数字频率计

合集下载

数字频率计毕业论文

数字频率计毕业论文

数字频率计毕业论文数字频率计是一种用于测量信号频率的仪器,广泛应用于电子工程、通信工程、无线电技术等领域。

它的原理是通过将输入信号与参考信号进行比较,从而得到信号的频率信息。

本文将从数字频率计的原理、应用以及未来发展方向等方面进行探讨。

一、数字频率计的原理数字频率计的原理基于周期计数法。

它通过将输入信号与参考信号进行比较,并计算两个信号之间的相位差,从而得到信号的频率。

具体来说,数字频率计将输入信号分成若干个周期,并通过计数器记录每个周期的时间。

然后,通过计算每个周期的时间差,即可得到信号的频率。

二、数字频率计的应用数字频率计在电子工程领域有着广泛的应用。

首先,它可以用于测量无线电信号的频率。

在通信工程中,我们经常需要测量无线电信号的频率,以确保信号的稳定性和准确性。

数字频率计能够提供高精度的测量结果,使我们能够更好地了解信号的特性。

其次,数字频率计还可以用于频谱分析。

频谱分析是一种将信号分解成不同频率成分的方法,可以帮助我们了解信号的频率分布情况。

数字频率计可以通过测量信号的频率,为频谱分析提供准确的数据支持,从而帮助我们更好地理解信号的特性。

此外,数字频率计还可以用于音频设备的调试和校准。

在音频工程中,我们经常需要调试和校准音频设备,以确保音频信号的准确性和稳定性。

数字频率计能够提供高精度的频率测量结果,为音频设备的调试和校准提供准确的参考。

三、数字频率计的未来发展方向随着科技的不断发展,数字频率计也在不断演进和改进。

未来,数字频率计有望在以下几个方面得到进一步发展。

首先,数字频率计的测量精度将进一步提高。

随着技术的进步,数字频率计的测量精度将得到进一步提升。

高精度的测量结果将使得我们能够更准确地了解信号的特性,为相关领域的研究和应用提供更可靠的数据支持。

其次,数字频率计的测量范围将进一步扩大。

目前,数字频率计的测量范围通常在几十Hz到几GHz之间。

未来,随着技术的发展,数字频率计的测量范围有望进一步扩大,从而能够满足更广泛的应用需求。

数字频率计±1个字误差的探讨

数字频率计±1个字误差的探讨

数字频率计±1个字误差的探讨数字频率计是一种广泛应用于电子测量领域的仪器,用于测量电路中的频率。

在实际的应用中,数字频率计的精度是非常重要的,其中误差是一个不可避免的问题。

本文将探讨数字频率计的误差来源及其对精度的影响,以及如何降低误差,提高精度。

一、误差来源数字频率计的误差来源主要有以下几个方面:1. 时钟误差:数字频率计是通过计算时间间隔来计算频率的,因此时钟的精度对频率计的精度有很大影响。

时钟误差可以通过校准时钟来减小。

2. 计数误差:数字频率计的计数器是通过计算电路中的脉冲数来计算频率的,而计数误差是由于计数器的计数精度不够造成的。

计数误差可以通过增加计数器的分辨率来减小。

3. 信号源误差:数字频率计的精度还受到信号源的影响,信号源的稳定性和精度越高,数字频率计的精度就越高。

4. 温度漂移误差:数字频率计的电路元件随着温度的变化会产生漂移,这种漂移会影响数字频率计的精度。

温度漂移误差可以通过控制温度来减小。

二、误差对精度的影响数字频率计的误差对精度的影响是非常显著的,误差越大,精度越低。

例如,如果数字频率计的误差为±1个字,而测量的频率为10MHz,那么误差就是10ppm。

如果误差增加到±10个字,那么误差就是100ppm,这会对测量结果造成很大的影响。

三、如何降低误差,提高精度为了降低数字频率计的误差,提高精度,我们可以采取以下措施:1. 选择高精度的时钟和计数器,以减小时钟误差和计数误差。

2. 使用高精度的信号源,以提高数字频率计的精度。

3. 控制温度,以减小温度漂移误差。

4. 校准数字频率计,以确保其精度符合要求。

5. 采用数字信号处理技术,以提高数字频率计的精度和稳定性。

综上所述,数字频率计的误差是一个不可避免的问题,但是我们可以通过选择高精度的器件、控制温度、校准仪器等措施来减小误差,提高数字频率计的精度和稳定性。

数字频率计

数字频率计

数字频率计数字频率计是一种用十进制数字显示被测信号频率的数字测量仪器,它的基本功能是测量正弦信号、方波信号、尖脉冲信号的频率及其他各种单位时间内变化的物理量,因此,它的用途十分广泛。

一、设计目的掌握数字频率计的设计二、设计内容技术要求:测量频率范围 0-9999 Hz和1Hz-100 KHz。

测量信号方波峰--峰值为3-5V(与TTL兼容)。

闸门时间 10ms,0.1s,1s和10s,脉冲波峰—峰值为3-5V。

三、数字频率计的基本原理数字频率计的原理框图如图所示:它由4个基本单元组成:1.带衰减器的放大整形系统包括从被测信号到衰减放大整形系统此部分。

其中衰减放大整形系统包括衰减器、跟随器、放大器、施密特触发器。

它将正弦波输入信号Vx整形成同频率方波Vo,测试信号通过衰减开关选择输入衰减倍数,衰减器有分压器构成幅值过大的被测信号经过分压器的分压送入后级放大器,以避免波形失真。

由运算放大器构成的射极跟随器起阻抗变换作用,使输入阻抗提高。

系统的整形电路由施密特触发器组成,整形后的方波送到闸门以便计数。

2.石英晶体振荡器及多级分频系统石英晶体振荡器如图振荡频率为4MHz,经过÷4(用74LS47芯片),÷10(用74LS90芯片)等分频器的分频作用,使输出频率的周期范围1us~10s。

根据被测信号的频率大小,通过闸门时基选择开关选择时基。

时基信号经过门控电路得到方波,其正脉宽时间T控制闸门的开放时间。

3.闸门电路闸门电路由与门组成,其开通与否受门控信号的控制,当门控信号为高电平“1”时,闸门开启,为“0”时,闸门关闭。

显然,只有在闸门开启时间内,其产生的脉冲信号送到计数器,计数器开始计数,直到门控信号结束,闸门关闭4.可控制的计数锁存、译码显示系统本系统由计数器、锁存器、译码器、显示器、单稳态触发器组成。

