基本函数求导公式
基本初等函数的导数公式及导数的运算法则
基本初等函数的导数公式及导数的运算法则导数是微积分中一个重要的概念,它描述了函数在给定点处的变化率。
在微积分中有许多基本的初等函数,它们都有对应的导数公式和导数的运算法则。
下面,我将介绍一些常见的基本初等函数的导数公式及导数的运算法则。
1.常数函数导数公式:如果f(x)=C,其中C为常数,则其导数为f'(x)=0。
2.幂函数导数公式:如果f(x) = x^n,其中n为常数,则其导数为f'(x) = nx^(n-1)。
例如:f(x)=x^3,则f'(x)=3x^23.指数函数导数公式:如果f(x)=e^x,则其导数为f'(x)=e^x。
例如:f(x)=e^2,则f'(x)=e^24.对数函数导数公式:如果f(x) = ln(x),则其导数为f'(x) = 1/x。
例如:f(x) = ln(2),则f'(x) = 1/25.三角函数导数公式:(1) 如果f(x) = sin(x),则其导数为f'(x) = cos(x)。
(2) 如果f(x) = cos(x),则其导数为f'(x) = -sin(x)。
(3) 如果f(x) = tan(x),则其导数为f'(x) = sec^2(x)。
6.反三角函数导数公式:(1) 如果f(x) = arcsin(x),则其导数为f'(x) = 1/√(1-x^2)。
(2) 如果f(x) = arccos(x),则其导数为f'(x) = -1/√(1-x^2)。
(3) 如果f(x) = arctan(x),则其导数为f'(x) = 1/(1+x^2)。
导数的运算法则:1.常数乘法法则:设c为常数,f(x)为可导函数,则(cf(x))' = c*f'(x)。
例如:如果f(x)=2x,则f'(x)=2*1=22.求和差法则:设f(x),g(x)为可导函数,则(f(x)±g(x))'=f'(x)±g'(x)。
基本初等函数的求导公式
基本初等函数的求导公式
基本初等函数的求导公式包括:常数函数的导数为零,指数函数的导数为零,对数函数的导数为零,三角函数的导数如下:
- 正弦函数的导数是余弦函数,即 $(sinx)" = cosx$
- 余弦函数的导数是正弦函数,即 $(cosx)" = -sinx$
- 正切函数的导数是余切函数,即 $(tanx)" = -cscx$
- 余切函数的导数是正切函数,即 $(cotx)" = cscx$
- 自然对数的导数是自然对数,即 $(lnx)" = 1/x$
- 换底公式的导数是换底公式,即 $(ex)" = e^x$
此外,还有一些其他的基本初等函数的求导公式,例如反三角函数、双曲函数等。
这些函数的导数可以通过基本的求导法则推导出来。
24个基本求导公式
24个基本求导公式在微积分中,求导是一个非常基础且重要的概念。
它的作用是用来寻找函数的导数,即函数在给定的点上的斜率。
而求导的基本公式通常用来简化这个过程,使我们能够快速地求得函数的导数。
下面是24个常用的求导公式:1.常数规则:f(x)=c,其中c是常数,则f'(x)=0。
简单来说,常数的导数等于0。
2.幂规则:f(x) = x^n, 其中n是常数,则f'(x) = nx^(n-1)。
换句话说,幂函数的导数是常数乘以幂次减13.指数规则:f(x)=e^x,则f'(x)=e^x。
e是自然对数的底数,它的指数函数的导数就是自身。
4.对数规则:f(x) = ln(x),则f'(x) = 1/x。
这个公式适用于自然对数函数。
5.三角函数规则:f(x) = sin(x),则f'(x) = cos(x)。
即正弦函数的导数是余弦函数。
6.余弦函数规则:f(x) = cos(x),则f'(x) = -sin(x)。
即余弦函数的导数是负的正弦函数。
7.正切函数规则:f(x) = tan(x),则f'(x) = sec^2(x)。
即正切函数的导数是正割平方函数。
8.反三角函数规则:f(x) = arcsin(x),则f'(x) = 1/√(1-x^2)。
