三重积分习题1
三重积分例题
三重积分例题
1. 嘿,来看看这道三重积分例题呀!就像在一个复杂的迷宫里找宝藏,比如求一个奇形怪状的立体体积,那可真得好好琢磨琢磨呢!
2. 哇哦,这道三重积分例题可有意思啦!好比要给一个不规则的大蛋糕算出它的大小,你不想试试怎么解吗?
3. 嘿呀,瞧瞧这道三重积分例题!就像是要弄清楚一个神秘盒子里到底装了多少东西,是不是很有挑战性?
4. 哎呀,这道三重积分例题真不简单呢!仿佛是在破解一个超级难的密码锁,谁能解开它呀?
5. 嘿,这道三重积分例题很特别哟!好像是要给一片乱七八糟的云朵计算它的质量,你能想明白怎么算吗?
6. 哇,这道三重积分例题够厉害的!就如同要给一个歪歪扭扭的建筑算出它的用料,这可不容易啊!
7. 嘿哟,这道三重积分例题挺有趣的呢!好比要搞清楚一个奇怪形状的水池能装多少水,有意思吧?
8. 哎呀呀,这道三重积分例题有点难搞哦!仿佛是要从一堆乱麻中找出关键线索,你敢挑战吗?
9. 嘿,快来看这道三重积分例题!就像要给一个奇幻世界里的魔法物品计算能量,是不是很神奇?
10. 哇塞,这道三重积分例题太有迷惑性了!简直就是要在一个迷雾森林里找到正确的路,谁能解得开呀?
我的观点结论:三重积分例题真的是丰富多彩,每一道都有它独特的魅力和挑战,让人忍不住想要去探索和求解。
三重积分重积分习题精编版
三重积分iiizdv 一一 、一 一1.将|=[1分别表示成直角坐标,柱面坐标和球面坐标下的二次积分,并选择其中一种计算出结果.其中「是由曲面Z »2-X 2_『 及乙之2+『2所围成的闭区域.分析 为计算该三重积分,我们先把积分区域投影到某坐标平面上,. ______________ 』Z = J2_X 2 _y 2,匚 22 2 2〕 2 丄 2z=.,2-x -y 及z=x y ,而由这两个方程所组成的方程组Z = x y极易消去乙我们把它投影到xoy 面上.然后,为在指定的坐标系下计算之,还应该先把 的边界曲面用相应的坐标表示,并找出各种坐标系下各个变量的取值范围,最后作代换即可.[z = J?_x :_y ,解 将门投影到xoy 平面上,由Z =x y消去Z 得(x 2+y 2)2 =2-(x 2 +y 2 ),_ 2 2 2 2 2 2或(X +y +2)(x +y -1)=0,于是有 x +y =1 .即知,为此在D 内任取一点Q(x , y),过Q 作平行于Z 轴的直线自下而上穿过.穿入时碰_ 2 . 2 _ ■ o 2 2到的曲面为Z =x y ,离开时碰到的曲面为Z -・2-x - y (不画图,仅用代数方法也2 2 x +y<1由于是由两张曲面l'在xoy 平面上的投影为圆域2 2 • 2 2-易判断z=x y 2-x -y),这是因为x2+y ^1)(1)直角坐标系下,我们分直角坐标及柱面坐标,下边找Z的变化范围从而化为三重积分.因此再由D : x2+y2<1,有x2y2 <Z= 2-x -y2 ,于是在直角坐标下,'J 可表示为1 -x2,\ 2 - x2- y2,于是有11 -X 22 ;」2dx dy zdz匸二―口X 2 旳2 .(2)柱面坐标下首先把I 1的表面方程用柱面坐标表示, 这时Z=X 2 +y 2表示为Z= :' , Z= 2 - X - y表示为z= ;2 - '2 •再由投影区域 D 为x 2+y 2 <1 .故0-二_1, Q< 0 < 2二•于是门可表示为0兰日兰2兀, *0兰P 兰1, P 2 兰 z 兰 <2 — P 2 •将所给三重积分中的体积元素d 用d = 'dJdvdz 去替换,有2二1 2「2zd 「 m z®drdz 0 .J dz =0=°= 0P(3)球面坐标下cos用球面坐标代换两曲面的方程,得曲面z=X 2 +y 2变为'=Sin 2 ••;曲面 z = 2 一 X? - / 变为「= ... 2 . 由门在Xoy 平面上的投影为 X 2+y 2 _1知0乞二乞2二,下边找 '的变化范围.正z 轴在门内,即门内有点P,使0P 与oz 夹角为零,即的下界为零.又曲面z=X 2 +y 27131与Xoy 平面相切,故''的上界为2,于是0 -- 2再找'的变化范围.原点在门的表面上,故 '取到最小值为零. 为找'的上界,从原点出发作射线穿过11,由于门的表面由两张曲面所组成,因而1),故A 所对应的4 .的上界随相应的•的不同而不同.为此在两曲面的交线z= 2 _x 2 _ y 2上取一点A(0 , 1,兀 丄兀COS©2 ■当42时,r 的上界由曲面r=Sin 所给,故这时r 的变化范围为,当0时,4时。
三重积分重积分习题(供参考)
三重积分1.将I=zdvΩ⎰⎰⎰分别表示成直角坐标,柱面坐标和球面坐标下的三次积分,并选择其中一种计算出结果.其中Ω是由曲面z=222y x --及z=x 2+y 2所围成的闭区域.分析 为计算该三重积分,我们先把积分区域投影到某坐标平面上,由于是由两张曲面222y x z --=及22y x z +=,而由这两个方程所组成的方程组22222,z x y z x y ⎧=--⎨=+⎩极易消去z ,我们把它投影到xoy 面上.然后,为在指定的坐标系下计算之,还应该先把Ω的边界曲面用相应的坐标表示,并找出各种坐标系下各个变量的取值范围,最后作代换即可.解 将Ω投影到xoy 平面上,由22222,z x y z x y ⎧=--⎨=+⎩消去z 得 (x 2+y 2)2=2-(x 2+y 2),或(x 2+y 2+2)(x 2+y 2-1)=0,于是有 x 2+y 2=1.即知,Ω在xoy 平面上的投影为圆域D :x 2+y 2≤1 .为此在D 内任取一点Q(x ,y),过Q 作平行于z 轴的直线自下而上穿过Ω.穿入时碰到的曲面为22y x z +=,离开时碰到的曲面为222y x z --=(不画图,仅用代数方法也易判断22y x z +=≤222y x z --=),这是因为x 2+y 2≤1)(1) 直角坐标系下,我们分直角坐标及柱面坐标,下边找z 的变化范围从而化为三重积分.因此再由D :x 2+y 2≤1,有22y x z +=≤222y x z --=,于是在直角坐标下,Ω可表示为Ω :2222221111,2,x x y x x y z x y -≤≤⎧⎪--≤≤-⎨⎪+≤≤--⎩,于是有I=⎰⎰----221111x x dy dx ⎰--+22222y x y x zdz.(2) 柱面坐标下首先把Ω的表面方程用柱面坐标表示,这时z=x 2+y 2表示为z= 2ρ,z=222y x --表示为z=22ρ-.再由投影区域D 为x 2+y 2≤1.故0ρ≤≤1,0≤θ≤2π.于是Ω可表示为Ω:⎪⎪⎩⎪⎪⎨⎧-≤≤≤≤≤≤.2,10,2022ρρρπθz将所给三重积分中的体积元素υd 用υd =dz d d θρρ去替换,有I=Ω⎰⎰⎰υzd =Ω⎰⎰⎰dzd d z θρρ=⎰πθ20d ⎰1ρd ⎰-2222ρρρdz.(3) 球面坐标下用球面坐标代换两曲面的方程,得曲面z=x2+y2变为ρ=φφ2sin cos ;曲面z=222y x --变为ρ=2.由Ω在xoy 平面上的投影为x 2+y 2≤1知0θ≤≤2π,下边找φ的变化范围.正z 轴在Ω内,即Ω内有点P ,使→op 与→oz 夹角为零,即φ的下界为零.又曲面z=x 2+y2与xoy 平面相切,故φ的上界为2π,于是0≤φ≤2π再找ρ的变化范围.原点在Ω的表面上,故ρ取到最小值为零.为找ρ的上界,从原点出发作射线穿过Ω,由于Ω的表面由两张曲面所组成,因而ρ的上界随相应的φ的不同而不同.为此在两曲面的交线⎪⎩⎪⎨⎧--=+=22222y x z y x z ,上取一点A(0,1,1),故A 所对应的4πφ=.当24πφπ≤≤时,r 的上界由曲面r=φφ2sin cos 所给,故这时r φφφφcsc cot sin cos 2≤≤.即r 的变化范围为0⎪⎪⎩⎪⎪⎨⎧≤≤≤≤≤≤时。
三重积分题
三重积分题一、计算三重积分∫∫∫_V (x2 + y2 + z2) dV,其中V是由x2 + y2 ≤ 1, 0 ≤ z ≤ 1定义的圆柱体。
A. π/2B. πC. 3π/2D. 2π(答案:D)二、三重积分∫∫∫_V xyz dV,在区域V: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1内的值为?A. 0B. 1/2C. 1D. 3/2(答案:A)三、计算三重积分∫∫∫_V (x + y + z) dV,其中V是由0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1定义的立方体。
A. 0B. 1C. 3/2D. 2(答案:C)四、三重积分∫∫∫_V (sin(x)cos(y)z) dV,在区域V: 0 ≤ x ≤π, 0 ≤ y ≤π, 0 ≤ z ≤ 1内的值为?A. 0B. 1C. -1D. 2(答案:A)五、计算三重积分∫∫∫_V e(x+y+z) dV,其中V是由0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤z ≤ 1定义的立方体,并假设e的近似值为2.718。
A. e - 1B. e2 - 1C. e3 - 1D. e4 - 1(答案:C)注:此题需要用到e的幂次性质进行积分。
六、三重积分∫∫∫_V (x2y2z2) dV,在区域V: -1 ≤ x ≤ 1, -1 ≤ y ≤ 1, -1 ≤ z ≤ 1内的值为?A. 0B. 1/8C. 1/4D. 1(答案:A)七、计算三重积分∫∫∫_V (1/(1+x2+y2+z2)) dV,其中V是由x2 + y2 + z2 ≤ 1定义的球体。
A. π2/2B. π2C. 2π2D. 4π2(答案:A)注:此题需要用到球坐标变换进行积分。
八、三重积分∫∫∫_V (cos(x2+y2+z2)) dV,在区域V: 0 ≤ x ≤√π, 0 ≤ y ≤√π, 0 ≤ z ≤√π,且假设cos的近似值在积分中可直接使用,其值为?A. 0B. (π(3/2))/2 * (sin(π) - sin(0))C. π(3/2) * (cos(π) - cos(0))D. -π(3/2) * (sin(π) - sin(0))(答案:B)注:此题需要注意到cos函数的周期性,并正确计算积分上下限。
考研数学三重积分练习
习题9 三重积分一、填空题1、若{}22(,,)|1,01x y z x y z Ω=+≤≤≤,则d z v Ω⎰⎰⎰= 。
2、d z v Ω⎰⎰⎰= ,其中222{(,,)|1,0}x y z x y z z Ω=++≤≥3、曲面z =被1z =截下部分的面积为 。
4、曲面22z x y =+被1z =截下部分的体积为 。
5、锥面z =被柱面22z x =所割下部分的面积为 。
