实际问题与二次函数(有关抛物线形的实际问题)(3)
实际问题与二次函数(3)——抛物线形实际问题+课件++2023—2024学年人教版数学九年级上册

解得x=9或x=-1(不符合题意,舍去).
∴小明这次投掷的成绩为9 m.
课堂导学
多维导学案九年级全一册数学(RJ)
【变式1】足球训练中,小军从球门正前方8 m的A处射门,球射向
球门的路线呈抛物线.当球离球门的水平距离为2 m时,球达到最高
点,此时球离地面3 m ,现以点O为原点建立如图所示直角坐标系.
的高度为1.8 m,当铅球飞行的水平距离为4 m时距离地面最高为5
m . 铅 球 飞 行 的 高 度 y(m) 与 水 平 距 离 x(m) 之 间 的 函 数 图 象 如 图 所
示.求: (2)小明这次投掷的成绩.
1
(2)由(1)知y=- (x-4)2+5,
5
1
当y=0时,0=- (x-4)2+5,
25
课堂导学
多维导学案九年级全一册数学(RJ)
【变式2】现要修建一条隧道,其截面为抛物线形,如图所示,线
段OE表示水平的路面,以点O为坐标原点,以OE所在直线为x轴,以过
点O垂直于x轴的直线为y轴,建立平面直角坐标系.根据设计要求:OE
=10 m,该抛物线的顶点P到OE的距离为9 m.
(2)现需在这一隧道内壁上安装照明灯,如图所
解决抛物线形问题的步骤
(1)求抛物线的解析式;
(2)求抛物线的顶点坐标,由x求y或由y求x,要弄清题意.
重难导学
1.跳绳时,绳子甩到最高处的形状可近似看做抛物线,如图所
1 2 1
3
示,抛物线的函数表达式为y=- x + x+ (单位:m),绳子甩到最高
6
3
2
1.5
处时刚好通过站在x=2处跳绳的小明的头顶,则小明身高为________m.
二次函数讲义(九):实际问题与二次函数

实际问题与二次函数【知识要点梳理】知识点1: 利用二次函数解决实际问题的一般步骤1.用二次函数知识解决实际问题的一般步骤:(1)仔细审题;(2)找出题中的变量和常量及它们之间的关系;(3)列函数解析式表示它们之间的关系;(4)借助函数的图象及其性质求解;(5)检验结果的合理性。
2.在实际问题中,有关用料最省、造价最低、利润最大等问题可以通过分析、联想,建立二次函数模型,转化为二次函数的最大值或最小值问题加以解答。
3.当a>0时,抛物线的开口向上,顶点是最低点。
当x=时,函数的最小值为。
当a<0时,抛物线的开口向下,顶点是最高点。
当x=时,函数的最大值为。
知识点2:利用二次函数求几何图形面积的最大值问题利用图形的面积公式建立二次函数模型并求出表达式,再利用配方法或公式法求出二次函数的最值。
知识点3: 利用二次函数求最大利润问题利用“总利润=每件的利润×件数”建立二次函数模型并求出表达式,利用配方法或公式法求出二次函数的最大值,即最大利润。
知识点4: 利用二次函数解决抛物线型问题1.抛物线型建筑物问题:几种常见的抛物线型建筑物有拱形桥洞、隧道洞口、拱形门等.解决这类问题的关键是根据已知条件选择合理的位置建立直角坐标系,结合问题中的数据求出函数解析式,然后利用函数解析式解决问题。
2. 运动问题:(1)运动中的距离、时间、速度问题,这类问题多根据运动规律中的公式求解.(2)物体的运动路线(轨迹)问题,解决这类问题的图想方法是利用数形结合思想和函数思想,合理建立直角坐标系,根据已知数据,运用待定系数法求出运动轨迹(抛物线)的解析式,再利用二次函数的性质去分析、解决问题。
【知识点过关训练】知识点1: 利用二次函数求几何图形面积的最大值问题1. 如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.2. 某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元。
九年级数学上册教学课件《实际问题与二次函数(第3课时)》

这时水面的宽度为x2-x1=2 6, 因此当水面下降1m时,水面宽度增加了(2 6-4)m.
2m l=4m
o
探究新知
22.3 实际问题与二次函数
【思考】“二次函数应用”的思路
回顾 “最大利润”和 “桥梁建筑”解决问题的过程,
(1)求水柱所在抛物线(第一象限部分)的函数表达式; (2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8 米的王师傅站立时必须在离水池中心多少米以内?
(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不 变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的 原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.
解:(1)设抛物线的表达式为y=ax2 .
∵点B(6,﹣5.6)在抛物线的图象上,
∴﹣5.6=36a,a 7 .
45
∴抛物线的表达式为 y
7
x2 .
45
课堂检测
22.3 实际问题与二次函数
(2)现需在抛物线AOB的区域内安装几扇窗户,窗户的底 边在AB上,每扇窗户宽1.5m,高1.6m,相邻窗户之间的间 距均为0.8m,左右两边窗户的窗角所在的点到抛物线的水平 距离至少为0.8m.请计算最多可安装几扇这样的窗户?
探究新知 怎样建立直角坐标系比较简单呢?
以拱顶为原点,抛物线的对称轴 为y轴,建立直角坐标系,如图.
22.3 实际问题与二次函数
从图看出,什么形式的二次函数,它 的图象是这条抛物线呢?
由于顶点坐标系是(0.0),因此 这个二次函数的形式为y ax2.
26.3实际问题与二次函数(3)