即反正弦函数的导数是1除以1减去x的平方根。
9.反余弦函数规则:f(x) = arccos(x),则f'(x) = -1/√(1-x^2)。
即反余弦函数的导数是负1除以1减去x的平方根。
10.反正切函数规则:f(x) = arctan(x),则f'(x) = 1/(1+x^2)。
即反正切函数的导数是1除以1加x的平方。
11.双曲正弦函数规则:f(x) = sinh(x),则f'(x) = cosh(x)。
即双曲正弦函数的导数是双曲余弦函数。
12.双曲余弦函数规则:f(x) = cosh(x),则f'(x) = sinh(x)。
常用的基本求导公式
常用的基本求导公式在微积分中,求导是一种求函数导数的运算,它是微积分的基础知识。
常用的基本求导公式是指在求导时所要运用的一些基本规则和公式。
下面是一些常用的基本求导公式:1.常数规则:如果f(x)=c,其中c是一个常数,那么f'(x)=0。
2. 幂规则:如果f(x) = x^n,其中n是实数,那么f'(x) = nx^(n-1)。
这条规则表示,对于任意整数n,常数倍的幂函数都是自己的导数。
3.指数规则:如果f(x)=e^x,那么f'(x)=e^x。
这条规则表示,自然指数函数的导数等于自身。
4. 对数规则:如果f(x) = ln(x),那么f'(x) = 1/x。
这条规则表示,自然对数函数的导数是其自变量的倒数。
5.三角函数的导数规则:(a) 如果f(x) = sin(x),那么f'(x) = cos(x)。
这条规则表示,正弦函数的导数是余弦函数。
(b) 如果f(x) = cos(x),那么f'(x) = -sin(x)。
这条规则表示,余弦函数的导数是负的正弦函数。
(c) 如果f(x) = tan(x),那么f'(x) = sec^2(x)。
这条规则表示,正切函数的导数是它的平方的倒数。
6.反函数的求导规则:如果y=f(x)是可逆的,并且f'(x)≠0,那么f^(-1)'(y)=1/f'(x)。
这条规则表示,如果f(x)的导数不为零,那么其反函数的导数等于原函数导数的倒数。
7.和、差、积的求导规则:(a)f(x)+g(x)的导数等于f'(x)+g'(x)。
(b)f(x)-g(x)的导数等于f'(x)-g'(x)。
(c)f(x)g(x)的导数等于f'(x)g(x)+f(x)g'(x)。
8.商的求导规则:如果f(x)=g(x)/h(x),那么f'(x)=(g'(x)h(x)-g(x)h'(x))/[h(x)]^2、这条规则表示,一个函数的商的导数等于分子导数与分母的导数之差除以分母的平方。
求导公式大全24个
求导公式大全24个以下是求导公式的一个较为完整的列表,总共有24个:1. 常数函数的导数:$f(x) = C \Rightarrow f'(x) = 0$,其中$C$是常数。
2. 幂函数的导数:$f(x) = x^n \Rightarrow f'(x) = nx^{n-1}$,其中$n$是实数。
3. 指数函数的导数:$f(x) = e^x \Rightarrow f'(x) = e^x$。
4. 对数函数的导数:$f(x) = \ln(x) \Rightarrow f'(x) =\frac{1}{x}$,其中$x>0$。
5. 三角函数的导数:$f(x) = \sin(x) \Rightarrow f'(x) =\cos(x)$。
6. 三角函数的导数:$f(x) = \cos(x) \Rightarrow f'(x) = -\sin(x)$。
7. 三角函数的导数:$f(x) = \tan(x) \Rightarrow f'(x) =\sec^2(x)$。
8. 反三角函数的导数:$f(x) = \arcsin(x) \Rightarrow f'(x) = \frac{1}{\sqrt{1-x^2}}$,其中$-1 \leq x \leq 1$。
