气液分离器

合集下载

气液分离器设计论文

气液分离器设计论文

气液分离器设计论文一、气液分离器的设计原理气液分离器的设计原理主要基于两种物质之间的相态差异,通过利用气体和液体之间的密度和粘度等差异来实现分离。

在气液分离器中,气体通常通过进料管进入,然后通过分离介质展开,并在分离介质中与液体相互作用,从而实现气液分离。

二、气液分离器的设计流程1.确定物料特性:首先需要确定处理的气体和液体的特性,包括流量、压力、温度、组成等。

这些物料的特性将对分离器的设计和选择产生影响。

2.确定设备选型:根据物料特性和分离要求,选择适当的气液分离器类型,包括总体形式、入口位置、出口位置、流动路径等。

3.计算处理容量:根据物料特性和处理要求,计算出所需的处理容量,包括气体和液体的流量。

4.计算设计参数:根据物料特性和处理容量,计算出分离器的设计参数,包括分离介质的形状、尺寸、孔径等。

5.进行设备设计:根据计算得到的设计参数,进行气液分离器的详细设计,包括细节尺寸、结构布置等。

三、气液分离器的优化方法1.优化分离介质:分离介质的选择对分离效果有着重要影响,在设计中可以选择具有较好分离性能的材料,如网格结构、纤维材料等。

2.优化流动路径:流动路径的设计也会对分离效果产生影响,可以通过改变管道形状、加入隔板等方式来改善分离效果。

3.优化设备结构:设备结构的合理设计也能够提高气液分离器的效果,可以通过改变分离器的长度、直径等参数来改善分离效率。

4.优化操作参数:在实际操作中,还可以通过调整气体和液体的流量、压力、温度等操作参数来提高分离效果。

总结起来,气液分离器的设计是一个综合考虑物料特性、设备选型、处理容量和设计参数等多种因素的过程。

通过优化设计,可以提高分离效果,实现更加高效和可靠的气液分离。

气液分离器

气液分离器

气液分离器{气水分离器)翌SM^NG:鸵i气液分离器俗称油水分离器,用来分离气体中大于5微米的液体和固体颗粒。

是在气体中除油水的最简单实用的设备。

PX QF气液分离器可应用于对压缩空气、合成气、煤气、氢气、氮气、氧气、天然气、瓦斯气、沼气、氨气、硫化氢、尾气等各种气体的气液分离。

PX QF气液分离器设计制造符合国内或国外的各种标准和规范,如GB150《钢制压力容器》或ASME标准,并刻有CS及ASME钢印。

PX QF气液分离器工作原理通过五级分离—降速、离心、碰撞、变向、凝聚等原理,除去压缩空气(气体)中的液态水份和固体颗粒,达到净化的作用。

湿气在冷却过程中冷凝后,在分离器中的挡板廹使气体改变方向二次,并以设计好的速度旋转,产生离心力高效地分离出液体和颗粒,排水器应及时排放出冷凝液。

常安置在后冷却器的后面,因为要求进气温度越低越好,一般不超过60°C。

PXQF气液分离器产品特点1.除水效率高:可除去99%的液态水份,油份。

2.体积小、重量轻。

3.安装方便,管道式连接、可悬挂安装。

4.免维护、可靠性好。

5.寿命长:可使用20年。

6.按GB150压力容器标准制造,安全可靠。

PXQF气液分离器应用范围1.压缩空气冷凝水分离回收2.蒸汽管线冷凝水分离3.气液混合部位的进/出口分离4.真空系统中冷凝水分离排放5.水冷却塔后的冷凝水分离6.地热蒸汽分离器7.其他多种气液分离应用PXQF气液分离器PXQF DN65 400 600 159 360 18 自动放水阀HL10/1 PXQF DN80 510 760 219 420 42 自动放水阀HL13/1,20/1 PXQF DN100 580 850 273 480 60 自动放水阀HL40/1 PXQF DN125 580 850 273 480 60 自动放水阀HL60/1,70/1,80/1 PXQF DN150 650 990 426 630 120 自动放水阀HL100/1 PXQF DN200 630 1040 426 630 150 自动放水阀HL150/1 PXQF DN250 770 1180 478 680 200 自动放水阀325 HL200/1 PXQF DN300 840 1300 630 830 400 自动放水阀HL370/1 PXQF DN400 1180 1910 820 1090 600 自动放水阀HL370/1 PXQF DN450 2200 920 自动放水阀£气液分离器。