二、解答题1、I=d x v Ω⎰⎰⎰,其中Ω是由1x y z ++=与三个坐标平面所围的闭区域。
2、()x y z dxdydz Ω++⎰⎰⎰ 其中Ω:由平面1x y z ++=及三坐标面所围成的区域。
3、I=22()d x y v Ω+⎰⎰⎰,其中Ω是由2222x y z z ++= 所围成的闭区域。
4、I=⎰⎰⎰Ω+•dvyxz)(22,其中Ω是由球面222yxz--=与圆锥面22yxz+=所围成的闭区域。
5、⎰⎰⎰Ω++dvzyx)(222,Ω={2224,0x y z z++≤≥}。
6、⎰⎰⎰Ω+•dvyxz)(22,Ω是由球面222yxz--=与圆锥面22yxz+=所围成的闭区域。
7、⎰⎰⎰Ω++dvzyx222,Ω是由球面zzyx2222=++所围成的闭区域。
8、求函数22y x z +=在区域D :x 4y x x 222≤+≤上与z=0所围成的体积。
9、求由平面1,0,0,0=++===z y x z y x 所围成的几何体的体积。
10、在由椭圆1422≤+y x 绕其长轴旋转一周而成的椭球体上,沿长轴方向打一穿过中心的圆孔,并使剩下部分的体积恰好等于椭球体体积的一半,求该圆孔的直径。
三重积分习题
931 化三重积分⎰⎰⎰Ω=dxdydz z y x f I ),,(为三次积分其中积分区域分别是(1)由双曲抛物面xy z 及平面x y 10 z 0所围成的闭区域解 积分区域可表示为 {(x y z )| 0z xy 0y 1x 0x 1} 于是 ⎰⎰⎰-=xyx dzz y x f dy dx I 01010),,((2)由曲面z x 2y 2及平面z 1所围成的闭区域解 积分区域可表示为}11 ,11 ,1|),,{(2222≤≤--≤≤--≤≤+=Ωx x y x z y x z y x于是 ⎰⎰⎰+----=111112222),,(y x x xdz z y x f dy dx I(3)由曲面z x 22y 2及z 2x 2所围成的闭区域解 曲积分区域可表示为}11 ,11 ,22|),,{(22222≤≤--≤≤---≤≤+=Ωx x y x x z y x z y x于是 ⎰⎰⎰-+----=22222221111),,(x y x x x dz z y x f dy dx I提示 曲面z x 22y 2与z 2x 2的交线在xOy 面上的投影曲线为x 2+y 2=1(4)由曲面cz xy (c 0) 12222=+by a x z 0所围成的在第一卦限内的闭区域解 曲积分区域可表示为}0 ,0 ,0|),,{(22a x x a ab yc xyz z y x ≤≤-≤≤≤≤=Ω于是 ⎰⎰⎰-=c xy x a a b adz z y x f dy dx I 000),,(22提示 区域的上边界曲面为曲面c z xy 下边界曲面为平面z 02 设有一物体 占有空间闭区域{(x y z )|0x 1 0y 1 0z 1} 在点(x y z )处的密度为(x y z )x y z 计算该物体的质量解 ⎰⎰⎰⎰⎰⎰++==Ω101010)(dz z y x dy dx dxdydz M ρ⎰⎰++=1010)21(dy y x dx⎰⎰+=++=1010102)1(]2121[dx x dx y y xy 23)1(21102=+=x3如果三重积分⎰⎰⎰Ωdxdydz z y x f ),,(的被积函数f (xy z )是三个函数f 1(x )、f 2(y )、f 3(z )的乘积 即f (x y z ) f 1(x )f 2(y )f 3(z ) 积分区域{(x y z )|a x b c y d l z m } 证明这个三重积分等于三个单积分的乘积即⎰⎰⎰⎰⎰⎰=Ωmldcbadzz f dy y f dx x f dxdydz z f y f x f )()()()()()(321321证明 ⎰⎰⎰Ωdxdydz z f y f x f )()()(321dx dy dz z f y f x f ba dcml]))()()(([321⎰⎰⎰=dx dy dz z f y f x f b a d c m l]))()()(([321⎰⎰⎰=⎰⎰⎰=m ldcb adx dy y f dz z f x f )])()()()([(231dx x f dy y f dz z f bam ld c)]())()()([(123⎰⎰⎰=⎰⎰⎰=d cbam ldx x f dy y f dz z f )())()()((123⎰⎰⎰=d cmlb adzz f dy y f dx x f )()()(3214计算⎰⎰⎰Ωdxdydzz xy 32 其中是由曲面z xy 与平面y x x 1和z 0所围成的闭区域 解 积分区域可表示为 {(x y z )| 0z xy 0y x 0x 1}于是 ⎰⎰⎰Ωdxdydz z xy 32⎰⎰⎰=xyxdz z dy y xdx 030210⎰⎰=xxy dy z y xdx 004210]4[⎰⎰=x dy y dx x 051054136412811012==⎰dx x5 计算⎰⎰⎰Ω+++3)1(z y x dxdydz 其中为平面x 0 y 0 z 0x y z 1所围成的四面体 解 积分区域可表示为 {(x y z )| 0z 1x y 0y 1x 0x 1}于是 ⎰⎰⎰Ω+++3)1(z y x dxdydz ⎰⎰⎰---+++=y x x dz z y x dy dx 1031010)1(1 ⎰⎰--++=xdy y x dx 1021]81)1(21[dx x x ⎰+-+=10]8183)1(21[ )852(ln 21-=提示⎰⎰⎰Ω+++3)1(z y x dxdydz ⎰⎰⎰---+++=y x x dz z y x dy dx 1031010)1(1 ⎰⎰---+++-=xyx dy z y x dx 101021])1(21[⎰⎰--++=x dy y x dx 10210]81)1(21[ dx y y x x-⎰-++-=101]81)1(21[dx x x ⎰+-+=10]8183)1(21[ 102]16183)1ln(21[x x x +-+= )852(ln 21-=6计算⎰⎰⎰Ωxyzdxdydz其中为球面x 2y 2z 21及三个坐标面所围成的在第一卦限内的闭区域解 积分区域可表示为}10 ,10 ,10|),,{(222≤≤-≤≤--≤≤=Ωx x y y x z z y x 于是 ⎰⎰⎰Ωxyzdxdydz ⎰⎰⎰---=222101010x y x xyzdz dy dx⎰⎰---=2102210)1(21x dy y x xy dx ⎰-=1022)1(81dx x x 481=7计算⎰⎰⎰Ωxzdxdydz其中是由平面z 0 z y y 1以及抛物柱面y x 2所围成的闭区域 解 积分区域可表示为 {(x y z )| 0z y x 2y 1 1x 1}于是 ⎰⎰⎰Ωxzdxdydz ⎰⎰⎰-=yx zdz dy xdx 01112⎰⎰-=1211221x dy y xdx)1(61116=-=⎰-dx x x8计算⎰⎰⎰Ωzdxdydz其中是由锥面22y x Rh z +=与平面zh (R 0h 0)所围成的闭区域解 当0z h 时 过(0 0 z )作平行于xOy 面的平面 截得立体的截面为圆D z 222)(z h R y x =+ 故D z 的半径为z h R 面积为222z h R π 于是⎰⎰⎰Ωzdxdydz⎰⎰⎰zD hdxdy zdz 0⎰==h h R dz z hR 0223224ππ9 利用柱面坐标计算下列三重积分(1)⎰⎰⎰Ωzdv其中是由曲面222y x z --=及z x 2y 2所围成的闭区域解 在柱面坐标下积分区域可表示为 021222ρρ-≤≤z于是 ⎰⎰⎰Ωzdv ⎰⎰⎰-=1022022ρρπρρθzdz d d ⎰--=1042)2(212ρρρρπdπρρρρπ127)2(1053=--=⎰d(2)⎰⎰⎰Ω+dvy x )(22 其中是由曲面x 2y 22z 及平面z 2所围成的闭区域解 在柱面坐标下积分区域可表示为02 02222≤≤z ρ于是 dv y x )(22+Ω⎰⎰⎰dz d d θρρρ⋅=Ω⎰⎰⎰2⎰⎰⎰=22123202ρπρρθdz d d⎰⎰-=205320)212(ρρρθπd d ⎰==ππθ2031638d10 利用球面坐标计算下列三重积分(1)⎰⎰⎰Ω++dvz y x )(222 其中是由球面x 2y 2z 21所围成的闭区域 解 在球面坐标下积分区域可表示为 02 00r 1于是 ⎰⎰⎰Ω++dv z y x )(222⎰⎰⎰Ω⋅=θϕϕd drd r sin 4⎰⎰⎰=104020sin dr r d d ππϕϕθπ54=(2)⎰⎰⎰Ωzdv其中闭区域由不等式x 2y 2(z a )2a 2 x 2y 2z 2 所确定解 在球面坐标下积分区域可表示为ϕπϕπθcos 20 ,40 ,20a r ≤≤≤≤≤≤于是⎰⎰⎰⎰⎰⎰ΩΩ⋅=θϕϕϕd drd r r zdv sin cos 2⎰⋅=404)cos 2(41cos sin 2πϕϕϕϕπd a4405467cos sin 8a d a πϕϕϕππ==⎰11 选用适当的坐标计算下列三重积分(1)⎰⎰⎰Ωxydv其中为柱面x 2y 21及平面z 1 z 0 x 0 y 0所围成的在第一卦限内的闭区域解 在柱面坐标下积分区域可表示为10 ,10 ,20≤≤≤≤≤≤z ρπθ于是 ⎰⎰⎰Ωxydv ⎰⎰⎰Ω⋅⋅=dz d d θρρθρθρsin cos⎰⎰⎰==101032081cos sin dz d d ρρθθθπ别解 用直角坐标计算⎰⎰⎰Ωxydv ⎰⎰⎰-=1010102dz ydy xdx x ⎰⎰-=21010x ydy xdx ⎰-=103)22(dx x x 81]84[1042=-=x x (2)⎰⎰⎰Ω++dvz y x 222 其中是由球面x 2y 2z 2z 所围成的闭区域解 在球面坐标下积分区域可表示为ϕπϕπθcos 0 ,20 ,20≤≤≤≤≤≤r于是 ⎰⎰⎰Ω++dv z y x 222⎰⎰⎰⋅=ϕππϕϕθcos 022020sin dr r r d d10cos 41sin 2204πϕϕϕππ=⋅=⎰d(3)⎰⎰⎰Ω+dvy x )(22 其中是由曲面4z 225(x 2y 2)及平面z 5所围成的闭区域解 在柱面坐标下积分区域可表示为 525 ,20 ,20≤≤≤≤≤≤z ρρπθ于是 ⎰⎰⎰Ω+dv y x )(22⎰⎰⎰=52520320ρπρρθdz d dπρρρπ8)255(2203=-=⎰d(4)⎰⎰⎰Ω+dvy x )(22 其中闭区域由不等式Az y x a ≤++≤<2220 