydx )(222-=-两边积分可得C y y x yx +-=-3322即0623=+-C y x y将x=1,y=1代入上式,可得C=5,则 流线方程为05623=+-y x y3-3 已知流体的速度分布为⎭⎬⎫==-=-=tx x u ty y u y x 00εωεω(ω>0,0ε>0)试求流线方程,并画流线图。
解:由流线微分方程yx u dyu dx =得dy u dx u x y =则有 tydy txdx 00εε-=两边积分可得C y x +-=22流线方程为C y x =+223-5 以平均速度s m v /5.1=流入直径为D=2cm 的排孔管中的液体,全部经8个直径d=1mm 的排孔流出,假定每孔出流速度依次降低2%,试求第一孔与第八孔的出流速度各为多少?题3-5图解:由题意得:v 2=v 1(1-2%),v 3=v 1(1-2%)2,…,v 8=v 1(1-2%)7 根据质量守恒定律可得282322212832144444dv d v d v d v D v Q Q Q Q Q πππππ⋅+⋅⋅⋅+⋅+⋅+⋅=⋅+⋅⋅⋅+++=sm d vD v v d v v v v d D v /4.80)98.01(001.002.002.05.1)98.01()98.01(98.01)98.01(4)(448228221812832122=-⨯⨯⨯=--⋅=∴--⋅=+⋅⋅⋅+++⋅=⋅πππ则 v 8=v 1(1-2%)7=80.4×(1-2%)7=69.8m/s3-6 油从铅直圆管向下流出。
管直径cm d 101=,管口处的速度为s m v /4.11=,试求管口处下方H=1.5m 处的速度和油柱直径。
流体力学第三章习题
第三章 流体动力学基础3-1 已知速度场为k z x j y x i y x u)()()(2-+-++= (m/s),求(2,3,1)点的速度和加速度。
已已知知::z x u y x u y x u -=-=+=z y x )(2,, 解析:(1) (2,3,1)点的速度为m/s 1m/s 1m/s 10)(2z y x =-=-=-==+=z x u y x u y x u ,, s /m 10.101)1(102222z 2y 2x =+-+=++=u u u u (2) (2,3,1)点的加速度为2x z x y x x x x m/s 1832262602)(2)(20=⨯+⨯=+=+⨯-+⨯++=∂∂+∂∂+∂∂+∂∂=y x y x y x zuu y u u x u u u a τ2y zy yy xy y m/s 1133230)1()(1)(20=⨯+=+=+-⨯-+⨯++=∂∂+∂∂+∂∂+∂∂=y x y x y x zu u yu u xu u u a τ2z z z y z x z z m/s 913222)1()(01)(20=+⨯+=++=-⨯-++⨯++=∂∂+∂∂+∂∂+∂∂=z y x z x y x zu u y u u x u u u a τ22222z 2y 2x s /m 93.2291118=++=++=a a a a3-2 已知速度场为k z y j y i x u )34()(2)3(2-+-++=ττ (m/s),求τ=2秒时,位于(2,2,1)点的速度和加速度。
已已知知::z y u y u x u )34()(23z 2y x -=-=+=,,ττ解析:(1) τ=2秒、位于(2,2,1)点的速度为m/s 5)34(m/s 4)(2m/s 83z 2y x =-=-=-==+=z y u y u x u ,,ττ s /m 25.105)4(82222z 2y 2x =+-+=++=u u u u (2) τ=2秒、位于(2,2,1)点的加速度为2x z x y x x x x m/s 251)223(31)3(3003)3(1=++⨯⨯=++=++⨯++=∂∂+∂∂+∂∂+∂∂=τττx x zuu y u u x u u u a2222y zy yy xy y m/s 342)22(282)(80)4()(202=+-⨯⨯=+-=+-⨯-++=∂∂+∂∂+∂∂+∂∂=τττy y y y zu u yu u xu u u a2222222z z z y z x z z m/s 91)324()22(18)34()(8)34(4)(200=⨯-⨯+-⨯⨯=-+-=-+⨯-++=∂∂+∂∂+∂∂+∂∂=z y y z zy z y zuu y u u x u u u a τττ22222z 2y 2x s /m 15.4393425=++=++=a a a a3-3 已知二维流场的速度分布为j x y i x y uττ)96()64(-+-= (m/s)。