我家门前有条小溪,小 溪上有座 抛物线形拱桥, 如图,当水面在l时,拱 顶离水面2m,水面宽 4m,水面下降1m,水 面宽度增加多少?
2
l
4
分析:我们知道,二次函数的图象是抛物线,建立适当 的坐标系,就可以求出这条抛物线表示的二次函数,为解 题简便,以抛物线的顶点为原点,以抛物线的对称轴为y轴 建立直角坐标系.
若水位上升3m到警戒线
A
C
D
B
CD,CD=10m,
求抛物线的解析式。若洪\
水到来时
水位以0.2m每小时上升,则从警戒线 开始再持续多少小时可达到拱桥顶?
(2)如果该隧道内设双行道,那么这辆货运卡车是否可
以通过? (1)卡车可以通过.
3 1 -3 -1 -1 -3
提示:当x=±1时,y =3.75, 3.75+2>4.
(2)卡车可以通过.
O
1 3
提示:当x=±2时,y =3, 3+2>4.
我家门后有条小溪,小溪上有座 抛物线形拱桥,如图正
常水位AB=20m,
如图建立如下直角坐标系 可设这条抛物线表示的二次函数为y =ax2 .
1 由抛物线经过点(2,-2),可得 2 a 2 , a 2
2
1 -2 -1 1 -1 -2 -3 2
这条抛物线表示的二次函数为
1 2 y x 2
当水面下降1m时,水面的纵坐标为y = -3. 请你根据 上面的函数表达式求出这时的水面宽度. 解:
1 2 3 x 2
x 6
2
解得 x1 6 , x2 6
2x 2 6 m 水面的宽度
2 6 4 水面下降1cm,水面宽度增加____________m.
实际问题与二次函数

实际问题与二次函数引言:二次函数是高中数学中的重要内容,它在实际问题中有着广泛的应用。
本文将从几个实际问题入手,探讨二次函数在解决这些问题中的作用和应用。
第一部分:抛物线与物体运动问题一:一个物体从地面上以初速度v0竖直向上抛出,忽略空气阻力,求物体的运动轨迹。
解决方法:根据物体竖直上抛运动的运动方程,可以得到物体的高度y与时间t的关系为y=-gt^2/2+v0t,其中g是重力加速度。
这个运动方程正好是一个二次函数,它的图像是一个抛物线,描述了物体的运动轨迹。
问题二:一个人从桥上向下抛掷物体,求物体的最大高度和落地点。
解决方法:根据物体竖直抛体运动的运动方程,可以得到物体的高度与时间的关系为y=-gt^2/2+v0t,其中g是重力加速度,v0是初速度。
我们可以通过求解二次函数的顶点,得到物体的最大高度和落地点的位置。
第二部分:二次函数与开口方向问题三:一块矩形花坛,长边是20米,宽边是10米,现在要在花坛四周修建一圈高度为h的围墙,求围墙的最小高度h。
解决方法:假设围墙的高度为h,围墙的长度为L,围墙的宽度为W。
根据题意,可以得到L=2(20+2h),W=2(10+2h),围墙的面积为S=LW。
我们可以将围墙的面积S表示为关于h的二次函数,然后求解这个二次函数的最小值,即可得到围墙的最小高度h。
第三部分:二次函数与最值问题问题四:某公司生产某种产品,每生产x单位的产品需要花费C(x)=80x+2000元,售价为p(x)=0.1x^2+2000元,求使得利润最大的生产数量。
解决方法:利润等于售价减去成本,即P(x)=p(x)-C(x)=0.1x^2-80x。
我们可以求解二次函数P(x)的最大值,得到使得利润最大的生产数量。
问题五:某人在银行存款10000元,银行的年利率为r%,每年计息一次,求多少年后存款会翻倍。
解决方法:存款的本利和可以表示为S(t)=10000(1+r/100)^t,其中t为年数。
二次函数与实际问题典型例题

二次函数与实际问题典型例题摘要:一、二次函数简介1.二次函数的定义2.二次函数的图像和性质二、二次函数与实际问题的联系1.实际问题中的二次函数模型2.二次函数在实际问题中的应用案例三、二次函数典型例题解析1.求解二次函数的顶点坐标2.求解二次函数的图像与x 轴的交点3.求解二次函数的最值问题4.二次函数在实际问题中的综合应用正文:二次函数与实际问题典型例题一、二次函数简介二次函数是数学中一种常见的函数形式,一般表示为f(x) = ax^2 + bx + c,其中a、b、c 为常数,x 为自变量。
二次函数的图像通常为抛物线,具有一定的对称性和顶点特征。
根据a 的值,二次函数可以分为开口向上或向下的两种情况,分别具有不同的性质。
二、二次函数与实际问题的联系1.实际问题中的二次函数模型在实际问题中,二次函数常常作为问题的数学模型出现。
例如,物体在重力作用下的自由落体运动、抛射物体的运动轨迹、电池的放电过程等都可以用二次函数来描述。
2.二次函数在实际问题中的应用案例(1)物体自由落体运动:假设物体从高度h 自由落下,空气阻力不计,仅受重力作用。
根据牛顿第二定律,物体下落的速度v 与时间t 的关系可以表示为v = gt - 1/2gt^2,其中g为重力加速度。
可以看出,这是一个开口向下的二次函数模型。
(2)抛射物体运动:假设一个物体在水平方向以初速度v0 抛出,仅受重力作用。
根据牛顿第二定律,物体在竖直方向上的运动可以表示为h = v0t - 1/2gt^2,其中h为物体的高度,t为时间。
这也是一个开口向下的二次函数模型。
三、二次函数典型例题解析1.求解二次函数的顶点坐标顶点坐标是二次函数的一个重要特征,可以通过公式法或配方法求解。
例如,对于二次函数f(x) = ax^2 + bx + c,顶点的x 坐标为x = -b/2a,y坐标为y = f(x) = c - b^2/4a。
2.求解二次函数的图像与x 轴的交点二次函数与x 轴的交点即为函数值为0 时的自变量解。
实际问题与二次函数第三课时教案