z所确定解 在球面坐标下积分区域可表示为Ar a ≤≤≤≤≤≤ ,20 ,20πϕπθ于是 ⎰⎰⎰Ω+dv y x )(22θϕϕθϕϕϕd drd r r r sin )sin sin cos sin (2222222⎰⎰⎰Ω+=)(154sin 55420320a A dr r d d Aa -==⎰⎰⎰πϕϕθππ12 利用三重积分计算下列由曲面所围成的立体的体积(1)z 6x 2y 2及22y x z +=解 在柱面坐标下积分区域可表示为0 2 02 z 62于是 ⎰⎰⎰⎰⎰⎰ΩΩ==dz d d dv V θρρ⎰⎰⎰-=262020ρρπρρθdz d d⎰=--=2032332)6(2πρρρρπd(2)x 2y 2z 22az (a 0)及x 2y 2z 2(含有z 轴的部分)解 在球面坐标下积分区域可表示为ϕπϕπθcos 20 ,40 ,20a r ≤≤≤≤≤≤于是 ⎰⎰⎰⎰⎰⎰ΩΩ==θϕϕd drd r dv V sin 2⎰⎰⎰=ϕππϕϕθcos 2024020sin a dr r d d34033sin cos 382a d a πϕϕϕππ==⎰(3)22y x z +=及zx 2y 2解 在柱面坐标下积分区域可表示为 02 01 2z于是 6)(2103210202πρρρπρρθρρπ=-===⎰⎰⎰⎰⎰⎰⎰Ωd dz d d dv V(4)225y x z --=及x 2y 24z解 在柱面坐标下积分区域可表示为 22541 ,20 ,20ρρρπθ-≤≤≤≤≤≤z于是 ⎰⎰⎰-=22541220ρρπρρθdz d d V)455(32)45(22022-=--=⎰πρρρρπd13 球心在原点、半径为R 的球体 在其上任意一点的密度的大小与这点到球心的距离成正比 求这球体的质量 解 密度函数为222),,(z y x k z y x ++=ρ 在球面坐标下积分区域可表示为02r R于是 ⎰⎰⎰Ω++=dv z y x k M 2224220sin R k dr r kr d d R πϕϕθππ=⋅=⎰⎰⎰。
高等数学三重积分例题
高等数学三重积分例题一、计算三重积分∭_varOmega z dV,其中varOmega是由锥面z = √(x^2)+y^{2}与平面z = 1所围成的闭区域。
1. 利用柱坐标计算在柱坐标下x = rcosθ,y = rsinθ,z = z,dV = rdzdrdθ。
锥面z=√(x^2)+y^{2}在柱坐标下就是z = r。
由锥面z = r与平面z = 1所围成的闭区域varOmega,其在柱坐标下的范围为:0≤slantθ≤slant2π,0≤slant r≤slant1,r≤slant z≤slant1。
2. 计算积分则∭_varOmegaz dV=∫_0^2πdθ∫_0^1rdr∫_r^1zdz。
先计算关于z的积分:∫_r^1zdz=(1)/(2)(1 r^2)。
再计算关于r的积分:∫_0^1r×(1)/(2)(1 r^2)dr=(1)/(2)∫_0^1(rr^3)dr=(1)/(2)((1)/(2)-(1)/(4))=(1)/(8)。
最后计算关于θ的积分:∫_0^2πdθ = 2π。
所以∭_varOmegaz dV=(1)/(8)×2π=(π)/(4)。
二、计算三重积分∭_varOmega(x + y+z)dV,其中varOmega是由平面x = 0,y = 0,z = 0及x + y+z = 1所围成的四面体。
1. 利用直角坐标计算对于由平面x = 0,y = 0,z = 0及x + y + z=1所围成的四面体varOmega,其范围为0≤slant x≤slant1,0≤slant y≤slant1 x,0≤slant z≤slant1 x y。
则∭_varOmega(x + y + z)dV=∫_0^1dx∫_0^1 xdy∫_0^1 x y(x + y + z)dz。
2. 计算积分先计算关于z的积分:∫_0^1 x y(x + y+z)dz=(x + y)z+(1)/(2)z^2big|_0^1 x y=(x + y)(1 x y)+(1)/(2)(1 x y)^2展开得x + y-(x^2+2xy + y^2)+(1)/(2)(1 2x 2y+x^2+2xy + y^2)进一步化简为x + y x^2-2xy y^2+(1)/(2)-x y+(1)/(2)x^2+xy+(1)/(2)y^2即(1)/(2)-x^2-xy (1)/(2)y^2。
三重积分习题1
9-31. 化三重积分⎰⎰⎰Ω=dxdydz z y x f I ),,(为三次积分, 其中积分区域Ω分别是:(1)由双曲抛物面xy =z 及平面x +y -1=0, z =0所围成的闭区域; 解 积分区域可表示为Ω={(x , y , z )| 0≤z ≤xy , 0≤y ≤1-x , 0≤x ≤1}, 于是 ⎰⎰⎰-=xyx dz z y x f dy dx I 01010),,(.(2)由曲面z =x 2+y 2及平面z =1所围成的闭区域; 解 积分区域可表示为}11 ,11 ,1|),,{(2222≤≤--≤≤--≤≤+=Ωx x y x z y x z y x , 于是 ⎰⎰⎰+----=111112222),,(y x x xdz z y x f dy dx I .(3)由曲面z =x 2+2y 2及z =2-x 2所围成的闭区域; 解 曲积分区域可表示为}11 ,11 ,22|),,{(22222≤≤--≤≤---≤≤+=Ωx x y x x z y x z y x , 于是 ⎰⎰⎰-+----=22222221111),,(x y x x x dz z y x f dy dx I .提示: 曲面z =x 2+2y 2与z =2-x 2的交线在xOy 面上的投影曲线为x 2+y 2=1.(4)由曲面cz =xy (c >0), 12222=+by a x , z =0所围成的在第一卦限内的闭区域.解 曲积分区域可表示为}0 ,0 ,0|),,{(22a x x a a b y c xyz z y x ≤≤-≤≤≤≤=Ω,于是 ⎰⎰⎰-=c xy x a a b adz z y x f dy dx I 000),,(22.提示: 区域Ω的上边界曲面为曲面c z =xy , 下边界曲面为平面z =0.2. 设有一物体, 占有空间闭区域Ω={(x , y , z )|0≤x ≤1, 0≤y ≤1, 0≤z ≤1}, 在点(x , y , z )处的密度为ρ(x , y , z )=x +y +z , 计算该物体的质量.解 ⎰⎰⎰⎰⎰⎰++==Ω101010)(dz z y x dy dx dxdydz M ρ⎰⎰++=1010)21(dy y x dx⎰⎰+=++=1010102)1(]2121[dx x dx y y xy 23)1(21102=+=x .3. 如果三重积分⎰⎰⎰Ωdxdydz z y x f ),,(的被积函数f (x , y , z )是三个函数f 1(x )、f 2(y )、f 3(z )的乘积, 即f (x , y , z )= f 1(x )⋅f 2(y )⋅f 3(z ), 积分区域Ω={(x , y , z )|a ≤x ≤b , c ≤y ≤d , l ≤z ≤m }, 证明这个三重积分等于三个单积分的乘积, 即⎰⎰⎰⎰⎰⎰=Ωmld cb adz z f dy y f dx x f dxdydz z f y f x f )()()()()()(321321.证明⎰⎰⎰Ωdxdydz z f y f x f )()()(321dx dy dz z f y f x f b a d c ml]))()()(([321⎰⎰⎰=dx dy dz z f y f x f b a d c m l]))()()(([321⎰⎰⎰=⎰⎰⎰=m ldcb adx dy y f dz z f x f )])()()()([(231dx x f dy y f dz z f bam ld c)]())()()([(123⎰⎰⎰=⎰⎰⎰=d cbam ldx x f dy y f dz z f )())()()((123⎰⎰⎰=d cmlb adz z f dy y f dx x f )()()(321.4. 计算⎰⎰⎰Ωdxdydz z xy 32, 其中Ω是由曲面z =xy , 与平面y =x , x =1和z =0所围成的闭区域.解 积分区域可表示为Ω={(x , y , z )| 0≤z ≤xy , 0≤y ≤x , 0≤x ≤1}, 于是⎰⎰⎰Ωdxdydz z xy 32⎰⎰⎰=xyxdz z dy y xdx 030210⎰⎰=xxy dy z y xdx 004210]4[ ⎰⎰=x dy y dx x 051054136412811012==⎰dx x .5. 计算⎰⎰⎰Ω+++3)1(z y x dxdydz, 其中Ω为平面x =0, y =0, z =0, x +y +z =1所围成的四面体.解 积分区域可表示为Ω={(x , y , z )| 0≤z ≤1-x -y , 0≤y ≤1-x , 0≤x ≤1},于是 ⎰⎰⎰Ω+++3)1(z y x dxdydz ⎰⎰⎰---+++=y x x dz z y x dy dx 1031010)1(1 ⎰⎰--++=xdy y x dx 1021]81)1(21[dx x x ⎰+-+=10]8183)1(21[ )852(l n 21-=.提示: ⎰⎰⎰Ω+++3)1(z y x dxdydz ⎰⎰⎰---+++=y x x dz z y x dy dx 1031010)1(1 ⎰⎰---+++-=xyx dy z y x dx 101021])1(21[⎰⎰--++=x dy y x dx 10210]81)1(21[ dx y y x x-⎰-++-=101]81)1(21[dx x x ⎰+-+=10]8183)1(21[ 102]16183)1ln(21[x x x +-+= )852(ln 21-=.6. 计算⎰⎰⎰Ωxyzdxdydz , 其中Ω为球面x 2+y 2+z 2=1及三个坐标面所围成的在第一卦限内的闭区域.解 积分区域可表示为}10 ,10 ,10|),,{(222≤≤-≤≤--≤≤=Ωx x y y x z z y x 于是⎰⎰⎰Ωxyzdxdydz ⎰⎰⎰---=222101010x y x x y z d zdy dx ⎰⎰---=2102210)1(21x dy y x xy dx ⎰-=1022)1(81dx x x 481=.7. 计算⎰⎰⎰Ωxzdxdydz , 其中Ω是由平面z =0, z =y , y =1以及抛物柱面y =x 2所围成的闭区域.