制冷系统气液分离器的作用和原理

制冷系统气液分离器的作用和原理

制冷系统气液分离器的作用和原理一、引言制冷系统是一种常见的热力学循环系统,用于将低温热量从低温源吸收,然后通过压缩增加其温度,最后释放高温热量。

在制冷循环过程中,气液分离器(也称为油分离器)起着重要的作用,用于分离制冷剂中的液体和气体组分,以保证系统的稳定运行。

本文将介绍制冷系统气液分离器的作用和原理。

二、气液分离器的作用制冷系统中的气液分离器主要有以下几个作用:1. 分离液体和气体:制冷剂在制冷系统中会出现液体和气体两种形态,而液体和气体具有不同的密度和流动性质。

气液分离器能够将液体和气体分离,确保液体进入制冷系统的合适位置,而气体则被排出系统外。

2. 保护压缩机:制冷系统中的压缩机是核心部件,负责将制冷剂压缩提高其温度。

然而,液体进入压缩机会引起液击现象,造成压缩机的过载运行或损坏。

气液分离器可以防止液体进入压缩机,保护其正常运行。

3. 保持制冷系统的高效运行:制冷系统中的液体冷却效果更好,而气体冷却效果较差。

通过分离液体和气体,气液分离器可以确保液体尽可能多地进入冷却部件,提高制冷系统的效率和性能。

三、气液分离器的原理气液分离器的原理基于液体和气体在分离器内部的流动性质和密度差异。

1. 流体流动原理:在气液分离器中,制冷剂流入分离器后,由于其流速减小,液体组分受到离心力的作用,向分离器的底部沉降,形成液体层。

而气体组分由于较小的密度,往往停留在分离器的上部形成气体层。

2. 分离原理:由于液体和气体的密度差异,液体层和气体层之间形成明显的分界面。

分离器内部设有分离板或分离腔,通过这些结构可以进一步增加液体和气体之间的分离效果。

液体组分在分离器的底部通过出口排出,而气体组分则通过顶部的出口排出。

3. 动力学平衡原理:气液分离器还利用动力学平衡原理,通过控制分离器内部的液位和气体排出速度,实现液体和气体的平衡状态。

这样可以确保制冷系统中液体和气体的比例始终符合设计要求,保证制冷系统的正常运行。

四、气液分离器的类型根据气液分离器的结构和工作原理,可以分为以下几种类型:1. 重力分离器:利用液体和气体的密度差异,通过分离腔和重力作用实现液体和气体的分离。

气液分离的基本原理

气液分离的基本原理

气液分离的基本原理
气液分离装置的基本工作原理是利用流体在重力、表面张力、惯性力等的作用下,使液体和气体分离。

因此,气液分离装置可分为两大类:一类是重力沉降式,另一类是惯性沉降式。

重力沉降式气液分离器的工作原理是:在压力作用下,气体从气体分相区流入液体分相区。

当液体进入气液分离器后,由于密度不同而发生分层现象。

分层后的两部分液体,一部分具有较大的粘度,密度大于气体,称为重力沉降液;另一部分具有较小的粘度,密度小于气体,称为重力不沉降液。

由于重力作用使密度较大的液体层下沉;而密度小的液体层上升。

当液面达到一定高度后,上升的液体层又会落下而形成气层。

由于气、液两相区具有不同的压力和温度,因此气液两相区内各组分在压力、温度、浓度和速度等方面都是有差异的。

当两相区内各组分从压力低、温度高的一侧进入压力高、温度低的一侧时,各组分中所含气体成分的比重不同而使气液混合物在压力高、温度低的一侧凝结或沸腾而分离开来。

—— 1 —1 —。

压缩机气液分离器工作原理

压缩机气液分离器工作原理

压缩机气液分离器工作原理压缩机产生的空气中会含有大量的水分,水分既会危害到压缩机的正常运行,还会造成后续设备和工艺的故障。

因此,为了有效地分离压缩空气中的水分,需要使用气液分离器。

气液分离器的工作原理主要分为惯性分离和重力分离两个过程。

1.惯性分离:当含有水分的压缩空气进入气液分离器时,由于速度的变化,水分会因惯性作用而从气流中分离出来。

这是因为水分粒子具有较大的质量和惯性,随着气流速度的变化,惯性较大的水分粒子会继续直线运动,而气流则会发生方向改变。

因此,水分粒子会因惯性作用而冲击在气液分离器内壁上,从而分离出来。

同时,气流中的水分也会因为速度减慢,而逐渐沉降到分离器的底部。

2.重力分离:在分离器的下部,会设置一个水收集器,它的作用是收集下沉的水分。

由于水分具有较大的密度,所以会在气液分离器内发生重力沉降,最终沉积在水收集器中。

同时,在水收集器的顶部,还会设置一个水排放装置,用于排放积水。

气液分离器通常由以下几个组成部分构成:入口管道、分离器壳体、水分离设备、水收集器和出口管道。

入口管道用于将含有水分的压缩空气引入分离器壳体。

分离器壳体通常是圆柱形或圆锥形的,内部经过精心设计,以提供最佳的分离效果。

水分离设备位于分离器壳体内部,它的设计结构有多种形式,包括滤网、过滤元件、旋流器等。

这些设备的作用是增加水分离的表面积,增加气流与水分接触的机会,从而提高水分离的效果。

水收集器位于分离器底部,用于收集下沉的水分。

它通常具有一个阻挡装置,用于阻止水从分离器内部被带出。

出口管道用于将分离出的干燥空气从分离器中排出,以供后续设备或工艺使用。

总的来说,压缩机气液分离器通过惯性分离和重力分离的原理,将压缩空气中的水分离出来,有效地保护了压缩机和后续设备的正常运行。

通过合理的设计和选用适当的分离策略,可以提高气液分离器的分离效果,从而获得更干燥的压缩空气。

气液分离器冷库工作原理

气液分离器冷库工作原理

气液分离器冷库工作原理
气液分离器(也称为冷库)的工作原理如下:
1. 冷却排气:热气体进入冷库后,经过冷却装置冷却,使其温度降低,从而使其中的水蒸汽和其他液体组分凝结为液态。

