华理线性代数第8册参考答案
华南理工2020年线性代数与概率统计随堂练习答案
当前页有8题,你已做8题,已提交8题,其中答对8题。
1.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:3.(单选题)%答题: A. B. C. D. (已提交)参考答案:B问题解析:4.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:5.(单选题)答题: A. B. C. D. (已提交)参考答案:C}问题解析:6.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:7.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:8.(单选题)·答题: A. B. C. D. (已提交)参考答案:B问题解析:1.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:-2.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:4.(单选题)答题: A. B. C. D. (已提交)>参考答案:D问题解析:5.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:6.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:)7.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:8.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:9.(单选题)答题: A. B. C. D. (已提交)|参考答案:B问题解析:10.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:【2.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:4.(单选题)答题: A. B. C. D. (已提交)、参考答案:A问题解析:5.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:》2.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:C选题)答题: A. B. C. D. (已提交)参考答案:C[问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:4.(单选题)"答题: A. B. C. D. (已提交)参考答案:B问题解析:5.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:6.(单选题)答题: A. B. C. D. (已提交)参考答案:C;问题解析:7.(单选题)答题: A. B. C. D. (已提交)参考答案:D选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:2.(单选题)答题: A. B. C. D. (已提交)&参考答案:B问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:4.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:)5.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:6.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:7.(单选题)答题: A. B. C. D. (已提交){参考答案:B问题解析:8.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:9.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:@10.(单选题)答题: A. B. C. D. (已提交)参考答案:B.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:D-问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:4.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:5.(单选题)'答题: A. B. C. D. (已提交)参考答案:A问题解析:6.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:7.(单选题)答题: A. B. C. D. (已提交)参考答案:C(问题解析:8.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:9.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:10.(单选题)&答题: A. B. C. D. (已提交)参考答案:D单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:A选题)'答题: A. B. C. D. (已提交)参考答案:D问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:A!问题解析:4.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:5.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:6.(单选题).答题: A. B. C. D. (已提交)参考答案:C问题解析:7.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:8.(单选题)答题: A. B. C. D. (已提交)参考答案:D…问题解析:9.(单选题)答题: A. B. C. D. (已提交)参考答案:C题)答题: A. B. C. D. (已提交)参考答案:D问题解析:2.(单选题)答题: A. B. C. D. (已提交)[参考答案:B单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:3.(单选题):答题: A. B. C. D. (已提交)参考答案:B(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:(3.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:4.(单选题)甲乙两人同时向目标射击,甲射中目标的概率为,乙射中目标的概率是,两人同时射中目标的概率为,则目标被射中的概率为()A.;B.;C.;D..<答题: A. B. C. D. (已提交)参考答案:C问题解析:5.(单选题)答题: A. B. C. D. (已提交)参考答案:D选题)答题: A. B. C. D. (已提交)]参考答案:D问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:A&4.(单选题)设有甲、乙两批种子,发芽率分别为和,在两批种子中各随机取一粒,则两粒都发芽的概率为()A.; B.; C.; D..答题: A. B. C. D. (已提交)参考答案:B问题解析:5.(单选题)设有甲、乙两批种子,发芽率分别为和,在两批种子中各随机取一粒,则至少有一粒发芽的概率为()"A.; B.; C.; D.答题: A. B. C. D. (已提交)参考答案:C问题解析:6.(单选题)设有甲、乙两批种子,发芽率分别为和,在两批种子中各随机取一粒,则恰有一粒发芽的概率为()A.; B.; C.; D.…答题: A. B. C. D. (已提交)参考答案:D选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:D?问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:4.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:5.(单选题)(答题: A. B. C. D. (已提交)参考答案:C选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:·3.