解 积分区域可表示为Ω={(x , y , z )| 0≤z ≤y , x 2≤y ≤1, -1≤x ≤1},于是⎰⎰⎰Ωxzdxdydz ⎰⎰⎰-=yx z d z dy xdx 01112⎰⎰-=1211221x dy y xdx 0)1(61116=-=⎰-dx x x . 8. 计算⎰⎰⎰Ωzdxdydz , 其中Ω是由锥面22y x R h z +=与平面z =h (R >0, h >0)所围成的闭区域.解 当0≤z ≤h 时, 过(0, 0, z )作平行于xOy 面的平面, 截得立体Ω的截面为圆D z : 222)(z h R y x =+, 故D z 的半径为z h R , 面积为222z h R π, 于是⎰⎰⎰Ωz d x d y d z =⎰⎰⎰zD hdxdy zdz 0⎰==hh R dz z h R 0223224ππ. 9. 利用柱面坐标计算下列三重积分:(1)⎰⎰⎰Ωzdv , 其中Ω是由曲面222y x z --=及z =x 2+y 2所围成的闭区域;解 在柱面坐标下积分区域Ω可表示为 0≤θ≤2π, 0≤ρ≤1, 222ρρ-≤≤z , 于是⎰⎰⎰Ωzdv ⎰⎰⎰-=1022022ρρπρρθz d z d d ⎰--=1042)2(212ρρρρπdπρρρρπ127)2(1053=--=⎰d .(2)⎰⎰⎰Ω+dv y x )(22, 其中Ω是由曲面x 2+y 2=2z 及平面z =2所围成的闭区域.解 在柱面坐标下积分区域Ω可表示为0≤θ≤2π, 0≤ρ≤2, 222≤≤z ρ, 于是 dv y x )(22+Ω⎰⎰⎰dz d d θρρρ⋅=Ω⎰⎰⎰2⎰⎰⎰=221203202ρπρρθdz d d⎰⎰-=205320)212(ρρρθπd d ⎰==ππθ2031638d .10. 利用球面坐标计算下列三重积分:(1)⎰⎰⎰Ω++dv z y x )(222, 其中Ω是由球面x 2+y 2+z 2=1所围成的闭区域.解 在球面坐标下积分区域Ω可表示为 0≤θ≤2π, 0≤ϕ≤π, 0≤r ≤1, 于是⎰⎰⎰Ω++dv z y x )(222⎰⎰⎰Ω⋅=θϕϕd d r d r s i n 4 ⎰⎰⎰=104020s i n dr r d d ππϕϕθπ54=.(2)⎰⎰⎰Ωzdv , 其中闭区域Ω由不等式x 2+y 2+(z -a )2≤a 2, x 2+y 2≤z 2 所确定.解 在球面坐标下积分区域Ω可表示为 ϕπϕπθc o s 20 ,40 ,20a r ≤≤≤≤≤≤,于是 ⎰⎰⎰⎰⎰⎰ΩΩ⋅=θϕϕϕd drd r r zdv sin cos 2⎰⋅=404)c o s 2(41c o s s i n 2πϕϕϕϕπd a 4405467c o s s i n 8a d a πϕϕϕππ==⎰. 11. 选用适当的坐标计算下列三重积分:(1)⎰⎰⎰Ωxydv , 其中Ω为柱面x 2+y 2=1及平面z =1, z =0, x =0, y =0所围成的在第一卦限内的闭区域;解 在柱面坐标下积分区域Ω可表示为 10 ,10 ,20≤≤≤≤≤≤z ρπθ,于是⎰⎰⎰Ωx y d v ⎰⎰⎰Ω⋅⋅=dz d d θρρθρθρsin cos ⎰⎰⎰==101032081c o s s i n dz d d ρρθθθπ. 别解: 用直角坐标计算⎰⎰⎰Ωx y d v ⎰⎰⎰-=1010102dz ydy xdx x ⎰⎰-=21010x y d y x d x⎰-=103)22(dx x x 81]84[1042=-=x x . (2)⎰⎰⎰Ω++dv z y x 222, 其中Ω是由球面x 2+y 2+z 2=z 所围成的闭区域;解 在球面坐标下积分区域Ω可表示为 ϕπϕπθc o s 0 ,20 ,20≤≤≤≤≤≤r ,于是⎰⎰⎰Ω++dv z y x 222⎰⎰⎰⋅=ϕππϕϕθc o s22020s i n dr r r d d10cos 41sin 2204πϕϕϕππ=⋅=⎰d .(3)⎰⎰⎰Ω+dv y x )(22, 其中Ω是由曲面4z 2=25(x 2+y 2)及平面z =5所围成的闭区域;解 在柱面坐标下积分区域Ω可表示为 525 ,20 ,20≤≤≤≤≤≤z ρρπθ,于是⎰⎰⎰Ω+dv y x )(22⎰⎰⎰=52520320ρπρρθdz d dπρρρπ8)255(2203=-=⎰d .(4)⎰⎰⎰Ω+dv y x )(22, 其中闭区域Ω由不等式A z y x a ≤++≤<2220, z ≥0所确定.解 在球面坐标下积分区域Ω可表示为 A r a ≤≤≤≤≤≤ ,20 ,20πϕπθ,于是⎰⎰⎰Ω+dv y x )(22θϕϕθϕϕϕd d r d r r r s i n )s i n s i n c o s s i n(2222222⎰⎰⎰Ω+=)(154sin 55420320a A dr r d d Aa -==⎰⎰⎰πϕϕθππ.12. 利用三重积分计算下列由曲面所围成的立体的体积: (1)z =6-x 2-y 2及22y x z +=;解 在柱面坐标下积分区域Ω可表示为0≤θ≤2 π, 0≤ρ≤2, ρ≤z ≤6-ρ2, 于是 ⎰⎰⎰⎰⎰⎰ΩΩ==dz d d dv V θρρ⎰⎰⎰-=262020ρρπρρθdz d d⎰=--=2032332)6(2πρρρρπd .(2)x 2+y 2+z 2=2az (a >0)及x 2+y 2=z 2(含有z 轴的部分); 解 在球面坐标下积分区域Ω可表示为ϕπϕπθc o s 20 ,40 ,20a r ≤≤≤≤≤≤,于是 ⎰⎰⎰⎰⎰⎰ΩΩ==θϕϕd d r d r dv V sin 2⎰⎰⎰=ϕππϕϕθc o s2024020s i na dr r d d34033s i n c o s382a d a πϕϕϕππ==⎰. (3)22y x z +=及z =x 2+y 2;解 在柱面坐标下积分区域Ω可表示为 0≤θ≤2π, 0≤ρ≤1, ρ2≤z ≤ρ,于是 6)(2103210202πρρρπρρθρρπ=-===⎰⎰⎰⎰⎰⎰⎰Ωd dz d d dv V .(4)225y x z --=及x 2+y 2=4z .解 在柱面坐标下积分区域Ω可表示为22541 ,20 ,20ρρρπθ-≤≤≤≤≤≤z ,于是 ⎰⎰⎰-=225412020ρρπρρθdz d d V)455(32)45(22022-=--=⎰πρρρρπd .13. 球心在原点、半径为R 的球体, 在其上任意一点的密度的大小与这点到球心的距离成正比, 求这球体的质量.解 密度函数为222),,(z y x k z y x ++=ρ. 在球面坐标下积分区域Ω可表示为 0≤θ≤2π, 0≤ϕ≤π, 0≤r ≤R ,于是 ⎰⎰⎰Ω++=dv z y x k M 222400220s i n R k dr r kr d d Rπϕϕθππ=⋅=⎰⎰⎰.。
三重积分习题
三重积分习题★★1.化三重积分⎰⎰⎰Ωdxdydz z y x f ),,(为三次积分,其中积分区域Ω分别是:(1) 由xy z =,2=+y x ,0=z 所围成的闭区域;(2) 由六个平面0=x ,2=x ,1=y ,42=+y x ,x z =,2=z 所围成的闭区域;(3) 由曲面222y x z +=及22x z -=所围成的闭区域。
★★★5.计算⎰⎰⎰Ω+++3)1(zyxdxdydz,其中Ω是由0=x,0=y,0=z和1=++zyx所围成的四面体。
★★★6.计算⎰⎰⎰Ωdxdydz,其中Ω是由xyz=,1=++zyx,0=z所围成的区域。
★★★7.计算⎰⎰⎰Ωdve z,其中Ω:1222≤++zyx★★1.利用柱面坐标计算三重积分⎰⎰⎰Ωzdv,其中积分区域Ω由曲面4222=++zyx及223yxz+=所围成(在抛物面内的那一部分)★★ 2.利用柱面坐标计算三重积分⎰⎰⎰Ω+dvyx)(22,其中积分区域Ω由曲面zyx222=+及2=z所围成的闭区域。
★★3.利用球面坐标计算三重积分⎰⎰⎰Ω++dvzyx)(222,其中Ω由1222=++zyx所围成的闭区域。
★★4.利用球面坐标计算三重积分⎰⎰⎰Ω++dv z y x z222,其中Ω:1222≤++z y x ,)(322y x z +≥★★5.计算⎰⎰⎰Ωxydv ,其中Ω由柱面122=+y x及平面1=z ,0=z ,0=x ,0=y 所围成的在第一卦限内的闭区域。
★★★6.计算⎰⎰⎰Ω+dv y x 22,其中Ω由平面4=+z y ,1=++z y x 与圆柱面122=+y x 所围成的闭区域。
★★★7.⎰⎰⎰Ω++dv z y x 222,其中Ω是由z z y x =++222所围成的闭区域。
★★★8.计算⎰⎰⎰Ω+dxdydz y x)(22,其中Ω是由曲线z y 22=,0=x 绕z 轴旋转一周而成的曲面与两平面2=z ,8=z 所围成的立体。
二,三重积分练习题解答
f ( x 2 y 2 )dxdy t4 lim
t 0
2
0
d 0 f ( 2 ) d t4
t
t 0
lim
t 0
2 0t f ( 2 ) d
t
4
lim
t 0
0 0
2f ( t 2 )t
4t 3
2 t 0
lim
f (t 2 ) t2
2 t 0
lim
f ( t 2 ) f ( 0) t2
2
f 0
9. f ( x )在a , b上连续 , 利用 f x f ( y ) 的二重积分证明
2
( f ( x )dx ) b a f 2 ( x )dx
2
a a
b
b
证
设 D是矩形a x b; a y b
D
5.求由闭曲线( x 2 y 2 )2 xy所围图形的面积 .
6. f ( u)连续, 求积分I x1 yf ( x 2 y 2 )d
D 由 y x 3 , x 1, y 1 围成.
D
7. 区域D : x 2 y 2 y , x 0. f x , y 在D上连续 , 且 8 2 2 f ( x , y ) 1 x y f ( x , y )d . 求函数 f ( x , y )
b b
2b a a f
b
b
2
x dx 2( f x dx )2
b a
b a
0
b a f 2 ( x )dx ( f ( x )dx )2
三重积分习题
c1
0 y
“先二后一”
x
二、利用柱面坐标计算三重积分
柱面坐标 M(x, y, z) M(r, , z)
x r cos
y r sin
z
z
z=z
. .
M(x, y, z) M(r,, z) z
0
y
y
x
x
r
P(x, y, 0)
柱面坐标下的体积元素
z
元素区域由六个坐标面围成: 半平面 及+d ; 半径为 r 及 r+dr 的圆柱面; 平面 z及 z+dz;
2 2
x y 与
2 2
z 1 1 x y 所围成的. (画图)
解
关于 yoz 面为对称, 奇函数,
有
f ( x, y, z) x 为 x 的
xdv 0 .
