1[1]2导数的计算(1)
1.2导数的计算(1)
1 ( 4) y 2 ; x
-5x-6
1 1 x 2 -3 -2x 2 注意公式中,n的任意性.
请同学们求下列函数的导数:
1) y f ( x ) C 2) y f ( x ) x, 3) y f ( x ) x , 1 4) y f ( x ) , x
公式6:指数函数的导数
(1) (a ) a ln a(a 0, a 1).
x x
(2)
(e ) e .
x x
注意:关于a x 和x a 是两个不同 的函数,例如:
(1)(3 ) 3 ln a
x
x
(2)(x ) 3 x
3
2
可以直接使用的基本初等函数的导数公式
公式1: (C ) ' 0; 公式2 : ( x ) ' nx
2 2 1
2 x
3
1 2 f (3) 2 (3) 2 27 27
例3.求下列函数的导数
(1) y 4
练习
x
(2) y log x
3
(1) y sin( x) 2 (3) y cos(2 x)
(2) y sin
3
作业
'
注意:1、前提条件导数存在; 2、和差导数可推广到任意有限个; 3、商的导数右侧分子中间“-”, 先 子导再母导。
例1求 f ( x) x 2 x sin x 在 x 0 时的导数 .
3 2
例2
设 y = xlnx , 求 y .
ቤተ መጻሕፍቲ ባይዱ
练习: 求下列函数的导数: (1)y= x5- 3x3- 5x2+ 6; (2)y= (2x2+ 3)(3x- 2); x- 1 (3)y= ; x+ 1
导数的计算(二)1
1 x0
) 1 x0
2
,∴依题意得
1
∴ x0
1或 1
⑴当 x 0
1
时,点 P (1, 1 ) 这时 b
2
⑵当 x 0 1 时,点 P ( 1, 1 ) 这时 b 2 ∴ b 2 , 切点坐标为 (1, 1 ) 或 b 2 , 切点坐标为 ( 1, 1)
_. 则实数 a _ 4
二、导数运算法则
[ f ( x ) g ( x )] ' f ( x ) ' g ( x ) '
[ f ( x ) g ( x )] ' f ( x ) ' g ( x ) f ( x ) g ( x ) '
[ f (x) g (x) ]' f ( x ) ' g ( x ) f ( x ) g ( x ) ' [ g ( x )]
(lo g a x ) 1 x
0, a 1)
lo g a e 1 x
1 x ln a
( a 0 ,且 a 1 )
特殊地
(ln x )
练习 1: 写出下列函数的导数: (1)y
x
5
6
(2)y
4
x
x
(3)y
2
x
x
x
y 5 x
y 4
x
ln 4
导数的计算(二)
由导数的概念,我们得到了下面几个常用函数的导数公式: ⑴ ( kx b ) ⑶ ( x ) 1 ⑹(
1 x ) 1 x
2
k
(k,b 为常数)
2x
知识讲解-导数的计算-基础(1)
导数的计算【学习目标】 1. 牢记几个常用函数的导数公式,并掌握其推导过程。
2. 熟记八个基本初等函数的导数公式,并能准确运用。
3. 能熟练运用四则运算的求导法则,4. 理解复合函数的结构规律,掌握求复合函数的求导法则:“由外及内,层层求导”.【要点梳理】知识点一:基本初等函数的导数公式(1)()f x C =(C 为常数),'()0f x = (2)()nf x x =(n 为有理数),1'()n f x n x -=⋅(3)()sin f x x =,'()cos f x x = (4)()cos f x x =,'()sin f x x =- (5)()xf x e =,'()xf x e =(6)()xf x a =,'()ln xf x a a =⋅(7)()ln f x x =,1'()f x x = (8)()log a f x x =,1'()log a f x e x =。
要点诠释:1.常数函数的导数为0,即C '=0(C 为常数).其几何意义是曲线()f x C =(C 为常数)在任意点处的切线平行于x 轴.2.有理数幂函数的导数等于幂指数n 与自变量的(n -1)次幂的乘积,即1()'nn x nx-=(n ∈Q ).特别地211'x x ⎛⎫=-⎪⎝⎭,=。
3.正弦函数的导数等于余弦函数,即(sin x )'=cos x .4.余弦函数的导数等于负的正弦函数,即(cos x )'=-sin x .5.指数函数的导数:()'ln xxa a a =,()'xxe e =. 6.对数函数的导数:1(log )'log a a x e x =,1(ln )'x x=. 有时也把1(log )'log a a x e x = 记作:1(log )'ln a x x a=以上常见函数的求导公式不需要证明,只需记住公式即可.知识点二:函数的和、差、积、商的导数运算法则:(1)和差的导数:[()()]''()'()f x g x f x g x ±=± (2)积的导数:[()()]''()()()'()f x g x f x g x f x g x ⋅=+(3)商的导数:2()'()()()'()[]'()[()]f x f xg x f x g x g x g x ⋅-⋅=(()0g x ≠) 要点诠释:1. 