(单选题)答题: A. B. C. D. (已提交)参考答案:B单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:C…问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:4.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:5.(单选题).从一副扑克牌(52张)中任意取出5张,求抽到2张红桃的概率A ;B ;C ;D答题: A. B. C. D. (已提交)参考答案:B选题)答题: A. B. C. D. (已提交))参考答案:C问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:%4.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:5.(单选题)答题: A. B. C. D. (已提交)参考答案:A1.(单选题)答题: A. B. C. D. (已提交)参考答案:B)问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:4.(单选题)[答题: A. B. C. D. (已提交)参考答案:C问题解析:5.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:1.(单选题) 设随机变量X的分布列为则分别为().A.,;B., ;C., ;D., .答题: A. B. C. D. (已提交)参考答案:D…问题解析:2.(单选题) 一批产品分为一、二、三等品及废品,产值分别为6元、5元、4元、0元,各等品的概率分别为,,,,则平均产值为().A.元;B.元;C.元;D.元.答题: A. B. C. D. (已提交)参考答案:B问题解析:3.(单选题) 已知随机变量X在服从均匀分布,试求为()A.B.C.D.答题: A. B. C. D. (已提交)参考答案:B问题解析:4.(单选题) 设随机变量X的密度函数,则下列关于说法正确的是()A.=0B.C.D.@答题: A. B. C. D. (已提交)参考答案:A问题解析:5.(单选题) 设随机变量X的密度函数,则下列关于=?A. ;B. ;C. ;D. .答题: A. B. C. D. (已提交)参考答案:C1.(单选。
线性代数参考答案(部分)
解:将行列式按第一列展开得
Dn = x (−1)1+1
x 0 0
y x 0
0 y 0
L L L
0 0 x
L L L L L
+ y (−1) n +1
y x 0
0 y 0
L L L
0 0 x
0 0 y
L L L L L
= x n + ( −1) n +1 y n
说明:请注意这种形式的行列式! 2. 含参数行列式的计算
x
yபைடு நூலகம்
0
L
0
0
0 x y L 0 0 Dn = L L L L L L 0 y 0 0 0 0
3
L L
x 0
y x
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
1+ a 1 1 1 a + 10 a + 10 a + 10 a + 10 2 2+a 2 2 2 2+a 2 2 解: D4 = = 3 3 3+ a 3 3 3 3+ a 3 4 4 4 4+a 4 4 4 4+a
= ( a + 10) 1 1 2 2+a 3 4
3
1 2 3+ a 4
1 2 3 4+a
−2 λ +1 −2
2 λ +3
1 1
−2 −2
2 −k λ +3
=
k −4
− k = (λ − 1) 0 λ + 1
= (λ − 1) 0 λ + 1
线性代数习题及答案-华南理工大学工版
习题一1.计算下列排列的逆序数 1)9级排列 134782695; 2)n 级排列 (1)21n n -。
解:(1)(134782695)04004200010τ=++++++++= ;(2)[(1)21]n n τ-=(1)(1)(2)102n n n n --+-+++=。
2.选择i 和k ,使得: 1)1274i 56k 9成奇排列;2)1i 25k 4897为偶排列。
解:(1)令3,8i k ==,则排列的逆序数为:(127435689)5τ=,排列为奇排列。
从而3,8i k ==。
(2)令3,6i k ==,则排列的逆序数为:(132564897)5τ=,排列为奇排列。
与题意不符,从而6,3i k ==。
3.由定义计算行列式11122122313241424344455152535455000000000a a a a a a a a a a a a aaaa 。
解:行列式=123451234512345()12345(1)j j j j j j j j j j j j j j j a a a a a τ-∑,因为123,,j j j 至少有一个大于3,所以123123j j j a a a中至少有一数为0,从而12345123450j j j j j a a a a a =(任意12345,,,,j j j j j ),于是123451234512345()12345(1)j j j j j j j j j j j j j j j a a a a a τ-=∑。
4.计算行列式:1)402131224---; 2)1111111*********----; 3)41241202105200117;4)1464161327912841512525--;5)2222222222222222(1)(2)(3)(1)(2)(3)(1)(2)(3)(1)(2)(3)a a a a b b b b c c c c d d d d ++++++++++++。
华南理工大学线性代数 课后习题答案
n
0 0 0
0
0 0 0
解:D (1) n 1 0
习题一部分讲解
第 一 章 7 题 : 求 A 2 和 A 2 n 1 , 其 中 1 1 A 1 1 1 1 2 解: A 1 1 4 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 4 0 0 0 1 4 0 0 0 4 0 0 0 4 0 0 1 1 1 1
T
a11 证: 设A a n1 c11 T 令AA C c n1
a1n ann c1n O cnn
n k 1
n k 1
n k 1
aik aik aik 2 =0 (i=1,2,...,n) cii aik aki 则 aik 0 (i 1, 2,..., n; k 1, 2,..., n) 0 0 所以,A O 0 0 第一章14 题: (E A)(E A A A ) E
(是方阵)
(2) (En uu )(En uu ) En ( (u u ) )uu En
T T T T
令
当u O, 矩阵uu T O, 则数( (u T u ) ) 0 当 u u 1 0,
T
uT u 1
第一章25题 : 设 A为 n阶矩阵, x是每个元素都是1的 n维列向量。 证明:(1) 列向量 Ax的 第 i个 元 素等于 A的 第 i行 元素之和 ; 1 a11 a1n 证: 记 A , x a n1 ann 1 a11 a12 a1n 1 n a1 j A第1行 元素之和 a21 a22 a2 n j 1 Ax 1 n A第 n行 元素之和 a a 1 nj a a n2 nn n1 j 1 所以,列向量 Ax的第 i个元素等于 A的第 i行 元素之和
华理线代答案8 khdaw
就等于 A 的最小特征值 λ1 ).
证明: tI + A > 0 等价于二次型 f (x) = xT (tI + A)x > 0 ( x ≠ 0 ),由第 8 题的结论知: f (x) = xT (tI + A)x = txT x + xT Ax ≥ txT x + λ1xT x(其中 λ1 为 A 的 最小特征值) ,故取 t > −λ1 时有 f (x) = xT (tI + A)x > 0 ( x ≠ 0 ).
⎡2 0 0⎤ ⎥ 2 二次型的矩阵为 A = ⎢ ⎢0 3 a ⎥ ,且 A = 2(9 − a ) ,由 ⎢ ⎣0 a 3 ⎥ ⎦
2 2 2
2
2
2
1,2,5,故对应这三个特征值的特征向量线性无关。分别求出属于 这三个特征值的特征向量 ξ1 = [0,1,−1]T , ξ 2 = [1,0,0]T , ξ 3 = [0,1,1]T
⎛1 2 1 6 ⎜ 的正交变换矩阵为 P = ⎜1 2 − 1 6 ⎜ ⎜ 0 2 6 ⎝ 2 2 2 ~ 下的标准型为 f = −2 y − 2 y + 4 y .
后
答 案
~ 二次型 f 的矩阵的特征值为-2,-2,4. 对应的线性无关的特征向
网
ww
w.
3
课
1
2
2 2 f ( x1 , x 2 , x3 ) = tx12 + tx 2 + tx3 − 4 x1 x 2 − 4 x1 x3 + 4 x 2 x3