26.3实际问题与二次函数教案教学设计思路本节安排了一个探究性问题,以和拱桥桥洞的有关问题为背景,运用二次函数分析和解决实际问题。
教科书从实际问题出发,引导学生分析问题中的数量关系,建立相应的数学模型即列出函数关系式,进而利用二次函数的性质和图象研究问题的解法。
通过这一节的学习可以使学生对解决实际问题的数学模型的认识再提高一步,从而提高运用数学分析问题和解决问题的能力。
一、教学目标:1.知识与技能能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能利用二次函数的知识解决实际问题。
2.过程与方法经历探索“抛物线形拱桥水面宽度问题”的过程,获得利用数学方法解决实际问题的经验。
3.情感态度与价值观体会二次函数解决实际问题时应如何建立适当的坐标系从而使解题简便。
二、教学重点难点:1.重点通过对实际问题的分析,使学生理解二次函数是在实际生活中解决问题的一种重要模型。
2.难点利用二次函数解决实际问题时应如何建立适当的坐标系从而使解题简便。
三、教学过程:(一)创设情境导入新课小明家门前有一座抛物线形拱桥(如图所示).当水面在L时,拱顶离水面2 m,水面宽4m。
水面下降1 m时,水面宽度增加多少?(二)探究:①想一想:二次函数的图象是抛物线,建立适当的坐标系,就可以求出这条抛物线表示的二次函数.从而求出水面下降1 m时,水面宽度增加多少。
怎么建立坐标系呢?②建立模型:建立坐标系后需要求出抛物线解析式,可设这条抛物线表示的二次函数为y=ax2(a≠0)由题意知抛物线经过点A(2,-2),可得-2=a·2,a=-1/2。
即抛物线的表达式.③解决问题:当水面下降1 m时,水面的纵坐标为y=-3,代人y=-x2,计算可得此时水面宽度,两者相减既得问题答案。
教师关注:(1)学生能否用函数的观点来认识问题;(2)学生能否建立函数模型;(3)学生能否找到两个变量之间的关系;(4)学生能否从拱桥问题中体会到函数模型对解决实际问题的价值.解法探讨:以抛物线和水面的两个交点的连线为x轴,以抛物线的对称轴为y轴,建立平面直角坐标系.以抛物线和水面的两个交点的连线为x轴,以其中的一个交点(如左边的点)为原点,建立平面直角坐标系.归纳总结:(1)用二次函数知识解决拱桥类的实际问题一定要建立适当的直角坐标系。
人教版九年级数学上册22.3实际问题与二次函数(3)1优秀教学案例

(四)总结归纳
1.教师引导学生对所学知识进行总结归纳,帮助他们建立完整的知识体系;
2.学生通过总结归纳,巩固所学知识,提高他们的自我认知能力;
3.教师对学生的总结归纳进行评价,关注他们的进步和成长,激发他们的学习动力。
(五)作业小结
4.引导学生发现二次函数在实际问题中的应用规律,培养他们的实践能力。
(三)学生小组讨论
1.教师提出具有挑战性和开放性的课题,让学生在小组内进行讨论和合作交流;
2.引导学生运用所学知识,分析问题、解决问题,提高他们的实践能力和团队协作精神;
3.鼓励学生分享自己的观点和思考,培养他们的表达能力和批判性思维;
人教版九年级数学上册22.3实际问题与二次函数(3)1优秀教学案例
一、案例背景
本案例背景以人教版九年级数学上册22.3实际问题与二次函数(3)1为例,旨在通过实际问题引导学生理解和掌握二次函数的性质和应用。在教学过程中,我以生活实际为载体,设计了一系列具有代表性的例题和练习,让学生在解决实际问题的过程中,深化对二次函数的理解,提高运用数学知识解决实际问题的能力。
在案例背景中,我充分考虑了学生的年龄特点和知识水平,以符合九年级学生的认知发展需求。在教学设计上,我注重启发式教学,引导学生通过观察、分析、归纳和推理,探索二次函数的性质和实际应用。同时,我还关注学生的个体差异,提供不同难度的题目,让每个学生都能在数学学习中找到适合自己的路径,从而提高他们的自信心和积极性。
4.教师对小组合作过程进行指导和评价,确保学生能够从合作中获得充分的提升。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,总结学习经验和方法,提高他们的自我认知能力;
二次函数的应用抛物线的实际应用