上述法则也可以简记为:(ⅰ)和(或差)的导数:()'''u v u v ±=±, 推广:1212()''''n n u u u u u u ±±±=±±±.(ⅱ)积的导数:()'''u v u v uv ⋅=+, 特别地:()''cu cu =(c 为常数).(ⅲ)商的导数:2'''(0)u u v uv v v v -⎛⎫=≠⎪⎝⎭, 两函数商的求导法则的特例 2()'()()()'()'(()0)()()f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦, 当()1f x =时,2211'()1'()'()'(()0)()()()g x g x g x g x g x g x g x ⎡⎤⋅-⋅==-≠⎢⎥⎣⎦. 这是一个函数倒数的求导法则.2.两函数积与商求导公式的说明(1)类比:()'''uv u v uv =+,2'''u u v uv v v -⎛⎫=⎪⎝⎭(v ≠0),注意差异,加以区分. (2)注意:'''u u v v ⎛⎫≠⎪⎝⎭且2'''u u v uv v v +⎛⎫≠ ⎪⎝⎭(v ≠0). 3.求导运算的技巧在求导数中,有些函数虽然表面形式上为函数的商或积,但在求导前利用代数或三角恒等变形可将函数先化简(可能化去了商或积),然后进行求导,可避免使用积、商的求导法则,减少运算量.知识点三:复合函数的求导法则 1.复合函数的概念对于函数[()]y f x ϕ=,令()u x ϕ=,则()y f u =是中间变量u 的函数,()u x ϕ=是自变量x 的函数,则函数[()]y f x ϕ=是自变量x 的复合函数.要点诠释: 常把()u x ϕ=称为“内层”, ()y f u =称为“外层” 。
导数的计算(二)1
由导数的概念,我们得到了下面几个常用函数的导数公式: ⑴ (kx b) k (k,b 为常数) ⑶ ( x) 1 ⑷ ( x2 ) 2 x ⑵ (C ) 0 (C 为常数) ⑸ ( x3 ) 3x2
1 1 1 1 1 1 ⑹ ( ) 2 ⑺ ( x ) ( 即 ( x 2 ) x 2 ) x x 2 2 x 观察⑶~⑺的特点,你发现了什么规律?
⑵已知点 P 在函数 y=cosx 上, (0≤x≤2π ) P 处的切线斜 ,在 率大于 0,求点 P 的横坐标的取值范围. 解:设点 P 的横坐标为 x0 ,
则点 P 处的切线斜率为 y |x x0 sin x0 依题意得 sin x0 0 ∴ sin x0 0 ,∵0≤x≤2π ∴ x0 2 ,∴点 P 的横坐标的取值范围为 ( , 2 )
2
1 (2) y (1 x )(1 ) x 3 1 1 y ' (x 2 x 2 ) 2 (4) y tan x
1 y' cos 2 x
y ' 2 cos 2 x
作业:P18 A 组 T4 (1)(2)(3) T5
1 练习 3.⑴求过曲线 y=cosx 上点 P( , ) 的切线的直线方程. 3 2 3
1 1 (a 0, a 1) 且 对数函数求导 (log a x ) log a e x x ln a 1 特殊地 (ln x ) x
练习 1: 写出下列函数的导数: (1)y x 5 5 x 6 y (4) y log3 x (3)y x x x 7 1 x y 4 ln 4 y 8 8 x (5)y=sin( +x) (6) y=sin 2 3 (2)y 4 x
二阶导数存在定理公式(一)
二阶导数存在定理公式(一)二阶导数存在定理公式1. 二阶导数存在定理•定理:设函数f(x)在点x=a处二阶可导,则其二阶导数存在,即f’’(a)存在。
2. 二阶可导函数的公式•对于二阶可导函数f(x),可以利用以下公式计算其二阶导数:–f’’(x) = d2/dx2(f(x)) = d/dx(d/dx(f(x)))3. 二阶导数存在定理的证明•证明思路:根据一阶导数存在定理,如果函数f(x)在点x=a处一阶可导,则其一阶导数f’(a)存在。
然后,我们再次对一阶导数f’(x)进行求导,即计算一阶导数的导数f’’(x),称之为函数f(x)的二阶导数。
因此,基于一阶导数存在定理,我们可以得出二阶导数存在定理。
•证明过程:由于f(x)在点x=a处一阶可导,那么我们可以使用一阶导数的定义进行计算:–f’(a) = lim(h→0)[f(a+h) - f(a)] / h接下来,我们再次对一阶导数进行求导:–f’’(a) = d2/dx2(f(x)) = d/dx[(f’(x))] =lim(h→0)[f’(a+h) - f’(a)] / h这样,我们就得到了二阶导数在点x=a处的定义。
因此,根据一阶导数存在定理,我们可以得出结论:如果函数f(x)在点x=a处一阶可导,则其二阶导数f’’(a)存在。
4. 举例说明•示例1:设函数f(x) = x^3 + 2x^2 - 1,则函数f(x)的一阶导数和二阶导数分别为:–f’(x) = d/dx(f(x)) = 3x^2 + 4x–f’’(x) = d2/dx2(f(x)) = d/dx(d/dx(f(x))) =d/dx(3x^2 + 4x) = 6x + 4在此例中,函数f(x)在任意点x处均存在一阶导数和二阶导数。
