三重积分的计算方法及 例题

合集下载

三重积分的概念与计算

三重积分的概念与计算
x2 y2 z2 1 dxdydz 其中积分区域 {(x, y, z) | x2 y2 z2 1}.
解 积分域关于三个坐标面都对称,
被积函数是 z 的奇函数,球面
关于xoy面对称

z
ln( x2 x2
y
y2 2
z2 z2
1
1)
dxdydz

0.
例 计算 ( x y z)2dxdydz其中是由抛物面
z x2 y2和球面 x2 y2 z2 2所围成的空间闭 区域.
解 ( x y z)2
x2 y2 z2 2( xy yz zx)
其中 xy yz是关于 y的奇函数,
在球面坐标系中
体积元素为
化为三次积分, 从小到大,从边界到边界。
例6.求 的体积,它由球心在(0,0, a), 半径为a 的球面
顶点在原点,半顶角为 的锥面围成,如图.
解: 球面方程为 x2 y2 (z a)2 a2
z
2a
在球坐标系下方程为r 2a cos
锥面方程为 所以
且关于zox面对称, ( xy yz)dv 0,
同理 zx是关于 x 的奇函数,
且关于 yoz面对称, xzdv 0,

由 x,y 位置对称性知 x2dv y2dv,


则I ( x y z)2dxdydz
(2x2 z2 )dxdydz,
dx
2
1 2
x
d
y
2
f (x, y, z)dz
01
x
3. 设
计算
提示: 利用对称性

计算三重积分详细方法

计算三重积分详细方法

一般,先对 z 积分,再对 r ,最后对 积分。 6
例1 利用柱面坐标计算三重积分 zdxdyd, z 其中
是由z曲 x2面 y2与平 z面 4所围成的闭
解 (1) 画 图
z
(2) 确定 z,r, 的上下限
44
将 向 xoy 面投影,得
D :x2y24

02,
D:
0r2.
o•(r,)
yy
xx
就叫M 点 的柱面坐标. z
规定: 0r,
02 ,
•M (x,y,z)
z . 简单地说,柱面坐标就是
or
y

P(r,)
x
xoy 面上的极坐标 + z 坐标
4
如图,三坐标面分别为
r 为常数
为常数
z 为常数
圆柱面; 半平面; 平 面.
柱面坐标与直角坐标的 关系为
x r cos ,
y
r
sin
,
z
z.
z
z
or
y
x
z
M (x ,y,z)

o
x
r
y
• P(r,) 5
如图,柱面坐标系中的 体积元素为
d v rdd rd, z
z
rd
dr r dz
于是,
o
y
f(x,y,z)dxdydz
x d
f (r c o ,r ssi,z n )r d dr d . z
再根据 中 z,r, 的关系,化为三次积分。
z
R
任取一 [0,2],过 z
轴作半平面,得
04.
在半平面上,任取一
[0, 4],
x

三重积分的计算方法

三重积分的计算方法

学号:2010311010316 姓名:王丰 班级:数统1008班三重积分的计算方法三重积分的计算是化为三次积分进行的。

其实质是计算一个定积分(一重积分)和一个二重积分。

从顺序看:如果先做定积分⎰21),,(z z dz z y x f ,再做二重积分⎰⎰Dd y x F σ),(,就是“投影法”,也即“先一后二”。

步骤为:找Ω及在xoy 面投影域D 。

多D 上一点(x,y )“穿线”确定z 的积分限,完成了“先一”这一步(定积分);进而按二重积分的计算步骤计算投影域D 上的二重积分,完成“后二”这一步。

σd dz z y x f dv z y x f Dz z ⎰⎰⎰⎰⎰⎰Ω=21]),,([),,(如果先做二重积分⎰⎰zD d z y x f σ),,(再做定积分⎰21)(c c dz z F ,就是“截面法”,也即“先二后一”。

步骤为:确定Ω位于平面21c z c z ==与之间,即],[21c c z ∈,过z 作平行于xoy 面的平面截Ω,截面z D 。

区域z D 的边界曲面都是z 的函数。

计算区域z D 上的二重积分⎰⎰zD d z y x f σ),,(,完成了“先二”这一步(二重积分);进而计算定积分⎰21)(c c dz z F ,完成“后一”这一步。

dz d z y x f dv z y x f c c D z]),,([),,(21σ⎰⎰⎰⎰⎰⎰Ω=当被积函数f (z )仅为z 的函数(与x,y 无关),且z D 的面积)(z σ容易求出时,“截面法”尤为方便。