( x z ) dv
zdv
利用球面坐标
2
0
2
d
0
4
d
0
2cos
dV
r
0
f ( x , y , z )d x d y d z
x
d
.
y
f ( r sin cos , r sin sin , r cos ) r sin d r d d
2
重积分在几何上的应用
(一)平面区域的面积 设有平面区域D, 则其面积为: D d (二)体积
1 y z
(1 - y ) e
0
1 y z
三重积分习题课(一)
f ( x,
y , z )dxdydz dz f ( x , y , z )dxdy
c1 Dz
c2
2.利用柱面坐标计算 若 {(,
, z ) | z1 (, ) z z 2 (, ), 1 () 2 (), }
: r z 0r R2 r 2 , 2 R, 0 2 2
.
4
x
o
y
故有
zdxdydz
2 0
d
2 R 2 0
dr
R2 r 2 r
zrdz
2
2 R 2 0
1 1 2 2 R 4 r ( R 2r )dr 8 2
2 0
0
R
59 R 5 480
解法2:利用柱面坐标计算。
2 3 R 2 2 由于 在 xoy 平面的投影区域 D xy : x y 4
;
故在柱面坐标下,
3R : R R r z R r , 0 r , 0 2 2
2 2 2 2
于是有
z
2
dxdydz
解法二:利用球面坐标计算
zdxdydz
d sin cos d r 3dr 0
4 0
R
1 R 4 8
注:从上面两种解法的过程来看,虽然本题可用两种方法 来计算,但利用柱面坐标计算相对简便。
2 2 2 I ( x y z )dxdydz,其中 是由球面 【例7】求
其中 为平面 x 0 ,
z 0 ,x y z 1 ,所围成的四面体。 y 0,
解: (如图)在平面 xoy 上的投影域 D xy
三重积分习题1
9-31. 化三重积分⎰⎰⎰Ω=dxdydz z y x f I ),,(为三次积分, 其中积分区域Ω分别是:(1)由双曲抛物面xy =z 及平面x +y -1=0, z =0所围成的闭区域; 解 积分区域可表示为Ω={(x , y , z )| 0≤z ≤xy , 0≤y ≤1-x , 0≤x ≤1}, 于是 ⎰⎰⎰-=xyx dz z y x f dy dx I 01010),,(.(2)由曲面z =x 2+y 2及平面z =1所围成的闭区域; 解 积分区域可表示为}11 ,11 ,1|),,{(2222≤≤--≤≤--≤≤+=Ωx x y x z y x z y x , 于是 ⎰⎰⎰+----=111112222),,(y x x xdz z y x f dy dx I .(3)由曲面z =x 2+2y 2及z =2-x 2所围成的闭区域; 解 曲积分区域可表示为}11 ,11 ,22|),,{(22222≤≤--≤≤---≤≤+=Ωx x y x x z y x z y x , 于是 ⎰⎰⎰-+----=22222221111),,(x y x x x dz z y x f dy dx I .提示: 曲面z =x 2+2y 2与z =2-x 2的交线在xOy 面上的投影曲线为x 2+y 2=1.(4)由曲面cz =xy (c >0), 12222=+by a x , z =0所围成的在第一卦限内的闭区域. 解 曲积分区域可表示为}0 ,0 ,0|),,{(22a x x a a b y c xyz z y x ≤≤-≤≤≤≤=Ω,于是 ⎰⎰⎰-=c xy x a a b adz z y x f dy dx I 000),,(22.提示: 区域Ω的上边界曲面为曲面c z =xy , 下边界曲面为平面z =0.2. 设有一物体, 占有空间闭区域Ω={(x , y , z )|0≤x ≤1, 0≤y ≤1, 0≤z ≤1}, 在点(x , y , z )处的密度为ρ(x , y , z )=x +y +z , 计算该物体的质量.解 ⎰⎰⎰⎰⎰⎰++==Ω101010)(dz z y x dy dx dxdydz M ρ⎰⎰++=1010)21(dy y x dx⎰⎰+=++=1010102)1(]2121[dx x dx y y xy 23)1(21102=+=x .3. 如果三重积分⎰⎰⎰Ωdxdydz z y x f ),,(的被积函数f (x , y , z )是三个函数f 1(x )、f 2(y )、f 3(z )的乘积, 即f (x , y , z )= f 1(x )⋅f 2(y )⋅f 3(z ), 积分区域Ω={(x , y , z )|a ≤x ≤b , c ≤y ≤d , l ≤z ≤m }, 证明这个三重积分等于三个单积分的乘积, 即⎰⎰⎰⎰⎰⎰=Ωmld cb adz z f dy y f dx x f dxdydz z f y f x f )()()()()()(321321.证明⎰⎰⎰Ωdxdydz z f y f x f )()()(321dx dy dz z f y f x f ba dcml]))()()(([321⎰⎰⎰=dx dy dz z f y f x f ba dc ml]))()()(([321⎰⎰⎰=⎰⎰⎰=mldcbadx dy y f dz z f x f )])()()()([(231 dx x f dy y f dz z f bamldc)]())()()([(123⎰⎰⎰=⎰⎰⎰=dcbamldx x f dy y f dz z f )())()()((123⎰⎰⎰=d cmlb adz z f dy y f dx x f )()()(321.4. 计算⎰⎰⎰Ωdxdydz z xy 32, 其中Ω是由曲面z =xy , 与平面y =x , x =1和z =0所围成的闭区域.解 积分区域可表示为Ω={(x , y , z )| 0≤z ≤xy , 0≤y ≤x , 0≤x ≤1}, 于是⎰⎰⎰Ωdxdydz z xy 32⎰⎰⎰=xyxdz z dy y xdx 030210⎰⎰=xxy dy z y xdx 004210]4[ ⎰⎰=x dy y dx x 051054136412811012==⎰dx x .5. 计算⎰⎰⎰Ω+++3)1(z y x dxdydz, 其中Ω为平面x =0, y =0, z =0, x +y +z =1所围成的四面体.解 积分区域可表示为Ω={(x , y , z )| 0≤z ≤1-x -y , 0≤y ≤1-x , 0≤x ≤1},于是 ⎰⎰⎰Ω+++3)1(z y x dxdydz ⎰⎰⎰---+++=y x x dz z y x dy dx 1031010)1(1 ⎰⎰--++=xdy y x dx 1021]81)1(21[dx x x ⎰+-+=10]8183)1(21[ )852(ln 21-=.提示: ⎰⎰⎰Ω+++3)1(z y x dxdydz ⎰⎰⎰---+++=y x x dz z y x dy dx 1031010)1(1 ⎰⎰---+++-=xyx dy z y x dx 101021])1(21[⎰⎰--++=x dy y x dx 10210]81)1(21[ dx y y x x-⎰-++-=101]81)1(21[dx x x ⎰+-+=10]8183)1(21[ 102]16183)1ln(21[x x x +-+= )852(ln 21-=.6. 计算⎰⎰⎰Ωxyzdxdydz , 其中Ω为球面x 2+y 2+z 2=1及三个坐标面所围成的在第一卦限内的闭区域.解 积分区域可表示为}10 ,10 ,10|),,{(222≤≤-≤≤--≤≤=Ωx x y y x z z y x 于是⎰⎰⎰Ωxyzdxdydz ⎰⎰⎰---=222101010x y x xyzdz dy dx⎰⎰---=2102210)1(21x dy y x xy dx ⎰-=1022)1(81dx x x 481=.7. 计算⎰⎰⎰Ωxzdxdydz , 其中Ω是由平面z =0, z =y , y =1以及抛物柱面y =x 2所围成的闭区域.解 积分区域可表示为Ω={(x , y , z )| 0≤z ≤y , x 2≤y ≤1, -1≤x ≤1},于是⎰⎰⎰Ωxzdxdydz ⎰⎰⎰-=yx zdz dy xdx 01112⎰⎰-=1211221x dy y xdx 0)1(61116=-=⎰-dx x x .8. 计算⎰⎰⎰Ωzdxdydz , 其中Ω是由锥面22y x R h z +=与平面z =h (R >0, h >0)所围成的闭区域.解 当0≤z ≤h 时, 过(0, 0, z )作平行于xOy 面的平面, 截得立体Ω的截面为圆D z : 222)(z h R y x =+, 故D z 的半径为z h R , 面积为222z h R π, 于是⎰⎰⎰Ωzdxdydz =⎰⎰⎰zDh dxdy zdz 0⎰==h h R dz z h R 0223224ππ. 9. 利用柱面坐标计算下列三重积分:(1)⎰⎰⎰Ωzdv , 其中Ω是由曲面222y x z --=及z =x 2+y 2所围成的闭区域;解 在柱面坐标下积分区域Ω可表示为 0≤θ≤2π, 0≤ρ≤1, 222ρρ-≤≤z , 于是⎰⎰⎰Ωzdv ⎰⎰⎰-=1022022ρρπρρθzdz d d ⎰--=1042)2(212ρρρρπdπρρρρπ127)2(1053=--=⎰d .(2)⎰⎰⎰Ω+dv y x )(22, 其中Ω是由曲面x 2+y 2=2z 及平面z =2所围成的闭区域.解 在柱面坐标下积分区域Ω可表示为0≤θ≤2π, 0≤ρ≤2, 222≤≤z ρ,于是 dv y x )(22+Ω⎰⎰⎰dz d d θρρρ⋅=Ω⎰⎰⎰2⎰⎰⎰=22123202ρπρρθdz d d⎰⎰-=205320)212(ρρρθπd d ⎰==ππθ2031638d .10. 利用球面坐标计算下列三重积分:(1)⎰⎰⎰Ω++dv z y x )(222, 其中Ω是由球面x 2+y 2+z 2=1所围成的闭区域.