2. 分离液体:冷却后的气体进入气液分离器,在该装置中,由于气体的密度较小,会向上漂浮,而液体的密度较大,会向下沉降。

因此,通过设定适当的高度,可以将漂浮在上方的气体与沉降在下方的液体分离开来。

3. 排出液体:分离液体通过底部的液体排出口流出,这样就实现了对液体组分的分离。

4. 排出气体:分离气体通过位于气液分离器顶部的气体排出口排出,这样就实现了对气体组分的分离。

通过以上的工作原理,气液分离器可以实现对气体和液体组分的有效分离,从而达到净化气体或回收液体的目的。

这种装置在许多工业和研究领域中都有广泛的应用,如石油和化工行业的炼油、液化天然气(LNG)生产等。

气液分离器原理及结构

气液分离器原理及结构

气液分离器原理及结构
气液分离器是一种常用于气体和液体分离的设备。

其原理是利用气体和液体的不同密度和惯性,通过引导和设计的流动路径,使气体和液体分离并分别排出。

气液分离器一般由进气口、分离室和出口组成。

进气口通常位于设备的上部,使气体和液体混合物进入分离室。

分离室内通常设置了导流板或纤维等装置,以增加气液分离的效果,并防止液体回流到出口。

在分离室内,由于液体重力作用下的惯性力,液滴会向下沉积,而气体则继续向上流动。

分离室的底部通常设有排液口,用于排出沉积的液体。

为了提高气液分离的效果,分离室内还可能设置了气液分离元件,如细孔板、旋流器等。

细孔板通常由多个小孔组成,通过孔径和孔距的设计,使气体能通过而液体不能通过,从而实现气液分离。

旋流器则通过旋转流体产生离心力,使气体和液体分离。

在气液分离器的设计中,还应该考虑气液混合物的流速、压力、温度等因素。

流速过大可能导致未完全分离,而流速过小则可能导致堵塞。

压力的设计则应保证在分离室内压力的变化不过大,以避免气体和液体再次混合。

同时,设备的材料选择也很重要,要能耐受液体的腐蚀和气体的高温。

总之,气液分离器通过利用气体和液体的密度和惯性差异,通过设计好的流动路径,使气体和液体分离并分别排出。

该设备的结构包括进气口、分离室和出口,通常还会增加气液分离元
件来提高分离效果。

在设计和选择方面,需要考虑流速、压力、温度等因素,并选择适合的材料。

沼气气液分离器原理

沼气气液分离器原理

沼气气液分离器原理
沼气气液分离器的原理是利用液体和气体的密度差异,通过重力分离或离心力分离的方式将沼气中的液体和固体物质与气体分离开来。

一般情况下,沼气中会含有一定量的水蒸气、油脂、氨、硫化氢等物质,这些物质会以液体或固体的形式存在于沼气中。

为了提高沼气的纯度和减少对后续设备的腐蚀和堵塞,需要将沼气中的液体和固体物质与气体分离开。

沼气气液分离器主要由进气管道、分离室和出气管道组成。

沼气进入分离室后,由于液体和固体颗粒的密度较大,会在分离室底部逐渐沉淀。

同时,分离室内设置有导流板或其他分离装置,可以引导气体在分离室内形成旋涡,加速液体和固体物质的沉淀速度。

分离室顶部设置有出气管道,通过出气管道将纯净的沼气从分离室中排出。