其中计数器按十进制计数。

如果在系统中不接锁存器,则显示器上的数字就会随计数器的状态不停地变化,只有在计数器停止计数时,显示器上的显示数字才能稳定,所以,在计数器后边必须接锁存器。

数字频率计安全操作及保养规程

数字频率计安全操作及保养规程

数字频率计安全操作及保养规程数字频率计是一款广泛应用于电力、工业、医疗、机械等领域的便携式计量仪器。

使用数字频率计需要遵守一定的安全操作和保养规程,以确保设备的安全性、稳定性和准确性。

本文将介绍数字频率计的安全操作和保养规程。

安全操作规程1. 操作前在使用数字频率计之前,需先仔细查看仪器的外部是否有明显的损坏。

如有明显的破损或质量问题,务必先进行维修或更换。

同时,需要检查电源线是否连接牢固,各部件是否完好无损。

在检查完毕后才能正常使用。

2. 操作中数字频率计使用时应遵循以下操作:•仔细阅读并按说明书正确操作。

•在仪器运行前,先对要测量的对象进行检查与记录。

确保检测对象的电压、频率、相位等参数在仪器测量范围内。

•长时间使用时,为防止超负荷散热,就需要不时检查仪器的温度,如有异常现象要及时关机停用,待温度恢复后再使用。

•测量过程中不要拆动设备,如未达到测量结果,应先检查设备仪器、线路、测量对象、电源之间是否有错误或不稳定现象,确认设备正常后才能进行下一步操作。

•避免不当操作或强外力撞击。

将频率计放置在平稳的台面上,防止其倾斜或翻倒,避免损坏设备或人员受到伤害。

3. 操作后数字频率计使用完毕后,应遵循以下操作:•关闭电源,然后慢慢拔下电源线。

•将频率计放置在干燥通风的环境中。

•定期清洁仪器及标准件,如有损坏需及时更换。

•长时间不使用时,应将仪器放置于阴凉,干燥的地方,定期拿出使用。

保养规程数字频率计的保养可以做到以下几点:1. 定期清理与保养数字频率计长期使用后,仪表表面会有所污染,专用擦拭巾可以清除表面污染,如果污染非常沉重,可以用清洗液加以擦洗,但要注意在擦洗过后必须立即用清水擦拭干净并保持通风干燥。

2. 安全存放数字频率计不使用时,应将其搁置于阴凉、干燥、通风、无腐蚀性气体的地方。

必要时,可以将其包裹防尘。

不要将仪器长期置放在潮湿、高温、有害气体的环境下。

3. 定期校准数字频率计在长期使用的过程中,可能会出现使用误差。

数字频率计

数字频率计

一、总体设计思想1.基本原理数字频率计是用数字显示被测信号频率的仪器,是测量周期信号的频率的。

我们这里要求的是对峰峰值3~5V的方波进行测频。

说到原理,我们应该从什么是频率说起。

所谓频率,就是周期性信号在单位时间(1秒) 内变化的次数。

但是我们既然用到数字测频器,并且用LED显示出来,最好是起到简便的作用,因此如果我们能在给定的单位时间(例如1秒)或其他时间内对信号波形计数,并将计数结果用LED显示出来,就能知道被测信号的频率。

因此,可以将时钟信号先经过分频器把信号的时间脉冲调整成单位时间脉冲,也就是标准秒信号。

这样方便与下面的控制与测频。

然后把被测信号以及刚刚获得的标准秒信号都经过控制电路,设置控制电路的目的是检测是否这两个脉冲信号能否成功送入计数器计数。

而计数器的作用是对输入脉冲计数。

这样我们就有时间脉冲的记录,然后在经过数据锁存器,设置数据锁存器的目的是为了锁定刚刚计数器所记录下来的结果,这样才会有稳定的输出,否则将会造成计数器的结果丢失。

紧接着连接一个显示译码器主要是把信号通过译码器转换成为显示器能够识别的码制,最后则是通过LED显示我们的最终结果。

2.设计框图根据这次课程设计的要求:设计一个数字频率计,测量频率范围:1~100kHz。

频率的LED数字显示。

测量信号方波峰峰值3~5V。

我设计了如下的总体设计框图。

主要是针对我的设计的基本原理也就是先将时钟信号先经过分频器,再把被测信号以及刚刚获得的标准秒信号都经过控制电路,接着是计数器,然后是数据锁存器,数据译码器,最后是LED 显示器。