流体力学第三章课后习题答案
流体力学第三章课后习题答案流体力学第三章课后习题答案流体力学是研究流体运动和流体力学性质的学科。
在学习流体力学的过程中,课后习题是巩固知识和提高理解能力的重要环节。
本文将为大家提供流体力学第三章的课后习题答案,帮助读者更好地掌握流体力学的相关知识。
1. 一个液体的密度为1000 kg/m³,重力加速度为9.8 m/s²,求其比重。
解答:比重定义为物体的密度与水的密度之比。
水的密度为1000 kg/m³,所以比重为1。
因此,该液体的比重也为1。
2. 一个物体在液体中的浮力与物体的重力相等,求物体在液体中的浸没深度。
解答:根据阿基米德原理,物体在液体中的浮力等于物体所排除液体的重量。
浮力的大小等于液体的密度乘以物体的体积乘以重力加速度。
物体的重力等于物体的质量乘以重力加速度。
根据题目条件,浮力等于重力,所以液体的密度乘以物体的体积等于物体的质量。
浸没深度可以通过浸没体积与物体的底面积之比来计算。
3. 一个圆柱形容器中盛有液体,容器的高度为10 cm,直径为5 cm,液体的密度为800 kg/m³,求液体的压强。
解答:液体的压强等于液体的密度乘以重力加速度乘以液体的深度。
容器的高度为10 cm,所以液体的深度为10 cm。
重力加速度为9.8 m/s²,所以液体的压强为800 kg/m³乘以9.8 m/s²乘以0.1 m,即784 Pa。
4. 一个水龙头的出水口半径为2 cm,水流速度为10 m/s,求水龙头出水口附近的压强。
解答:根据质量守恒定律,水流速度越大,压强越小。
根据伯努利定律,水流速度越大,压强越小。
因此,水龙头出水口附近的压强较小。
5. 在一个垂直于水平面的圆柱形容器中,盛有密度为900 kg/m³的液体。
容器的半径为10 cm,液体的高度为20 cm。
求液体对容器底部的压力。
解答:液体对容器底部的压力等于液体的密度乘以重力加速度乘以液体的高度。
流体力学课后习题答案 第3章习题
0
0
x
2 Q2 Q1 2 Q
1
Q1
45°
2
Q2
1
2
Q Q1 Q2
Q2 Q1
2Q 2
Q1
1
2 2
0.172
Q2 1 2
2
Q
0 1
Q1
1
0
45°
y
x
2
Q2
2
解:
VA
Q AA
3.18m/s
Q VB AB 5.66m/s
列A和B面伯努利方程:
pgA
VA2 2g
pBg
VB2 2g
A
1.8m
以2-2为基准面,列1-1和2-2面
d
伯努利方程:
1
1
z1
V12 2g
V22 2g
V 12.364m/s 2 2
6.0m
2
G F Q V3 V2
F
3d
1.8m
3
F G Q V2 V3 2.32KN
1
4m
1
2
3
d2
B
V2
2
pM 1
2gz1
8.745m/s
4m
d1
4m
4m
2
A
3
所以:(1)Q V2 A2 0.154m3/s (2)VA Q / A1 19.677m/s
(3)管中压强最低点的位置及其负压值 M
分析:压强最低点应是位置最 高或速度最高点,只有可能是 1 2点3点
解:以2-2为基准面,列3-3和2 -2面伯努利方程:
z3
pMg3
V32 2g
pMg2
V2 2 2g
流体力学第3章(第二版)知识点总结经典例题讲解
dx u u( t ) dt
流体质点加速度:
dy v v(t ) dt
dz w w( t ) dt
d2x d2y d 2z ax 2 , y 2 , z 2 a a dt dt dt
x(t ) a t y( t ) b t z(t ) 0
y
迹线方程:
流线的性质
(1)流线彼此不能相交(除了源和汇)
交点
v1 v2
s1
(2)流线是一条光滑的曲线, 不可能出现折点(除了激波问题)
(3)定常流动时流线形状不变, 非定常流动时流线形状发生变化
s2
v1 v 折点 2
s
[例1] 由速度分布求质点轨迹
已知: 求: 解: 已知用欧拉法表示的流场速度分布规律为
(2)
由于在欧拉法中速度只和当地坐标以及时间有关,所以必须消 去初始座标,观察(1)式和(2)式可得:
u( x , y , z , t ) y v ( x , y , z , t ) x w( x, y, z, t ) 0
讨论:本例说明虽然给出的是流体质点在不同时刻经历的空间位置,即 运动轨迹,即可由此求出空间各点速度分布式(欧拉法),即各 空间点上速度分量随时间的变化规律。 此例中空间流场分布与时间无关,属于定常流场.