9. 反三角函数的导数:$f(x) = \arccos(x) \Rightarrow f'(x) = -\frac{1}{\sqrt{1-x^2}}$,其中$-1 \leq x \leq 1$。
10. 反三角函数的导数:$f(x) = \arctan(x) \Rightarrow f'(x) = \frac{1}{1+x^2}$。
11. 反三角函数的导数:$f(x) = \arccsc(x) \Rightarrow f'(x) = -\frac{1}{,x,\sqrt{x^2-1}}$,其中$,x,>1$。
基本初等函数的导数公式
基本初等函数的导数公式导数是数学中的一个重要概念,表示函数在特定点上的变化率。
在微积分中,我们常常需要求出各种函数的导数,以便解决实际问题和进行更深入的研究。
在这篇文章中,我们将介绍一些基本初等函数的导数公式。
1.常数函数的导数:如果f(x)=C(C为常数),则f'(x)=0。
因为对于常数函数来说,它在任何点上的变化率都为零,所以导数为零。
2.幂函数的导数:a. 若f(x) = x^n(n为正整数),则f'(x) = nx^(n-1)。
这是最常见和最基本的导数公式之一b. 若f(x) = a^x(a>0, a≠1),则f'(x) = ln(a) * a^x。
这个公式可以通过对等式两边取对数得到。
3.指数函数的导数:若f(x)=e^x,则f'(x)=e^x。
指数函数的导数恒等于自身,这是指数函数的一个重要性质。
4.对数函数的导数:a. 若f(x) = ln(x),则f'(x) = 1/x。
这是自然对数函数的导数公式。
b. 若f(x) = log_a(x),则f'(x) = 1/(x * ln(a))。
这是以a为底的对数函数的导数公式,可以通过换底公式和链式法则推导得到。
5.三角函数的导数:a. 若f(x) = sin(x),则f'(x) = cos(x)。
正弦函数的导数是余弦函数。
b. 若f(x) = cos(x),则f'(x) = -sin(x)。
余弦函数的导数是负的正弦函数。
c. 若f(x) = tan(x) = sin(x)/cos(x),则f'(x) = sec^2(x) =1/cos^2(x)。
正切函数的导数可以通过商法则和基本三角函数的导数公式推导得到。
6.反三角函数的导数:a. 若f(x) = arcsin(x),则f'(x) = 1/sqrt(1-x^2)。
反正弦函数的导数可以通过隐式求导和三角函数的导数公式得到。
常用基本求导公式
常用基本求导公式求导是微积分中的重要概念之一,对于学习微积分的同学们来说,熟悉并掌握常用的基本求导公式是非常必要的。
下面是对常用的基本求导公式进行总结:一、常数的导数:若c是常数,则有 d(c)/dx = 0二、幂函数的导数:若f(x) = x^n,其中n是常数,则有 d(f(x))/dx = nx^(n-1)三、指数函数的导数:若f(x) = a^x,其中a>0且a≠1,则有 d(f(x))/dx = ln(a) * a^x四、对数函数的导数:(1) 若f(x) = ln(x),则有 d(f(x))/dx = 1/x(2) 若f(x) = log_a(x),其中a>0且a≠1,则有 d(f(x))/dx = 1/(x ln(a))五、三角函数的导数:(1) 若f(x) = sin(x),则有 d(f(x))/dx = cos(x)(2) 若f(x) = cos(x),则有 d(f(x))/dx = -sin(x)(3) 若f(x) = tan(x),则有 d(f(x))/dx = sec^2(x)(4) 若f(x) = cot(x),则有 d(f(x))/dx = -csc^2(x)六、反三角函数的导数:(1) 若f(x) = arcsin(x),则有d(f(x))/dx = 1/√(1-x^2)(2) 若f(x) = arccos(x),则有 d(f(x))/dx = -1/√(1-x^2)(3) 若f(x) = arctan(x),则有 d(f(x))/dx = 