解:B. AB 未必对称,故不正定.
ww
⎛A ⎞ ⎟ 正定; (C) ⎜ ⎜ B⎟ ⎝ ⎠
(D) A* + B −1 正定.
华东理工大学线性代数册答案届版
华东理工大学线性代数作业簿(第一册)学院__________ 专业____________ 班级_______________ 学号__________ 姓名____________ 任课教师___________ 1.1 矩阵的概念1. 矩阵 A a ij 2i j 2 3.解:A2.设1 0 00 1 0 0 3 0 05 2A ,B 0 1 0 0 ,C 2 3 0, D0 3 00 40 0 10 0 4 1 0 0 3其中对角阵为___ ,三角阵有_解:对角阵为D;三角阵有A,C, D.1.2 矩阵的运算3 1 1 2 1 11. 已知2 3X O ,求矩阵X .2 0 23 1 1解:依题意,由3X 6422421311 4 3 3,1 1 1 5 ,41 1即得X 31 13 32. 如果矩阵A m n 与B t s 满足AB BA,试求m,n,t,s 之间的关系解:m nt s.3. 填空:4 3 1 7(1) 1 2 3 25 7 0 11(2) 1, 2, 3 23 ___________1(3) 2 1, 2 ;3__________________1 3 1214 0 0 1 2(4)1 1 3 4 1 3 14 0 235 1 2解:(1) 6 ;(2) 14;(3) 2 4 ;(4) 6 7820 5649 3 60104. 已知矩阵 A 0 0 1 ,试求与 A 可交换的所有矩阵 000解:由可交换矩阵的定义,知道所求矩阵必为 abc其为 B d e f ,于是有ghi010aAB 0 0 1 d000g abc0BA d e f 0ghi0def由 AB BA ,即得 g h i000由相应元素相等,则得 d gabc故 B 0 a b (a,b,c 均为任意常数) 为与 A 可交换的所有矩阵00a2a 33x 3 (a 12 a 21 )x 1x 2 (a 13 a 31) x 1 x 3 (a 23 a 32)x 2x 33 阶方阵,不妨设b c d e fe f = ghi ,h i 0 0 0 1 0 0 a b 0 1 0 d e , 0 00 g h0ab0 d e ,0gh h 0,a e i,b f ,a 11 a 12 a 13 x 1(1)x 1, x 2, x 3 a 21a 22 a 23 x 2 ;a 31a 32a 33x 35. 计算下列各题:解:原式等于: 2 a11x1 2 a22x21 33(2) A,求A 2008解:记 A,则A 2A 3 ,Q 2008 3669(3) 解: A9 200820071,1,13)669A .A 9.1,1,1 23 1,1,1 2328A2561 26. 利用等式17 62 3 2 0 7 335 1257 0 3 5 273 2 31 0,5 2 5 70 1,计算 1756.3512 .55解: 176 2 3 2 0 73 3197 12663512 5 7 0 3 527385 29227. 某公司为了技术革新,计划对职工实行分批脱产轮训,已知该 公司现有 2000 人正在脱产轮训,而不脱产职工有 8000人,若每 年从不脱产职工中抽调 30%的人脱产轮训, 同时又有 60%脱产轮 训职工结业回到生产岗位, 设职工总数不变, 令资料个人收集整理,勿做 商业用途0.7 0.6 8000 A , X0.3 0.42000试用 A 与 X 通过矩阵运算表示一年后和两年后的职工状况, 并据 此计算届时不脱产职工与脱产职工各有多少人 . 解:一年后职工状况为: AX 3200不脱产职工 6800 人,轮训职工 3200 人.6800 2 6680 两年后职工状况为: A A 2 X3200 3320不脱产职工 6680 人,轮训职工 3320 人. 218. 设矩阵 A 24 12 ,B求:(1) A T B T B T A T ; (2) A 2 B 2.解: (1) A T B T B T A T10 20 0 0 10 20 5 10 0 0 5 10 (2) A 2 B 22 1 2 13 1 314 24 2 6 2 620 0 15 5 15 5.0 0301030 10 .9. 设 A 是对称矩阵, B 是反对称矩阵,则( )是反对称矩阵(A ) AB BA; (B ) AB BA; (C ) (AB)2 ; (D ) BAB . 解:B.1 2 110.试将矩阵 A 3 0 12 23 解:11. 设 A 是反对称矩阵, B 是对称矩阵,试证: AB 是反对称矩阵 的充分必要条件为 AB BA. 证:必要性 :由(AB)Τ AB 及(AB)Τ B ΤA Τ B( A) BA 即得 AB BA. 充分性: 若 AB BA ,则(AB)Τ B ΤA Τ B( A) BA AB ,知 AB 是反对称阵 .表示成对称矩阵与反对称矩阵之和11A 12(A A T ) 12(A A T )1 5 3 0 1 12 2 2 2 53 1 0122 223 331 12 22212. 设 f (x) a m x m项式,f (A)1)2) 设A解:(1)f(a mm1am 1 1m a m 1xm a m A1L a1xm1a m 1A L证明 f (证明f (A)a0,记 f (A) 为方阵A的多a1A a0If ( 1)f ( 2)Pf ( )Pf(1) 0f ( 2)2) A A kf(A) f(P 1)Pf ( )P 13.设矩阵A a 1a m Pm11m12a1a1001aam 1m12 a1 a0k P 1mP1ma m 1P1P1a1P a0PP 1T2 T ,其中I 为n 阶单位阵,为n 维列向量,试证 A 为对称矩阵,且A2 I .证:A T(I 2 T )T I T2( T )T T2(T)T I 2 T 故 A 是对称矩阵,且T 2A2(I 2 T )(IT2T) 4T4 (( T T ))2 T I .(T)21.3 逆矩阵1. 设A为n 阶矩阵,且满足A2A ,则下列命题中正确的是().A) A O ;B) A I ;(C)若 A 不可逆,解:D.则A O ;( D )若 A 可逆,则A I.2. 设n阶矩阵A、(A)CA2B B、I;C 满足ABAC I ,则必有().(B)A T B T A T C T I ;(C)解:B.BA2C I;D)A2B2A2C2I .3.已知矩阵A 111111111111111,求A n及A 1(n是正整数).11证:由A2 4I ,即可得nnA n (A 2)2(4I)2 2nI, n 为偶数 An 1A n 1A (4I) 2 A 2n 1A, n 为奇数及 A (1A ) I ,亦即 A 1 1A . 444. 已知 n 阶矩阵 A 满足 A 2 2A 3I O ,求: A 1, (A 2I) 1, (A 4I) 1.( A 2I ) 解:依题意,有 A (A 2I ) 3I ,即 A(A 2I)I ,故311A 1 (A 2I );( A 2I )1A ,33再由已知凑出 (A 4I)(A 2I) 5I ,即得11(A 4I) 1 1(A 2I).55. 设 A 、 B、ABI 为同阶可逆阵, 试证: (1) A B 1 可逆;(2) AB 11A 1也可逆,且有AB1111A 1ABA 证:(1) AB 1ABB 1B 1(A B I)B1A B 1 可逆(2)证法 一:AB 11A 1A B11A B11A B 1 A 1AB11I IB1A 1AB A B 1(ABAA)1AB 11A 1可逆,且 AB 1 1A 11ABA A .证法二: 由(1)得 AB 11B(AB I) 1 ,因此1A B 1 A 1(ABA A) B(AB I) 1 A 1 (ABA A) 11B(AB I) 1(AB I)A A 1A(BA I) BA BA I I1 1 1 11A B 1 A 1可逆,且 A B 1 A 1 ABA A .。
华东理工大学线性代数习题答案-第二章
第二章 行列式一、习题解答2.1(1)解:逆序数(4132)4τ= (2)解:(36195)4τ= (3)解:(3)(2)(21(1)...3)12n n n n τ---=+2.2解:根据行列式的定义,每个乘积均由来自不同行不同列的元素组成,当来自不同行不同列的元素的行标为自然排列时,其列标的逆序数决定了该乘积项的符号,根据观察,出现4x 的只有主对角线上的四个元素的相乘项11223344a a a a ,该项为(1234)(1)236x x x x x τ-⋅⋅⋅⋅=,故4x 的系数为6,而可以出现3x 的乘积项有两项,它们是1221334414223341,,a a a a a a a a 即分别为3)4231(3)1234(33)1(,331)1(x x x x x x x x -=⋅⋅⋅⋅--=⋅⋅⋅⋅-ττ两项相加,即知3x 的系数为6-。