二、设计步骤和调试过程 1、总体设计电路这次课程设计的要求是设计一个数字频率计,测量频率范围:1~100kHz 。

频率的LED 数字显示。

测量信号方波峰峰值3~5V 。

所以我先将时钟信号先经过分频器把信号的时间脉冲调整成单位时间脉冲,也就是标准秒信号。

这样方便与下面的控制与测频。

然后把被测信号以及刚刚获得的标准秒信号都经过控制电路,设置控制电路的目的是被测信号计数检测是否这两个脉冲信号能否成功送入计数器计数。

数字频率计设计报告

数字频率计设计报告

数字频率计设计报告数字频率计是一种用于测量信号频率的仪器,广泛应用于电子领域。

本文将针对数字频率计的原理、工作方式以及应用进行详细介绍。

一、引言数字频率计是一种基于数字信号处理技术的测量仪器,它能够精确地测量信号的频率。

它广泛应用于通信、无线电、音频和视频等领域,对于各种信号的频率测量具有重要意义。

二、原理数字频率计的测量原理基于信号的周期性特征。

当一个信号通过数字频率计时,它会被转换成数字信号,并通过计数器进行计数。

通过计数器的计数结果和时间基准的参考值进行比较,就可以得到信号的频率。

三、工作方式数字频率计的工作方式通常分为两种:直接计数法和间接计数法。

1. 直接计数法:该方法直接对信号进行计数,通过计数器对信号的脉冲进行计数,并将计数结果进行处理得到频率值。

这种方法简单直接,但对于高频率信号的计数精度较低。

2. 间接计数法:该方法通过将信号的频率分频至低频范围内进行计数。

通过将高频信号分频后再进行计数,可以提高测量的精度。

四、应用数字频率计在各个领域都有广泛的应用,以下是一些常见的应用场景:1. 通信领域:数字频率计在通信系统中被用于测量信号的载波频率,确保信号的稳定传输。

同时,数字频率计还可以用于频率偏移的测量,以评估通信系统的性能。

2. 无线电领域:数字频率计被用于测量无线电频率,对于射频信号的测量具有重要意义。

它可以用于无线电台站的调试和维护,以确保无线电信号的质量和稳定性。

3. 音频和视频领域:数字频率计在音频和视频设备的校准和测试中被广泛应用。

它可以测量音频和视频信号的频率,以确保音频和视频设备的正常工作。

4. 科学研究领域:数字频率计在科学研究中也起到了重要的作用。

比如,在天文学研究中,数字频率计可以用于测量天体的射电信号频率,从而研究宇宙的演化和结构。

五、总结数字频率计作为一种精确测量信号频率的仪器,在电子领域中有着广泛的应用。

本文从原理、工作方式和应用等方面对数字频率计进行了详细介绍。

简易数字频率计

简易数字频率计

简易数字频率计引言数字频率计是一种用来测量信号频率的仪器。

在电子工程、通信工程和音频工程等领域中都有广泛的应用。

本文将介绍一个简易的数字频率计,它基于微控制器和计数器电路,能够精准地测量输入信号的频率。

设计原理该简易数字频率计的设计原理主要包括三个部分:输入电路、计数器电路和显示电路。

输入电路输入电路用于接收待测量的信号,并将其转换为微控制器可以处理的数字信号。

一般使用一个信号放大器将输入信号放大,并通过一个阻抗匹配电路将信号阻抗与测量电路相匹配。

计数器电路计数器电路是本频率计的核心部分。

它通过计数器器件来测量输入信号的周期时间,并计算出频率值。

常见的计数器器件有74HCxx系列、CD40xx系列等。

在该设计中,我们选择了74HC160 4位可编程同步二进制计数器。

显示电路显示电路用于将测量得到的频率值以可读性良好的方式展示出来。

一般使用数码管进行数字显示。

本设计中使用了共阴极的4位7段数码管,通过串口通信将测量到的频率值发送给数码管进行显示。

硬件设计硬件设计主要包括信号放大电路、计数器电路和显示电路。

信号放大电路设计信号放大电路使用了一个运放进行信号放大,具体的放大倍数可以根据实际需求进行调整。

为了防止输入信号的干扰,还可以添加一个低通滤波器来滤除高频噪声。

计数器电路设计74HC160计数器电路的设计如下: - 连接74HC160的CLK 引脚到信号输入引脚,即可通过输入信号的上升沿触发计数器的计数。

- 使用74HC160的O0~O3输出引脚接到后续的显码驱动电路。

显示电路设计数码管的控制可以使用74HC595移位寄存器进行。

通过接口电路和微控制器进行通信,将测量到的频率值发送给74HC595,然后74HC595控制数码管进行数字显示。

软件设计软件设计主要包括信号处理和数据显示。

信号处理软件部分主要是通过计数器来测量输入信号的周期时间并计算出频率值。

通过编写的程序,将计数器的数值传输给微控制器,并进行运算得到频率值。

简易数字频率计

简易数字频率计

频率计算:通过测量信号的周期或 频率,计算出数字频率值
添加标题
添加标题
添加标题
添加标题
信号处理:通过数字滤波器对采集 到的信号进行滤波,以消除噪声和 干扰
数据输出:将计算出的频率值通过 串口或其他方式输出到计算机或其 他设备
计数器和计时器的编程实现
使用计时器对计数器进行计 时,计算信号的周期
将计数器和计时器的结果通 过软件进行显示和控制
能源监测:简易数字频率计可实现对新能源发电设备的实时监测,提高能源利用效率。 环保监测:简易数字频率计可用于监测环保设备的运行状态,确保污染物排放达标。 智能电网:简易数字频率计可应用于智能电网中,实现电网的智能化管理和优化。 节能减排:简易数字频率计可帮助企业实现节能减排,降低生产成本。
简易数字频率计的技术挑战和发展方向
分析仪等。
科学实验领域: 用于各种与频率 相关的实验,如 电磁波的发射与 接收、无线电通
信等。
工业生产领域: 用于生产过程中 的各种频率测量 和控制,如电机 转速的测量和控 制、生产线上各 种设备的状态监
测等。
简易数字频率计在生物医学工程领域的应用
监测生理信号:简易数字频率计可 以用于监测人体的心电图、脑电图 等生理信号,辅助医生进行疾病诊 断和治疗。
添加标题
添加标题
添加标题
添加标题
频谱分析:对信号进行频谱分析, 了解信号的成分和特性
音频处理:用于音频信号的频率测 量和处理,如音频压缩、降噪等
简易数字频率计在通信和电子测量领域的应用
通信领域:用于 信号频率的测量, 如调频信号、调
相信号等。
电子测量领域: 用于测量电子设 备的频率特性, 如示波器、频谱
界面优化:根据实际需求对显示和控制界面进行优化,提高用户体验和操作便捷性

数字频率计用测频法测量的方法

数字频率计用测频法测量的方法

数字频率计用测频法测量的方法
数字频率计是一种常见的测量设备,通常用于测量信号的频率。

测频法是一种常用的测量频率的方法,它可以通过测量信号的周期来确定信号的频率。

数字频率计通常使用测频法来测量信号的频率。

具体来说,数字频率计可以通过以下步骤来测量信号的频率:
1. 将信号输入到数字频率计中,数字频率计会对其进行处理,并显示信号的频率。

2. 测量信号的周期,数字频率计可以通过测量信号的持续时间来确定信号的周期。

3. 根据信号的周期,可以计算出信号的频率。

数字频率计使用测频法来测量信号的频率,具有准确、快速、方便等特点,适用于许多不同的应用场景。

拓展:
测频法是一种测量频率的方法,它可以通过测量信号的周期来确定信号的频率。

具体来说,测频法可以通过以下步骤来测量信号的频率:
1. 将信号输入到测频法仪器中,仪器会对其进行处理,并显示信号的频率。

2. 测量信号的周期,测频法仪器可以通过测量信号的持续时间来确定信号的周期。

3. 根据信号的周期,可以计算出信号的频率。

测频法仪器通常用于测量信号的频率,特别是在电子学、通信学等领域。

数字频率计课程设计报告

数字频率计课程设计报告

数字频率计课程设计报告一、课程目标知识目标:1. 让学生理解数字频率计的基本原理,掌握频率、周期等基本概念;2. 使学生掌握数字频率计的使用方法,能够正确操作仪器进行频率测量;3. 引导学生运用已学的数学知识,对测量数据进行处理,得出正确结论。

技能目标:1. 培养学生动手操作仪器的技能,提高实验操作能力;2. 培养学生运用数学知识解决实际问题的能力,提高数据分析处理技能;3. 培养学生团队协作能力,提高实验过程中的沟通与交流技巧。