1/(1+x^2)(4) 若f(x) = arccot(x),则有 d(f(x))/dx = -1/(1+x^2)七、复合函数的导数:若y = f(g(x)),其中y是复合函数,f和g是可导函数,则有dy/dx = d(f(g(x)))/dx = f'(g(x)) * g'(x)八、和、差、积、商的导数:(1)和差的导数:若f(x)和g(x)都是可导函数,则有d(f(x) ± g(x))/dx = f'(x) ± g'(x)(2)积的导数:若f(x)和g(x)都是可导函数,则有d(f(x) * g(x))/dx = f'(x) * g(x) + f(x) * g'(x)(3)商的导数:若f(x)和g(x)都是可导函数,并且g(x)≠0,则有d(f(x) / g(x))/dx = (f'(x) * g(x) - f(x) * g'(x)) / (g(x))^2九、链式法则:若y = f(u)和u = g(x)都是可导函数,则有 dy/dx =d(f(g(x)))/dx = f'(g(x)) * g'(x)十、反函数的导数:若y = f(x)是可导函数,则有 dx/dy = 1 / (dy/dx)这些是微积分中常用的基本求导公式,熟练掌握它们能够帮助我们快速计算函数的导数,进而应用于解决实际问题。
一般常用求导公式
一般常用求导公式在数学中,求导是一项非常重要的运算,它用于计算函数在某一点的导数。
为了方便计算,数学家们总结出了一系列常用的求导公式,能够帮助我们更快速地求出函数的导数。
本文将介绍一般常用的求导公式,并给出相应的解释和使用示例。
一、基本导数法则1. 常数函数导数公式若y = C(C为常数),则y' = 0。
解释:常数函数的导数恒为0,因为其图像是一条水平线,斜率为0。
例如:如果y = 5,那么y' = 0。
2. 幂函数导数公式若y = x^n(n为常数),则y' = nx^(n-1)。
解释:幂函数的导数可以通过将指数降低1并作为新的指数乘以原指数,得到幂函数的导数。
例如:如果y = x^3,那么y' = 3x^2。
3. 指数函数导数公式若y = a^x(a>0且a≠1),则y' = a^x * ln(a)。
解释:指数函数的导数等于函数的值乘以底数的自然对数。
例如:如果y = 2^x,那么y' = 2^x * ln(2)。
4. 对数函数导数公式若y = lo gₐ(x)(a>0且a≠1),则y' = 1 / (x * ln(a))。
解释:对数函数的导数等于1除以自变量乘以底数的自然对数。
例如:如果y = log₂(x),那么y' = 1 / (x * ln(2))。
5. 指数对数函数导数公式若y = a^(bx + c)(a>0且a≠1,b和c为常数),则y' = (b * ln(a)) * a^(bx + c)。
解释:指数对数函数的导数等于指数项的系数乘以底数的自然对数,再乘以函数本身。
例如:如果y = 3^(2x + 1),那么y' = (2 * ln(3)) * 3^(2x + 1)。
二、常用三角函数导数公式1. 正弦函数导数公式若y = sin(x),则y' = cos(x)。
2. 余弦函数导数公式若y = cos(x),则y' = -sin(x)。
求导基本公式表
导数是微积分学中的重要概念,它表示一个函数在某一点处的变化率。
导数公式是微积分学中的基本公式之一,用于计算函数的导数。
以下是导数的基本公式表:
1.函数y=kx的导数为y′=k,其中k为常数。
2.函数y=axn的导数为y′=naxn−1,其中a为常数,n为正整数。
3.函数y=loga(x)的导数为y′=x ln a1,其中a为常数且a>0且a=1。
4.函数y=ex的导数为y′=ex。
5.函数y=sin(x)的导数为y′=cos(x)。
6.函数y=cos(x)的导数为y′=−sin(x)。
7.函数y=tan(x)的导数为y′=(sec(x))2。
8.函数y=cot(x)的导数为y′=−(csc(x))2。