[例3] 由速度分布求加速度
已知: 已知用欧拉法表示的流场速度分布规律为 求各空间位置上流体质点的加速度 解: 对某时刻 t 位于坐标点上(x, y)的质点
dx xt dt dy v yt dt u
u xt v yt
(a )
求解一阶常微分方程(a)可得
x( t ) ae y( t ) be
工程流体力学第三章部分习题答案
概念题
伯努利方程的适用条件
伯努利方程适用于不可压缩、无粘性、无热传导的理想流体在重力场作稳定流动时,流体的动能、势能和内能相互转化的守 恒定律。
概念题
流体阻力的类型
流体阻力包括摩擦阻力和形状阻力。摩擦阻力是由于流体内 部摩擦而产生的阻力,形状阻力是由于流体流经物体时,因 流体速度变化而产生的阻力。
工程流体力学第三章部 分习题答案
contents
目录
• 习题一:基础概念理解 • 习题二:流体运动分析 • 习题三:流体压力和阻力 • 习题四:流体的无损检测技术
习题一:基础概念理
01
解
概念题
理解概念 题目:解释流线、迹线、流管、流束、流量等基本概念。
概念题
流线
表示某一瞬时流场中流体质点的 运动轨迹线,流线上各点的方向 与流速方向一致。
概念题
流体阻力的影响因素
流体阻力的影响因素包括流体的性质、 流速、物体的形状和大小、流道表面 的粗糙度等。
计算题
流体静压力的计算
根据流体静压力的定义,流体静压力的大小可以用流体深 度和当地的重力加速度计算得出。如果已知流体的密度和 重力加速度,也可以用流体质量和重力加速度计算得出。
计算题
伯努利方程的应用
计算题
题目
计算流体通过某一管道的流量。
答案
根据流量公式,流体通过某一管道的流量Q可以表示为Q = A × v,其中A为管 道截面积,v为流体在管道中的平均流速。如果已知管道截面积A和流速v,可以 直接计算出流量Q。
03
习题三:流体压力和
阻力
概念题
流体静压力的概念
流体静压力是指流体在静止状态下,由于重力作用在单位面积上的力,其大小与深度有关,深度越大 ,压力越大。
(完整版)流体力学第三章课后习题答案
一元流体动力学基础1.直径为150mm 的给水管道,输水量为h kN /7.980,试求断面平均流速。
解:由流量公式vA Q ρ= 注意:()vA Q s kg h kN ρ=⇒→//A Qv ρ=得:s m v /57.1=2.断面为300mm ×400mm 的矩形风道,风量为2700m 3/h,求平均流速.如风道出口处断面收缩为150mm ×400mm,求该断面的平均流速 解:由流量公式vA Q = 得:A Q v =由连续性方程知2211A v A v = 得:s m v /5.122=3.水从水箱流经直径d 1=10cm,d 2=5cm,d 3=2.5cm 的管道流入大气中. 当出口流速10m/ 时,求(1)容积流量及质量流量;(2)1d 及2d 管段的流速解:(1)由s m A v Q /0049.0333==质量流量s kg Q /9.4=ρ (2)由连续性方程:33223311,A v A v A v A v ==得:s m v s m v /5.2,/625.021==4.设计输水量为h kg /294210的给水管道,流速限制在9.0∽s m /4.1之间。
试确定管道直径,根据所选直径求流速。
直径应是mm 50的倍数。
解:vA Q ρ= 将9.0=v ∽s m /4.1代入得343.0=d ∽m 275.0 ∵直径是mm 50的倍数,所以取m d 3.0= 代入vA Q ρ= 得m v 18.1=5.圆形风道,流量是10000m 3/h,,流速不超过20 m/s 。
试设计直径,根据所定直径求流速。
直径规定为50 mm 的倍数。
解:vA Q = 将s m v /20≤代入得:mm d 5.420≥ 取mm d 450= 代入vA Q = 得:s m v /5.17=6.在直径为d 圆形风道断面上,用下法选定五个点,以测局部风速。
设想用和管轴同心但不同半径的圆周,将全部断面分为中间是圆,其他是圆环的五个面积相等的部分。
吴望一《流体力学》第三章习题参考答案
吴望一《流体力学》第三章习题参考答案1.解:CV CS d V s dt tτϕϕδτδτϕδ∂=+⋅∂⎰⎰⎰ 由于t 时刻该物质系统为流管,因而侧面上ϕ的通量=0,于是(1)定常流动0t ϕ∂=∂,222111dV d V d dt τϕδτϕσϕσ=-⎰,设流速正方向从1端指向2端。