情感态度价值观目标:1. 培养学生对物理实验的兴趣,激发学习热情;2. 培养学生严谨的科学态度,养成实验过程中认真观察、准确记录的好习惯;3. 引导学生认识到物理知识在实际应用中的价值,提高学以致用的意识。

课程性质:本课程为物理实验课,结合数字频率计的原理与应用,培养学生的实践操作能力和数据分析能力。

学生特点:六年级学生具备一定的物理知识和数学基础,对实验操作充满好奇,具备初步的团队合作能力。

教学要求:结合学生特点,注重理论与实践相结合,以学生为主体,引导学生主动参与实验过程,培养其动手能力和解决问题的能力。

通过课程目标的分解,使学生在实验过程中达到预期的学习成果,为后续教学设计和评估提供依据。

二、教学内容1. 数字频率计基本原理:- 频率、周期的定义与关系;- 数字频率计的工作原理;- 数字频率计的测量方法。

2. 实验操作技能:- 数字频率计的操作步骤;- 实验过程中的注意事项;- 数据记录与处理方法。

3. 教学大纲:- 第一课时:介绍数字频率计的基本原理,让学生了解频率、周期的概念及其关系;- 第二课时:讲解数字频率计的工作原理,引导学生掌握其操作方法;- 第三课时:分组进行实验操作,让学生动手测量不同频率的信号;- 第四课时:对测量数据进行处理与分析,培养学生数据分析能力;- 第五课时:总结实验结果,讨论实验过程中遇到的问题及解决办法。

4. 教材章节:- 《物理》六年级下册:第六章《频率与波长》;- 《物理实验》六年级下册:实验八《数字频率计的使用》。

什么是数字频率计它在测量仪器中的应用有哪些

什么是数字频率计它在测量仪器中的应用有哪些

什么是数字频率计它在测量仪器中的应用有哪些数字频率计是一种用于测量信号频率的仪器,它可以精确地测量各种周期性信号的频率,并且在不同领域有广泛的应用。

本文将介绍数字频率计的原理和测量方法,并探讨它在不同测量仪器中的应用。

一、数字频率计的原理数字频率计是基于现代计算机和数字信号处理技术的一种测量仪器。

它通过对输入信号进行数字化处理,获得信号的周期或脉冲宽度,并由此计算出信号的频率。

数字频率计的工作原理可以简化为以下几个步骤:首先,将输入信号通过模数转换器(ADC)转换成数字信号;然后,通过计数器对数字信号进行计数,以获得信号的周期或脉冲宽度;最后,根据信号的周期或脉冲宽度计算出信号的频率,并显示在数字频率计的显示屏上。

二、数字频率计的测量方法数字频率计可以使用不同的测量方法获得准确的频率值,其中常见的方法包括时间测量法、周期测量法和脉冲宽度测量法。

1. 时间测量法时间测量法是最常用的数字频率计测量方法之一。

它通过测量信号周期内的时间来计算频率。

该方法适用于周期性信号,如正弦波、方波等。

时间测量法的基本原理是:首先,将输入信号信号与参考时间间隔进行比较,以判断信号周期的整数倍;然后,使用高精度时钟计数器测量信号周期内的时间,最后根据测得的时间计算出信号的频率。

2. 周期测量法周期测量法适用于脉冲信号或周期性信号。

它通过测量脉冲宽度或信号的占空比来计算频率。

周期测量法的基本原理是:首先,测量脉冲信号或周期性信号的周期或脉冲宽度;然后,根据测得的周期或脉冲宽度计算信号的频率。

3. 脉冲宽度测量法脉冲宽度测量法适用于脉冲信号。

它通过测量脉冲信号的宽度来计算频率。

脉冲宽度测量的基本原理是:首先,检测脉冲信号的上升沿和下降沿;然后,测量脉冲信号上升沿和下降沿之间的时间差,即脉冲信号的宽度;最后,根据脉冲信号的宽度计算信号的频率。

三、数字频率计在测量仪器中的应用数字频率计在各个领域的测量仪器中有广泛的应用,下面将介绍几个主要的应用领域。

数字频率计

数字频率计

数字频率计(51单片机)(总21页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--自动化与电子工程学院单片机课程设计报告课程名称:单片机原理与应用学院:自动化与电子工程院专业班级:学生姓名:完成时间:报告成绩:评阅意见:评阅教师日期目录第1章数字频率计概述 (1)数字频率计概述 0数字频率计的基本原理 0单脉冲测量原理 (1)第2章课程设计方案设计 (1)系统方案的总体论述 (1)系统硬件的总体设计 (2)处理方法 (2)第3章硬件设计 (3)单片机最小系统 (3)第4章软件设计 (4)系统的软件流程图 (4)程序清单 (6)第5章课程设计总结 (6)参考文献 (7)附录Ⅰ仿真截图 (8)附录Ⅱ程序清单 (14)第1章数字频率计概述数字频率计概述数字频率计又称为数字频率计数器,是一种专门对被测信号频率进行测量的电子测量仪器,是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。

它是一种用十进制数字显示被测信号频率的数字测量仪器。

它的基本功能是测量方波信号及其他各种单位时间内变化的物理量。

本数字频率计将采用定时、计数的方法测量频率,采用6个数码管显示6位十进制数。

测量范围从10Hz—,精度为1%,用单片机实现自动测量功能。

基本设计原理是直接用十进制数字显示被测信号频率的一种测量装置。

它以测量频率的方法对方波的频率进行自动的测量。

数字频率计的基本原理数字频率计最基本的工作原理为:当被测信号在特定时间段T内的周期个数为N 时,则被测信号的频率f=N/T(如图所示)。

图频率测量原理频率的测量实际上就是在1s时间内对信号进行计数,计数值就是信号频率。

用单片机设计频率计通常采用的办法是使用单片机自带的计数器对输入脉冲进行计数;好处是设计出的频率计系统结构和程序编写简单,成本低廉,不需要外部计数器,直接利用所给的单片机最小系统就可以实现。

缺陷是受限于单片机计数的晶振频率,输入的时钟频率通常是单片机晶振频率的几分之一甚至是几十分之一,在本次设计使用的AT89C51单片机,由于检测一个由“1”到“0”的跳变需要两个机器周期,前一个机器周期测出“1”,后一个周期测出“0”。