2.3(1)解:将行列式的2,3,4列全加到第一列后,再提公因子,得原式=121314(1)(1)(1)3111111111113011101101003331(1)(1)(1)3310111010010311011100001r r r ----===⋅⋅-⋅-⋅-=--- (2)解:原式=5514000100200275(1)51(1)036036941011410115++⋅-=⋅⋅--=130352(1)10(01043)120410+-⋅⋅-=-⋅⋅-⋅=(3)解:原式=1213142112312311(1)359(1)(1)3293(1)32581752418252212215+++⋅-+-⋅-+⋅-=--=-----(4)解:原式=342312222222222222(1)22222222(1)(1)222222221234213243543243546543546576r r r -------=--------=14916149163579357905791122227911132222==(5)解:原式=12312312456133310025789333=⋅=⋅= 2.4(1)解:原式=2()12()2()12()1x y yx y yx y x y x yxx y x yx x y xyxy+++++=+++=12()02()10yx yx yx y xy x y x y xx yx+-+-=+⋅⋅----=22332()()2()x y x xy y x y ⎡⎤+--+=-+⎣⎦(2)解:原式=1411(1)0a b cb ac b a cb ac b a cc a a b b c c a a b b c b c ab c a+------=⋅------- =1()11ab c a b cbcc aa b b c c a b a b c a b bc a b c a c a -------==++ =21()0()()()()0bca b c a b b c a b c a b a c b c c b a c⎡⎤++--=++--+-⎣⎦--=3333a b c abc ++-(3)解:原式2143(1)(1)0011001111111100001111111111r r x x x xxyy y y y----==--= 22111111111100110000110011y x y x xy yx xy=--=--2.5(1)证:将左端行列式的底2,3列加到第一列,则第一列元素全为零,由行列式性质, 得证。
华理线性代数第8册参考答案
华东理工大学线性代数 作业簿(第八册)学 院____________专 业____________班 级____________学 号____________姓 名____________任课教师____________6.1 二次型及其标准型1. 填空题(1)设三阶矩阵A 的行列式为0,且有两个特征值为1,1-,矩阵A 与B 合同,B 与C 合同,则矩阵C 是_____阶矩阵,其秩_____)(=C r .解:三,2.(2) 设n 阶矩阵A 与正交阵B 合同,则_____)(=A r . 解:n . 因B 为正交阵,故B 可逆.A 与B 合同即存在可逆矩阵C ,使得B AC C =T ,故)()(B r A r ==n .(3)二次型211221)(),,,(∑∑==-=⋅⋅⋅ni i ni i n x x n x x x f , 则此二次型的矩阵=A , 二次型的秩为______, 二次型的正交变换标准型为________________.解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------1 (11)...1...111...11n n n ,1-n ,222121,n ny ny ny -++⋅⋅⋅+ 提示:二次型的秩就是二次型的矩阵的秩,也是其标准型中非零项的个数(注:标准型不唯一). 因此求二次型的秩有两种方法:1) 直接求二次型的矩阵A 的秩,2)先求A 的特征值,A 有几个非零特征值(重根按重数计算),二次型的秩就是几.(4) 二次型,)(T Ax x x f = 其中A A ≠T ,则二次型的矩阵为_____ ____.解:)(21T A A +. 提示:A 不是二次型的矩阵,因A 不是对称阵。
注意到Ax x x f T )(=的值是一个数,即)()(T x f x f =,故有x A A x x f x f x f )(21)]()([21)(T T +=+=. 而)(21T A A +为对称阵.(5) 设n 元(n >2)实二次型()T f x x Ax = )(T A A =其中的正交变换标准型为22212y y -,则=A ______,矩阵A 的迹为 _____.解:0, 1-. 提示:A 的特征值为11,λ=22,λ=-30n λλ=⋅⋅⋅==,根据A A tr ni ini i ==∏∑==11),(λλ 易得.(6) 如果二次型2221231231213(,,)5526f x x x x x cx x x x x =++-+ 236x x - 的秩为2,则参数c = _____,1),,(321=x x x f 表示的曲面为__________.解:3, 椭圆柱面. 提示:二次型的矩阵33⨯A 的秩为2,故0||=A ,由此可求得c = 3. 再求出A 的特征值为9,4,0321===λλλ,即标准型为232294y y f +=,由此知1),,(321=x x x f 为椭圆柱面.2. 已知二次型322322213212332),,(x ax x x x x x x f +++=(0a >) 通过正交变换化成标准型23222152y y y f ++=,求a 的值及所用的正交变换矩阵Q .解:二次型的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=3030002a a A ,)9(22a A -=,由123A λλλ=即10)9(22=-a 得 2=a .A 有三个不同的特征值1,2,5,故对应这三个特征值的特征向量线性无关。
华理高数答案第8章
2(k 1) k
(1)
2k 2 , (k 1)
2(k 1) 2 , k
从而对(1)式用夹逼定理知 lim
n 0
sin x dx n
n
2
.
**7.若 lim a n a ,试证明 lim | an || a |
n
n
(a 0) ,反之如何?若 a=0 又如何?
证明: lim a n a ,则 0, N N ,当 n N ,有: a n a ,
n
而 | an | | a | | an a | , 若 a 0 ,不能由
n
lim a n a 。
n
n
lim a n a lim an a ,
证明:显见 xn 0 ,且 x n ( xn1
xn xn 1
1 xn 1 0, 2 xn 1
2
{xn } 单调下降,且有下界,
对 xn 所以
lim xn 存在。设此极限为 A,
n
1 1 1 1 ( xn1 ) 两边取极限得: A ( A ) , 解得 A 1 (舍负根). 2 A 2 xn1
则当 n=k+1 时,
xk 1 2 xk 2 2 2 ,
x n 2 , (n =1,2,„)
x n 1 x n 2 x n x n
2 2 xn xn
2 xn xn
( x n 2)( x n 1) 2 xn xn为 ,且
k
0
sin x dx 2 .
n
华理概率论答案第八册
x2 = 91, i
yi = 78 ,
y2 = 1376 , i
xi yi = 352 :
1) 计算销售额(y)与广费用(x)的相关系数 2) 求销售额对广告费用的直线回归方程
6
3) 若下月计划广告费支出 10 万元,试预测相应的销售额
解:1) 相关系数 R = Lxy =
n∑ xy − ∑ x∑ y
由水平 α
=
0.05
,查表得
U 1−
α
= U0.975
= 1.96 ,由于 Uˆ
< U0.975 ,
2
故接受 H0 ,即该日生产得零件直径的均值与标准值没有显著差异。
2.从一批矿砂中,抽取 5 个样品,测得它们的镍含量(单位:%)如下:
3.25 3.24 3.26
3.27 3.24
设镍含量服从正态分布,问:能否认为这批矿砂中镍含量的平均值为 3.25
计算检验统计量的值为Tˆ = X − μ0 = 112.8 −112.6 = 0.4659 , Sn−1 n 1.1358 7
由水平α = 0.05 ,查表得 t1−α (n −1) = t0.975 (6) = 2.4469 , 2
由于 Tˆ < t0.975 (6) ,故接受 H0 , 即可以认为热敏电阻测温仪间接测温无系统偏差.