(2)非定常流动222111CV d V d V d dt t τϕϕδτδτϕσϕσ∂=+-∂⎰⎰ 2.解:取一流体微团,设其运动方程为(,,,)(,,,)(,,,)x x a b c t y y a b c t z z a b c t =⎧⎪=⎨⎪=⎩,由质量守恒得,在0t =和t 时刻()(),,,0,,,a b c dadbdc a b c t dxdydz ρρ=利用积分变换可知()(),,,,x y z dxdydz J dadbdc a b c ∂==∂(雅可比行列式),于是()(),,(,,,0)(,,,),,x y z a b c dadbdc a b c t dadbdc a b c ρρ∂=∂()()()(),,,,,0,,,,,x y z a b c a b c t a b c ρρ∂=∂3.(控制体内流体质量的增加率)=-(其表面上的质量通量)(2)球坐标系下选取空间体元(控制体)2sin r r δτθδδθδϕ=。
单位时间内该空间内流体质量的增量为2sin r r t tρρδτθδδθδϕ∂∂=∂∂ 该控制体表面上的质量通量:以 r e 和-r e 为法向的两个面元上的质量通量为()2sin |sin |sin r r r r r r v r v r r v r r r rδρρδθθδϕρδθθδϕδδθδϕθ+∂-+=∂以 e θ和-e θ为法向的两个面元上的质量通量为()sin sin |sin |v v rr v rr r r θθθθθδθρθρδθδϕρδθδϕδδθδϕθ+∂-+=∂以e ϕ 和-e ϕ为法向的两个面元上的质量通量为()||v v r r v r r r r ϕϕϕϕϕδϕρρδθδρδθδδδθδϕϕ+∂-+=∂ 所以()()()22sin sin sin 0r v r v vr r r t rϕθρρρθρθθθϕ∂∂∂∂+++=∂∂∂∂即()()()22sin 110sin sin r v r v v tr r r rϕθρρρθρθθθϕ∂∂∂∂+++=∂∂∂∂ (3)柱坐标系下选取空间体元(控制体)r r z δτδθδδ= 单位时间内该空间内流体质量的增量为 ()r r z r r z t tρδδθδρδδθδ∂∂=∂∂该控制体表面上的质量通量为()()()r z rv v v r z r z r r z r zθρρρδδθδδδθδδδθδθ∂∂∂++∂∂∂ 所以()()()0r z rv v v r r t r zθρρρρθ∂∂∂∂+++=∂∂∂∂ 即()()()0r z v r v v t r r r zθρρρρθ∂∂∂∂+++=∂∂∂∂ (4)极坐标系下选取面元(控制体)s r r δδθδ=,可认为该面元对应以该面元为底面的单位高度的柱体。
流体力学A第3章习题答案及解题思路
(1)定常,一维(2)定常,一维(3)定常,二维(4)定常,三维(5)非定常,二维(6)非定常,三维
根据速表达式中是否含有时间t判断是否定常:含有时间t是定常的,否则是非定常的;按照速度表达式中有几个坐标变量判断流动维数:有ቤተ መጻሕፍቲ ባይዱ个(如x,y,z)是三维;有两个是二维;只有一个是一维,不能按照有几个方向的速度投影判断。
3-9
有可能存在
根据二维极坐标的连续性方程(3-35)
3-2
(1)二维流动;
(2)ax=2x3y2-(1/3)x2y3
ay=(1/3)y5az=x2y2-(1/3)xy3
代入点的坐标(1,2,3)得
ax=16/3ay=32/3az=4/3
利用加速度的定义式,由于是定常流动,公式中对时间的偏导数为零
此题给的速度分布不符合连续性方程x=xy2更合理
3-3
流线方程(x+2t)(-y+t-3)=c;通过点p(-1,-1)的流线为:x(y+3)=-2
第1小题的速度分布有个印刷错误最后一个速度表达式应为?z38出口密度522kgm3质量流量768?103根据一维流动的连续性方程?1v1a1?2v2a239有可能存在根据二维极坐标的连续性方程335ddddddxxxxxxxyzyyyyyyxyzzzzzzzxyzattxyzattxyzattxyz???????????????????????????????????????????????????????????????