数字频率计实训报告

数字频率计实训报告

一、实训目的本次数字频率计实训旨在使学生掌握数字频率计的基本原理、结构、工作原理以及实际操作技能。

通过实训,学生能够了解数字频率计在电子技术中的应用,提高电子测量和信号处理能力,为今后从事相关领域的工作打下坚实基础。

二、实训环境1. 实训设备:数字频率计、示波器、信号发生器、万用表等。

2. 实训软件:数字频率计操作软件、示波器操作软件等。

3. 实训场地:电子实验室。

三、实训原理数字频率计是一种用于测量信号频率的仪器,它通过数字电路对输入信号进行采样、计数、处理,最终显示出信号的频率。

其基本原理如下:1. 采样:将输入信号按照一定的采样频率进行采样,得到一系列离散的采样值。

2. 计数:对采样值进行计数,得到在一定时间内信号变化的次数。

3. 处理:根据计数结果和采样频率,计算出信号的频率。

四、实训过程1. 数字频率计的结构认识:了解数字频率计的组成部分,如:模拟输入电路、数字信号处理电路、显示电路等。

2. 数字频率计的使用方法:学习数字频率计的操作步骤,包括:开机、设置测量范围、输入信号、读取频率值等。

3. 信号发生器的使用:掌握信号发生器的操作方法,产生不同频率、幅度和波形的信号。

4. 数字频率计的测量:使用数字频率计测量信号发生器产生的信号频率,并与理论值进行比较,分析误差原因。

5. 示波器的使用:观察信号波形,分析信号的频率、幅度、相位等特性。

6. 数据分析与处理:对测量数据进行处理和分析,得出结论。

五、实训结果1. 成功掌握了数字频率计的基本原理、结构和工作原理。

2. 熟练掌握了数字频率计的操作方法,能够独立进行测量和数据分析。

3. 通过实验,验证了数字频率计在电子技术中的应用价值。

4. 提高了电子测量和信号处理能力。

六、实训总结1. 数字频率计是一种重要的电子测量仪器,广泛应用于电子技术领域。

2. 掌握数字频率计的基本原理、结构和工作原理,对于从事电子技术工作具有重要意义。

3. 实训过程中,应注意以下几点:- 熟悉数字频率计的操作方法,避免误操作。

影响数字频率计精度输出信号

影响数字频率计精度输出信号

影响数字频率计精度输出信号数字频率计是一种用于测量信号频率的仪器,广泛应用于通信、电子、自动化等领域。

在实际应用中,我们常常会遇到一些因素,会对数字频率计的精度输出信号产生影响。

本文将探讨这些影响因素,并提供相应的解决方案,以保证数字频率计的测量结果准确可靠。

温度是影响数字频率计精度的重要因素之一。

数字频率计的工作温度范围通常在一定范围内,超过这个范围会导致测量结果的偏差。

因此,在使用数字频率计时,应尽量将其工作环境保持在规定的温度范围内,避免温度对测量结果的影响。

输入信号的幅度也会对数字频率计的精度产生一定的影响。

当输入信号的幅度过大或过小时,数字频率计的测量精度会降低。

因此,在进行频率测量时,应尽量调节输入信号的幅度,使其接近数字频率计的额定输入幅度,以提高测量的准确性。

输入信号的波形和频谱也会对数字频率计的精度产生一定的影响。

如果输入信号存在谐波或杂散分量,会使得数字频率计的测量结果产生误差。

为了避免这种情况的发生,可以采取滤波等措施,将输入信号中的谐波和杂散分量滤除,以提高数字频率计的测量精度。

数字频率计的采样率也会对其测量精度产生影响。

采样率过低会导致测量结果的失真,采样率过高则会增加计算的复杂度。

因此,在选择数字频率计时,应根据实际需求合理选择采样率,以兼顾测量精度和计算效率。

数字频率计的校准也是保证其测量精度的重要手段。

定期对数字频率计进行校准,可以及时发现和修正其测量偏差,保证测量结果的准确性。

在进行校准时,应选择合适的标准信号源,并按照标准流程进行校准操作,以确保校准结果的可靠性。

数字频率计的精度输出信号受多种因素影响,包括温度、输入信号幅度、输入信号波形和频谱、采样率以及校准等。

在实际应用中,我们应重视这些因素的影响,并采取相应的措施,以保证数字频率计的测量结果准确可靠。

通过合理的使用和维护,数字频率计将为我们提供准确、可靠的频率测量服务,助力各个领域的科学研究和工程实践。

数字频率计的课程设计

数字频率计的课程设计

引言近年来, 在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要.在电子系统非常广泛应用领域内, 到处可见到解决离散信息的数字电路。

供消费用的微波炉和电视、先进的工业控制系统、空间通讯系统、交通控制雷达系统、医院急救系统等在设计过程中无一不用到数字技术。

数字电路制造工业的进步, 使得系统设计人员能在更小的空间内实现更多的功能, 从而提高系统可靠性和速度。

数字集成电路具有结构简朴(如其中的晶体管是工作于饱和与截止2种状态, 一般不设偏置电流)和同类型电路单元多(如一个计数系统需要很多同类型的触发器和门电路)的特点, 因而容易是高集成度和归一化。

由于数字集成电路与电子计算机的发展紧密相关, 因而发展不久, 目前已是集成电路中产量最高、集成度最大的一种器件。

集成电路的类型很多, 从大的方面可分为模拟和数字集成电路两大类。

虽然它们都可模拟具体的物理过程, 但其工作方式有着很大的不同。

甚至也许完全不同。

电路中的工作信号通常是用电脉冲表达的数字信号。

这种工作方式的信号, 可以表达2种截然不同的现象。

如以有脉冲表达“1”, 无脉冲便表达“0”;以“1”表达“真”, 则“0”便表达“假”, 等等。

反之亦然。

这就是“数字信号”的含义。

所以, “数字量”不是连续变化的量, 其大小往往并不改变, 但在时间分布上却有着严格的规定, 这是数字电路的一个特点。

数字式频率计基于时间或频率的A/D转换原理, 并依赖于数字电路技术发展起来的一种新型的数字测量仪器。

由于数字电路的飞速发展, 所以, 数字频率计的发展也不久。

通常能对频率和时间两种以上的功能数字化测量仪器, 称为数字式频率计(通用计数器或数字式技术器)。

在电子测量技术中, 频率是一个最基本的参量, 对适应晶体振荡器、各种信号发生器、倍频和分频电路的输出信号的频率测量, 广播、电视、电讯、微电子技术等现代科学领域。

数字频率计的组成及工作原理

数字频率计的组成及工作原理

数字频率计的组成及工作原理数字频率计是用来测量频率与周期,并进行计数、测时的重要仪器,现已在许多领域得到广泛应用,本文主要讨论一下数字频率计的硬件组成及工作原理。