9.函数y=sec(x)的导数为y′=tan(x)sec(x)。
10.函数y=csc(x)的导数为y′=−cot(x)csc(x)。
这些公式可以在求解函数的导数时提供帮助。
但是需要注意,对于复杂的函数,可能需要使用更高级的导数公式才能求解其导数。
此外,导数的计算还涉及到一些基本的微积分知识和技巧,例如链式法则、乘法法则、指数函数求导法则等等,需要在学习微积分的过程中逐步掌握。
基本求导公式知识点总结
基本求导公式知识点总结一、基本求导公式1. 幂函数求导设函数y=x^n,其中n为常数,则其导数为:y' = nx^(n-1)2. 指数函数求导设函数y=a^x,其中a为常数且a>0且a≠1,则其导数为:y' = a^x ln(a)3. 对数函数求导设函数y=log_a(x),其中a为常数且a>0且a≠1,则其导数为:y' = 1/(x ln(a))4. 三角函数求导4.1 正弦函数设函数y=sin(x),则其导数为:y' = cos(x)4.2 余弦函数设函数y=cos(x),则其导数为:y' = -sin(x)4.3 正切函数设函数y=tan(x),则其导数为:y' = sec^2(x)5. 反三角函数求导5.1 反正弦函数设函数y=arcsin(x),则其导数为:y' = 1/√(1-x^2)5.2 反余弦函数设函数y=arccos(x),则其导数为:y' = -1/√(1-x^2)5.3 反正切函数设函数y=arctan(x),则其导数为:y' = 1/(1+x^2)6. 指数函数与三角函数复合函数求导设函数y=e^u,其中u=g(x),则其导数为:y' = e^u⋅u'7. 对数函数与三角函数复合函数求导设函数y=log_a(u),其中u=g(x),则其导数为:y' = 1/(u⋅ln(a))⋅u'8. 链式法则设函数y=f(g(x)),其中f和g都可导,则其导数为:y' = f'(g(x))⋅g'(x)9. 乘积法则设函数y=u⋅v,其中u和v都可导,则其导数为:y' = u'⋅v + u⋅v'10. 商数法则设函数y=u/v,其中u和v都可导,并且v≠0,则其导数为:y' = (u'v - u⋅v')/v^211. 反函数求导设函数y=f^(-1)(x),其导数为:y' = 1/f'(f^(-1)(x))12. 隐函数求导设y=f(x),其中x和y满足方程F(x,y)=0,则其导数为:dy/dx = -F_x/F_y以上就是求导的基本公式,这些公式是微积分学习的基础,掌握好这些公式对于理解微积分的知识和解决实际问题都非常重要。
导数的基本公式表
导数的基本公式表导数是微积分中的重要概念,用于描述函数在某点处的变化率。
导数的基本公式是求导的重要工具,下面是导数的基本公式表及其相关参考内容。
1. 基本导数公式:(1) 常数函数导数公式:f(x) = c ,其中 c 为常数,导数为 f'(x) = 0 。
(2) 幂函数导数公式:f(x) = x^n ,其中 n 为常数,导数为 f'(x) = nx^(n-1) 。
(3) 指数函数导数公式:f(x) = a^x ,其中 a 为常数,导数为f'(x) = ln(a)·a^x 。
(4) 对数函数导数公式:f(x) = log_a(x) ,其中 a 为常数,导数为 f'(x) = 1/(ln(a)·x) 。
(5) 三角函数导数公式:正弦函数导数公式:f(x) = sin(x) ,导数为 f'(x) = cos(x) 。
余弦函数导数公式:f(x) = cos(x) ,导数为 f'(x) = -sin(x) 。
正切函数导数公式:f(x) = tan(x) ,导数为 f'(x) = sec^2(x) 。
2. 基本导数法则:(1) 基本求导法则:常数倍法则:[c·f(x)]' = c·f'(x) ,其中 c 为常数。
和差法则:[f(x)±g(x)]' = f'(x)±g'(x) 。
乘法法则:[f(x)·g(x)]' = f'(x)·g(x) + f(x)·g'(x) 。