为了简化积分的计算,还有如何选择适当的坐标系计算的问题。

可以按以下几点考虑:将积分区域Ω投影到xoy 面,得投影区域D(平面)(1) D 是X 型或Y 型,可选择直角坐标系计算(当Ω的边界曲面中有较多的平面时,常用直角坐标系计算)(2) D 是圆域(或其部分),且被积函数形如)(),(22xyf y x f +时,可选择柱面坐标系计算(当Ω为圆柱体或圆锥体时,常用柱面坐标计算)(3)Ω是球体或球顶锥体,且被积函数形如)(222z y x f ++时,可选择球面坐标系计算以上是一般常见的三重积分的计算方法。

高数---第3讲 三重积分的计算

高数---第3讲 三重积分的计算

第3讲 三重积分的计算一、直角坐标系下三重积分的计算1.先一后二法例1 计算V xdV ⎰⎰⎰,其中V 是由平面1x y z ++=和三个坐标面围成的闭区域. 例2 计算VzdV ⎰⎰⎰,其中{(,,)|0V x y z z =≤≤ 例 3 计算三重积分cos()V y x z dxdydz +⎰⎰⎰,其中V是由抛物柱面y =及平面0,0y z ==及2x z π+=所围区域.2.先二后一法例4 计算sin Vz dxdydz z ⎰⎰⎰,其中V 是由平面,0,0z x y x y =+==及z π=所围成的立体. 例5 已知椭球222222:1x y z V a b c ++≤,其密度222222x y z a b cρ=++,求该椭球体的质量m . 二、柱面坐标下三重积分的计算(适用于有旋转体类型的区域)例1 计算VI zdV =⎰⎰⎰,其中V 是由柱面221x y +=,锥面z =及平面0z =围成的区域. 例2 计算22()V I x y dV =+⎰⎰⎰,其中V 是由曲线220y z x ⎧=⎨=⎩绕z 轴旋转一周所得曲面与平面2z =围成的空间区域.三、球面坐标下三重积分的计算(适用于区域含球形的情形)例1 计算2V I x dV =⎰⎰⎰,其中V由曲面z =和z = 0R >围成. 例2 计算222[()()()]V I x y y z z x dxdydz =-+-+-⎰⎰⎰,其中2222{(,,)|}V x y z x y z R =++≤例3 计算V xyzdxdydz ⎰⎰⎰,其中V 为球体2222xy z a ++≤在第一卦限的部分.例4 求抛物面222z x y =+与2262z x y =--所围立体的体积.练习:1、2V I z dV =⎰⎰⎰,222222:1x y z V a b c ++≤ 3415abc π⎡⎤⎢⎥⎣⎦ 2、V I =,2222:(1)1,8V x y z x y +-==+及0z =所围。

三重积分先一后二例题

三重积分先一后二例题

三重积分先一后二例题
摘要:
一、三重积分的概念和性质
1.三重积分的定义
2.三重积分的性质
二、三重积分的计算方法
1.先一后二法则
2.例题解析
a.计算三重积分∫∫∫(x^2y^3) dxdydz
b.计算三重积分∫∫∫(x^2z^2) dxdydz
三、三重积分在实际问题中的应用
1.物理中的应用
2.工程中的应用
正文:
三重积分是数学中的一种积分方法,用于计算空间中某一个函数在某一范围内的总和。