在单位时间内,周期性信号变化的次数称之为频率,举个例子来说明:若在一定时间间隔t内测得这个周期性信号重复变化的次数为n,则其频率可表示为:f=n/t.数字频率计是由放大整形电路、时基电路、闸门电路、逻辑控制电路、分频器电路、数据选择电路、进位采集电路、计数器电路、锁存译码电路、显示电路组成。

数字频率计的工作原理是被测信号经过放大整形电路的处理输出计数器能够接受的脉冲信号格式,频率和被测信号的一样。

放大整形电路的作用是,当某些输入信号的电压较小时,使用放大电路对输入的周期信号(正弦波、三角波)进行放大,使得这些输入的信号更容易测量。

时基电路是用来产生一个标准的时间信号,这个标准的时间信号是控制计数器的计数标准时间,其精度在很大程度上决定了频率计的测量精度。

例如:时基电路提供标准时间信号T,其高电平持续时间为1s。

当1s信号到来时,闸门打开,被测脉冲信号通过闸门时计数器启动计数,1s信号结束时闸门关闭,计数器结束计数,同时保持原有的状态不变。

如果在闸门时间1s内计数器记录得的脉冲个数为N,则被测信号频率=NHz。

逻辑控制电路的作用有二方面:(1)产生锁存脉冲,使显示器上的数字稳定显示;(2)产生清零脉冲,使计数器每次的测量从0开始计数。

厂家:189********QQ:2563113967闸门电路用来控制计数时间,由一个与非门构成。

与非门的一端由时基电路提供的秒脉冲输入,另一端由待测信号整形后输入。

电路的工作原理为:时基电路提供的秒脉冲作为门控信号,当门控信号为高电平时,闸门开通,整形后的脉冲信号经过闸门进入分频电路;当门控信号为低电平时,闸门关闭,禁止脉冲信号通过。

锁存译码电路由锁存器和译码器构成。

这一部分最重要的工作原理是只有当计数器闸门信号由高电平变低电平也就是停止计数后,才将计数值锁存并输出译码显示,锁存信号由逻辑控制电路提供。

课程设计数字频率计

课程设计数字频率计

课程设计数字频率计一、教学目标本课程旨在通过数字频率计的学习,让学生掌握以下知识目标:理解数字频率计的基本原理和构成;掌握数字频率计的各部分电路及其功能;了解数字频率计在工程和科学研究中的应用。

技能目标为:能够熟练使用数字频率计进行频率测量;能够分析并解决数字频率计使用中遇到的问题。

情感态度价值观目标为:培养学生对电子技术的兴趣和好奇心,激发学生探索科学的热情。

二、教学内容本课程的教学内容主要包括数字频率计的基本原理、构成及其各部分电路的功能,数字频率计的使用方法,以及数字频率计在实际工程和科学研究中的应用。

具体涉及教材的第三章“数字频率计”,内容涵盖数字频率计的定义、分类、工作原理、主要技术指标、使用方法等。

三、教学方法为了提高教学效果,将采用多种教学方法相结合的方式进行教学。

包括:讲授法,用于讲解数字频率计的基本原理、构成及使用方法;讨论法,用于分析数字频率计在实际应用中遇到的问题;实验法,用于让学生亲自动手操作数字频率计,加深对知识的理解。

四、教学资源教学资源包括教材、实验设备、多媒体资料等。

教材为《电子技术基础》第三版,实验设备包括数字频率计、示波器等,多媒体资料包括教学PPT、视频等。

这些资源将有助于支持教学内容和教学方法的实施,提高学生的学习兴趣和效果。

五、教学评估本课程的评估方式包括平时表现、作业、考试等。

平时表现主要评估学生在课堂上的参与度、提问回答等情况;作业包括课堂练习和课后作业,主要评估学生的理解和应用能力;考试包括期中考试和期末考试,主要评估学生对课程知识的掌握程度。

评估方式将客观、公正,全面反映学生的学习成果。

六、教学安排本课程的教学安排如下:共32课时,每周2课时,共计16周。

教学地点为教室。

教学进度安排合理、紧凑,确保在有限的时间内完成教学任务。

同时,教学安排还考虑学生的实际情况和需要,如学生的作息时间、兴趣爱好等,以提高学生的学习效果。

七、差异化教学根据学生的不同学习风格、兴趣和能力水平,本课程将设计差异化的教学活动和评估方式。

数字频率计

数字频率计

数字频率计数字频率计是采纳数字电路制做成的能实现对周期性变化信号频率测量的仪器。

频率计重要用于测量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。

其扩展功能可以测量信号的周期和脉冲宽度。

通常说的,数字频率计是指电子计数式频率计。

目录优点用途重要构成基本原理优点用途在电子技术领域,频率是一个最基本的参数。

数字频率计作为一种最基本的测量仪器以其测量精度高、速度快、操作简便、数字显示等特点被广泛应用。

很多物理量,例如温度、压力、流量、液位、PH值、振动、位移、速度等通过传感器转换成信号频率,可用数字频率计来测量。

尤其是将数字频率计与微处理器相结合,可实现测量仪器的多功能化、程控化和智能化.随着现代科技的进展,基于数字式频率计构成的各种测量仪器、掌控设备、实时监测系统已应用到国际民生的各个方面。

重要构成频率计重要由四个部分构成:输入电路、时基(T)电路、计数显示电路以及掌控电路。

输入电路:由于输入的信号可以是正弦波,三角波。

而后面的闸门或计数电路要求被测信号为矩形波,所以需要设计一个整形电路则在测量的时候,首先通过整形电路将正弦波或者三角波转化成矩形波。

在整形之前由于不清楚被测信号的强弱的情况。

所以在通过整形之前通过放大衰减处理。

当输入信号电压幅度较大时,通过输入衰减电路将电压幅度降低。

当输入信号电压幅度较小时,若前级输入衰减为零时不能驱动后面的整形电路,则调整输入放大的增益,被测信号得以放大。

时基和闸门电路:闸门电路是掌控计数器计数的标按时间信号,被测信号的脉冲通过闸门进入计数器的个数就是由闸门信号决议的,闸门信号的精度很大程度上决议了频率计的频率测测量精度。

当要求频率测量精度高时,应使用晶体振荡器通过分频获得。

时基信号可由555定时器构成一个较稳定的多谐振荡器,经整形分频后,产生一个标准的时基信号,作为闸门开通的基按时间。

被测信号通过闸门,作为计数器的时钟信号。

计数显示电路:在闸门电路导通的情况下,开始计数被测信号中有多少个上升沿。

数字频率计(51单片机)

数字频率计(51单片机)