除法法则:[f(x)/g(x)]' = [f'(x)·g(x) - f(x)·g'(x)]/g^2(x) ,其中g(x) ≠ 0 。
(2) 链式法则:若 y = f(g(x)) ,则 y' = f'(g(x))·g'(x) 。
基本初等函数的导数公式及导数的运算法则
基本初等函数的导数公式及导数的运算法则导数是微积分中一个重要的概念,表示函数在其中一点上的变化率。
在求解导数时,我们可以利用一些基本初等函数的导函数公式以及导数的运算法则来简化计算。
以下是一些常用的基本初等函数的导数公式及导数的运算法则。
一、基本初等函数的导数公式1.常数函数:若f(x)=C,其中C为常数,则f'(x)=0。
2. 幂函数:若f(x) = x^n,其中n为正整数,则f'(x) = nx^(n-1)。
例如,f(x) = x^2,则f'(x) = 2x。
3. 指数函数:若f(x) = a^x,其中a为正常数且a≠1,则f'(x) = a^x ln(a)。
其中ln(x)表示以e为底的对数函数。
例如,f(x) = 2^x,则f'(x) = 2^x ln(2)。
4. 对数函数:若f(x) = logₐx,其中a为正常数且a≠1,则f'(x)= 1 / (x ln(a))。
例如,f(x) = log₂x,则f'(x) = 1 / (x ln(2))。
5. 三角函数:(1)sin(x) 的导函数为 cos(x);(2)cos(x) 的导函数为 -sin(x);(3)tan(x) 的导函数为 sec^2(x),其中 sec(x) 为secant 函数,其值等于 1 / cos(x);(4)cot(x) 的导函数为 -csc^2(x),其中 csc(x) 为 cosecant 函数,其值等于 1 / sin(x);(5)sec(x) 的导函数为 sec(x)tan(x);(6)csc(x) 的导函数为 -csc(x)cot(x)。
1.和差法则:若f(x)和g(x)都是可导函数,则(f±g)'(x)=f'(x)±g'(x)。
即和差函数的导数等于各个函数的导数之和或差。
例如,若f(x)=x^2,g(x)=x,则(f+g)'(x)=(x^2)'+x'=2x+12. 数乘法则:若f(x) 是可导函数,c 为常数,则(cf)'(x) =cf'(x)。
16个基本导数公式
16个基本导数公式导数是微积分中重要的概念之一,它描述了函数在特定点的局部变化率。
在求导过程中,我们需要掌握一些基本的导数公式,这些公式可以用于求取各种类型函数的导数。
下面,我将介绍16个基本的导数公式,并对每个公式进行详细解释。
总字数超过1200字。
1.常数函数的导数:若f(x)=c,其中c为常数,则f'(x)=0。
常数函数在任何点处的导数都为0,因为它没有变化。
2.幂函数的导数:若f(x)=x^n,其中n为正整数,则f'(x)=n*x^(n-1)。
幂函数的导数可以通过将指数乘以常数并减一,得到新的指数。
3. 指数函数的导数:若f(x) = a^x,其中a为正实数且不等于1,则f'(x) = a^x * ln(a)。
指数函数的导数等于函数值乘以常数ln(a)。
4. 对数函数的导数:若f(x) = ln(x),则f'(x) = 1/x。
对数函数的导数等于导数的倒数。
5. 三角函数的导数:(1) 若f(x) = sin(x),则f'(x) = cos(x);(2) 若f(x) = cos(x),则f'(x) = -sin(x);(3) 若f(x) = tan(x),则f'(x) = sec^2(x)。
三角函数的导数可以通过观察函数的变化规律得到。
6. 反三角函数的导数:(1) 若f(x) = arcsin(x),则f'(x) =1/√(1 - x^2);(2) 若f(x) = arccos(x),则f'(x) = -1/√(1 - x^2);(3) 若f(x) = arctan(x),则f'(x) = 1/(1 + x^2)。
反三角函数的导数可以通过求导的逆运算得到。