根据二阶导数存在定理,我们可以得出结论:这个函数在任意点x处的二阶导数均存在。
•示例2:设函数f(x) = sin(x),则函数f(x)的一阶导数和二阶导数分别为:–f’(x) = d/dx(f(x)) = cos(x)–f’’(x) = d2/dx2(f(x)) = d/dx(d/dx(f(x))) =d/dx(cos(x)) = -sin(x)在此例中,函数f(x)在任意点x处均存在一阶导数和二阶导数。
高三一轮复习导数的概念、几何意义及导数的计算 (1)
第十四课时 导数的概念、几何意义及导数的计算考纲要求:1.导数的概念(A) 2.导数的几何意义(B) 3.导数的运算(B)知识梳理:1.导数的概念(1)函数y =f (x )在x =x 0处的导数称函数y =f (x )在x =x 0处的瞬时变化率为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x=x 0,即f ′(x 0)=(2)导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)·(x -x 0).(3)函数f (x )的导函数称函数f ′(x )=li m Δx →0 f (x +Δx )-f (x )Δx为f (x )的导函数. 2.导数公式及运算法则(1)(2)①[f (x )±g (x )]′=f ′(x )±g ′(x );②[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );③⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 基础训练:1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)f ′(x 0)与[f (x 0)]′表示的意义相同.( )(2)f ′(x 0)是导函数f ′(x )在x =x 0处的函数值.( )(3)曲线的切线不一定与曲线只有一个公共点.( )(4)⎝⎛⎭⎫sin π3′=cos π3.( ) (5)(3x )′=3x ln 3.( )(6)⎝⎛⎭⎫e x +cos π4′=e x .( ) 答案:(1)× (2)√ (3)√ (4)× (5)√ (6)√2.曲线y =sin x +e x 在点(0,1)处的切线方程是________.解析:∵y =sin x +e x ,∴y ′=cos x +e x ,∴y ′x =0=cos 0+e 0=2,∴曲线y =sin x +e x 在点(0,1)处的切线方程为y -1=2(x -0),即2x -y +1=0.答案:2x -y +1=03.求下列函数的导数:(1)y =x n e x ;(2)y =x 3-1sin x. 答案:(1)y ′=e x (nx n -1+x n ).(2)y ′=3x 2sin x -(x 3-1)cos x sin 2x.[典题1] 求下列函数的导数:(1)y =(1-x )⎝⎛⎭⎫1+1x ; (2)y =ln x x; (3)y =tan x ;(4)y =3x e x -2x +e ;解析: (1)∵y =(1-x )⎝⎛⎭⎫1+1x =1x -x =x -12-x 12, ∴y ′=(x -12)′-(x 12)′=-12x -32-12x -12. (2)y ′=⎝⎛⎭⎫ln x x ′=(ln x )′x -x ′ln x x 2=1x ·x -ln x x 2=1-ln x x 2. (3)y ′=⎝⎛⎭⎫sin x cos x ′=(sin x )′cos x -sin x (cos x )′cos 2x=cos x cos x -sin x (-sin x )cos 2x =1cos 2x. (4)y ′=(3x e x )′-(2x )′+e ′=(3x )′e x +3x (e x )′-(2x )′=3x (ln 3)·e x +3x e x -2x ln 2= (ln 3+1)·(3e)x -2x ln 2.小结:导数的运算方法(1)连乘积形式:先展开化为多项式的形式,再求导.(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导.(3)对数形式:先化为和、差的形式,再求导.(4)根式形式:先化为分数指数幂的形式,再求导.(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导.[典题2](1)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.(2)已知f (x )=12x 2+2xf ′(2 016)+2 016ln x ,则f ′(2 016)=________. 解析:(1)f ′(x )=a ⎝⎛⎭⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.