数字频率计(51单片机)数字频率计(51单片机)数字频率计(Digital Frequency Counter)是一种常用的电子测量仪器,可用于测量信号的频率。

在本文中,我们将介绍如何使用51单片机实现一个简单的数字频率计。

一、原理简介数字频率计的基本原理是通过计算信号波形周期内的脉冲数来确定频率。

在实际应用中,我们通常使用51单片机作为微控制器,通过计数器和定时器模块来实现频率计算。

二、硬件设计1.信号输入首先,我们需要将待测信号输入到频率计中。

可以使用一个输入接口电路,将信号连接到51单片机的IO口上。

2.计时模块我们需要使用51单片机的定时器/计数器来进行计时操作。

在这里,我们选择使用定时器0来进行计数,同时可以利用定时器1来进行溢出次数的计数,以扩展计数范围。

3.显示模块为了显示测量结果,我们可以使用数码管、LCD液晶显示屏等显示模块。

通过将结果以可视化的方式呈现,方便用户进行观察和读数。

三、软件设计1.定时器配置首先,我们需要对定时器进行配置,以确定计时器的计数间隔。

通过设置定时器的工作模式、计数范围和时钟频率等参数,可以控制定时器的计数精度和溢出时间。

2.中断服务程序当定时器溢出时,会触发中断,通过编写中断服务程序,实现对计数器的相应操作,例如将计数值累加,记录溢出次数等。

3.数字频率计算根据计数器的值和溢出次数,我们可以计算出信号的频率。

通过简单的公式计算,即可得到测量结果。

四、实验步骤1.搭建硬件电路,将待测信号连接到51单片机的IO口上,并连接显示模块。

2.根据硬件设计要求,配置定时器的工作模式和计数范围。

3.编写中断服务程序,实现对计数器的相应操作。

4.编写主程序,实现数字频率计算和显示。

5.下载程序到51单片机,进行测试。

五、实验结果与分析通过实验,我们可以得到信号的频率测量结果,并将结果以数码管或LCD屏幕的形式进行显示。

通过对比实际频率和测量频率,可以评估数字频率计的准确性和稳定性。

数字频率计

数字频率计

二 、数字频率计的设计实例(一)、.频率计测量的工作原理数字频率计是用于测量信号频率的电路。

测量信号的频率参数是最常用的测量方法之一。

实现频率测量的方法较多,在此我们主要介绍三种常用的方法:时间门限测量法、标准频率比较测量法、等精度测量法。

(1) 时间门限测量法在一定的时间门限T 内,如果测得输入信号的脉冲数为N,设待测信号的频率为f x ,则该信号的频率为 TNf x =改变时间T ,则可改变测量频率范围。

此方法的原理框图如图2-1所示,时序波形图如图2-2所示。

用时间门限测量方法测量时,电路实现起来较容易,但对产生的时间门限要求精度较高,测量的时间误差最大是正负一个待测信号周期,即x f /1t ±=∆。

图2-1 测频原理图图2-2 测频时序波形图(2)标准频率比较测量法用两组计数器在相同的时间门限内同时计数,测得待测信号的脉冲个数为N 1、已知的标准频率信号的脉冲个数为N 2,设待测信号的频率为f x ,已知的标准频率信号的频率为f 0;由于测量时间相同,则可得到如下等式:21N f N f x = 从上式可得出待测信号的频率公式为: 021f N N f x =标准频率比较测量法对测量产生的时间门限的精度要求不高,对标准频率信号的频率准确度和稳定度要求较高,标准信号的频率越高,测量的精度就越高。

该方法的测量时间误差与时间门限测量法的相同,可能的最大误差为正负一个待测信号周期,即x f /1t ±=∆。

测量时可能产生的误差时序波形如图2-3所示。

(3)等精度测量法以上介绍的两种测量频率的方法实现电路容易,但是,测量的精度与待测信号的频率有关,待测信号频率越高,测量的精度就越高,反之,测量精度越低。

为了提高测量低频时的精度,使得测量的高、低频率精度都一样,一般采用等精度测量法。

上面介绍的两种方法都是在闸门门限的控制下来实现计数器的计数开始和结束的。

当闸门门限的上升沿到来时,计数器计数开始,当闸门门限的下降沿到来时,计数器计数结束。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字频率计
用发光二极管显示单位,绿灯—Hz,红灯—KHz 频段 小数点位置 单位 响应时间 10Hz~100Hz Hz ≤12S 100Hz ~1KHz Hz ≤2S 1KHz ~10KHz KHz ≤2S
响应时间:输入信号频率改变到显示出稳定的结 果之间的时间 1、如果我们将手动频段设置开关看成逻辑变量,则小 数点位置和频率单位是由该逻辑变量(频段开关)决 定的变量 2、小数点位置有三种情况,频率单位有两个,因此开 关变量必须至少2个或者以上,分别设为K2、K1或者K2、 K1、K0
Τ
N
σ
对于一定的信号频率,标准信号频率越高(或者 说被测信号频率越低),N越大,相对误差越小。 测周法应用范围 a)在用微处理机的频率测量中(低频测量) b)在中、小规模集成电路的频率计中不合适(换算 困难)
数字频率计
• 测频法对低频段的测量方法
–处理被测信号——倍频 –闸门信号展宽(本实验采用)
R1、R2、C是电路中的定时元件
电路的振荡过程:
数字频率计
合上电源时,电容电压不能突变, 引脚2、6都为0,输出为高电平, 放电管截止。 因此C充电,引脚2、6电压升高, 当升至VDD/3时,输出仍继续保 持,当升到2VDD/3后,电路输出 变为低电平,放电管导通。 C上电压通过R2→放电管而放电。只要一开始放电,电路状态 继续保持。当放至VDD /3 时,电路的输出又变为高电平。
f = 16 Hz
32分频后f = 0.5Hz
再12分频后 f = 0.08333HZ
……
1S
1S
… …… … ……
2S …
10 S
……
数字频率计
实现上述波形的电路为:
+ 5V
2S
R1
R3
1Hz
10 S
& &
2S
0.5Hz
8 7
4
R2
C2
2 65
555 3 16 Hz 1CP 62.5mS
1Q0 1Q1 1Q2 1Q3
数字频率计
从图可知: ① 测频法的精确与否,主要决定于定时时间T是否 精确; ② 其测量误差为: 最大绝对值误差=f测量值-f真值=±1Hz 最大的相对误差
δ max =
f 测量值 − f 真值 f 真值