7.求和函数的导数:若f(x)=u(x)+v(x),其中u(x)和v(x)都是可导函数,则f'(x)=u'(x)+v'(x)。
求和函数的导数等于各个函数的导数的和。
高中数学求导公式表
高中数学求导公式表高中数学中求导是一个非常重要的知识点,有着广泛的应用。
本文将为你介绍高中数学中的求导公式表,帮助你更好地理解和记忆。
1. 基本函数求导公式- 常函数的导数为 0,即 $y=C$,那么 $y'(x)=0$。
- 幂函数的导数为 $y=x^n$,那么 $y'(x)=nx^{n-1}$。
- 指数函数的导数为 $y=e^x$,那么 $y'(x)=e^x$。
- 对数函数的导数为 $y=\ln{x}$,那么 $y'(x)=\dfrac{1}{x}$。
2. 三角函数求导公式- 正弦函数的导数为 $y=\sin{x}$,那么 $y'(x)=\cos{x}$。
- 余弦函数的导数为 $y=\cos{x}$,那么 $y'(x)=-\sin{x}$。
- 正切函数的导数为 $y=\tan{x}$,那么 $y'(x)=\sec^2{x}$。
- 余切函数的导数为 $y=\cot{x}$,那么 $y'(x)=-\csc^2{x}$。
3. 基本运算求导公式- 复合函数求导公式:设 $y=f(u)$,$u=g(x)$,那么 $y'(x)=f'(u)\cdotg'(x)$。
- 和差函数求导公式:设 $f(x),g(x)$ 可导,那么 $(f\pm g)'(x)=f'(x)\pm g'(x)$。
- 积函数求导公式:设 $y=f(x)\cdot g(x)$,那么 $y'(x)=f'(x)\cdotg(x)+f(x)\cdot g'(x)$。
- 商函数求导公式:设 $y=\dfrac{f(x)}{g(x)}$,那么$y'(x)=\dfrac{f'(x)\cdot g(x)-f(x)\cdot g'(x)}{(g(x))^2}$。
4. 隐函数求导公式设 $y=f(x)$ 表示的函数在方程 $F(x,y)=0$ 内给定,那么 $F(x,y)$ 对$x$ 的导数为 $\dfrac{dy}{dx}=-\dfrac{F_x(x,y)}{F_y(x,y)}$,其中$F_x(x,y)$ 和 $F_y(x,y)$ 分别表示 $F(x,y)$ 对 $x$ 和 $y$ 的偏导数。
16个基本初等函数的求导公式汇总
16个基本初等函数的求导公式汇总16个基本初等函数的求导公式1.y=c y=02. y=α^μ y=μα^(μ-1)3. y=a^x y=a^x lna y=e^x y=e^x4. y=loga,x y=loga,e/x y=lnx y=1/x5. y=sinx y=cosx6. y=cosx y=-sinx7. y=tanx y=(secx)^2=1/(cosx)^28. y=cotx y=-(cscx)^2=-1/(sinx)^29. y=arc sinx y=1/√(1-x^2)10.y=arc cosx y=-1/√(1-x^2)11.y=arc tanx y=1/(1+x^2)12.y=arc cotx y=-1/(1+x^2)13.y=sh x y=ch x14.y=ch x y=sh x15.y=thx y=1/(chx)^216.y=ar shx y=1/√(1+x^2)初等函数的性质是什么幂函数像y=x^a功能,在哪里?a是一个真正的常数。
指数函数像y=a^x功能,在哪里?a不等于1正常数。
对数函数对数函数反函数,记录为y=loga a x,在哪里?a不等于1正常数。
在指数函数和对数函数之间关系,loga ax=x。
三角函数正弦函数y=sinx ,余弦函数y=cosx ,正切函数y=tanx,余切函数y=cotx ,割线函数y=secx,余割功能y=cscx(看见三角学)。
