血液凝固调节系统53页PPT文档
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系及循环单核细胞中也有发现,但其合成场所目前还不能肯 定。人血及尿中还存在一种相对分子质量略低于细胞型TM的 可溶性TM。
内皮细胞蛋白C受体 自从1994首先在 内皮细胞表面发现存在一种穿膜的蛋白 受体,它可以影响活化蛋白C的活性,并 对整个蛋白C调节血液凝固作用有作用。 迄今对这种被称为EPCR的物质还不太了 解。但有几点是可以肯定的:①由内皮 细胞合成;②贮存于内皮细胞胞质中; ③在炎性反应时可表达内皮细胞表面; ④在胚胎细胞中就可检测出EPCR的基因。
AT缺乏是发生静脉血栓与肺栓塞的常 见原因之一,但与动脉血栓形成关系不 大。目前对先天性AT缺乏的分子机制研 究报道很多,获得性AT缺乏一般因合成 障碍(如肝受损)或消耗过度(DIC、脓 毒血症、深静脉血栓、急性早幼粒细胞 白血病等)所致。
生理性抗凝蛋白(2) ——蛋白C系统
目前认为蛋白C系统除蛋白C(protein C,PC)外,还包括蛋白S(protein S, PS)、血栓调节蛋白(thrombomodulin, TM)和内皮细胞蛋白C受体(endothelial protein C receptor,EPCR)。
• 对血液凝固系统的调节,使其改变凝血性质,减 少纤维蛋白的形成、降低各种凝血因子的活化水平 就是抗血液凝固作用。与此作用相关的生理性物质 组成了抗血液凝固系统。在其中应该包括血管内皮 细胞合成分泌抗凝物质、光滑内皮阻止血小板活化 和纤维蛋白的沉积的抗凝作用,以及单核-巨噬细胞 对活化凝血因子消除作用的抗凝功能体现。但这种 细胞承担的抗凝作用机制不明,目前的检测技术不 足以说明细胞抗凝能与生理性抗凝蛋白作用相比。 因此,本节主要阐述血液中生理抗凝蛋白的作用和 特性。广义上,对纤维蛋白的降解以及有关酶类对 活化凝血因子的消除都是对血液凝固的调节。因此, 纤溶系统也可算作抗凝系统的一部分。
激活的VIIa非常稳定,即使在肝素存在 时,AT对它的灭活也很缓慢。已知TFPI 是主要的调节物。TFPI可以直接抑制活 化的X(Xa),并以依赖Xa的形式在Ca2+ 存在条件下抑制TF/VIIa复合物。
TFPI对Xa的抑制通过形成1:1复合物 的形式来实现,这步不需要Ca2+参与。但 TFPI结合于Xa的活性中心,形成TFPI-Xa 后,需在Ca2+存在下与TF/VIIa形成多元 复合物。在这种结合中,Xa的富含γ梭 基谷氨酸区域(Gla区)是不可缺少的, 因此这是Ca2+的结合位点。
肝素和抗凝血酶的抑酶作用
Heparin Antithrombin
Thrombin
除肝以外,其他脏器如肺、脾、肾、心、肠、 脑等也有合成AT的能力,血管内皮细胞、巨核细 胞也是AT的合成场所。
AT的抑酶谱很广,除凝血酶外,它还能抑制凝 血因子Xa、IXa、Xla、XIIa以及纤溶酶、胰蛋白 酶、激肽释放酶等。作用机制都是相同的,通过 形成1:1共价复合物而灭活这些活性因子或蛋白 酶。肝素作用于AT的赖氨酸残基从而大大增强AT 的抗凝酶活性(2000倍以上)。利用培养的J82 细胞研究发现,AT -heparin可有效抑制VIIa/TF 复合物,这一作用甚至可被因子X和XI加强,已 证明这种抑制并不是由TFPI所引起的,也不需要 Xa的活性丝氨酸残基。
生理性抗凝蛋白(3)
——组织因子途径抑制物
TFPI是一单链糖蛋白,血浆含量为(54~ 142)μg/L,均值100μg/L。TFPI属于Kunitz 族丝氨酸蛋白酶抑制物,即分子中含有 Kunitz结构。这一族的典型分子是抑肽酶 (aprotinin)。除血浆中存在TFPI以外,血 小板的α颗粒及溶酶体中也有TFPI,含量为 8μg/L,是由巨核细胞合成的,血小板活化 后也会释放入血浆。此外,发现体内活化的 巨噬细胞可能合成TFPI。
Thrombus
VIIIai