它的定义是将一个三维空间划分为无数个微小的矩形、立方体或者其它形状的小区域,然后对这些小区域中的函数值进行求和。

三重积分具有一定的性质,例如,它的积分次序可以改变,即先对x 积分、再对y 积分、最后对z 积分,或者先对y 积分、再对z 积分、最后对x 积分,结果是相同的。

这就是所谓的“先一后二”法则。

在计算三重积分时,我们可以利用“先一后二”法则,将三重积分转化为
多次单积分。

例如,对于函数f(x,y,z)=x^2y^3,我们可以先对x 积分,得到一个新的函数g(y,z)=y^3∫x^2dx,然后再对y 和z 积分。

这样就可以将复杂的三重积分转化为简单的多次单积分。

在实际问题中,三重积分常常应用于物理和工程等领域。

例如,在物理学中,可以用三重积分来计算物体的质量、体积和密度等;在工程中,可以用三重积分来计算流体的压力、速度和温度等。

三重积分例题分析

三重积分例题分析

方程变为
4
;
球面方程变为r
=
a,
区域变为*
{(r,, ) | 0 2 ,0 ,0 r a},
4

I (x2 y2 z2 )dxdydz
r2 r2 sindrdd
2
d
4 sind
a r 4dr
0
0
0
2 a5
4 sind
1 a5(2
2).
50
5
(该题也可选择柱面坐标计算,请读者自行完成.)
3x+2y =1Ω2 和 x+y+z z = 6所围成的区域
6
x+y+z=6
y=0 0
.
2 z=0
4
x
6
6
y
计算 I f (x, y,z)dxdydz :平面y=0 , z=0,3x+y =6,
3x+2y =1Ω2 和 x+y+z z = 6所围成的区域
y
6
6 x y
6
I dxdy0 f ( x, y,z)dz
0
x
zdxdydz zrdrddz
y
*
1
1r 2
rdrd 0 zdz
D
2
1
1r 2
0 d 0 rdr0 zdz
2 1 r (1 r 2 )dr
0
2
4
例例 83. 计算三重积分 z dxdydz。
其中 :平面 x 1, x 2, y x, z 0,及
2z y 所围成的闭区域.
例1. 计算 xdxdydz, 其中是由平面x+y+z=1
与三个坐标面所围闭区域.

三重积分及其计算

三重积分及其计算

三重积分及其计算三重积分是对三维空间内的函数进行积分运算。

它在物理、工程、计算机图形学等领域中有广泛的应用。

本文将介绍三重积分的概念、计算方法以及一些常见的应用。

一、三重积分的定义在直角坐标系中,设函数f(x,y,z)在体积为V的闭区域D上连续,将V分割成许多小体积ΔV,取P_i(x_i,y_i,z_i)为小体积ΔV中的任一点,使ΔV_i=f(P_i)ΔV,其中f(P_i)是P_i点上的函数值。

三重积分的定义为:\[\iiint\limits_{V} f(x, y, z) dV = \lim_{\,\Delta V_i\,\to 0}\sum\limits_{i=1}^{n} f(P_i) \Delta V_i \]其中,\(\Delta V_i\)表示小体积的体积,n为分割的小体积数量。

二、三重积分的计算方法根据三重积分的定义,可以推导出以下三种计算方法:直接计算、分离变量法和坐标变换法。

1.直接计算法直接计算法较为繁琐,适用于函数f(x,y,z)的表达式较简单的情况。

将积分区域V分成若干个小区域,然后对每个小区域使用定积分的计算方法进行计算,最后将所有小区域的积分值相加即可。

2.分离变量法当函数f(x,y,z)具有可分离变量性质时,可以使用分离变量法来简化积分计算。

即假设有f(x,y,z)=g(x)h(y)k(z),则有:\[\int\int\int f(x, y, z) dV = \int g(x)dx \int h(y)dy \int k(z)dz\]3.坐标变换法当函数f(x,y,z)在直角坐标系中表达较为复杂时,可以通过坐标变换将其转换为其他坐标系,从而简化积分计算。

常用的坐标变换方法包括球坐标、柱坐标和三角代换等。

具体的变换公式可参考相关数学教材。

三、常见的应用三重积分在物理、工程和计算机图形学等领域中有广泛的应用。

以下列举几个常见的应用。

1.物理学在物理学中,三重积分常用于计算物体的质量、质心和转动惯量等。

三重积分先一后二例题

三重积分先一后二例题

三重积分先一后二例题
摘要:
1.三重积分的概念
2.三重积分的一般步骤
3."先一后二"的例题演示
4.总结
正文:
一、三重积分的概念
三重积分是多元函数积分的一种,它是对一个三维空间中的函数值进行积分。