二次函数的应用抛物线的实际应用二次函数的应用:抛物线的实际应用引言:二次函数是数学中重要的一种函数形式,它的图像为一个抛物线。
抛物线在现实生活中有着广泛的应用,无论是物理学、经济学还是工程学,都离不开对二次函数的应用。
本文将重点介绍抛物线的实际应用,并探讨二次函数在这些应用中的角色。
一、抛物线在物理学中的应用1. 自由落体运动自由落体运动是我们熟知的物理现象,物体在重力作用下自由下落。
这一过程可以用二次函数来描述。
假设物体从高度 h0 自由下落,高度随时间的变化可以用二次函数 h(t) = -gt^2 + h0 来表示,其中 g 是重力加速度,t 是时间。
抛物线的开口向下,表达了物体的下降趋势,通过解析二次函数,我们可以计算物体的下落时间、最大高度等重要物理量。
2. 抛物线弹道在射击或投掷物体时,抛物线弹道也是常见的现象。
例如,运动员射击目标、棒球手投掷棒球等。
这些抛物线弹道可以利用二次函数进行建模。
通过观察抛物线的顶点和开口方向,我们可以分析射击或投掷的角度、速度等因素,帮助运动员准确命中目标。
二、抛物线在经济学中的应用1. 成本与收益在经济学中,成本与收益是决策的重要因素。
当生产或经营某种产品时,成本和收益之间往往存在着二次函数关系。
成本一般随着产量的增加而呈抛物线增长,而收益则随着产量的增加而呈抛物线增长,二者的交点即为盈亏平衡点。
通过分析二次函数的图像,我们可以找到最大化收益、最小化成本的最优产量或定价策略。
2. 市场供需市场供需关系也可以用二次函数进行建模。
供需的交点是市场均衡点,也就是商品的实际价格。
市场需求一般随着价格的下降而增加,而市场供应一般随着价格的上升而增加,二者的交点即为市场均衡。
通过分析二次函数的图像,我们可以预测市场的价格波动和供需的变化趋势。
三、抛物线在工程学中的应用1. 科学研究在科学研究中,抛物线的应用非常广泛。
例如,在天体力学中,通过二次函数可以描述天体的轨迹;在工程力学中,通过二次函数可以建立材料的变形模型,以便研究材料的受力行为。
实际问题与二次函数—教学设计及点评(获奖版)

22.3 实际问题与二次函数(第3课时)一、内容与内容解析1. 内容构建二次函数模型,利用二次函数的图象与性质解决抛物线形问题.2. 内容解析二次函数是描述现实世界变量关系的重要数学模型,运用二次函数可以解决许多实际问题,例如生活中的抛物线形问题.本节课是在学生学习二次函数的图象和性质的基础上,借助二次函数图象和性质研究抛物线形的实际问题.通过探究抛物线形拱桥问题,引导学生分析问题和解决问题,在解决问题的过程中将数学模型思想逐步细化,体会运用函数观点解决实际问题的作用,体会建立函数模型的过程和方法.基于以上分析,确定本节课的重点是:从实际问题中抽象出抛物线并通过建立平面直角坐标系解决实际问题.二、目标和目标解析1. 目标(1)能够从抛物线形问题中建立二次函数模型.(2)能够利用二次函数模型解决抛物线形问题,体会二次函数在解决实际问题中的作用.2. 目标解析达成目标(1)的标志是:学生会借助平面直角坐标系得到二次函数模型,并体会适当建系可以优化解题.达成目标(2)的标志是:学生通过经历探索抛物线形问题,进一步体验如何从实际问题中抽象出二次函数模型,结合二次函数已有知识综合运用来解决解决实际问题.三、教学问题诊断分析学生已经学习了二次函数的定义、图象和性质,学习了列方程、不等式和函数解决实际问题,这为本节课的学习奠定了基础,但运用二次函数的知识解决实际问题要求学生能选取适当的平面直角坐标系的二次函数模型分析问题和解决问题,对于学生来说,完成这一过程难度较大.基于以上分析,本节课的难点:将实际问题转化成二次函数问题.四、教学过程设计1. 创设情境引出问题情境:展示蕴含抛物线的建筑南宁大桥、南宁永和大桥、凌铁大桥、柳州官塘大桥等,引出课题.设计意图:结合生活背景,让学生体会抛物线与实际生活的联系,激发学生的学习兴趣.2. 复习旧知,做好铺垫设计意图:学生体会解析式与图象的对应关系,感受抛物线与坐标系相对位置不一样,它们所对应的解析式也不一样,体会抛物线(形)与函数解析式(数)的对应关系,为解决探究3中的问题做好铺垫.3. 从形入手,探究问题探究3:如图是抛物线形拱桥,当拱顶离水面2 m,水面宽 4 m. 水面下降 1 m,水面宽度增加多少?问题1:同学们通过审题,你发现了哪些重要信息?教师结合希沃白板,将重要信息涉及的图形,从原图中分离出来.问题2:求水面宽度增加多少,需要进行计算,这些计算与抛物线形密切相关,我们应该如何处理?设计意图:引导学生通过建立直角坐标系,构建数学模型(二次函数模型),并体会直角坐标系是数形结合的重要数学工具.活动:小组合作:运用所学知识,解决这道实际问题.(要求每组有2种不同的建立直角坐标系方法)师生活动:小组汇报,教师点评(结合课本进行点评,注意书写过程中建系是否有文字说明,建系文字说明是否严谨,待定系数法书写是否规范,结论书写是否规范)设计意图:展示学生学生的解题思路,并对学生书写中的易错点进行点评分析.4. 适当建系,优化解题问题3:以上5种不同的建系方法,你觉得哪种简单?为什么?师生活动:学生回答,老师总结.①5种建系方法不同,但结果是相同的,建立不同坐标系,所得到的解析式复杂程度也不一样,由此可见,建立适当的坐标系,可以使抛物线的解析式简单,从而减少运算量;②建立直角坐标系的基本原则:关注图形的对称性,以对称轴为坐标轴;关注特殊点,以特殊点为坐标原点.设计意图:引导学生总结归纳,对解决问题的基本策略进行反思,让学生积累和总结经验,培养学生概括和归纳的能力,养成良好的数学思维习惯.5. 总结提升,提炼方法问题4:你能总结解决抛物线形问题的一般方法和解决步骤吗?抛物线形问题二次函数模型线段长实际问题的解设计意图:使学生对解决此类问题有一个系统化的步骤,强化数学与实际生活的紧密联系,加深“数形结合思想”和“数学建模思想”在解决问题中的重要作用.6. 巩固训练,拓展思维某公园草坪的防护栏是由100段形状相同的抛物线形组成,为了牢固起见,每段护栏中需要间距4dm 加设一根不锈钢的支柱,防护栏的最高点距底部5dm(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A、50mB、100mC、160mD、200m设计意图:巩固本节课所学内容,再次体会通过建立二次函数模型解决实际问题的重要性,加深对二次函数的认识,体会数学与实践的联系.7. 小结(1)这节课学习了用什么知识解决哪类问题?(2)解决问题的一般步骤是什么?应注意哪些问题?转译数学方法回译实际问题数学问题数学模型数学模型的解实际问题的解设计意图:通过小结,归纳提升,加强学习反思,帮助学生养成系统整理知识的习惯.8. 作业布置某桥梁建筑公司需在两山之间的峡谷上架设一座公路桥,桥下是一条宽100m的河流,河面距所要架设的公路桥的高度是50m,根据各方面的条件分析,专家认为抛物线是最好的选择,按照专家的建议,设计一座横跨峡谷的公路桥.设计意图:考察学生对本节课所学内容的理解和掌握程度,体会二次函数模型的应用价值.建立直角坐标系线段与坐标相互转化待定系数法抽象人教版《实际问题与二次函数(第3课时)》课例点评南宁市天桃实验学校吴立志本节课教学有六个环节:创设情境,引出问题环节结合生活背景,让学生体会抛物线与实际生活的联系;复习旧知,做好铺垫环节学生体会解析式与图象的对应关系;从形入手,探究问题环节引导学生通过建立直角坐标系,构建数学模型(二次函数模型);适当建系,优化解题环节引导学生总结归纳,让学生积累和总结经验;总结提升,提炼方法环节使学生对解决此类问题有一个系统化的步骤;巩固训练,拓展思维环节巩固本节课所学内容,加深对二次函数的认识,体会数学与实践的联系;教学过程设计合理,课堂结构完整,教学思路清晰,过程循序渐进,为“抛物线形”的产生提供自然合理的背景,激发学生深入思考,获得解决问题的方案。
22.3 实际问题与二次函数正式稿3