5) 根据分析结果,当 X=0 时, 预测变元 Y 的点估计为 __1.25___;
6) 回归方程中变元 X 系数的置信水平为 95%的置信区间是___[0.7355, 2.5145]__
二. 选择题:
1. 若要通过抽样了解其某个服从正态分布的质量指标的方差是否在允许的范围内,宜采用 的检验是( C )
4. 假设根据样本数据求得变元 X 与 Y 的样本相关系数 R = - 0.9, 则变元 X 与 Y 可能的回归方程是 ( B ) A. Y=1+2X B. Y=1-2X C. Y= -1+2X D. Y= -0.9+0.9X (注: 根据变元负相关, 或 R 与 βˆ1的计算公式可得他们符号相同 判断)
线性代数课后习题答案全)习题详解
线性代数课后习题答案全)习题详解前言因能力有限,资源有限,现粗略整理了《工程数学线性代数》课后习题,希望对您的了解和学习线性代数有参考价值。
第一章行列式1.利用对角线法则计算下列三阶行列式:(1)381141102---;(2)b a c a c b c b a ; (3)222111c b a c b a ;(4)y x y x x y x yyx y x +++. 解(1)=---381141102811)1()1(03)4(2??+-?-?+?-?)1()4(18)1(2310-?-?-?-?-??-=416824-++-=4-(2)=ba c a cb cb a ccc aaa bbb cba bac acb ---++3333c b a abc ---=(3)=222111c b a c b a 222222cb ba ac ab ca bc ---++))()((a c c b b a ---=(4)yx y x x y x y yx y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=2.按自然数从小到大为标准次序,求下列各排列的逆序数:(1)1 2 3 4;(2)4 1 3 2;(3)3 4 2 1;(4)2 4 1 3;(5)1 3 … )12(-n 2 4 … )2(n ;(6)1 3 … )12(-n )2(n )22(-n … 2.解(1)逆序数为0(2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为2)1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个(6)逆序数为)1(-n n3 2 1个 5 2,54 2个……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个4 2 1个 6 2,6 4 2个……………… …)2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个3.写出四阶行列式中含有因子2311a a 的项.解由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:(1)7110025*********4;(2)-265232112131412;(3)---ef cf bf de cd bd ae ac ab ;(4)---d c b a100110011001解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-?---=143102211014-- 321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---=1 11111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(3 3+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-?;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22) 1(22213-----=+21))((a b a a b a b +--= 右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bz ay y x by ax x z bx az z y b +++zy x y x z xz y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(+++++++++++++++ +=d d d d d c c c c c b b b b b a a a a a 左边964412964412964412964412241312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+dd d c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a a d a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)11))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =?---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =?-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnnn nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-= 同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n Tn n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)aaD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xa a ax aa a x D n =; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n nn n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) n nn nn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 000100000000 00001000 =按最后一行展开)1()1(1000000000010000)1(-?-+-n n n aa a)1)(1(2)1(--?-+n n n a a a(再按第一行展开)n n n nn a a a+-?-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得 nnn n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-?-?-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即∏=-=ni i i iin D c b d22)(而 111111112c b d a d c b a D -==得∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=432140123310122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0 432111111111111111111111 --------------n n n n ,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n (6)nn a a D a +++=11111111121 ,,433221c c c c c c ---n n n n a a a a a a a a a a +-------100 00100010000100010001000011433221展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------000 00000000000000000000000022433221 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=--- )11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x=+=++=++=++=+.15,065,065,065,165)2(545434323212 1x x x x x x x x x x x x x上一页下一页。
工科线性代数练习册(第八版)(含答案) (1)
线性代数练习册第八版(工科用)武汉工程大学第二数学教研室编使用说明本练习册(第八版)是一本与《线性代数及其应用》(李小刚、刘吉定主编,第二版)相配套的教学辅导资料,它适用于全校本科各专业的学生。
这套练习册与教学内容密切配合。
强调基本概念、基本理论、基本方法的训练,同时适当选择了一些综合性的题目。
因此,有利于培养学生分析问题、解决问题的能力。
这套练习册对学生来说,不仅可以训练基本功,同时也可以作为考研复习的好资料;对于教师来说,能统一要求全校学生,便于获取学生达到“基本要求”及其学习情况的反馈信息而及时调整教学进度,改进教学方法,加强对教学的微观调控。
这套练习册由理学院数学二室老师编写,其中第一、二、三章由朱理老师编写,第四、五、六章由沈明宇老师编写,第二、三章自测试题由罗进老师编写,第四、五、六章自测试题由何敏华老师编写,罗进老师统稿。
在整套练习册的编写过程中,得到了理学院领导和数学一室全体教师的大力支持与帮助,在此表示衷心感谢。
对本练习册中存在的种种不足之处,恳请用者批评指正。
武汉工程大学第二数学教研室2013年7月线性代数练习题(1)线性方程组的消元法、矩阵的基本概念、矩阵的运算姓名 学号 班级1.判断题(1)所有的零矩阵都是相等的. ( )(1)×(2)若O A =2,则O A =. ( )(2)×(3)若A A =2,则O A =或E A =. ( )(3)×(4)若AY AX =,且O A ≠,则Y X =. ( )(4)×2.填空题(1)设)3,2,1(=A ,)1,1,1(=B ,则()T kA B =.(1)11116222333k -⎛⎫ ⎪⎪ ⎪⎝⎭(2)设121121122, 122110150A B --⎛⎫⎛⎫ ⎪ ⎪==-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,则A B +=.(2)040040040⎛⎫ ⎪ ⎪ ⎪⎝⎭(3)适合条件A A =2的矩阵称为等幂矩阵.设B A ,是等幂矩阵,则B A ,满足 时,B A +仍为等幂矩阵.(3)AB BA O +=;(4)设⎪⎪⎭⎫ ⎝⎛=1011A ,则=nA.(4)101n ⎛⎫⎪⎝⎭。
华东理工大学线性代数习题答案-第一章
第一章 矩阵 一、习题解答1.1解:由矩阵相等即对应元素相等,可得⎪⎪⎩⎪⎪⎨⎧=-===xz u y u x 28122即得2,1,1,4-==-=-=u z y x 1.2解:依题意,⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡--=3113341131124042263X ,即得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=131311134X 1. 3(1)解:原式=10132231=⨯+⨯+⨯(2)解:原式=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---933162 (3)解:原式=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----916144102281010 (4)解:原式=323223313113212112233322222111)()()(x x a a x x a a x x a a x a x a x a ++++++++1.4解:由可交换矩阵的定义,知道所求矩阵必为3阶方阵,不妨设其为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=i hg f e d c b aB ,于是有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=i hgf e d c b aAB 000100010=,00⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡i h g f e d⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=h ge d b ai hgf edc b a BA 000000100010,由BA AB =,即得=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡00i h g f e d ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡h g e d b a 000,由相应元素相等,则得,,,0f b i e a h g d ====== 于是c b a a b a c b a B ,,(000⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=均为任意常数)即为与A 可交换的所有矩阵。
1. 5证:依题意,可设两上三角形矩阵分别为[][]nn ijnn ijb B a A ⨯⨯==,,则当j i >时,成立0=ij a 及0=ij b ,若记乘积矩阵C AB ==[]nn ij c ⨯,则由矩阵乘法定义,有kj nik ik i k kj ik kjnk ik ij b a b a b ac ∑∑∑=-==+==111,因为B A ,均为上三角形矩阵,故当j i >时,上式右端第一项中的ik a 及第二项中的kj b 均为零,进而知0=ij c ,即乘积矩阵AB C =亦为上三角形矩阵。
线性代数清华版课后部分习题答案
第一章 行列式
a1
c ↔c
b1 0 0 a4 × a3 b2
0 b2 a3 0 b3 a2
0 a2 b3 0
2 4 = = = = =
a1
r ↔r
b1 a4 0 0
0 0 a3 b2
0 0 b3 a2
0 0 b4 b1 a4
b4 0 0
= (a1 a4 − b1 b4 )(a2 a3 − b2 b3 ).