而底部的沉淀物则通过排泥管道或者其他排放装置进行排除。

沼气气液分离器可以根据需要进行不同的设计和改进,以适应不同的工作条件和沼气成分。

一般来说,分离室内的分离装置和废液排放系统的设计都是关键因素,可以影响分离效果和设备的稳定运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气液分离器
气液分离器在热泵或制冷系统中的基本作用是分离出并保存回气管里的液体以防止压缩机液击。

因此,它可以暂时储存多余的制冷剂液体,并且也防止了多余制冷剂流到压缩机曲轴箱造成油的稀释。

因为在分离过程中,冷冻油也会被分离出来并积存在底部,所以在气液分离器出口管和底部会有一个油孔,保证冷冻油可以回到压缩,从而避免压缩机缺油。

气液分离器的基本结构见图F.1,主要分为立式,卧式和带回热装置,在一些小系统如冰箱,会用一些铜管做一个简单的气液分离器,如图F.1右下角。

气液分离器的工作原理是带液制冷剂进入到气液分器时由于膨胀速度下降使液体分离或打在一块挡板上,从而分离出液体。

F.1
气液分离器的设计和使用必须遵循以下原则:
1.气液分离器必须有足够的容量来储存多余的液态制冷剂。

特别是热泵系统,最好不要少于充注量的50%,如果有条件最好做试验验证一下,因为用节流孔板或毛细管在制热时节流,可能会有70%的液态制冷剂回到气液分离器。

还有高排气压力,低吸气压力也会让更多的液态制冷剂进入气液分离器。

用热力膨胀阀会少一些,但也可能会有50%流到气液分离器,主要是在除霜开始后,外平衡感温包还是热的,所以制冷剂会大量流过蒸发器而不蒸发从而进入气液分离器。

在停机时,气液分离器是系统中最冷的部件,所以制冷剂会迁移到这里,所以要保证气分有足够的容量来储存这些液态制冷剂。

2.适当的回油孔及过滤网保证冷冻油和制冷剂回到压缩机。

回油孔的尺寸要尽量保证没液态制冷剂回流到压缩机,但也要保证冷冻油尽量可以回到压缩机。

如果是运行中气液分离器中存有的液态制冷剂,推荐使用直径0.040 in (1.02mm),,如果是因为停机制冷剂迁移到气液分离器推荐使用0.055 in (1.4mm)(谷轮的应用工程手册是直接给出
0.040-0.050 in (1.02-1.3 mm),并给出一般气液分离器是0.0625-0.125(1.6-3.2mm))。

当然如果有
条件也可能用试验优化这个尺寸,以达到最好效果。

还有过滤网,谷轮推荐使用不小于30X30目(0.6mm孔径),这里推荐使用50X60 目,这里好象有点矛盾,不过考虑到在中国空调安装的水平,特别是分体式的安装,经常会有杂质进入系统,所以用大点孔径会稳妥些。

3.气液分离器的压力损失尽可能小。

冷冻油和制冷剂的流量由出口U形管的尺寸控制,所以它的尺寸也决定了制冷剂的压力损失,因为进入出口管的制冷剂是高速的。

这里有一个参考值,对于R22,R134,R404AR410A,在5C蒸发温度,30C吸气温度时压力损失为7kPa, 有些公司资料上压力损失是1/2F(0.5C)这应该是指饱和状态下的压力。