根据流线微分方程并积分;
3-4
流线方程x2+y2=c一组一原点为圆心的同心圆,逆时针流动方向
根据流线微分方程并积分;流动方向判断可从流线上找出任意一点画出x和y方向并合成速度矢量方向
流体力学例题及思考题-第三章
第三章流体运动学与动力学基础主要内容基本概念欧拉运动微分方程连续性方程——质量守恒*伯努利方程——能量守恒** 重点动量方程——动量守恒** 难点方程的应用第一节研究流体运动的两种方法流体质点:物理点。
是构成连续介质的流体的基本单位,宏观上无穷小(体积非常微小,其几何尺寸可忽略),微观上无穷大(包含许许多多的流体分子,体现了许多流体分子的统计学特性)。
空间点:几何点,表示空间位置。
流体质点是流体的组成部分,在运动时,一个质点在某一瞬时占据一定的空间点(x,y,z)上,具有一定的速度、压力、密度、温度等标志其状态的运动参数。
拉格朗日法以流体质点为研究对象,而欧拉法以空间点为研究对象。
一、拉格朗日法(跟踪法、质点法)Lagrangian method1、定义:以运动着的流体质点为研究对象,跟踪观察个别流体质点在不同时间其位置、流速和压力的变化规律,然后把足够的流体质点综合起来获得整个流场的运动规律。
2、拉格朗日变数:取t=t0时,以每个质点的空间坐标位置为(a,b,c)作为区别该质点的标识,称为拉格朗日变数。
3、方程:设任意时刻t,质点坐标为(x,y,z) ,则:x = x(a,b,c,t)y = y(a,b,c,t) z = z(a,b,c,t) 4、适用情况:流体的振动和波动问题。
5、优点: 可以描述各个质点在不同时间参量变化,研究流体运动轨迹上各流动参量的变化。
缺点:不便于研究整个流场的特性。
二、欧拉法(站岗法、流场法)Eulerian method1、定义:以流场内的空间点为研究对象,研究质点经过空间点时运动参数随时间的变化规律,把足够多的空间点综合起来得出整个流场的运动规律。
2、欧拉变数:空间坐标(x ,y ,z )称为欧拉变数。
3、方程:因为欧拉法是描写流场内不同位置的质点的流动参量随时间的变化,则流动参量应是空间坐标和时间的函数。
位置: x = x(x,y,z,t)y = y(x,y,z,t) z = z(x,y,z,t)速度: u x =u x (x,y,z,t )u y =u y (x,y,z,t ) u z =u z (x,y,z,t )同理: p =p (x,y,z,t ) ,ρ=ρ(x,y,z,t) 说明: x 、y 、z 也是时间t 的函数。
流体力学课后习题及答案-第3章
3-1 用欧拉法表示流体质点的加速度 a等于:u u tu d u u c t u b t r a)()( ;))(( ;)( ;d d )(22∇⋅+∂∂∇⋅∂∂3-5 无旋流动限于:(a) 流线是直线的流动; (b) 迹线是直线的流动; (c) 微团无旋转的流动; (d) 恒定流动。
3-8 已知流速场 31 32xy u y u xy u z y x =-==,,试求: (1)点(1,2,3)的加速度; (2)是几元流动; (3)是恒定流还是非恒定流。
解: (1) 先求加速度各分量43223102310xy xy y y xy z u u y u u x u u t u a x z x y x x x x =+⋅-⋅+=∂∂+∂∂+∂∂+∂∂=523310))(31(00y y y z u u yu u xu u tu a yzy yy xy y =+--++=∂∂+∂∂+∂∂+∂∂=332320310xy x y y xy z u u y u u x u u t u a z z z y z x z z =+⋅-⋅+=∂∂+∂∂+∂∂+∂∂=将x =1,y =2, z =3代入以上各式得2m/s 33.5=x a 2m/s 67.10=y a 2m/s 33.5=z a2222m/s 06.13=++=z y x a a a a (2)是三元流动; (3)是恒定流。
3-14 已知不可压缩流体平面流动,在 y 方向的速度分量为y x y u y 222+-=。