解 在球面坐标下积分区域Ω可表示为 0≤θ≤2π, 0≤ϕ≤π, 0≤r ≤1, 于是⎰⎰⎰Ω++dv z y x )(222⎰⎰⎰Ω⋅=θϕϕd drd r sin 4 ⎰⎰⎰=104020sin dr r d d ππϕϕθπ54=. (2)⎰⎰⎰Ωzdv , 其中闭区域Ω由不等式x 2+y 2+(z -a )2≤a 2, x 2+y 2≤z 2 所确定.解 在球面坐标下积分区域Ω可表示为 ϕπϕπθcos 20 ,40 ,20a r ≤≤≤≤≤≤,于是 ⎰⎰⎰⎰⎰⎰ΩΩ⋅=θϕϕϕd drd r r zdv sin cos 2⎰⋅=404)cos 2(41cos sin 2πϕϕϕϕπd a4405467cos sin 8a d a πϕϕϕππ==⎰. 11. 选用适当的坐标计算下列三重积分:(1)⎰⎰⎰Ωxydv , 其中Ω为柱面x 2+y 2=1及平面z =1, z =0, x =0, y =0所围成的在第一卦限内的闭区域;解 在柱面坐标下积分区域Ω可表示为 10 ,10 ,20≤≤≤≤≤≤z ρπθ,于是⎰⎰⎰Ωxydv ⎰⎰⎰Ω⋅⋅=dz d d θρρθρθρsin cos⎰⎰⎰==101032081cos sin dz d d ρρθθθπ.别解: 用直角坐标计算⎰⎰⎰Ωxydv ⎰⎰⎰-=1010102dz ydy xdx x ⎰⎰-=21010x ydy xdx ⎰-=103)22(dx x x 81]84[1042=-=x x . (2)⎰⎰⎰Ω++dv z y x 222, 其中Ω是由球面x 2+y 2+z 2=z 所围成的闭区域;解 在球面坐标下积分区域Ω可表示为 ϕπϕπθcos 0 ,20 ,20≤≤≤≤≤≤r ,于是⎰⎰⎰Ω++dv z y x 222⎰⎰⎰⋅=ϕππϕϕθcos 022020sin dr r r d d10cos 41sin 2204πϕϕϕππ=⋅=⎰d .(3)⎰⎰⎰Ω+dv y x )(22, 其中Ω是由曲面4z 2=25(x 2+y 2)及平面z =5所围成的闭区域;解 在柱面坐标下积分区域Ω可表示为 525 ,20 ,20≤≤≤≤≤≤z ρρπθ,于是⎰⎰⎰Ω+dv y x )(22⎰⎰⎰=52520320ρπρρθdz d dπρρρπ8)255(2203=-=⎰d .(4)⎰⎰⎰Ω+dv y x )(22, 其中闭区域Ω由不等式A z y x a ≤++≤<2220, z ≥0所确定.解 在球面坐标下积分区域Ω可表示为 A r a ≤≤≤≤≤≤ ,20 ,20πϕπθ,于是⎰⎰⎰Ω+dv y x)(22θϕϕθϕϕϕd drd r r r sin )sin sin cos sin (2222222⎰⎰⎰Ω+=)(154sin 55420320a A dr r d d Aa -==⎰⎰⎰πϕϕθππ.12. 利用三重积分计算下列由曲面所围成的立体的体积: (1)z =6-x 2-y 2及22y x z +=;解 在柱面坐标下积分区域Ω可表示为0≤θ≤2 π, 0≤ρ≤2, ρ≤z ≤6-ρ2, 于是 ⎰⎰⎰⎰⎰⎰ΩΩ==dz d d dv V θρρ⎰⎰⎰-=262020ρρπρρθdz d d⎰=--=2032332)6(2πρρρρπd .(2)x 2+y 2+z 2=2az (a >0)及x 2+y 2=z 2(含有z 轴的部分); 解 在球面坐标下积分区域Ω可表示为ϕπϕπθcos 20 ,40 ,20a r ≤≤≤≤≤≤,于是 ⎰⎰⎰⎰⎰⎰ΩΩ==θϕϕd drd r dv V sin 2⎰⎰⎰=ϕππϕϕθcos 2024020sin a dr r d d34033sin cos 382a d a πϕϕϕππ==⎰.(3)22y x z +=及z =x 2+y 2;解 在柱面坐标下积分区域Ω可表示为 0≤θ≤2π, 0≤ρ≤1, ρ2≤z ≤ρ,于是 6)(2103210202πρρρπρρθρρπ=-===⎰⎰⎰⎰⎰⎰⎰Ωd dz d d dv V .(4)225y x z --=及x 2+y 2=4z .解 在柱面坐标下积分区域Ω可表示为22541 ,20 ,20ρρρπθ-≤≤≤≤≤≤z ,于是 ⎰⎰⎰-=225412020ρρπρρθdz d d V)455(32)45(22022-=--=⎰πρρρρπd .13. 球心在原点、半径为R 的球体, 在其上任意一点的密度的大小与这点到球心的距离成正比, 求这球体的质量. 解 密度函数为222),,(z y x k z y x ++=ρ. 在球面坐标下积分区域Ω可表示为 0≤θ≤2π, 0≤ϕ≤π, 0≤r ≤R ,于是 ⎰⎰⎰Ω++=dv z y x k M 22240220sin R k dr r kr d d Rπϕϕθππ=⋅=⎰⎰⎰.。
三重积分、重积分习题
三重积分zdv1.将|= 分别表示成直角坐标,柱面坐标和球面坐标下的三次积分,并选择其中一种计算出结果.其中是由曲面2 2 2 2分.因此再由D : x +y 1,有z x y可表示为1 x 1,、厂X2 2 2x y z1 x2,2 x2y2,z=,2' 2 2 2y及z=x +y所围成的闭区域・分析为计算该三重积分,我们先把积分区域投影到某坐标平面上, 由于是由两张曲面2 2 2z ,2 x y 及z x 2y ,而由这两个方程所组成的方程组z 一? X; y2, z x y极易消去乙我们把它投影到xoy面上.然后,为在指定的坐标系下计算之,还应该先把的边界曲面用相应的坐标表示, 并找出各种坐标系下各个变量的取值范围,最后作代换即可.解将投影到xoy平面上,由z -2 x2 y2,z X? / 消去z 得(x2+y2)2=2-(x2+y2),2 2 2 十口亠或(x +y +2)(x +y -1)=0,于是有2 2x +y =1 .即知,在xoy平面上的投影为圆域D:2 2x +y 1 .为此在D内任取一点Q(x, y), 过Q作平行于z轴的直线自下而上穿过.穿入时碰到的曲面为z y,离开时碰到的曲面为z 2 x2y (不画图,仅用代数方法也2 易判断z x z 2 x2 2 2 2 y ),这是因为x +y1)(1)直角坐标系下,我们分直角坐标及柱面坐标,下边找z的变化范围从而化为三重积/ 2 2■ 2 x y,于是在直角坐标下,X(3)球面坐标下于是有 1dx 1 1 X 2 dy 1 X 22 x 2 y :zdz X 2 y 2 (2)柱面坐标下 首先把 的表面方程用柱面坐标表示, 这时z=X 2 +y 2表示为 z= 2 ,z= . 2—X 2 表示为z= ; 22•再由投影区域D 为 2 2 +y 1 .故0 1, 0 表示为 2 , 1,2’将所给三重积分中的体积元素d 用ddz去替换,有zdz d d dz22dz用球面坐标代换两曲面的方程,得曲面 z=x+y变为cos.2sinz 八2 x 2 y 2变为=2 .22由 在Xoy 平面上的投影为 X +y 1知0,下边找 的变化范围.正z 轴在 内,即 内有点P,使op 与0Z 夹角为零,即 的下界为零.又曲面2 2z=X +y与xoy 平面相切,故的上界为2,于是0 2再找的变化范围.原点在 的表面上,故 取到最小值为零.为找 的上界,从原点出发作射线穿过,由于的表面由两张曲面所组成,因而的上界随相应的 的不同而不同.为此在两曲面的交线2 2z X y ,z 2 X y上取一点 A(0 , 1,1),故A 所对应的计算比较简单,这时(1)计算三重积分时,欲用何种坐标,就要首先把积分区域的表面方程化成用该同时把被积函数中的变量与体积元素替换为该坐标下的形式.(2) 不要认为当积分区域为球体的一部分就应采用球面坐标•球面坐标所适用的积分 区域一般为球,两球面所围的区域,或这两种区域被圆锥所截得的部分. 本题是由旋转抛物面与球面所围成的区域,一般是不宜用球面坐标的.(3) 还应注意面积元在不同坐标下的不同形式;并且在直角坐标系中,更应该强调学 会使用对称性、奇偶性、切片法、换元法、投影面方程的求法等;1~2 2 2zpxy z d2 .计算三重积分 ,其中 是由曲面x 2 +y 2 +z 2 =1及Z= .,3(x2y2)所围成的区域.分析为球面和圆锥面所围成的区域•故从积分区域的特点看,它适宜用球面坐标•同时,被积函数中含有因式 X 2+y 2+z 2,故从积分区域与被积函数两方面来看,应选用球面坐标.丨 2 2解 在球面坐标下,球面 x 2 +y 2+z 2 =1的方程为r=1,锥面z= 3(x y )的方程为3 __ tan = 3 ,即 6,又z 轴的正向穿过故 的下界为零,因此 06 .r 的变化范围为因此cos22时,r 的上界由曲面r= sin 所给,故这时rcot ,当一4—时。
三重积分、应用习题
3、球面坐标 立体:球或圆锥,被积函数
例1
解 1、直角坐标: 投影法:
o
z
y
x
例1
解 1、直角坐标:截面法:
z
o
y
x
例1
解 2、柱面坐标: 投影法:
z
o
y
x
例1
解 3、球面坐标:
z
oyx源自2解zyx
例3
解 对称性=0
轮换对称性
例4
解
设立体密度均匀, 则立体质心在
.
1、求曲面 x y z 包含在 x y 2 x内的那部分面积 .
2 2 2 2 2
2、曲面x 2 y 2 3 z与z 4 x 2 y 2 所围均匀立体,求立体质量.
3、:2( x y ) z 6 x y ,
D xy : x y 2 2 x
2
2 1 zx z2 y d
2 2d
D xy
2 2
2、曲面x 2 y 2 3 z与z 4 x 2 y 2 所围均匀立体 ,求立体质量 .
3、:2( x 2 y 2 ) z 6 x 2 y 2 ,
( x, y , z ) f ( x 2 y 2 z 2 ) 求对z轴的转动惯量的柱面坐 标、球面坐标下累次积 分.
4、
解
z
o
y
x
2 2 2 2
( x, y, z ) f ( x 2 y 2 z 2 ) 求 对 z轴 的 转 动 惯 量 的 柱 面 标 坐、 球 面 坐 标 下 累 次分 积.