在实际问题中,常常需要对三维空间中的物理量进行积分计算,例如质点在空间中的位移、速度等。

三重积分就是解决这类问题的有力工具。

二、三重积分的一般步骤
1.确定被积函数:首先,要确定需要积分的函数。

2.确定积分区间:然后,要确定积分的区间,也就是x、y、z 的取值范围。

3.确定积分顺序:接下来,要确定积分的顺序,常见的顺序有"先一后二"、"先二后一"、"先三后二"等。

4.进行积分运算:最后,按照确定的积分顺序,逐步进行积分运算。

三、"先一后二"的例题演示
假设有一个被积函数f(x,y,z),我们需要对它在区间[0,1]×[0,1]×[0,1] 上进行三重积分。

按照"先一后二"的顺序,我们首先对x 进行积分,然后在结果上对y 进行积分,最后在结果上对z 进行积分。

具体的积分过程如下:
1.对x 进行积分,得到一个关于y 和z 的函数F(y,z)。

2.对F(y,z) 关于y 进行积分,得到一个关于z 的函数G(z)。

3.对G(z) 关于z 进行积分,得到最终的结果。

四、总结
三重积分是解决三维空间问题的重要工具,其中"先一后二"是常见的积分顺序。

三重积分例题分析

三重积分例题分析

3
例5. 计算 xdxdydz, 其中 是由平面 x+y+z=1
与三个坐标面所围闭区域.
解: D(x): 0≤ y ≤1–x, 0≤ z ≤ 1xy
z
1
0
x1
x:0≤x≤1
Байду номын сангаас
xdxdydz
1
0
xdx
dydz
D(x)
1
1
0
x
1 (1 2
x2 )dx
1 24
1 (1 x)2 2
y
y
1x
z=1xy
2
dy
1 x2 y2
f
(x, y, z)dz
z Dxz
解2:先对 y 积分,将 向 xz 平面投影:
z= x2+y2
y z x2
1
0 1 x
y z x2
y
z=1 Dxy: x2 ≤z ≤ 1,
1 ≤x≤1 z= x2+y2 y z x2
f
(x, y, z)dxdydz
1
1
dx
取第一卦限部分
y
x+ y = 4
.
1
o
4
x
例10. 计算 I f (x, y,z)dxdydz
Ω:曲面
z
x2
Ω
y2
1,平面z
x
y
4 及三个坐标面所围区域
x2 y2 1
I dxdy0
f ( x , y , z)dz
D
x
x y
dx dy
f ( x, y, z)dz
. .
y
y= 0
x+ y = 4

极坐标与球面坐标计算三重积分-极系下的三重积分

极坐标与球面坐标计算三重积分-极系下的三重积分

例11 利用柱面坐标计算三重积分 zdxdydz,其中是由曲
面 zx2y2 与平面 z4 所围成的闭区域.
z
解 闭区域可表示为:
4
r 2z4,0r2,0q2.
于是
zdxdydz zrdrdqdz
zx2y2 或 zr2
2
2
4
dq rdr zdz
0
0
r2
1
2
dq
2 r(16 r 4 )dr
例2 求半径为a 的球面与半顶角a为的内接锥面所围成的立
体的体积.
z 2a
a
O
y
x
例2 求半径为a 的球面与半顶角a为的内接锥面所围成的立
体的体积.
解 该立体所占区域可表示为:
0r2a cos j ,0ja ,0q2.
z
于是所求立体的体积为
2a
V dxdydz r2 sinj drdjdq
r4 sin 3 jdrdjdq
2
dq
sin 3 j dj
a r4dr 2 a2M ,
0
0
0
5
其中 M 4 a3 为球体的质量.
3
2
dq
a
dj
2a cosj r 2 sin jdr
0
0
0
2
a
s in jdj
2a cosj r 2 dr
0
0
jr a
16a3 a cos3 j sinjdj
30
O
y
4a3 (1 cos4 a) .
x
3
例3 求均匀半球体的重心.
z
解 取半球体的对称轴为 z 轴,
原点取在球心上,又设球半径为a.

高等数学三重积分例题

高等数学三重积分例题

高等数学三重积分例题一、计算三重积分∭_varOmega z dV,其中varOmega是由锥面z = √(x^2)+y^{2}与平面z = 1所围成的闭区域。

1. 利用柱坐标计算在柱坐标下x = rcosθ,y = rsinθ,z = z,dV = rdzdrdθ。

锥面z=√(x^2)+y^{2}在柱坐标下就是z = r。

由锥面z = r与平面z = 1所围成的闭区域varOmega,其在柱坐标下的范围为:0≤slantθ≤slant2π,0≤slant r≤slant1,r≤slant z≤slant1。

2. 计算积分则∭_varOmegaz dV=∫_0^2πdθ∫_0^1rdr∫_r^1zdz。

先计算关于z的积分:∫_r^1zdz=(1)/(2)(1 r^2)。

再计算关于r的积分:∫_0^1r×(1)/(2)(1 r^2)dr=(1)/(2)∫_0^1(rr^3)dr=(1)/(2)((1)/(2)-(1)/(4))=(1)/(8)。

最后计算关于θ的积分:∫_0^2πdθ = 2π。

所以∭_varOmegaz dV=(1)/(8)×2π=(π)/(4)。

二、计算三重积分∭_varOmega(x + y+z)dV,其中varOmega是由平面x = 0,y = 0,z = 0及x + y+z = 1所围成的四面体。

1. 利用直角坐标计算对于由平面x = 0,y = 0,z = 0及x + y + z=1所围成的四面体varOmega,其范围为0≤slant x≤slant1,0≤slant y≤slant1 x,0≤slant z≤slant1 x y。

则∭_varOmega(x + y + z)dV=∫_0^1dx∫_0^1 xdy∫_0^1 x y(x + y + z)dz。

2. 计算积分先计算关于z的积分:∫_0^1 x y(x + y+z)dz=(x + y)z+(1)/(2)z^2big|_0^1 x y=(x + y)(1 x y)+(1)/(2)(1 x y)^2展开得x + y-(x^2+2xy + y^2)+(1)/(2)(1 2x 2y+x^2+2xy + y^2)进一步化简为x + y x^2-2xy y^2+(1)/(2)-x y+(1)/(2)x^2+xy+(1)/(2)y^2即(1)/(2)-x^2-xy (1)/(2)y^2。