y O
C A
h 20 m
D B
x
y 1 92 3.24 25
(2)由题意可得D点的横坐标为9 上升的高度 4 3.24 0.76m
∴此时水深= 2+0.76= 2.76m
答:水深超过2.76 m 时就会影响过往船只在桥下顺利航行
例3 如图,一名运动员在距篮圈下4m跳起投篮,篮球运行的路 线为抛物线,当篮球运行水平距离为2.5m时,达到最大高度 3.5m,然后准确落入篮圈,已知篮圈中心距离地面3.05m,若 该运动员身高1.8m,球在头顶上方0.25m出手,问球出手时, 他跳离地面的高度是多少米?
∴3.05= a×1.52 +3.5
C
出手处
D
篮A圈
?E 3.05
解得a 1
P
5
抛物线的解析式为y 1 x2 3.5
2.5 O 1.5
Q
5
n 1 (2.5)2 3.5 2.25 5
问题3 如何建立直角坐标系?
解:设函数解析式为 y ax2
(2, 2)
2.探究“拱桥”问题
图中是抛物线形拱桥,当拱顶离水面 2 m时,水面 宽 4 m . 水面下降 1 m,水面宽度增加多少?
问题3 如何建立直角坐标系?
解:设函数解析式为 y ax2 k
(0,2) (2,0)
①
③
②
④
对比一下,哪种建系方式最为简单?
(1)求宽度增加多 少需要什么数据? (2)表示水面宽的 线段的端点在哪条 曲线上?
2.探究“拱桥”问题
图中是抛物线形拱桥,当拱顶离水面 2 m时,水面 宽 4 m . 水面下降 1 m,水面宽度增加多少?
问题3 如何建立直角坐标系?
实际问题与二次函数 (答案)

1、实际问题中函数解析式的求法设x 为自变量,y 为x 的函数,在求解析式时,一般与解应用题列方程一样,先列出关于变量x ,y 的二元方程,再用含x 的代数式表示y ,最后还要写出自变量x 的取值范围.2、利用函数知识解应用题的一般步骤 (1)设定实际问题中的变量;(2)建立变量与变量之间的函数关系式,如一次函数、二次函数或其他复合而成的函数式;(3)确定自变量的取值范围,保证自变量具有实际意义; (4)解答函数问题,如极值等; (5)写出答案1、某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空间.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定介增加x 元,求:(1)房间每天入住量y (间)关于x (元)的函数关系式;(2)该宾馆每天的房间收费z (元)关于x (元)的函数关系式;(3)该宾馆客房部每天的利润w (元)关于x (元)的函数关系式,当每个房间的定价为多少元时,w 有最大值?最大值是多少?Y=60-X/10(X=10.20.30……) Z=(200+X)×(60-X/10)W=(200+X)×(60-X/10)-20(60-X/10)=(180+x)×(60-x/10)2. 某跳水队员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O 的一条抛物线,图中标出的数据为已知条件),在跳某个规定动作时,正常情况下,该运动员在空中最高出距水面3210米,入水处距池边的距离为4米,同时,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误,(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中调整好入水姿势时,距池边的水平距离为533米,问此次跳水会不会失误并通过计算说明理由。
二次函数与实际问题典型例题