蛋白C系统是微循环抗血栓形成的主要 血液凝固调节物质。蛋白C系统的活化随 着凝血酶的产生并与内皮细胞表面的血 栓调节蛋白TM形成复合物而启动。此时, 若内皮细胞表面表达了EPCR,则可与蛋 白C结合,结合于EPCR的蛋白C可被TM与 凝血酶复合物激活,使蛋白C切下12氨基 酸 的 多 肽 。 ( 蛋 白 C 肽 , Protein C peptide, PCP)。
PC由肝细胞合成,是一个依赖维生素K的蛋白质,因此与 凝血因子IX、X及凝血酶原等有很高的同源性,分子结构分 为γ羧基谷氨酸区(Gla区),EGF区(PC有两个EGF结构) 及含有活性位点的丝氨酸蛋白酶区段。
PS也是由肝细胞合成的依赖维生素K的蛋白质,PS是维 生素K蛋白质中碱性最大的一种。人类PS有10个γ羧基谷氨 酸残基(牛PS有11个),此外分子中还有1个很短的凝血酶 敏感区和4个EGF样结构。
TM是一相对分子质量为74000的单链糖蛋白,与PC分子具 有同源性,EGF区(共6个,236aa,凝血酶的结合点即位于 该区)、Ser/Thr富含区(34aa)、跨膜区(23aa)、C端为 38aa的胞内区。已知TM存在于除脑血管外的所有血管内皮细 胞中,淋巴管内皮细胞、成骨细胞、血小板、原始巨核细胞
生理性抗凝蛋白(1)
——抗凝血酶
抗凝血酶(antithrombin, AT)是主要的生理 性血浆抗凝物质,尤其对凝血酶的灭活能力占 所有抗凝蛋白的70%~80%。
AT与丝氨酸蛋白酶作用的活性位点位于 Arg393-Ser394处,蛋白酶攻击该键使其裂解并 引起AT变构,从而形成AT与酶1:1复合物, 这种共价结合是不可逆的,但能被肝素或硫酸 乙酰肝素(heparan sulfate)大大加强。AT与 其他丝氨酸蛋白酶抑制物如α1-AT、α2-AP、 HC-II、Nexin及PAI等在氨基酸序列结构上具有 同源性。
蛋白 C 的抗凝途径
Blood Flow
EPCR Protein C
Thrombin
Thrombus
血管损伤处发生的血栓
Thrombin
APC
Thrombomodulin
损伤处下游的抗凝作用
蛋白 C 的主要抗凝作用
Blood Flow
VVaiai
Baidu Nhomakorabea
Factor V Leiden
Va APC
PS
VIIIa APC PS
内皮细胞蛋白C受体 自从1994首先在 内皮细胞表面发现存在一种穿膜的蛋白 受体,它可以影响活化蛋白C的活性,并 对整个蛋白C调节血液凝固作用有作用。 迄今对这种被称为EPCR的物质还不太了 解。但有几点是可以肯定的:①由内皮 细胞合成;②贮存于内皮细胞胞质中; ③在炎性反应时可表达内皮细胞表面; ④在胚胎细胞中就可检测出EPCR的基因。
AT缺乏是发生静脉血栓与肺栓塞的常 见原因之一,但与动脉血栓形成关系不 大。目前对先天性AT缺乏的分子机制研 究报道很多,获得性AT缺乏一般因合成 障碍(如肝受损)或消耗过度(DIC、脓 毒血症、深静脉血栓、急性早幼粒细胞 白血病等)所致。
生理性抗凝蛋白(2) ——蛋白C系统
目前认为蛋白C系统除蛋白C(protein C,PC)外,还包括蛋白S(protein S, PS)、血栓调节蛋白(thrombomodulin, TM)和内皮细胞蛋白C受体(endothelial protein C receptor,EPCR)。
• 对血液凝固系统的调节,使其改变凝血性质,减 少纤维蛋白的形成、降低各种凝血因子的活化水平 就是抗血液凝固作用。与此作用相关的生理性物质 组成了抗血液凝固系统。在其中应该包括血管内皮 细胞合成分泌抗凝物质、光滑内皮阻止血小板活化 和纤维蛋白的沉积的抗凝作用,以及单核-巨噬细胞 对活化凝血因子消除作用的抗凝功能体现。但这种 细胞承担的抗凝作用机制不明,目前的检测技术不 足以说明细胞抗凝能与生理性抗凝蛋白作用相比。 因此,本节主要阐述血液中生理抗凝蛋白的作用和 特性。广义上,对纤维蛋白的降解以及有关酶类对 活化凝血因子的消除都是对血液凝固的调节。因此, 纤溶系统也可算作抗凝系统的一部分。
激活的VIIa非常稳定,即使在肝素存在 时,AT对它的灭活也很缓慢。已知TFPI 是主要的调节物。TFPI可以直接抑制活 化的X(Xa),并以依赖Xa的形式在Ca2+ 存在条件下抑制TF/VIIa复合物。