三重积分的计算及重积分的应用

三重积分的计算及重积分的应用

三重积分的计算及重积分的应用三重积分是多元函数积分中的一种,用于计算三维空间内的体积、质量、重心、转动惯量等物理量。

在实际应用中,三重积分可以用于求解物体的质心、转动惯量、力矩等问题,对于解决工程问题具有重要的应用价值。

一、三重积分的计算方法1.直接计算法直接计算法是指直接根据题目给出的积分区域及被积函数的表达式,逐步求解三个方向上的单重积分,然后相乘求和得到最终结果。

以计算空间区域内的体积为例,设被积函数为f(x,y,z),积分区域为D。

则三重积分的计算公式为:V=∬∬∬_Df(x,y,z)dV其中dV表示体积元素,其表达式为:dV = dx dy dz通过逐步计算对应方向上的单重积分,并依次相乘求和,即可得到最终结果。

2.换元积分法换元积分法是指通过变换坐标系,使得原三重积分的积分区域变得简单,从而通过较简单的计算求解三重积分。

例如,对于柱坐标系下的三重积分计算,可以通过将空间直角坐标系(x,y,z)转换为柱坐标系(ρ,θ,z),从而简化积分区域的描述。

然后,利用变量替换求解对应的柱坐标系下的三重积分。

1.质心的求解质心是物体在三维空间中的一个特殊点,对于均匀物体而言,质心位于其几何中心。

通过三重积分,可以求解复杂物体的质心位置。

设物体的质量密度函数为ρ(x,y,z),则质心的坐标(x₀,y₀,z₀)可以通过以下公式计算得到:x₀=∬∬∬_Dxρ(x,y,z)dV/my₀=∬∬∬_Dyρ(x,y,z)dV/mz₀=∬∬∬_Dzρ(x,y,z)dV/m其中m表示物体的总质量,D表示物体的几何形状。

2.转动惯量的求解转动惯量是刻画物体对转动运动的惯性特征,通过三重积分可以求解物体的转动惯量。

设物体的质量密度函数为ρ(x,y,z),则绕一些轴旋转的转动惯量I 可以通过以下公式计算得到:I=∬∬∬_D(y²+z²)ρ(x,y,z)dV3.力矩的求解力矩是物体受力后产生的力矩矩阵,通过三重积分可以计算物体受力后的力矩。

三重积分的计算及重积分的应用

三重积分的计算及重积分的应用

同理可得 设曲面的方程为:xg(y,z) 曲面面积公式为:
A 1(x)2(x)2dydz
Dyz
y z
设曲面的方程为: yh(z,x) 曲面面积公式为:
A 1(y)2(y)2dzdx
Dzx
z x
例3 求球面 z a2x2y2 被平面 zh(0ha)所截的球冠的面积。
其中由曲面 zx2y2,yx2 及平面 y1,z0
所围成的闭区域 .
z
提示: 积分域为
0zx2y2
: x2 y1
1x1
1
1
x2 y2
原式 d x d y f (x, y,z)dz
1
x2
0
x
y
P183 题8(3)计算三重积分
(y2z2)dv, 其中是由

a
a2 x2 y2
1(z)2 (z)2 x y
a a2 x2 y2
D :x2y2a2h2
A 1(z)2(z)2d
a
dxdy
D
x y
D a2 x2 y2
2
a2h2
d
a rdr
0
0
a2r2
2a(ah)
2aH(Hah)
A2a(ah) A2aH
半球面面积:
A lim 2 a (a h ) 2 a 2 h 0
球面面积:
A4a2
例4 求圆锥面 z x2 y2 被圆柱面 x2 y2 x 所截部分的面积。
所求曲面:z x2 y2 投影区域: D:x2y2x
z x
x x2 y2
z y
y x2 y2
A 1(z)2(z)2d