二次函数与实际问题典型例题二次函数是一种常见的数学函数形式,其一般形式为f(x) = ax^2 + bx + c,其中a、b、c为常数,且a不等于0。
它在实际问题中有许多应用,下面我将从多个角度给出一些典型例题,以展示二次函数与实际问题的关系。
1. 抛物线的高度问题,假设一个物体从地面上抛,忽略空气阻力,其高度与时间的关系可以用二次函数表示。
例如,一个抛物线的方程可以是h(t) = -5t^2 + 10t + 2,其中h表示高度,t表示时间。
通过解方程可以求得物体的最高点、飞行时间等信息。
2. 弹性问题,当一个弹簧的伸长或压缩距离与施加的力之间存在线性关系时,其运动可以由二次函数描述。
例如,弹簧的伸长或压缩距离与施加的力的关系可以表示为d(f) = af^2 + bf + c,其中d表示伸长或压缩距离,f表示施加的力。
3. 成本与产量问题,在某些生产过程中,成本与产量之间可能存在二次函数关系。
例如,一个公司的成本可以表示为C(x) =ax^2 + bx + c,其中C表示成本,x表示产量。
通过分析二次函数的图像,可以找到最小成本对应的产量。
4. 面积最大化问题,在某些几何问题中,要求找到一个形状的最大面积。
例如,给定一定长度的围墙,如何构造一个矩形花园使得其面积最大?通过建立二次函数模型,可以解决这类问题。
5. 轨迹问题,在物理学或工程学中,研究物体在一定条件下的轨迹是常见的问题。
例如,一个抛物线的轨迹可以由二次函数表示。
通过分析二次函数的性质,可以求解物体的轨迹方程。
总之,二次函数在实际问题中有广泛的应用,涉及到物理学、经济学、几何学等多个领域。
通过建立二次函数模型,可以解决许多实际问题,并对问题进行分析和预测。
实际问题与二次函数.3实际问题与二次函数(第3课时)教学设计

人教版义务教育课程标准教科书九年级数学下册22.3实际问题与二次函数(第3课时)教学设计22.3 实际问题与二次函数(第3课时)教学目标知识技能通过对抛物线型拱桥的探究,让学生掌握如何建立适当的直角坐标系,待定系数法求二次函数解析式,解决实际问题。
数学思考通过对生活中实际问题的探究,体会建立数学建模的思想,并渗透转化及数形结合的数学思想方法。
解决问题通过对生活实际问题的探究,体会数学知识在生活实际的广泛应用性,进一步认识如何利用二次函数的有关知识解决实际问题。
情感态度通过二次函数的有关知识灵活用于实际,让学生亲自体会到学习数学知识的价值,从而提高学生学习数学的兴趣。
教学重点探究建立直角坐标系,待定系数法求出二次函数解析式,解决实际问题的方法。
教学难点如何建立适当的平面直角坐标系。
教学过程设计问题与情境师生行为设计意图一、创设情境引出问题(本环节大约需要1分钟)同学们,你们知道世界上最早的石拱桥是哪一座吗?(学生回答:赵州桥)其实,最早的石拱桥是位于我们漯河的小商桥!因为,在1982年的9月,桥梁专家茅以升曾派考察组进行了实地考察,认定小商桥的建造时间比赵州桥还要早!更令我们漯河人自豪的是,2003年3月29日,国家邮政局发行的《中国古桥—拱桥》邮票中,第2枚就是我们漯河的小商桥!结构独特的小商桥在桥拱的造型上就用到了我们的数学知识——美丽的抛物线,今天,我们就来学习抛物线在拱桥中的有关应用。
首先,请看由小商桥呈现的问题情境1。
(漯河小商桥图片)教师用满腔的热爱家乡之情去感染每一位学生,并引导学生观察桥拱的形状。
学生聆听并欣赏图片:教师关注:学生是否对教师提出的知识产生深厚的兴趣,注意力是否迅速集中,最后是否注意到了桥拱的形状。
通过学生的认知冲突,激发了学生的好奇心和学习的兴趣,同时为探究二次函数的实际应用提供了背景材料。
问题与情境师生行为设计意图二、解决问题做好铺垫(本环节大约需要5—6分钟)如图是小商桥的桥拱,把它的图形放在如图所示的直角坐标系中,抛物线的表达式为:y=21218x(1) 拱桥的最高点离水面多少米?(2) 拱桥的跨度是多少米?(3) 若在跨度中心点O 左右3米处各垂直竖立一根石柱支撑拱桥,则石柱有多高?教师展示问题情境,并读题。
二次函数解决实际问题归纳