试求速度在x 方向的分量 u x 。
解: 由不可压缩流体平面流动的连续性微分方程得22--=∂∂-=∂∂y yu x u y x )(22 y f x xy u x +--=⇒3-15 如图在送风道的璧上有一面积为0.4m 2的风口,试求风口出流的平均速度解: 风口出流流量为/s m 5.15.243=-=Q风口过流断面面积为2m 2.030sin 4.0== A风口出流的平均速度为m/s 5.7==AQv 3-18 已知流动速度场为 32 32 32y x u x z u z y u z y x +=+=+=,,试求旋转角速度和角变形速度。
《流体力学》课后习题详细解答
1-8解:
或,由 积分得
1-9解:法一:5atm
10atm
=0.537 x 10-9x (10-5) x98.07 x 103= 0.026%
法二: ,积分得
1-10解:水在玻璃管中上升高度
h =
水银在玻璃管中下降的高度
H= mm
第二章流体静力学
2-1解:已知液体所受质量力的x向分量为–a ,z向分量为-g。液体平衡方程为
重心C位于浮心之上,偏心距
沉箱绕长度方向的对称轴y轴倾斜时稳定性最差。浮面面积A=15m2。浮面关于y
轴的惯性矩和体积排量为
定倾半径
可见, >e,定倾中心高于重心,沉箱是稳定的。
第三章流体运动学
3-1解:质点的运动速度
质点的轨迹方程
3-Байду номын сангаас解:
由 和 ,得
故
3-3解:当t=1s时,点A(1,2)处的流速
线速度u = 0r,速度环量
(2)半径r+dr的圆周封闭流线的速度环量为
得
忽略高阶项2 0dr2,得d
(3)设涡量为 ,它在半径r和r+dr两条圆周封闭流线之间的圆环域上的积分为d 。因为 在圆环域上可看作均匀分布,得
将圆环域的面积dA=2 rdr代入该式,得
可解出 =2 + dr/r。忽略无穷小量 dr/r,最后的涡量
沉箱绕长度方向的对称轴y倾斜时稳定性最差。浮面面积A=15m2.浮面关于y轴的惯性矩和体积排量为
定倾半径
可见, ,定倾中心低于重心,沉箱是不稳定的。
(2)沉箱的混凝土体积
沉箱的重量
沉箱水平截面面积
设吃水深度为h,取水的密度 =1000kg/m3.浮力F等于重量G。有
流体力学自学指南及习题选讲-第三章
叫迁移导数。例如对于压强 p 与密度,有:
4.流线与迹线 迹线是流场中某一流体质点在一段时间内运动的轨迹。 它表示同一流体质点 在不同时刻的运动位置的连线。流线是在某一瞬时流场中的一条空间曲线,该曲 线上任意一点的切线方向与该点的速度矢量方向一致。迹线代表了拉格朗日观
第三章 流体运动学基础
3
点,流线代表的是欧拉观点。 5.流线的特征 1) 一般情况下流线不能相交。以下两种情况除外:在速度为零的点上,速 度为零的点又称为驻点;速度为无限大的点,通常称为奇点。 2) 定常流动中,流线形状不变,与迹线重合;在非定常流场中流线形状随 时间而改变,与迹线不重合,每一瞬时的流线形状均不同。 值得注意的是,流线难以直接观察与演示,即使用高速摄影技术也只能拍 得流线的近似图像, 现代的流线显示技术一般都是通过显示脉线来间接的显示流 线。 所谓脉线,指在某瞬时将在此瞬时之前某时间段内相继通过某固定点的流 体质点连成的线。脉线的概念即体现了拉格朗日观点,又体现了欧拉观点。在无 风的环境中,烟头冒出的一缕烟丝就是脉线。从消防水龙头喷口中喷出的水柱线 也是脉线,当摇晃喷口时脉线呈现出蜿蜒的蛇形。 6. 流线微分方程
移加速度或位移加速度,表示因流体质点位置的变化而引起的速度的变化,它是 由流场的不均匀性引起的。 加速度的各方向分量: ax x x x y x z x t x y z y t x y x y y y z y z
ay
az
z x z y z z z t x y z