三重积分习题
Dz :
x2 y2 R2z2 h2
故本题利用直角坐标系中“先二后一”的方法计算比较简便;
考虑到积分区域 在 xoy坐标 面上的投影区域为圆域
z
Dxy : x 2 y 2 R2
h
所以本题也可采用柱面坐标计算
解法1:利用“先二后一”方法计算。
由于 {( x, y, z) | ( x, y) Dz , 0 z ,h}
z z xy
o
(3) 转化为先对 z后对 x, 的y 三次积分计算:
y y x
x
精品PPT
xy 2 z 3dxdydz dxdy xy xy 2 z 3dz 0
Dxy
1
x 5 y 6dxdy 1
1
dx
x x 5 y 6dy
1
4 Dxy
40
0
364
精品PPT
习题(xítí)10-3 第7题
故有
2
1
22
zdxdydz 0 d 0 d zdz
2 1 1 (2 2 2 )d
02
(2 1 4)1
202
注意(zhùyì):从上面两种解法的过程来看,虽然本题可用两种方法
来计算,但利用柱面坐标计算相对简便。
精品PPT
1
2
1
2
0 zdz dxdy 1 zdz dxdy
Dz
Dz
1 z z2dz 2 z (2 z2 )dz
0
1
1 z4 1 (z2 1 z4) 2
4
0
41
2
精品PPT
解法(jiě fǎ)2:利用柱面坐标计算。
在柱面坐标下 : z 2 2 , 0 1, 0 2
三重积分的计算
三重积分的概念三重积分的性质三重积分的计算直角柱面球面回顾:讨论密度分布不均匀的物体的质量:(1) 一根细棒:ab 密度为i ξ=M ()b a x dx ρ=⎰()i ρξi x ∆∑=ni 10lim →λ(2)平面薄片:),(i i ηξ=M (,)i i ρξη∑=n i 10lim →λiσ∆(,)Dx y dxdy ρ=⎰⎰密度为y x D(3)设在空间有限闭区域Ω内分布着某种不均匀的物质,(,,),x y z C ρ∈求分布在Ω内的物质的质量M .密度函数为Ω(,,)k k k ξηζk v ∆(,,)x y z ρ➢分割:12,,,,,i n v v v v ∆∆∆∆把Ω分为➢取近似:(,,)k k k k kM v ρξηζ∆≈∆➢求和:1(,,)n k k k kk M v ρξηζ=≈∆∑➢取极限:01lim (,,)n k k k k k M v λρξηζ→==∆∑设f (x , y , z )是空间有界闭区域Ω上的有界函数,1、将闭区域Ω任意分成n 个小闭区域∆v 1, ∆v 2, ⋅⋅⋅, ∆v n , 其中∆v i 表示第i 个小闭区域, 也表示它的体积,2、在每个∆v i 上任取一点(ξi , ηi , ζi ), 作乘积f (ξi , ηi , ζi )∆v i ,3、求和∑=ni i i i i v f 1),,(∆ζηξ4、如果当各小闭区域的直径中的最大值λ趋近于零时, 该和式的极限存在, 则称此极限为函数f (x , y , z )在闭区域Ω上的三重积分, 并记为d (,,)Ωf x y z v⎰⎰⎰三重积分的定义⚫注:(2)三重积分的物理意义:不均匀物体的质量(1)其中dv 称为体积元素, 其它术语与二重积分相同.(3)同样有: 有界闭区域上的连续函数一定可积.d 01.(,,)lim (,,)ni i i ii f x y z v f v λξηζ→=Ω=∆∑⎰⎰⎰将二重积分定义中的积分区域推广到空间区域,被积函数推广到三元函数, 就得到三重积分的定义.三重积分的概念三重积分的性质三重积分的计算直角柱面球面➢线性性质[]d d d (,,)(,,)(,,)(,,)f x y z g x y z v f x y z v g x y z v αβαβΩΩΩ+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰➢可加性d d d 12(,,)(,,)(,,)f x y z v f x y z v f x y z v ΩΩΩ=+⎰⎰⎰⎰⎰⎰⎰⎰⎰➢几何意义d v V Ω=⎰⎰⎰V 为Ω的体积➢不等式(,,)f g x y z ≤∈Ωd d (,,)(,,)f x y z v g x y z vΩΩ≤⎰⎰⎰⎰⎰⎰d d (,,)(,,)f x y z v f x y z vΩΩ≤⎰⎰⎰⎰⎰⎰(),Df x y d σ=⎰⎰曲顶柱体的体积➢估值定理(,,)m f M x y z ≤≤∈Ωd (,,)mV f x y z v MVΩ≤≤⎰⎰⎰➢中值定理(,,)f x y z 在Ω上连续,则存在(,,),ξηζ∈Ω使得d (,,)(,,)f x y z v f V ξηζΩ=⎰⎰⎰三重积分的概念三重积分的性质三重积分的计算直角柱面球面在直角坐标系中, 如果我们用三族(平行于坐标面的)平面x = 常数, y = 常数, z = 常数, 对空间区域进行分割那末每个规则小区域都是长方体. 其体积元素为:dv =dxdydz三重积分可写成:三重积分在直角坐标系中的计算法与二重积分类似, 三重积分可化成三次积分进行计算.具体可分为先单后重和先重后单两种类型.d (,,)f x y z v Ω=⎰⎰⎰(),,f x y z dxdydzΩ⎰⎰⎰(一)先单后重(先一后二)法假设:1(,,)f x y z Ω在有界闭区域上连续;2º过Ω内任一点M 且平行于某坐标轴的直线与Ω的边界曲面S 至多有两个交点.以下以z 轴的情形为例.),(2y x zz =),(1y x z z =),(2y x z z =),(1y x z z =xyzoΩD xy 1z 2z 2S 1S ),(1y x z z =),(2y x z z =ab),(y x ),,(:),,(:2211y x z z S y x z z S ==(,),xy x y D ∈过点作直线穿出.穿入,从从21z z Ω在xOy 面上的投影区域为D xy ,以D xy 的边界为准线作母线平行z 轴的柱面.这柱面与Ω的边界曲面S相交,并将S 分成上、下两部分:则Ω可以表示为12{(,,)(,)(,),(,)}.xy x y z z x y z z x y x y D Ω=≤≤∈()()12,(,,),,,x y f x y z z z x y z x y z ⎡⎤⎣⎦先将看作定值,将只看作的函数,在区间上对积分21(,)(,)(,,)(,)[(,,)].xyxyD z x y z x y D f x y z dv F x y d f x y z dz d σσΩ==⎰⎰⎰⎰⎰⎰⎰⎰从而原三重积分可表示为21(,)(,)(,,)xyz x y z x y D d f x y z dzσ=⎰⎰⎰这就化为一个定积分和一个二重积分的运算21(,)(,)(,,)z x y z x y f x y z dz⎰(,)xy F x y D 再计算在闭区间上的二重积分(,)F x y ==⎰⎰⎰Ωdvz y x f ),,(12:()(),,xy D y x y y x a x b ≤≤≤≤若得2()y y x =abD1()y y x =Dba2()y y x =1()y y x =先对z ,再对y ,最后对x 的三次积分dx ⎰dy ⎰(),,.f x y z dz ⎰()1,z x y ()2,z x y ()1y x ()2y x ab注:若将积分域Ω投影到yOz 或xOz 面上,则可把三重积分化为按其它顺序的三次积分.x y zyoz →→Ω积分次序为将投影到面21(,)(,)(,,)(,,)yzx y z x y z D f x y z dv d f x y z dxσΩ=⎰⎰⎰⎰⎰⎰21(,)(,)(,,)(,,)xzy x z y x z D f x y z dv d f x y z dyσΩ=⎰⎰⎰⎰⎰⎰y x z xoz →→Ω积分次序为将投影到面Ω:平面x =0, y = 0, z = 0,x+2y+ z =1所围成的区域x = 0, y = 0, x+2y =1 围成例1.计算三重积分x + 2y + z =1yx121()112y x =−D xyzy x x I d d d ⎰⎰⎰Ω=1、画出(观察)积分区域2、确定积分次序先z 再y 后x,4、将Ω向xoy 平面做投影得区域xyD 3、确定z 的积分上下限分析:1xyz121解:d d d x x y zΩ⎰⎰⎰121(1)00d (12)d x x x x y y−=−−⎰⎰120d x y z−−⎰12301(2)d 4x x x x =−+⎰148=练习:将积分次序改为:先y 再z 后x将积分次序改为:先x 再z 后y1xyz121x + 2y + z =1()012101201z x yy x x ≤≤−−⎧⎪⎪Ω≤≤−⎨⎪≤≤⎪⎩:例2 化三重积分 ⎰⎰⎰Ω=dxdydz z y x f I ),,(为三次积分,其中 积分区域 Ω为由曲面22y x z +=,2x y =,1=y , 0=z 所围成的空间闭区域.2y x=1y =oxy-11xyD 11、画出(观察)积分区域分析:2、确定积分次序先z 再y 后x,3、确定z 的积分上下限4、将Ω向xoy 平面做投影得区域xyD ⎰⎰⎰−+=1101222),,(yx x dz z y x f dy dx I .例3 化三重积分 ⎰⎰⎰Ω=dxdydz z y x f I ),,(为三次积分,其中积分区域Ω为由曲面 222y x z +=及22x z −=所围成的闭区域.1、画出(观察)积分区域分析:2、确定积分次序先z , 再y 后x ,3、确定z 的积分上下限222z x=−下曲面21((0,0)2(0,0)0)z z =>=2212z x y=+上曲面=22222(,,)xyxx yD I d f x y z dz σ−+∴⎰⎰⎰xyD Oxy–1122222112112(,,).x x xx ydx dy f x y z dz −−−−−+=⎰⎰⎰22222x y z x⎧⎪Ω⎨⎪+≤≤−⎩:2211x y x −−≤≤−11x −≤≤由⎩⎨⎧−=+=22222xz y x z ,221,x y +≤:xyz xoy D Ω消去得在面上的投影区域4、将Ω向xoy 平面做投影得区域xyD 解:xy xoy D xoy Ω思考:在面上的投影区域是一个圆域,那么在平面进行的二重积分,可不可以利用极坐标系计算?需要注意些什么?2222,4x z dv y x z y Ω+Ω=+=⎰⎰⎰例4计算其中是由曲面与平面所围成xyzo2z y x =−2z y x =−−分析:1、画出(观察)积分区域2、确定积分次序先z 再y 后x,4、将Ω向xoy 平面做投影得区域xyD 3、确定z 的积分上下限yxo4y =2y x ==222222xyy x y x D x z dv d x z dzσ−−−Ω++⎰⎰⎰⎰⎰⎰-=22224222y x xy xdx dy x z dz−−−+⎰⎰⎰分析:1、画出(观察)积分区域2、确定积分次序先y 再z 后x,4、将Ω向xoz 平面做投影得区域xzD 3、确定y 的积分上下限=2242222xzx z D x z dv d x z dyσ+Ω++⎰⎰⎰⎰⎰⎰22224,4x z dv y x z y Ω+Ω=+=⎰⎰⎰例计算其中是由曲面与平面所围成xyzΩ22y x z =+4y =xz2−2224x z +==2222422xzx zD x z dvd x z dyσΩ+++⎰⎰⎰⎰⎰⎰()=22222244x y xzx z d σ+≤−−+⎰⎰xz2−2224x z +=2r =()()=222224041282415d rr rdrr r dr πθππ−⋅=−=⎰⎰⎰解:1、确定了积分次序后,内层积分上下限至多包含两个变量,中层积分上下限至多包含一个变量,外层积分上下限必须是常数2、对于先单后重的次序,重积分部分可以根据积分区域的特点采用极坐标系计算(1)把积分区域Ω向某轴(例如 z 轴)投影,得投影区间],[21c c ;(3) 计算二重积分⎰⎰zD dxdy z y x f ),,(其结果为z 的函数)(z F ;(4)最后计算单积分⎰21)(c c dz z F 即得三重积分值.z(二)先重后单(先二后一)法先重后单, 就是先求关于某两个变量的二重积分再求关于另一个变量的定积分122,zz c c z xoy D ∈Ω⎡⎤⎣⎦()对用过轴且平行平面的平面去截,得截面21()zc cD g z dzdxdy=⎰⎰⎰V d z y x f ⎰⎰⎰Ω),,(即,若f (x, y, z )= g (z )21(,,).zc c D dz f x y z dxdy =⎰⎰⎰易见, 若内层的二重积分容易计算时,这个方法更显出优越性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