2 2 2 . . . 2 n 2 0 . . . 0 n−2
i 2 = = = = = = = = =
−1 0 2
r −r i=1,3,4,··· ,n
0 2 1 . . . 0 0
··· ··· ··· .. . ··· ···
0 2 0 . . . n−3 0
0 2 0 . . . 0 n−2
5 4 3 4
1 −1 −1 4 3 4 5 5 4 6 6 3 2 5 4 1 0 = = = = = = =− 0 0 0
r5 −r4 ×2 r2 −r1 ×2,r3 −r1 ×3 r4 −r1 ×2,r5 −r1 ×3
1 −1 −1 2 0 2 2 7 7 8 9 5 5 7 7
= = = = =− 3 2 3 1 2 −2 0 0 7 0 1 2 1 2 6 7 = = = = =− 0 1 0 0 0 0
2
.
计算下列各题
1 23. 2 3 d 0 0 c 0 2 b 4 0 a 0 5 0 = d × (−1)
4+1
0 0 c
2 a b 4 0 5 = −d × c × (−1)3+1
2 a b 0
= −dc × (0 − ab) = abcd.
华东理工大学线性代数习题答案-第三章
第三章 线性方程组一、习题解答3.1解:否,例如121250,()2,363A r A -⎡⎤⎢⎥==⎢⎥⎢⎥--⎣⎦却有12036=-- 3.2(1)解:利用初等行变换化成行阶梯形矩阵来求矩阵的秩。
由12311231015401540154000001540000A--⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦知()2r A =,最高阶非零子式可取0112(2)由112112013013013000026000B--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦知()2r B =,且最高阶非零子式可取1112-- 3.3(1)解:由()()r A r A T =,故可转化为求()r A T , 由211211222240112(1)33360112(1)k k A k k k k k k k k k T ----⎡⎤⎡⎤⎢⎥⎢⎥=-----⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦1120112(1)00(2)(1)0k k k k k k -⎡⎤⎢⎥---⎢⎥⎢⎥+-⎣⎦,知①当 1k =时,()()1;r A r A T== ②当2k =-时,()()2;r A r A T== ③当1k ≠且2k ≠-时,()()3r A r A T==(2)解:由112301123001221012210162100800024400002Ba ab b --⎡⎤⎡⎤⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥⎢⎥-+--+⎢⎥⎢⎥---+⎣⎦⎣⎦知①当8a =-且2b =-时,()2;r B =②当8a =-且2b ≠-,或8a ≠-且2b =-时,()3;r B =③当8a ≠-且2b ≠-时,()4r B = 3.4解:因为[]A β比A 多了一列,但行数相同,假设()r A k =,那么[]A β也有k 阶子式非零,所以()();r Ar A β≥而假如()()1,r A r A β>+那么,删去增广列及某一行后的1k +阶子式中必有某个非零,与()r A k =矛盾。
线性代数习题参考答案
线性代数习题参考答案(总96页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一章行列式§1 行列式的概念1.填空(1) 排列6427531的逆序数为,该排列为排列。
(2) i = ,j = 时,排列1274i56j9为偶排列。
(3) n阶行列式由项的代数和组成,其中每一项为行列式中位于不同行不同列的n个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构成一个n元排列。
若该排列为奇排列,则该项的符号为号;若为偶排列,该项的符号为号。
(4) 在6阶行列式中,含152332445166a a a a a a的项的符号为,含324314516625a a a a a a的项的符号为。
2.用行列式的定义计算下列行列式的值(1)112223323300 0aa aa a解:该行列式的3!项展开式中,有项不为零,它们分别为,所以行列式的值为。
(2)12,121,21,11, 12,100000nn nn n n n n n n n n nnaa aa a aa a a a------解:该行列式展开式中唯一不可能为0的项是,而它的逆序数是,故行列式值为。
3.证明:在全部n 元排列中,奇排列数与偶排列数相等。
证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。
对于任意奇排列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n2n 。
4.若一个n 阶行列式中等于0的元素个数比n n -2多,则此行列式为0,为什么 5.n 阶行列式中,若负项的个数为偶数,则n 至少为多少(提示:利用3题的结果) 6.利用对角线法则计算下列三阶行列式(1)21141183---(2)222111ab c a b c§2 行列式的性质1.利用行列式的性质计算系列行列式。
线性代数课后答案
b2 c2
(b 1)2 (c 1)2
(b 2)2 (c 2)2
(b 3)2 (c 3)2
(c4c3
c3c2
c2c1 得)
d 2 (d 1)2 (d 2)2 (d 3)2
a2 2a 1 2a 3 2a 5
b2 c2
2b 1 2c 1
2b 3 2c 3
2b 5 2c 5
(c4c3
c3c2
得)
d 2 2d 1 2d 3 2d 5
7 计算下列各行列式(Dk 为 k 阶行列式) a1
(1) Dn , 其中对角线上元素都是 a 未写出的元素都 1a
是 0 解
a 0 0 0 1
0 a 0 0 0
Dn
0
0
a
0
0
(按第
n
行展开)
0 0 0 a 0
1 0 0 0 a
0 0 0 0 1
a (1)n1 0
0
an an1 an2 a2 x a1
证明 用数学归纳法证明
当 n2 时
D2
x a2
1 x a1
x2
a1x
a2
命题成立
假设对于(n1)阶行列式命题成立 即
Dn1xn1a1 xn2 an2xan1
则 Dn 按第一列展开 有
1 0 0 0
Dn
xDn1 an(1)n1
x Biblioteka 1 0 0
Dn
ax
0
xa
0
ax 0 0 0 xa
再将各列都加到第一列上 得
x (n1)a a a a
0
Dn
0
xa 0 0 xa
0 0
华理线性代数答案
(2)