但是不同制冷剂换算成压力又是不同的,前面提的压力损失又是针对几种制冷剂,所以这些参数只是作为参考。

此外,为了让气液分离器更好的工作,还有以下结构特点:
为了防止虹吸现象,在出口U形管上部有一个平衡孔,以防止停机后重新启动时制冷剂液体因虹吸而进入压缩机。

对于直径超过6”(150mm)的气液离器,必须要安装一个430F(221C)的泄压阀,以防止在火灾时不会对外界造成伤害。

按照UL207,气液分离器一般正常工作压力为2.50MPa,有些会达到3.10Mpa,最小破坏压力12.50MPa,有些会达到15.5Mpa (一般管翅片式换热器,壁厚为0.35的光管的破坏压力为15-16MPa)。

使用钢板16MnR厚度3mm的破坏压力为2.89MPa,如果用Q235B,起码要5mm 以上(用16MnR钢板要承受15MPar的破坏压力,要使用16mm板厚)。

气液分离器尽量靠近压缩机安装,有四通阀的安装在四通阀和压缩机之间,有过滤器的安装在它和压缩机之间。

图F.2显示了气液分离器安装时管路的高度最好比压缩机回气口要低。

选择卧式气液分离器时要注意,如果液体温度低于15F(9C)有些资料说是-10C时,冷冻油会变稠,因此很难通过细小的虹吸管经出口管回流到压缩机,这是由卧式特殊结构决定的。

为了避免由于外界温度变化而对气液分离器里的制冷剂过热度造成影响,最好能在气液分离器外面包一层保温棉。

F.2
现在国外公司主要有,ALCO,PARKER,AC&R,REFRIGERATION RESEARCH,的产品都会有一个选型表,你可以根据制冷量选择合适的容量,但是不同厂家之间标明相同制冷量对应的气液分离器大小也会有一点出入,ALCO列出它的一些型号和上面厂家对应的型号,ALCO 和PARKER的参数比较接近,但是AC&R及RR的制冷量比较小,而且只标了制冷剂储存量,用25度时的液体密度换算体积稍小于前两家公司,但用外形尺寸计算,容积和前两家公司接近但还是偏小一点。

红色字是计算数据
查管道机资料,一般制冷量7kW就需R22制冷剂2.0kg.,所以对于上表所列的最大制冷量,所对应气液分离器装不下所有制冷剂,大概可以装下70%。

而且不同类型机组相同制冷量所需制冷剂充注量也不一样,另外对于分体机,有时管路比较长时,如30米,这时需要按照多出标准管长增加制冷剂,这部分制冷剂不会全部到达气液分离器,所以对于全部充注量的定义也要仔细分析回到气液分离器的会有多少,还有储液罐的所储存的制冷剂也是要考虑的,所以应针对具体机组的充注量计算制冷剂体积,再根据机组运行状况及以上原则考虑选择合适的气液分离器。

一般情况下可以选取所有充注量的80%来选取气液分离器。

对于单冷机组,因为无化霜过程,选取容量可以小点,但最好也不要小于50%。

在家用空调的系统里,压缩机公司一般会在压缩机出厂时在吸气管预装一个气液分离器,如果是不需要长连管而是在空调制造厂家规定的长度内的安装,可以不需要考虑回液问题,如果是长连管,最好咨询下空调制造厂家。

如果是在低温系统如低于0F(-18C),特别是对于象快速制冷(蒸发温度可达-40C)这类更低温度的系统,最好使用带换热器或电热器的气液分离器,见F.3,这样可以增加液管的过冷度,提高系统效率,但是这并不是对所有制冷剂都可以提高效率的,在-15C或更低的蒸发温度,在40C的冷凝温度时,R507A,R134a,R12,R404A,R290,R407C,R600,R410A,系统效率都有不同程度的提高,但对R22,R32,R717,性能反而下降,这和气分引起的过热度增加有关,因为过热度的增加恰好对R22,R717单位容积制冷量也是下降的,见图F.4,这也是在低蒸发温度和冷凝温度下的结果。

但如果控制好过热度,然后让液管冷凝,这样不管对什么制冷剂都是可以提高效率的。

使用带换热器的气液分离器在低温系统中也可以提高气液分离器的制冷剂液体及冷冻油的温度,这样也可以让系统运行得更加安全可靠。

不要使用排气管接到气液分离器这种结构,这样会因为吸气温度过高从而造成压缩机过热。

如果是加电热管,AC&R公司有三个型号,请看下表
F.3
F.4
R134a 液体密度1206 g/cm3 (25C) R22 1194 R407C 1134 R410a 1062 R404a 1044。

相关文档
最新文档