反三角函数三角函数反函数——反正弦函数y = arc sinx ,后面超过字符串函数y=arc cosx (-1≤x≤1,初等函数0≤y≤π) ,后面只是切功能 y=arc tanx ,反余切函数 y = arc cotx(-∞高中学数学的小窍门有哪些1.背诵数学公式数学的出题方式有很多种,但是解题方法却是相对固定的,需要熟练掌握数学公式。
在学习高中数学的时候,我们一定要先把数学公式背诵清楚,做到在考试的时候能够记得起计算公式,这是学好高中数学的关键步骤。
导数的基本公式14个
导数的基本公式14个目录1、f'(x)=lim(h->0)[(f(x+h)-f(x))/h]2、f(x)=a的导数, f'(x)=0, a为常数3、f(x)=x^n的导数, f'(x)=nx^(n-1), n为正整数4、f(x)=x^a的导数, f'(x)=ax^(a-1), a为实数5、f(x)=a^x的导数, f'(x)=a^xlna, a>0且a不等于16、f(x)=e^x的导数, f'(x)=e^x7、f(x)=log_a x的导数, f'(x)=1/(xlna), a>0且a不等于18、f(x)=lnx的导数, f'(x)=1/x9、(sinx)'=cosx10、(cosx)'=-sinx11、(tanx)'=(secx)^212、(cotx)'=-(cscx)^213、(secx)'=secxtanx14、(cscx)'=-cscxcotx15、(arcsinx)'=1/根号(1-x^2)16、(arccosx)'=-1/根号(1-x^2)17、(arctanx)'=1/(1+x^2)18、(arccotx)'=-1/(1+x^2)19、(f+g)'=f'+g'20、(f-g)'=f'-g'21、(fg)'=f'g+fg'22、(f/g)'=(f'g-fg')/g^223、(1/f)'=-f'/f^224、(f^(-1)(x))'=1/f'(y)常见导数公式4个基本求导公式可以分成三类。
第一类是导数的定义公式,即差商的极限. 再用这个公式推出17个基本初等函数的求导公式,这就是第二类。
最后一类是导数的四则运算法则和复合函数的导数法则以及反函数的导数法则,利用这些公式就可以推出所有可导的初等函数的导数。
基本函数的求导公式
基本函数的求导公式在微积分的学习中,求导是一个重要的概念。
求导可以理解为求函数的变化率,或者说是函数在某一点的斜率。
基本函数是指一些常见的函数,它们的求导公式是我们学习微积分时必须掌握的基础知识。
一、常数函数的求导常数函数是指函数的值恒定不变,不随自变量的改变而改变。
常数函数的求导很简单,因为它的变化率为零。
所以,对于常数函数f(x) = c,其中c是一个常数,其导函数为f'(x) = 0。
二、幂函数的求导幂函数是指形如f(x) = x^n的函数,其中n是一个实数。
幂函数的导函数可以通过幂函数的指数减1,并乘以幂函数的系数得到,即f'(x) = n * x^(n-1)。
例如,对于f(x) = x^3,其导函数为f'(x) = 3 * x^2。
三、指数函数的求导指数函数是指以底数大于0且不等于1的常数为底的函数,形如f(x) = a^x,其中a是一个正常数。
指数函数的导函数可以通过指数函数的底数乘以指数函数的自变量的自然对数得到,即f'(x) = a^x * ln(a)。
例如,对于f(x) = 2^x,其导函数为f'(x) = 2^x *ln(2)。
四、对数函数的求导对数函数是指以某个正实数为底的对数函数,形如f(x) = log_a(x),其中a是一个正实数且不等于1。
对数函数的导函数可以通过自变量的倒数乘以对数函数的底数的自然对数得到,即f'(x) = 1 / (x * ln(a))。
例如,对于f(x) = log_2(x),其导函数为f'(x) = 1 / (x * ln(2))。
五、三角函数的求导三角函数是指正弦函数、余弦函数、正切函数等函数。
不同的三角函数有不同的求导公式,这里我们以正弦函数和余弦函数为例进行说明。
正弦函数的导函数是余弦函数,即f'(x) = cos(x)。
例如,对于f(x) = sin(x),其导函数为f'(x) = cos(x)。