二、三重积分的计算技巧

二、三重积分的计算技巧

二、三重积分的计算技巧重积分的计算中,对积分区域的熟悉非常重要,以下关于重积分的几种计算技巧均是基于积分区域的特点分析归纳得出。

一、积分区域为圆(二重积分)或球(三重积分)1、在闭区域D为x2y 2 a 2的圆,区域关于原点,坐标轴均对称,则有(1)x 2 dxdy y2 dxdyx 2 y2 a2x2 y2 a2(2)若m, n中有一个为奇数有x n y m dxdy 0.x2y2a2例 1.求( x2 3 y 2 )dxdyx2y 2 a 2解:根据对称性,2a原式 =2(x 2y2 )dxdy =2d r 3dr a4 .x2y2a200例 2.求( x2dxdy 3y)x2y 2 a 2解:原式 =( x29 y 2 6 xy)dxdy5(x 2y 2 )dxdy5 a 4 .x2 y 2 a 2x2 y2 a22例 3.求(x3y 5 ) 2.(积分区域为球)z dxdydzx2y 2z2a2解:原式 =(x29y225z26xy30yz10).xz dxdydzx2y 2 z2a2=35( x2y 2z2 )dxdydz.35. 4a528 a 5 .3 x2y2z2a2 3 532、在闭区域D为( x a)2y 2 a 2的圆上例 4.求x dxdy( x a) 2y2a2(x a a)2a3 .解:原式 =dxdy( x a) 2y2a2—例 5.求x 2dxdy( x a) 2 y2a2解:原式 =(x a2a) dxdy( x a) 2y2a2(x 22a( x a)dxdy a 2dxdy 5 a4.=a) dxdy( x a) 2 y2 a2(x a)2 y 2 a2( x a )2 y2 a 243、在闭区域D为( x a)2( y b) 2c2的圆上(处理方法同2)二、积分区域的对称(化重积分为累次积分)1、区域关于坐标轴对称例 6.区域D由y x 2与 y 1 围成,求( xy2x 2 y 2 )dxdy.D2211224x y dxdy dx dy =解:原式 =x y..D1x2272、区域关于y x 对称,(x, y) D ,( y, x) D ,有 f ( x, y)dxdy f ( y, x)dxdy.D D例 7.求( xy2yx2 )dxdy. 其中区域 D 为x2y 2 a 2, x0, y0D解:原式 =( yx2yx2 )dxdy. =0.D例 8.( xy23yx2)dxdy.其中区域 D 为x2y 2 a 2, x0, y0D2a解:原式 = 4xy2 dxdy=4d r cos r 2 sin 2rdrD00ar 5 sin2 2 a6= 4 2 d d sin=09例 9.求 a ( x)b ( y)dxdy. 其中区域D为 x2y2a2, ( x ) 为正值连续函数。

三重积分的计算方法与例题

三重积分的计算方法与例题

三重积分的计算方法:三重积分的计算是化为三次积分进行的。

其实质是计算一个定积分(一重积分)和一个二重积分。

从顺序看:如果先做定积分⎰21),,(z z dz z y x f ,再做二重积分⎰⎰Dd y x F σ),(,就是“投影法”,也即“先一后二”。

步骤为:找Ω及在xoy 面投影域D 。

多D 上一点(x,y )“穿线”确定z 的积分限,完成了“先一”这一步(定积分);进而按二重积分的计算步骤计算投影域D 上的二重积分,完成“后二”这一步。

σd dz z y x f dv z y x f Dz z ⎰⎰⎰⎰⎰⎰Ω=21]),,([),,(如果先做二重积分⎰⎰zD d z y x f σ),,(再做定积分⎰21)(c c dz z F ,就是“截面法”,也即“先二后一”。

步骤为:确定Ω位于平面21c z c z ==与之间,即],[21c c z ∈,过z 作平行于xoy 面的平面截Ω,截面z D 。

区域z D 的边界曲面都是z 的函数。

计算区域z D 上的二重积分⎰⎰zD d z y x f σ),,(,完成了“先二”这一步(二重积分);进而计算定积分⎰21)(c c dz z F ,完成“后一”这一步。

dz d z y x f dv z y x f c c D z]),,([),,(21σ⎰⎰⎰⎰⎰⎰Ω=当被积函数f (z )仅为z 的函数(与x,y 无关),且z D 的面积)(z σ容易求出时,“截面法”尤为方便。

为了简化积分的计算,还有如何选择适当的坐标系计算的问题。

可以按以下几点考虑:将积分区域Ω投影到xoy 面,得投影区域D(平面)(1) D 是X 型或Y 型,可选择直角坐标系计算(当Ω的边界曲面中有较多的平面时,常用直角坐标系计算)(2) D 是圆域(或其部分),且被积函数形如)(),(22xyf y x f +时,可选择柱面坐标系计算(当Ω为圆柱体或圆锥体时,常用柱面坐标计算)(3)Ω是球体或球顶锥体,且被积函数形如)(222z y x f ++时,可选择球面坐标系计算以上是一般常见的三重积分的计算方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三重积分的计算方法:三重积分的计算是化为三次积分进行的。