二次函数解决实际问题归纳及练习一、应用二次函数解决实际问题的基本思路和步骤:1、基本思路:理解问题→分析问题中的变量和常量以及它们之间的关系→用函数关系式么最大(最小、最省)”的设问中,“某某”要设为自变量,“什么”要设为函数;②问的求解依靠配方法或最值公式而不是解方程。
(1)利用二次函数解决利润最大问题此类问题围绕总利润=单件利润×销售总量,设未知数时,总利润必然是因变量y,而自变量有两种情况:①自变量x是所涨价多少或降价多少;②自变量x是最终销售价格。
例:商场销售M型服装时,标价75元/件,按8折销售仍可获利50%,现搞促销活动,每件在8折的基础上再降价x元,已知每天销售数量y(件)与降价x(元)之间的函数关系式为y=20+4x(x﹥0)①求M型服装的进价②求促销期间每天销售M型服装所获得的利润W的最大值。
(2)利用二次函数解决面积最值例:已知正方形ABCD边长为8,E、F、P分别是AB、CD、AD上的点(不与正方形顶点重合),且PE⊥PF,PE=PF问当AE为多长时,五边形EBCFP面积最小,最小面积多少?1:某涵洞是抛物线形,它的截面如图所示,测得水面宽1.6m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?2:某工厂大门是一抛物线形的水泥建筑物,大门底部宽AB=4m,顶部C离地面的高度为4.4m,现有载满货物的汽车欲通过大门,货物顶部距地面2.7m,装货宽度为2.4m。
这辆汽车能否顺利通过大门?若能,请你通过计算加以说明;若不能,请简要说明理由.3、某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?4、某公司试销某种“上海世博会”纪念品,每件按30元销售,可获利50%,设每件纪念品的成本为a 元。
苏教版九年级数学下册课后练习(含答案):第五章 第56讲 实际问题与二次函数(三)

第56讲实际问题与二次函数(三)题一:军事演习在平坦的草原上进行,一门迫击炮发射的一发炮弹飞行的高度y (m)与飞行时间x(s)的关系满足y=15x2+10x,经过多少秒时间炮弹到达它的最高点?最高点的高度是多少米?题二:一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面的函数关系式;h= 5t2+10t+1,小球的运动时间是多少时,小球最高?小球运动中的最大高度是多少?题三:某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形.其中,抽屉底面周长为180cm,高为20cm.请通过计算说明,当底面的宽x为何值时,抽屉的体积y最大?最大为多少?(材质及其厚度等暂忽略不计).题四:跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米的点F 处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为y=ax2+bx+0.9.(1)求该抛物线的解析式;(2)如果小华站在OD之间,且离点O的距离为3米,当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高.题五:摩托车刹车后行驶的距离s(单位:m)与行驶的时间t (单位:s)的函数关系式是s=12t4t2,当遇到紧急情况时,摩托车刹车后前进了多少米后才能停下来?题六:公路上行驶的汽车急刹车时的行驶路程s(m)与时间t(s)的函数关系式为s =20t5t2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行多远后才能停下来?第56讲实际问题与二次函数(三)题一: 见详解.详解:依题意,关系式化为: y =15-x 2+10x =15-(x 250x +252252)=15-(x 25)2+125. ∵15-<0 ∴由二次函数性质可得经过25秒炮弹到达它的最高点,最高点的高度是125米. 题二: 见详解.详解:h = 5t 2+10t +1= 5(t 22t )+1= 5(t 22t +1)+1+5 = 5(t 1)2+6,5<0,则抛物线的开口向下,有最大值,当t =1时,h 有最大值是6. 题三: 见详解.详解:已知抽屉底面宽为x cm ,则底面长为180÷2x = (90x )cm . ∵90x ≥x ,∴0<x ≤45,由题意得:y = x (90x )×20= 20(x 290x )= 20(x 45)2+40500∵0<x ≤45,20<0,∴当x = 45时,y 有最大值,最大值为40500.答:当抽屉底面宽为45cm 时,抽屉的体积最大,最大体积为40500cm 3.题四: 见详解.详解:(1)由题意得点E (1,1.4),B (6,0.9),代入y =ax 2+bx +0.9得0.9 1.43660.90.9a b a b ++=⎧⎨++=⎩, 解得0.10.6a b =-⎧⎨=⎩, ∴所求的抛物线的解析式是y = 0.1x 2+0.6x +0.9;(2)把x =3代入y =0.1x 2+0.6x +0.9得y =0.1×32+0.6×3+0.9=1.8∴小华的身高是1.8米.题五: 见详解.详解:∵s =12t 4t 2= 4(t 32)2+9,当t =32时,s最大值=9,∴摩托车刹车后前进了9米后才能停下来.题六:见详解.详解:依题意:该函数关系式化简为s= 5(t2)2+20,当t =2时,汽车停下来,滑行了20米.故惯性汽车要滑行20米.。
九年级数学实际问题与二次函数