3.随体导数(物质导数) 欧拉法求流体质点的其他物理量的导数一般表达式都与通过速度求导得到 加速度的方法类似,称为该物理量的随体导数,也叫物质导数或质点导数。如流 体的某种物理量为 N,则该物理量的随体导数为: d ( N ) ( )( N ) dt t 式中, N 为 N 的当地变化率,也叫当地导数; ( ) N 为 N 的迁移变化率,也 t dp p p p p ( ) p x y z dt t t x y z d ( ) x y z dt t t x y z 对于不可压缩流体, d 0。 dt
工程流体力学答案第三章(杜广生)习题解答
p1 p +z1 2 +z2 = w 1 H g g
由式(3) 、 (7)得:
2 2 w 1 H = 2g
12
2g
(8)
第 4 页 共 25 页
《工程流体力学(杜广生) 》习题答案
q d V 2 2 d q dA( x) 1 dA( x) qV A( x) = qV = ax x x = V 2 3 dx A( x) dx A( x) A ( x) dx A ( x) dx
6. 解:
根据已知条件,有:
x
dx dy y x , y ,代入流线微分方程: = 可得: x y 2 (x y ) 2 (x y )
y t x y x y y y z y z 0 0 9y 0 9y
ay
az
z x z y z z z 0 0 0 8z3 8z3 t x y z
3 2 3
根据不可压缩管流连续性方程: 1 A1 =2 A2 , 代入已知参数,可以得到:
1 1 0.3 0.52 =2 0.0382 ,求解方程,可得: 2 =51.94m /s 4 4
14. 解:
列 1-1,2-2 缓变流截面的伯努利方程:
1a21
2 p1 2a p 2 z1 z2 2 +hw (1) 2g 2g g g
ax
x x x y x z x 1 0+(xz t )z xy 2 1 (xz t )z xy 2 t x y z
y t x y x y y y z y z 1 (yz t )z 0 x 2 y 1 (yz t )z x 2 y
流体力学课件第三章例题与习题
uz
ux z
2 2(2t 2x 2 y) 2(t y z) 0(t x z) t3 x2, y2,z1
ay
Du y Dt
u y t
ux
u y x
uy
u y y
uz
u y z
az
Du z Dt
uz t
ux
uz x
uy
uz y
uz
uz z
习题 3-8
u
x
u y
xy2 1
ln
y
C1
ln( x 2) ln( z 3) C2
经过空间点 (3,1,4)
流线方程为:
ln( x 2) 1 ln y
3
ln( x 2) ln( z 3)
CC12
0 0
x
1
y3
2
x z 1
例题:已知某平面流场速度分布为:
ux
t
x 3
uy y 2
求其流线方程和迹线方程。
ln( x t)( y t) C
t=0时过(-1,-1)
C0
xy 1
例题:已知某平面流场速度分布为:
ux x t uy y t
求在t=0时过(-1,-1)其流线方程和迹线方程。
解:
迹线方程:
dx dy dt
xt yt
dx xt
dt
dy
dt
y t
dx ddyt dt
t 3) t
ln
ln C1 C2
x 3
y C2eC1 2
x C1(t 3)
y
C2et
2
例题:已知某平面流场速度分布为:
ux x t uy y t
求在t=0时过(-1,-1)其流线方程和迹线方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
当管中流动的流体为水 1 h 12.6h
u 2g 12.6h 29.80712.6 0.06 3.85m s
当管中流动的流体为油
1 h 133.4 0.8 9.807 h 16h
0.8 9.807
u 2g 16h 2g 16 0.06 4.31m s
2
3-19 由断面为0.2m2和0.1m2的两根管子所组成的水平
17
提问
• 什么是总水头?什么是测压管水头? • 流动过程中的损失分哪两类?它们在总水头
线上如何表示? • 恒定气流能量方程式是怎样的? • 什么是静压?动压?位压?全压?势压?总
压? • 当高差甚小或容重差甚小时,气流能量方程
可简化为什么形式?