931 化三重积分⎰⎰⎰Ω=dxdydz z y x f I ),,(为三次积分其中积分区域分别是(1)由双曲抛物面xy z 及平面x y 10 z 0所围成的闭区域解 积分区域可表示为{(x y z )| 0z xy 0y 1x0x 1}于是 ⎰⎰⎰-=xyxdz z y x f dy dx I 01010),,((2)由曲面z x 2y 2及平面z 1所围成的闭区域解 积分区域可表示为}11 ,11 ,1|),,{(2222≤≤--≤≤--≤≤+=Ωx x y x z y x z y x于是 ⎰⎰⎰+----=111112222),,(y x x xdzz y x f dy dx I(3)由曲面z x 22y 2及z 2x 2所围成的闭区域解 曲积分区域可表示为}11 ,11 ,22|),,{(22222≤≤--≤≤---≤≤+=Ωx x y x x z y x z y x于是 ⎰⎰⎰-+----=22222221111),,(x y x x x dzz y x f dy dx I提示 曲面z x 22y 2与z 2x 2的交线在xOy 面上的投影曲线为x 2+y 2=1(4)由曲面cz xy (c 0) 12222=+by a x z 0所围成的在第一卦限内的闭区域解 曲积分区域可表示为}0 ,0 ,0|),,{(22a x x a ab y cxy z z y x ≤≤-≤≤≤≤=Ω于是 ⎰⎰⎰-=c xy x a a b adzz y x f dy dx I 000),,(22提示区域的上边界曲面为曲面c z xy 下边界曲面为平面z 02 设有一物体占有空间闭区域{(x yz )|0x 1 0y 1 0z 1} 在点(x y z )处的密度为(x y z )x y z 计算该物体的质量 解 ⎰⎰⎰⎰⎰⎰++==Ω101010)(dz z y x dy dx dxdydz M ρ⎰⎰++=110)21(dy y x dx⎰⎰+=++=1010102)1(]2121[dx x dx y y xy 23)1(21102=+=x3 如果三重积分⎰⎰⎰Ωdxdydz z y x f ),,(的被积函数f (x y z )是三个函数f 1(x )、f 2(y )、f 3(z )的乘积 即f (x y z )f 1(x )f 2(y )f 3(z ) 积分区域{(x y z )|a x bc yd l z m } 证明这个三重积分等于三个单积分的乘积即⎰⎰⎰⎰⎰⎰=Ωml dc ba dzz f dy y f dx x f dxdydz z f y f x f )()()()()()(321321证明 ⎰⎰⎰Ωdxdydz z f y f x f )()()(321dx dy dz z f y f x f b a d c ml ]))()()(([321⎰⎰⎰=dx dy dz z f y f x f ba dc ml]))()()(([321⎰⎰⎰=⎰⎰⎰=mldcbadx dy y f dz z f x f )])()()()([(231dx x f dy y f dz z f bam ld c)]())()()([(123⎰⎰⎰=⎰⎰⎰=d cbam ldx x f dy y f dz z f )())()()((123⎰⎰⎰=d c ml b a dz z f dy y f dx x f )()()(3214 计算⎰⎰⎰Ωdxdydzz xy 32 其中是由曲面z xy与平面y x x 1和z 0所围成的闭区域解 积分区域可表示为{(x y z )| 0z xy 0y x 0x 1}于是 ⎰⎰⎰Ωdxdydz z xy 32⎰⎰⎰=xyxdz z dy y xdx 030210⎰⎰=xxydy z y xdx 004210]4[⎰⎰=x dy y dx x 051054136412811012==⎰dx x5 计算⎰⎰⎰Ω+++3)1(z y x dxdydz 其中为平面x 0 y 0 z 0x y z 1所围成的四面体解 积分区域可表示为{(x y z )| 0z 1x y 0y 1x0x 1}于是 ⎰⎰⎰Ω+++3)1(z y x dxdydz ⎰⎰⎰---+++=y x x dz z y x dy dx 1031010)1(1⎰⎰--++=xdy y x dx 10210]81)1(21[dx x x ⎰+-+=10]8183)1(21[ )852(ln 21-=提示⎰⎰⎰Ω+++3)1(z y x dxdydz ⎰⎰⎰---+++=y x x dz z y x dy dx 1031010)1(1 ⎰⎰---+++-=xyx dy z y x dx 1010210])1(21[⎰⎰--++=x dy y x dx 10210]81)1(21[ dx y y x x-⎰-++-=101]81)1(21[dx x x ⎰+-+=10]8183)1(21[ 102]16183)1ln(21[x x x +-+= )852(ln 21-=6 计算⎰⎰⎰Ωxyzdxdydz其中为球面x 2y 2z 21及三个坐标面所围成的在第一卦限内的闭区域 解 积分区域可表示为}10 ,10 ,10|),,{(222≤≤-≤≤--≤≤=Ωx x y y x z z y x于是 ⎰⎰⎰Ωxyzdxdydz ⎰⎰⎰---=222101010x y x xyzdz dy dx⎰⎰---=2102210)1(21x dy y x xy dx ⎰-=1022)1(81dx x x 481=7 计算⎰⎰⎰Ωxzdxdydz其中是由平面z 0 z y y 1以及抛物柱面y x 2所围成的闭区域解 积分区域可表示为{(x y z )| 0z y x 2y 1 1x 1}于是 ⎰⎰⎰Ωxzdxdydz ⎰⎰⎰-=yx zdz dy xdx 01112⎰⎰-=1211221xdy y xdx 0)1(61116=-=⎰-dx x x8 计算⎰⎰⎰Ωzdxdydz其中是由锥面22y x Rh z +=与平面z h (R 0 h 0)所围成的闭区域解 当0z h 时过(0 0 z )作平行于xOy 面的平面截得立体的截面为圆D z 222)(z hR y x =+ 故D z 的半径为zhR 面积为222z h R π 于是⎰⎰⎰Ωzdxdydz⎰⎰⎰zDhdxdy zdz 0⎰==hh R dz z h R 0223224ππ9 利用柱面坐标计算下列三重积分(1)⎰⎰⎰Ωzdv其中是由曲面222y x z --=及z x 2y 2所围成的闭区域解 在柱面坐标下积分区域可表示为 021 222ρρ-≤≤z于是 ⎰⎰⎰Ωzdv ⎰⎰⎰-=1022022ρρπρρθzdz d d ⎰--=1042)2(212ρρρρπdπρρρρπ127)2(153=--=⎰d(2)⎰⎰⎰Ω+dvy x )(22 其中是由曲面x 2y 22z 及平面z 2所围成的闭区域解 在柱面坐标下积分区域可表示为 022222≤≤z ρ于是 dv y x )(22+Ω⎰⎰⎰dz d d θρρρ⋅=Ω⎰⎰⎰2⎰⎰⎰=221203202ρπρρθdz d d⎰⎰-=205320)212(ρρρθπd d ⎰==ππθ2031638d10 利用球面坐标计算下列三重积分 (1)⎰⎰⎰Ω++dvz y x )(222 其中是由球面x 2y 2z 21所围成的闭区域解 在球面坐标下积分区域可表示为 020r 1于是 ⎰⎰⎰Ω++dv z y x )(222⎰⎰⎰Ω⋅=θϕϕd drd r sin 4⎰⎰⎰=104020sin dr r d d ππϕϕθπ54=(2)⎰⎰⎰Ωzdv其中闭区域由不等式x 2y 2(z a )2a 2x 2y 2z 2 所确定解 在球面坐标下积分区域可表示为ϕπϕπθcos 20 ,40 ,20a r ≤≤≤≤≤≤于是⎰⎰⎰⎰⎰⎰ΩΩ⋅=θϕϕϕd drd r r zdv sin cos 2⎰⋅=404)cos 2(41cos sin 2πϕϕϕϕπd a4405467cos sin 8a d a πϕϕϕππ==⎰11 选用适当的坐标计算下列三重积分(1)⎰⎰⎰Ωxydv其中为柱面x 2y 21及平面z 1 z 0x 0 y 0所围成的在第一卦限内的闭区域解 在柱面坐标下积分区域可表示为 10 ,10 ,20≤≤≤≤≤≤z ρπθ于是 ⎰⎰⎰Ωxydv ⎰⎰⎰Ω⋅⋅=dz d d θρρθρθρsin cos⎰⎰⎰==101032081cos sin dz d d ρρθθθπ别解 用直角坐标计算⎰⎰⎰Ωxydv ⎰⎰⎰-=1010102dz ydy xdx x ⎰⎰-=21010x ydy xdx ⎰-=103)22(dx x x 81]84[1042=-=x x (2)⎰⎰⎰Ω++dvz y x 222 其中是由球面x 2y 2z 2z 所围成的闭区域解 在球面坐标下积分区域可表示为ϕπϕπθcos 0 ,20 ,20≤≤≤≤≤≤r于是 ⎰⎰⎰Ω++dv z y x 222⎰⎰⎰⋅=ϕππϕϕθcos 022020sin dr r r d d10cos 41sin 2204πϕϕϕππ=⋅=⎰d(3)⎰⎰⎰Ω+dvy x )(22 其中是由曲面4z 225(x 2y 2)及平面z 5所围成的闭区域解 在柱面坐标下积分区域可表示为 525 ,20 ,20≤≤≤≤≤≤z ρρπθ于是 ⎰⎰⎰Ω+dv y x )(22⎰⎰⎰=52520320ρπρρθdz d d πρρρπ8)255(223=-=⎰d(4)⎰⎰⎰Ω+dvy x )(22 其中闭区域由不等式Az y x a ≤++≤<2220z 0所确定解 在球面坐标下积分区域可表示为 Ar a ≤≤≤≤≤≤ ,20 ,20πϕπθ于是 ⎰⎰⎰Ω+dv y x )(22θϕϕθϕϕϕd drd r r r sin )sin sin cos sin (2222222⎰⎰⎰Ω+=)(154sin 55420320a A dr r d d Aa -==⎰⎰⎰πϕϕθππ12 利用三重积分计算下列由曲面所围成的立体的体积(1)z 6x 2y 2及22y x z += 解 在柱面坐标下积分区域可表示为 022z 62于是 ⎰⎰⎰⎰⎰⎰ΩΩ==dz d d dv V θρρ⎰⎰⎰-=262020ρρπρρθdz d d⎰=--=232332)6(2πρρρρπd(2)x 2y 2z 22az (a 0)及x 2y 2z 2(含有z 轴的部分) 解 在球面坐标下积分区域可表示为ϕπϕπθcos 20 ,40 ,20a r ≤≤≤≤≤≤于是 ⎰⎰⎰⎰⎰⎰ΩΩ==θϕϕd drd r dv V sin 2⎰⎰⎰=ϕππϕϕθcos 2024020sin a dr r d d34033sin cos 382a d a πϕϕϕππ==⎰(3)22y x z +=及z x 2y 2 解 在柱面坐标下积分区域可表示为 0212z 于是 6)(2103210202πρρρπρρθρρπ=-===⎰⎰⎰⎰⎰⎰⎰Ωd dz d d dv V(4)225y x z --=及x 2y 24z 解 在柱面坐标下积分区域可表示为22541 ,20 ,20ρρρπθ-≤≤≤≤≤≤z于是 ⎰⎰⎰-=225412020ρρπρρθdz d d V)455(32)45(22022-=--=⎰πρρρρπd13 球心在原点、半径为R 的球体在其上任意一点的密度的大小与这点到球心的距离成正比 求这球体的质量 解 密度函数为222),,(z y x k z y x ++=ρ在球面坐标下积分区域可表示为 020r R于是 ⎰⎰⎰Ω++=dv z y x k M 222400220sin R k dr r kr d d Rπϕϕθππ=⋅=⎰⎰⎰。