其实质是计算一个定积分(一重积分)和一个二重积分。

从顺序看:如果先做定积分⎰21),,(z z dz z y x f ,再做二重积分⎰⎰Dd y x F σ),(,就是“投影法”,也即“先一后二”。

步骤为:找Ω及在xoy 面投影域D 。

多D 上一点(x,y )“穿线”确定z 的积分限,完成了“先一”这一步(定积分);进而按二重积分的计算步骤计算投影域D 上的二重积分,完成“后二”这一步。

σd dz z y x f dv z y x f Dz z ⎰⎰⎰⎰⎰⎰Ω=21]),,([),,(如果先做二重积分⎰⎰zD d z y x f σ),,(再做定积分⎰21)(c c dz z F ,就是“截面法”,也即“先二后一”。

步骤为:确定Ω位于平面21c z c z ==与之间,即],[21c c z ∈,过z 作平行于xoy 面的平面截Ω,截面z D 。

区域z D 的边界曲面都是z 的函数。

计算区域z D 上的二重积分⎰⎰zD d z y x f σ),,(,完成了“先二”这一步(二重积分);进而计算定积分⎰21)(c c dz z F ,完成“后一”这一步。

dzd z y x f dv z y x f c c D z]),,([),,(21σ⎰⎰⎰⎰⎰⎰Ω=当被积函数f (z )仅为z 的函数(与x,y 无关),且z D 的面积)(z σ容易求出时,“截面法”尤为方便。

为了简化积分的计算,还有如何选择适当的坐标系计算的问题。

可以按以下几点考虑:将积分区域Ω投影到xoy 面,得投影区域D(平面)(1)D 是X 型或Y 型,可选择直角坐标系计算(当Ω的边界曲面中有较多的平面时,常用直角坐标系计算)(2)D 是圆域(或其部分),且被积函数形如(),(22xyf y x f +时,可选择柱面坐标系计算(当Ω为圆柱体或圆锥体时,常用柱面坐标计算)(3)Ω是球体或球顶锥体,且被积函数形如)(222z y x f ++时,可选择球面坐标系计算以上是一般常见的三重积分的计算方法。

对Ω向其它坐标面投影或Ω不易作出的情形不赘述。

三重积分的计算方法小结:1.对三重积分,采用“投影法”还是“截面法”,要视积分域Ω及被积函数f(x,y,z)的情况选取。

一般地,投影法(先一后二):较直观易掌握;截面法(先二后一):z D 是Ω在z 处的截面,其边界曲线方程易写错,故较难一些。

特殊地,对z D 积分时,f(x,y,z)与x,y 无关,可直接计算z D S 。

因而Ω中只要],[b a z ∈,且f(x,y,z)仅含z 时,选取“截面法”更佳。

2.对坐标系的选取,当Ω为柱体,锥体,或由柱面,锥面,旋转抛物面与其它曲面所围成的形体;被积函数为仅含z 或)(22y x zf +时,可考虑用柱面坐标计算。

三重积分的计算方法例题:补例1:计算三重积分⎰⎰⎰Ω=zdxdydz I ,其中Ω为平面1=++z y x 与三个坐标面0,0,0===z y x 围成的闭区域。

解1“投影法” 1.画出Ω及在xoy 面投影域D.2.“穿线”yx z --≤≤10X 型D :xy x -≤≤≤≤1010∴Ω:yx z xy x --≤≤-≤≤≤≤1010103.计算⎰⎰⎰⎰⎰⎰⎰⎰⎰-----Ω+---=--===10103221101010102]31)1()1[(21)1(21dx y y x y x dy y x dx zdz dydx zdxdydz I x xyx x241]4123[61)1(6110410323=-+-=-=⎰x x x x dx x 解2“截面法”1.画出Ω。

2.]1,0[∈z 过点z 作垂直于z 轴的平面截Ω得z D 。

z D 是两直角边为x,y 的直角三角形,zy z x -=-=1,13.计算⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰====Ω111][][zz zD D D dzzS dz dxdy z dz zdxdy zdxdydz I ⎰⎰⎰=+-=--==10321010241)2(21)1)(1(21)21(dz z z z dz z z z dz xy z 补例2:计算⎰⎰⎰+dv y x 22,其中Ω是222z y x =+和z=1围成的闭区域。

解1“投影法”1.画出Ω及在xoy 面投影域D.由⎩⎨⎧=+=1222z y x z 消去z ,得122=+y x 即D :122≤+y x 2.“穿线”122≤≤+z y x ,X 型D :⎪⎩⎪⎨⎧-≤≤--≤≤-221111x y x x∴⎪⎪⎩⎪⎪⎨≤≤+-≤≤--Ω111:2222z y x x y x 3.计算⎰⎰⎰⎰⎰⎰⎰⎰Ω---+-----=+-+=+=+xxyx x x dy y x y x dxdz y x dydxdv y x 11111112222221122222226)1(π注:可用柱坐标计算。