⎡ 2 1 ⎤ ⎡ 2 1 ⎤ ⎡ 3 −1⎤ ⎡ 3 −1⎤ A2 − B 2 = ⎢ ⎥⎢ ⎥−⎢ ⎥⎢ ⎥ ⎣ −4 −2 ⎦ ⎣ −4 −2 ⎦ ⎣ −6 2 ⎦ ⎣ −6 2 ⎦ ⎡ 0 0 ⎤ ⎡ 15 −5⎤ ⎡ −15 5 ⎤ =⎢ ⎥. ⎥−⎢ ⎥=⎢ ⎣ 0 0 ⎦ ⎣ −30 10 ⎦ ⎣ 30 −10⎦
⎡ 6 −2 2 ⎤ ⎡ −2 −1 1⎤ ⎡ 4 −3 3⎤ 3X = ⎢ ⎥+⎢ ⎥=⎢ ⎥, ⎣ −4 0 4 ⎦ ⎣ 3 1 1⎦ ⎣ −1 1 5⎦ ⎡ 4 ⎤ ⎢ 3 −1 1 ⎥ 即得 X = ⎢ ⎥. ⎢− 1 1 5 ⎥ ⎢ 3 3 3⎥ ⎣ ⎦ 2. 如果矩阵 Am × n 与 B t × s 满足 AB = BA ,试求 m, n, t , s 之间的关系. 解: m = n = t = s . 3. 填空: ⎡ 4 3 1 ⎤ ⎡7 ⎤ ⎥⎢ ⎥ (1) ⎢ ; ⎢1 −2 3⎥ ⎢ 2 ⎥ = ⎢ ⎣5 7 0⎥ ⎦⎢ ⎣1 ⎥ ⎦ __________
⎡ ⎢ 解:记 A = ⎢ ⎢ ⎢ ⎣
1 2 3 2
−
⎡ 1 3⎤ ⎢− ⎥ 2 ⎥ ,则 A 2 = ⎢ 2 1 ⎥ ⎢ 3 ⎢ ⎥ 2 ⎦ ⎣ 2
−
3⎤ ⎥ 2 ⎥, 1 − ⎥ 2 ⎥ ⎦
⎡ −1 0 ⎤ A3 = ⎢ ⎥ = − I ,∵ 2008 = 3 × 669 + 1 ⎣ 0 −1⎦
不脱产职工 6680 人,轮训职工 3320 人.
⎡2 1⎤ ⎡ 3 −1⎤ 8. 设矩阵 A = ⎢ ,B = ⎢ ⎥ ⎥, ⎣ −4 −2 ⎦ ⎣ −6 2 ⎦
求: (1) AT BT − BT AT ;
(2) A2 − B 2 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华东理工大学线性代数 作业簿(第八册)学 院____________专 业____________班 级____________学 号____________姓 名____________任课教师____________6.1 二次型及其标准型1. 填空题(1)设三阶矩阵A 的行列式为0,且有两个特征值为1,1-,矩阵A 与B 合同,B 与C 合同,则矩阵C 是_____阶矩阵,其秩_____)(=C r .解:三,2.(2) 设n 阶矩阵A 与正交阵B 合同,则_____)(=A r . 解:n . 因B 为正交阵,故B 可逆.A 与B 合同即存在可逆矩阵C ,使得B AC C =T ,故)()(B r A r ==n .(3)二次型211221)(),,,(∑∑==-=⋅⋅⋅ni i ni i n x x n x x x f , 则此二次型的矩阵=A , 二次型的秩为______, 二次型的正交变换标准型为________________.解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------1 (11)...1...111...11n n n ,1-n ,222121,n ny ny ny -++⋅⋅⋅+ 提示:二次型的秩就是二次型的矩阵的秩,也是其标准型中非零项的个数(注:标准型不唯一). 因此求二次型的秩有两种方法:1) 直接求二次型的矩阵A 的秩,2)先求A 的特征值,A 有几个非零特征值(重根按重数计算),二次型的秩就是几.(4) 二次型,)(T Ax x x f = 其中A A ≠T ,则二次型的矩阵为_____ ____.解:)(21T A A +. 提示:A 不是二次型的矩阵,因A 不是对称阵。
注意到Ax x x f T )(=的值是一个数,即)()(T x f x f =,故有x A A x x f x f x f )(21)]()([21)(T T +=+=. 而)(21T A A +为对称阵.(5) 设n 元(n >2)实二次型()T f x x Ax = )(T A A =其中的正交变换标准型为22212y y -,则=A ______,矩阵A 的迹为 _____.解:0, 1-. 提示:A 的特征值为11,λ=22,λ=-30n λλ=⋅⋅⋅==,根据A A tr ni ini i ==∏∑==11),(λλ 易得.(6) 如果二次型2221231231213(,,)5526f x x x x x cx x x x x =++-+ 236x x - 的秩为2,则参数c = _____,1),,(321=x x x f 表示的曲面为__________.解:3, 椭圆柱面. 提示:二次型的矩阵33⨯A 的秩为2,故0||=A ,由此可求得c = 3. 再求出A 的特征值为9,4,0321===λλλ,即标准型为232294y y f +=,由此知1),,(321=x x x f 为椭圆柱面.2. 已知二次型322322213212332),,(x ax x x x x x x f +++=(0a >) 通过正交变换化成标准型23222152y y y f ++=,求a 的值及所用的正交变换矩阵Q .解:二次型的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=3030002a a A ,)9(22a A -=,由123A λλλ=即10)9(22=-a 得 2=a .A 有三个不同的特征值1,2,5,故对应这三个特征值的特征向量线性无关。
分别求出对应的特征向量T 1]1,1,0[-=ξ,T 2]0,0,1[=ξ,T 3]1,1,0[=ξ并把它们单位化,得正交变换矩阵为01000Q ⎡⎤⎢⎥⎢=⎢⎢⎢⎢⎣.3. 已知二次曲面方程 4222222=+++++yz xz bxy z ay x 可以通过正交变换x y P z ξηζ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦化为椭圆柱面2244ηζ+=. 求a ,b 的值和正交矩阵Q .解: 由111111b A b a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=410B 相似,故()()t rAt r B ==,A B ==0,进而得1,3==b a . 代入后分别求出A 的线性无关的特征向量T 1]1,0,1[-=ξ, T 2]1,1,1[-=ξ,T 3]1,2,1[=ξ, 显然他们两两正交,把它们单位化,可得正交变换矩阵为Q ⎢=⎢⎢.6.2 正定二次型与正定矩阵1. 选择题(1) 设矩阵211300121,000112002A B --⎡⎤⎡⎤⎢⎥⎢⎥=--=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦,则A 与B ( ). (A) 合同,但不相似; (B) 合同,且相似;(C) 不合同,也不相似; (D) 不合同,但相似.解:A .(2) 下列二次型中,正定的二次型是 ( ).()()()()()()()()()()2221231213231223312221242343422212323232263C 22D 2.f x x x x x x x x x f x x x x x x f x x x x x x x x f x x x x x x x A =-+-+-B =++=-++-++-=+-+-++;;;解:D.