18
29.4kpa
1
H=4m
S1 0.2m 2
V1
2 S2
0.1m 2
4
V2
列1、2断面的能量方程
4 0 0 0 0 v22 4 v12 3 v22 2g 2g 2g
根据连续性方程
v1
S2 S1
v2
1 2
v2
4 4 v22 4 v12 5 v22 2g 2g 2g
1段中点的压强 4 0 0 0 p1 v12 2 v12
15
提问
• 恒定元流能量方程是怎样的?各项的含义 是什么?方程的推导是在什么条件下得到 的?
• 什么是均匀流?均匀流过流断面上的压强 分布是怎样的?
• 恒定总流伯努利方程是怎样的?
16
提问
• 恒定总流能量方程式的推导是在什么前 提条件下进行的?
• 节流式流量计有哪三种? • 文丘里流量计的工作原理是什么? • 节流式流量计的缺点是什么?为什么?
11.76kpa
各段的损失
4 v12 4 1.982 0.8m 2g 2*9.8
3 v22 4 3.962 2.4m 2g 2*9.8
H=4m
总水头线
4.0m
3.2m 3.0m
测压管水头线
0.8m 60
3-26 总水头线
测压管水头线
7
总水头线 测压管水头线
8
总水头线 测压管水头线
9
总水头线 测压管水头线
10
p1 v12 v22
2g 2g
p1 v22 v12
2g 2g
v1
Q A1
0.4 0.42
3.18m s
4
v2
A1v1 A2
0.42 0.12
3.18 51m s
p1 512 3.182 132m
2g 2g
p1 h 132 9.807 1300 KN m2
p1A1 Rx Qv2 Qv1
V1
S2 03.1m 2
V2
【解】 列1、2断面的能量方程
4 0 0 0 0 v22 2g
根据连续性方程
v2 8*9.8 8.85m/ s
v1
S2 S1
v2
0.5 * 8.85
4.43m
/
s
求A点的压强: 4 0 0 0 pA v12
2g
pA
(4
4.432 ) *9.8*103 2 * 9.8
输水管系从水箱流入大气中,不计损失求:
(a)求断面流速v1和v2? (b)绘总水头及测压管水头线;
(c)求进口A点的压强
计损失,第一段为4源自v12 2g,第二段为3
2v2g2 求:
(a)求断面流速v1和v2?
(b)绘总水头及测压管水头线;
(c)根据水头线求各段中点的进口的压强
H=4m
S1 0.2m 2
第3章 习题讲解
3-12 水银比压计测量管中水流,过流断面中点流速如图 测得A点的比压计读数Δh=60mm汞柱 (1)求该点的流速? (2)若管中流体是密度为0.8kg/cm3的油,Δh不变,
该点流速为多少?不计损失
【解】 pB u2 pA
2g
u2 pA - pB (1 - )h
B
2g
2g 2g
v2 3.69m / s v1 1.98m / s
p1
(4
3*
1.982 ) *9.8*103 2 * 9.8
33.3kpa
5
2段中点的压强
4 0 0 0 p2 v22 4 v12 1.5 v22
2g 2g 2g
p2
(4
2.5 *
3.962 2 * 9.8
4
1.982 ) *9.8*103 2 * 9.8
11
Rx
p1 A1
Q(v1
v2 )
13000
4
0.42
1000 0.4(3.18 51)
143.4KN
Ry 0
F 143.4 12KN 12
12
补充例题
1、水由铅直管中流出,求流量以及测压管读数。 不计损失
50mm
1mm
3m
D=0.3m 1.5m
13
3-23
14
提问
• 描述流体运动的两种方法是什么? • 什么是恒定流?什么是均匀流? • 什么是流线和迹线? • 流线有什么性质? • 什么是流管、流束? • 什么是过流断面? • 连续性方程的数学表达是怎样的?