解2“截面法”1.画出Ω。

2.]1,0[∈z 过点z 作垂直于z 轴的平面截Ω得z D :222z y x ≤+z D :⎩⎨⎧≤≤≤≤zr 020πθ用柱坐标计算⎪⎩⎪⎨⎧≤≤≤≤≤≤Ω10020:z z r πθ3.计算⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω====+=+1010200101030322222632]31[2][][zD z zdz z dz r dz dr r d dz dxdy y x dv y x ππππθ补例3:化三重积分⎰⎰⎰Ω=dxdydz z y x f I ),,(为三次积分,其中Ω:222x 2z 2-=+=及y x z 所围成的闭区域。

解:1.画出Ω及在xoy 面上的投影域D.由⎪⎩⎪⎨⎧-=+=22222x z y x z 消去z ,得122=+y x 即D :122≤+y x 2.“穿线”22222x z y x -≤≤+X 型D :⎪⎩⎪⎨⎧-≤≤--≤≤-221111x y x xΩ:⎪⎪⎩⎪⎪⎨-≤≤+-≤≤--222222211x z y x x y x 3.计算⎰⎰⎰⎰⎰⎰Ω-----+==11112222222),,(),,(x x x y x dzz y x f dydxdxdydz z y x f I 注:当),,(z y x f 为已知的解析式时可用柱坐标计算。

补例4:计算⎰⎰⎰Ωzdv ,其中Ω为22226y x z y x z +=--=及所围成的闭区域。

解1“投影法”1.画出Ω及在xoy 面投影域D ,用柱坐标计算由⎪⎩⎪⎨⎧===z z r y r x θθsin cos 化Ω的边界曲面方程为:z=6-r 2,z=r2.解262=⎩⎨⎧=-=r rz r z 得∴D:2≤r 即⎩⎨⎧≤≤≤≤2020r πθ“穿线”26r z r -≤≤∴⎪⎩⎪⎨⎧-≤≤≤≤≤≤Ω262020:rz r r πθ3.计算⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰---Ω===Dr rr rr r drz r zdz rdrd rdrd zdz zdv 22262026262]21[2][ππθθ⎰⎰=+-=--=2522222392)1336(])6[(πππdr r r r dr r r r 。

解2“截面法”1.画出Ω。

如图:Ω由r z r z =-=及26围成。

2.]6,2[]2,0[]6,0[ =∈z 21Ω+Ω=Ω1Ω由z=r 与z=2围成;]2,0[∈z ,z D :z r ≤1Ω:⎪⎩⎪⎨⎧≤≤≤≤≤≤20020z zr πθ2Ω由z=2与z=26r -围成;]6,2[∈z ,z D :zr -≤62Ω:⎪⎩⎪⎨⎧≤≤-≤≤≤≤626020z zr πθ3.计算⎰⎰⎰Ωzdv =⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+=+ΩΩ20621212][][z z D D dzrdrd z dz rdrd z zdv zdv θθ⎰⎰⎰⎰⎰⎰=-+=-+=+=2622362222622392)6(])6([)]([21πππππdz z z dz z dz z z dz z z dz zS dz zS z z D D 注:被积函数z 是柱坐标中的第三个变量,不能用第二个坐标r 代换。

补例5:计算⎰⎰⎰+dv y x )(22,其中Ω由不等式A z y x a ≤++≤≤2220,0≤z 所确定。

解:用球坐标计算。

由⎪⎩⎪⎨⎧===φρφθρφθρcos sin sin sin cos z y x 得Ω的边界曲面的球坐标方程:Aa ≤≤ρP Ω∈,连结OP=ρ,其与z 轴正向的夹角为φ,OP=ρ。

P 在xoy 面的投影为P ',连结P O ',其与x 轴正向的夹角为θ。

∴Ω:A a ≤≤ρ,20πφ≤≤,πθ20≤≤⎰⎰⎰⎰⎰⎰Ω=+ππρφρφρφθ202022222sin )sin ()(Aa d d d dv y x =⎰253]51[sin 2πφρφπd A a =)(154132)(52sin )(5255552355a A a A d a A -=⨯⨯-=-⎰ππφφππ三重积分的计算方法练习1.计算⎰⎰⎰+dv y x )22(,其中Ω是旋转面z y x 222=+与平面z=2,z=8所围成的闭区域。

2.计算⎰⎰⎰Ω+dv z x )(,其中Ω是锥面22y x z +=与球面221y x z --=所围成的闭区域。

为了检测三重积分计算的掌握情况,请同学们按照例题的格式,独立完成以上的练习,答案后续。

相关文档
最新文档