(3) 设n 阶方阵B A ,都正定,则下述选项不正确的是( ).(A) B A +正定;(B) AB 正定; (C) A B ⎡⎤⎢⎥⎣⎦正定;(D) 1*-+B A 正定.解:B . AB 未必对称,故不正定.(4) 与“实二次型Ax x x f T )(= (其中A A =T )是正定的”等价的选项是( ).(A) 对任意x ,恒有0)(>x f ;(B) 二次型的负惯性指数为零; (C) 存在可逆阵P ,使得P P A T=; (D) A 的特征值均不小于零.解:C .(5)若用A O <表示A 为负定矩阵,则下述选项正确的是 ( ). (A) 若A O <,则 A <0;(B) 若A O <,则A 的顺序主子式均小于零;(C) 若A O <,则对任意与A 同阶的可逆阵C 都有AC C T O <; (D) 若12...n A A A +++O <,则其中至少有一个i A O <.解:C . 提示:事实上, AC C T O <等价于0T T <=A C x C x f)0(≠∀x , 即 0T <Ay y )0(≠∀y ,等价于A O <.2. 填空题(1) 二次型2221231231213(,,)5524f x x x x x x x x x x =+++-在正交变换下的标准型为f =;而它在非正交变换52102001x y ⎤⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦下的结果是 .解:都是222123123(,,)560f x x x y y y =++.(2) 设322123222132122),,(x tx x x x x x x x x f ++++=是正定二次型,则t 的取值范围是__________.解:22<<-t . 提示:根据二次型矩阵的各阶顺序主子式大于零求解.(3) 设A 为一个三阶矩阵,其特征值为-1,-1,2,则当k 满足______条件时,3()()T f x x A kI x =+为正定二次型, 此时的规范型为_____________.解:1>k ,232221x x x ++. 提示:由A 的特征值为-1,-1,2知3()A kI +的特征值为,)2(,)1(,)1(333k k k ++-+- 又3()()T f x x A kI x =+为正定二次型,其特征值必须全部都大于零,故得1>k .3. 设二次型Ax x x f T )(=经正交变换Py x =可化为标准型2222211n n y y y λλλ+⋅⋅⋅++,证明:二次型)()(T T R k x kx Ax x x g ∈+=经相同的正交变换Py x =可化为标准型2222211)()()(n n y k y k y k ++⋅⋅⋅++++λλλ.证:()()()()()T T g x Py A Py k Py Py =+ =y P P ky y AP P y )()(T T T T +=(2222211n n y y y λλλ+⋅⋅⋅++)+(22221n ky ky ky +⋅⋅⋅++) =2222211)()()(n n y k y k y k ++⋅⋅⋅++++λλλ.4. 设二次型 2221231231213(,,)44f x x x tx tx tx x x x x =++--234x x +,试用正交变换化f 为标准型,并讨论当t 取何值时f 为负定二次型.解:根据第3题的结论,我们只需先求出二次型323121444x x x x x x g +--=的正交变换矩阵及其标准型。
经计算得二次型g 的矩阵的特征值为-2,-2,4. 对应的线性无关的特征向量为T T T ]1,1,1[,]1,0,1[,]0,1,1[-. 经施密特正交化,单位化可得所求的正交变换矩阵为 0P ⎡-⎢=-⎢⎥⎢⎥⎢⎥⎣⎦, 而g 在正交变换下的标准型为232221422y y y g +--=. 故有:323121232221321444),,(x x x x x x tx tx tx x x x f +--++=在正交变换Py x =下的标准型为232221)4()2()2(y t y t y t ++-+-.二次型f 为负定二次型,即20t -<, 40t +<,故有4t <-(也可用顺序主子式来解).5. 设矩阵A 为任意n 阶的实对称阵,试分别确定实数t 的取值范围,使得tI A +是 1)正定矩阵;2)负定矩阵;3)不定矩阵;4)不可逆矩阵.解: 因A 为n 阶实对称矩阵,故一定存在正交矩阵P ,使 得:),,,(21n T diag AP P λλλ =,其中),,2,1(21n i n =≤≤≤λλλ为矩阵A 的特征值. 于是有:),,,()(21n T t t t diag P A tI P λλλ+++=+ , 故:1) 当 1λ->t 时, A tI +为正定矩阵; 2) 当 n t λ-<时, A tI +为负定矩阵; 3) 当 1λλ-<<-t n 时, A tI +为不定矩阵; 4) 当 },,,{21n t λλλ---∈ 时, A tI +为不可逆矩阵.6. 设A 为n 阶实对称阵,试证:如果A 是正定阵又是正交矩阵,则I A =.证:(证法一)因为A 为n 阶实对称阵,故存在可逆阵P ,使()n diag AP P λλλ,,,211 =-,其中n λλλ,,,21 是A 的特征值. 因为A 正定且正交,所以()01,2,,i i n λ>=,且1iλ为1-A 也即A T 的特征值;由于1-A 的属于1iλ的特征向量与A 的属于i λ的特征向量相同,故有1112111,,,n P A P diag λλλ--⎡⎤=⎢⎥⎣⎦. 又由AP P P A P P A P T 1111----==可得1212111(,,,),,,n n diag diag λλλλλλ⎡⎤=⎢⎥⎣⎦. 所以()11,2,,i ii n λλ==,由0i λ>得()11,2,,i i n λ==. 即I AP P =-1,故I PIP A ==-1.(证法二) 由T AA I =及T A A =,得I A =2,即()()A I A I O +-=,因为A 正定,所以-1不是A 的特征值,即0≠+I A ,所以I A +可逆,从而A I O -=,即I A =.7. n 阶实对称矩阵A ,B 均为正定矩阵,试证明:乘积矩阵AB 正定的充分必要条件是A ,B 可交换.证:“必要性”显然;“充分性” 由题设,知T A A =,T B B =;再由AB BA =,可知T T T ()AB B A BA AB ===,故AB 是对称矩阵.由正定矩阵的判别定理知,存在可逆矩阵C ,D ,使成立T=,TA C C=B D D于是T=TAB C CD D,进而成立T1T T T T T T-==()()()()C AB C CD DC DC DC由C,D均可逆,知矩阵T T T()()DC DC正定,故而其特征值全大于零. 结合它相似于AB,即知AB的特征值全大于零.综合即得,AB正定.。