1 f 真值
数字频率计
当定时T=1S,而fx=2Hz时, 闸门时间T fx 当 当
f 真 = 2 Hz
1Q0
2Q1 2Q2 3Q3 1 CC 4518 CP 2 2 EN CR
2Q0
清“0”信号
数字频率计
5.
控制电路设计
控制电路分下面几部分: ① 三个不同的频段,小数点位置及单位的控制; ② 闸门信号的选择; ③ 清零脉冲和锁存脉冲的产生; ④ 超量程指示的设计;
数字频率计

三个不同的频段,小数点位置及单位的控制;
3a "1" LT BI
CC 4511 1A 1B 1C 1D
CC 4511 2 A 2 B 2C 2 D
CC 4511 3 A 3B 3C 3D
锁存信号
fx
被测信号
0Q0 CP
0Q1 0Q2 0Q3 1 CC 4518 2 0 EN CR
1Q1 1Q2 1Q3 1 CC 4518 CP 2 1EN CR
数字频率计
2、BCD码计数器 根据测频范围 (1)10Hz~100Hz (≤99Hz) (2)100Hz~1000Hz (≤999Hz) 三位BCD码计数器,对应三位数码管 (3)1kHz~10kHz (≤9.9kHz) 四位BCD码计数器,最大计数结果,9999,尾数舍去
3.时基电路、闸门信号产生电路: 由矩形波发生器和分频器构成
两者都是为了使计数所得数值(f真)增大, 减少测量误差。
二、总体框图 测频法
超量程显示 频段控制 K 2 K1 K0 被测信号 vi
数字频率计
kHz Hz
整形 控制 锁存 电路 时钟 清零
锁存信号结束时产生
锁存/译码/驱动 闸门信号结束时产生
... ...
闸门 信号 10s
1s
十进制计数器
被测信号为方波时,整形电路可略 闸门信号的低频段采用闸门展宽的方法,故采用10s和1s 两种信号
RC=62.5ms NE555 16Hz 多谐振荡器 16分频 1S
数字频率计
产生1S和10S的闸门信号,它由多谐振荡器(方波发生器) 和分频器产生。本例用555集成定时器产生16Hz频率的方波信号, 经过32分频后,产生1S的闸门信号,再经12分频产生10S的闸门 信号,其波形如图所示: 0.0625S
1EN
1CR
2 EN
2CR
数字频率计
三位8421BCD码的十进制加法计数器设计:
选用三个十进制加法计数器CC4518,CC4518 是8421BCD编码的十进制加法计数器,异步高电 平清零,EN=0时,CP下降沿触发;EN=1时,CP上 升沿触发。所以三级十进制计数器电路如图所示:
数字频率计
触发 脉冲
三个频段的控制可选用三位码,也可用二位码控 制。用三位码实现时的电路如下:
K2 K1
K0
小数 点控 制电 路
H
M
L
数字频率计
根据题意,三个频段的控制要求如下:
三位控制码
小数点 K 2 K1 K 0 位置 0 0 1 10Hz≤f﹤100H 中间位 z M 0 1 0 100Hz≤f﹤1000H 低位L z 1 0 0 1KHz≤f﹤10KH 高位H z
2CP (1Hz )
2Q0
2Q1 2Q2
1
2
3
4
5
6
7
8
9
10
11
12
13
数字频率计
14
2Q3
2CR
2Q1 2Q3
10 S
2S
2S
& &
10 S 2S
0.5Hz
1Hz
62.5mS 1CP
16 Hz
1Q0 1Q1 1Q2 1Q3
1 CC 4520( I ) 2
2Q0 2Q1 2Q2 2Q3
2CP
1 CC 4520( II ) 2
0Q0 0Q1 0Q2 0Q3
1Q0 1Q1 1Q2 1Q3
fx
0CP
EN 0
1 CC 4518(0) 2
1CP
1 CC 4518( I ) 2
2Q0 2Q1 2Q2 2Q3
2CP
0CR
EN1
1CR
1 CC 4518( II ) 2
EN 2
2CR
清零脉冲
0CP (1Hz )
0Q0
0Q1 0Q2
1
2
3
时序关系如图:
闸门时间T
被测信号f x
数字频率计





f CP
锁存信号WR
清“0”信号
究竞是低电平锁存和清零,还是高电平锁存和清零,由选 用的集成电路决定。
三、单元电路的设计 1、显示器 三位半导体数码管
VDF
数字频率计
VOH − VDF R= I OF
IDF
R
VOH 限流电阻
1 CC 4520( I ) 2
2Q0 2Q1 2Q2 2Q3
2CP
1 CC 4520( II ) 2
1
C1
1EN
1CR
2 EN
2CR
下降沿触发
CC4520是异步清零
多谐振荡器
数字频率计
多谐振荡器的工作特点:只要一合上电源,电路的 输出就能在输出高电平和输出低电平两个状态间进 行自动的转换,产生前后沿都很陡的矩形波。
时,
σ = ±50%
f 真 = 20 Hz 时,
σ = ±5%
f
σ
数字频率计
同样频率,若将闸门信号拉长10倍,测得f真将为原来的10倍, σ将 下降10倍 可见,依靠拉长闸门信号的方法,可以使测量精度提高,此法可 用于频率测量较低频率时使用。 10Hz≤f<100Hz 频段,响应时间12s
10s
1s 1s
测量频率范围
显示 单位 Hz Hz KHz
闸门时间 10S 1S 1S
a.小数点位置控制
可用以下真值表:
K2 0 0 0 0 1 1 1 1 K1 0 0 1 1 0 0 1 1 K0 0 1 0 1 0 1 0 1 H × 0 0 × 1 × × × M × 1 0 × 0 × × × L × 0 1 × 0 × × ×
数字频率计
16
VDD
f g a b c d源自9eCC 4511
B C LT BI LE D 1 2
A
8GND
DCBA接计数器输出 abcdefg接七段 半导体数码管的 七段
灭零控制输 锁存控制输 试灯测试控 入 入 制
数字频率计
具体 电路 如图:
1g
1a "1" LT BI 2g
2a "1" LT BI 3g
数字频率计
数字频率计的PLD设计
设计任务和要求: 一、被测试的频率范围: 10Hz~10kHz 分三个频段 1. 10Hz~100Hz (≤99Hz) 2. 100Hz~1kHz (≤999Hz) 3. 1kHz~10kHz(≤9.9kHz)
数字频率计
当信号频率超过规定频段的上限频率时,要有超量程显示, 三个频段用手动切换 二、输入波形:矩形波(方波) 函数信号发生器可以输出三角波、锯齿波、方波等形状,采用 方波便于测量,无需预先经过整形
数字频率计
相关文档
最新文档