TFPI对Xa的抑制通过形成1:1复合物 的形式来实现,这步不需要Ca2+参与。但 TFPI结合于Xa的活性中心,形成TFPI-Xa 后,需在Ca2+存在下与TF/VIIa形成多元 复合物。在这种结合中,Xa的富含γ梭 基谷氨酸区域(Gla区)是不可缺少的, 因此这是Ca2+的结合位点。
肝素和抗凝血酶的抑酶作用
Heparin Antithrombin
Thrombin
除肝以外,其他脏器如肺、脾、肾、心、肠、 脑等也有合成AT的能力,血管内皮细胞、巨核细 胞也是AT的合成场所。
AT的抑酶谱很广,除凝血酶外,它还能抑制凝 血因子Xa、IXa、Xla、XIIa以及纤溶酶、胰蛋白 酶、激肽释放酶等。作用机制都是相同的,通过 形成1:1共价复合物而灭活这些活性因子或蛋白 酶。肝素作用于AT的赖氨酸残基从而大大增强AT 的抗凝酶活性(2000倍以上)。利用培养的J82 细胞研究发现,AT -heparin可有效抑制VIIa/TF 复合物,这一作用甚至可被因子X和XI加强,已 证明这种抑制并不是由TFPI所引起的,也不需要 Xa的活性丝氨酸残基。
生理性抗凝蛋白(3)
——组织因子途径抑制物
TFPI是一单链糖蛋白,血浆含量为(54~ 142)μg/L,均值100μg/L。TFPI属于Kunitz 族丝氨酸蛋白酶抑制物,即分子中含有 Kunitz结构。这一族的典型分子是抑肽酶 (aprotinin)。除血浆中存在TFPI以外,血 小板的α颗粒及溶酶体中也有TFPI,含量为 8μg/L,是由巨核细胞合成的,血小板活化 后也会释放入血浆。此外,发现体内活化的 巨噬细胞可能合成TFPI。
Thrombus
VIIIai
蛋白C系统是微循环抗血栓形成的主要 血液凝固调节物质。蛋白C系统的活化随 着凝血酶的产生并与内皮细胞表面的血 栓调节蛋白TM形成复合物而启动。此时, 若内皮细胞表面表达了EPCR,则可与蛋 白C结合,结合于EPCR的蛋白C可被TM与 凝血酶复合物激活,使蛋白C切下12氨基 酸 的 多 肽 。 ( 蛋 白 C 肽 , Protein C peptide, PCP)。
PC由肝细胞合成,是一个依赖维生素K的蛋白质,因此与 凝血因子IX、X及凝血酶原等有很高的同源性,分子结构分 为γ羧基谷氨酸区(Gla区),EGF区(PC有两个EGF结构) 及含有活性位点的丝氨酸蛋白酶区段。
PS也是由肝细胞合成的依赖维生素K的蛋白质,PS是维 生素K蛋白质中碱性最大的一种。人类PS有10个γ羧基谷氨 酸残基(牛PS有11个),此外分子中还有1个很短的凝血酶 敏感区和4个EGF样结构。
TM是一相对分子质量为74000的单链糖蛋白,与PC分子具 有同源性,EGF区(共6个,236aa,凝血酶的结合点即位于 该区)、Ser/Thr富含区(34aa)、跨膜区(23aa)、C端为 38aa的胞内区。已知TM存在于除脑血管外的所有血管内皮细 胞中,淋巴管内皮细胞、成骨细胞、血小板、原始巨核细胞
生理性抗凝蛋白(1)
——抗凝血酶
抗凝血酶(antithrombin, AT)是主要的生理 性血浆抗凝物质,尤其对凝血酶的灭活能力占 所有抗凝蛋白的70%~80%。
AT与丝氨酸蛋白酶作用的活性位点位于 Arg393-Ser394处,蛋白酶攻击该键使其裂解并 引起AT变构,从而形成AT与酶1:1复合物, 这种共价结合是不可逆的,但能被肝素或硫酸 乙酰肝素(heparan sulfate)大大加强。AT与 其他丝氨酸蛋白酶抑制物如α1-AT、α2-AP、 HC-II、Nexin及PAI等在氨基酸序列结构上具有 同源性。
蛋白 C 的抗凝途径
Blood Flow
EPCR Protein C
Thrombin
Thrombus
血管损伤处发生的血栓
Thrombin
APC
Thrombomodulin
损伤处下游的抗凝作用
蛋白 C 的主要抗凝作用
Blood Flow
VVaiai
Baidu Nhomakorabea
Factor V Leiden
Va APC
PS
VIIIa APC PS