一、基础知识(一)二次函数解实际问题的步骤列二次函数解应用题与列整式方程解应用题的思路和方法是一致的,不同的是,学习了二次函数后,表示量与量的关系的代数式是含有两个变量的等式.对于应用题要注意以下步骤:(1)审清题意,弄清题中涉及哪些量,已知量有几个,已知量与变量之间的基本关系是什么,找出等量关系(即函数关系).(2)设出两个变量,注意分清自变量和因变量,同时还要注意所设变量的单位要准确.(3)列函数表达式,抓住题中含有等量关系的语句,将此语句抽象为含变量的等式,这就是二次函数.(4)按题目要求,结合二次函数的性质解答相应的问题。
(5)检验所得解是否符合实际:即是否为所提问题的答案.(6)写出答案.(二)建立二次函数模型求解实际问题的一般步骤:(1)恰当地建立直角坐标系;(2)将已知条件转化为点的坐标;(3)合理地设出所求函数关系式;(4)代入已知条件或点的坐标,求出关系式;(5)利用关系式求解问题.二、重难点分析本课教学重点:建立直角坐标系解决实际问题用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.(2)对于本节的学习,应由低到高处理好如下三个方面的问题:①首先必须了解二次函数的基本性质;②学会从实际问题中建立二次函数的模型;③借助二次函数的性质来解决实际问题.本题教学难点:二次函数解决极值问题常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等,解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.根据函数顶点坐标或实际范围求解极值。
典例精析:例1.如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.①求此桥拱线所在抛物线的解析式.②桥边有一船浮在水面部分高4m,最宽处122m的河鱼餐船,试探索此船能否开到桥下?说明理由.【考点】人教新课标九年级上册•22章二次函数•22.3实际问题与二次函数三、感悟中考1.(2013年衢州)某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一颗树,平均每棵树就会少结5个橘子.设果园增种x棵橘子树,果园橘子总个数为y个,则果园里增种10棵橘子树,橘子总个数最多.【考点】人教新课标九年级上册•22章二次函数•22.3实际问题与二次函数2. (2013年鞍山)某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?【解析】四、专项训练。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加多少? 问:(1)对于此题你能联想 到用我们学过的什么数学 知识来解决?
(2)从题目本身的哪些 条件,你能联想到用二 次函数想解一决想这:你一肯问题?
定多(多能方3少)想法求,出 的就水很.是面求宽解度什增么加
数学问题?
(4)要求线段CD的长,
2
Al
C
4
B
1
D
需先求什么? (5)你会如何建立
平面直角坐标系的
物线于C,D两点,则C点的坐标为
_(___6_,___3_)_,D点的坐标为_(__6__, __3__),
CD的长为___2___6__.
图片欣 赏
图片欣 赏
图片欣 赏
图片欣 赏
生活中的抛物线形
---有关抛物线形的实际问题
探究3如图的抛物线形拱桥,当水面在 l 时,拱桥
顶离水面2m,水面宽4m.若水面下降1m,水面宽度增
丰 收园
通过这节课的学习, 你有哪些收获? 能与大家一起分享吗?
作业布置:
如图的抛物线形拱桥,当水面在 l 时,拱顶
离水面 2 m,水面宽 4 m. (1)若水面下降 1 m, 水面宽度增加多少? (2)若货船在水面上的部分的横截面是矩形,
已 船知能货否船 顺的 利宽 通为 过这2.9座m桥,且?船高出水面1m,问y 货
0
x
A
D
l
B
C
结束寄语
数学来源于生活,又服务于生活.
谢谢指导
总结升华:
实际问题
建立适当的坐标系
数学问题
(有关抛物线形的实
(二次函数的问题)
际问题)
转化
利
用
二
次求
目 标
函解 数 的
图
象
实际问题
数学问题
的答案
检验
的答案
y 0
A(-2,-2)
●l
C
B(2,-2) x
●
D
探究3如图的抛物线
形拱桥,当水面在 l
1 2
y
x2
3
(0,0A) 0
C(4,0)B来自Dx(-4,A0) C
(0,0)
0B Dx
y 1 (x 2)2 2 2
y 1 (x 2)2 2 2
学而有思:
通过建立平面直角坐标系,可以将有关抛物线的 实际问题转化为二次函数的问题.
有关抛物线形的实际问题的一般解题思路: 1.建立适当的平面直角坐标系 2.根据题意找出已知点的坐标 3.求出抛物线解析式 4.直接利用图象解决实际问题.
方法?
请同学们分4小组分别用图 (2),(3),(4),(5)完成此题
y 0 (0,0)
(0,2) y
(0,3) y
(-2,A-2) (2,-B2)x (-A2,0)0
(2B,0) (-2,A1)
(2B,1)
C
坐D标系的C 建立可有不D同x的方C 法, 0
D
会得到不同的函数关系式,但
x
y
1 2
x2不 的同 . y的(2方,2)法y得到 12的x结2 果2 是(一-2致,2y)
考考你
如图,抛物线的顶点在原点,
直线L平行x轴,交抛物线于
A,B两点,若AB=4,抛物线的
顶点到直线L的距离为2,
则点A的坐标为___(_-_2_,_-_2_)__,
点B的坐标为__(_2_,_-_2_)_____,
此抛物线的解析式为
C
D l′
__y_____1__x_2_____.
2
若直线L向下平移1个单位后,交抛
数 和谐美 哪 哪
学 对称美
里里 就有
美
简洁美 有 数
奇异美 美
.
学 ,
好奇心是成功的重要法宝
一.知识点回顾 二次函数的解解析式主要有哪些形式? 1.y a(x h)2 k(a 0)
2.y ax2 bx c(a 0)
请你写出一个顶点坐标为(2,2),开口向下的抛 物线解析式________________.
时,拱桥顶离水面2m, 水面宽4m.若水面下降 1m,水面宽度增加多少?
如图所示,以抛物的顶点为原点,以抛物线的对称 轴为y轴,建立平面直角坐标系. (1)坐标系建立后,抛物线上的哪些点的坐标可求? (2)你能求抛物线的解析式了吗?
(4)如何用函数的有关知识求解出线段CD的长?