(2)由题意得f ′(x )=x +2f ′(2 016)+2 016x, 所以f ′(2 016)=2 016+2f ′(2 016)+2 0162 016, 即f ′(2 016)=-(2 016+1)=-2 017.答案:(1)3 (2)-2 017注意:在求导过程中,要仔细分析函数解析式的特点,紧扣法则,记准公式,预防运算错误.练习:1.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=________.解析:∵f (x )=ax 4+bx 2+c ,∴f ′(x )=4ax 3+2bx .又f ′(1)=2,∴4a +2b =2,∴f ′(-1)=-4a -2b =-2.答案:-22.在等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)·…·(x -a 8),则f ′(0)的值为________.解析:因为f ′(x )=x ′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x =(x -a 1)·(x -a 2)·…·(x -a 8)+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.因为数列{a n }为等比数列,所以a 2a 7=a 3a 6=a 4a 5=a 1a 8=8,所以f ′(0)=84=212.答案:212导数的几何意义是每年高考的必考内容,考查题型既有填空题,也常出现在解答题的第(1)问中,难度偏小,属中低档题,且主要有以下几个命题角度:角度一:求切线方程[典题3](1)曲线y =e x -ln x 在点(1,e)处的切线方程为________.(2)设曲线y =e x +12ax 在点(0,1)处的切线与直线x +2y -1=0垂直,则实数a =________. (3)已知函数f (x )=x 3-4x 2+5x -4.①求曲线f (x )在点(2,f (2))处的切线方程;②求经过点A (2,-2)的曲线f (x )的切线方程.解析:(1)由于y ′=e -1x,所以y ′x =1=e -1,故曲线y =e x -ln x 在点(1,e)处的切线方程为y -e =(e -1)(x -1),即(e -1)x -y +1=0.(2)∵与直线x +2y -1=0垂直的直线斜率为2,∴f ′(0)=e 0+12a =2,解得a =2. (3)①∵f ′(x )=3x 2-8x +5,∴f ′(2)=1,又f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2,即x -y -4=0.②设切点坐标为(x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2),又切线过点(x 0,x 30-4x 20+5x 0-4),∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2), 整理得(x 0-2)2(x 0-1)=0,解得x 0=2或x 0=1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0.答案:(1)(e -1)x -y +1=0 (2)2注意:注意区分曲线在某点处的切线和曲线过某点的切线.曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.角度二:求切点坐标[典题4] 设曲线y =e x 在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.解析: y ′=e x ,曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1,设P (m ,n ),y =1x(x >0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2(m >0),因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).答案:(1,1)小结:已知斜率k ,求切点A (x 0,f (x 0)),即解方程f ′(x 0)=k .角度三:求参数的值[典题5](1)若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =________.(2)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.(3)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:(1)∵两曲线的交点为(0,m ),∴⎩⎪⎨⎪⎧ m =a ,m =1,即a =1, ∴f (x )=cos x ,∴f ′(x )=-sin x ,则f ′(0)=0,f (0)=1.又g ′(x )=2x +b ,∴g ′(0)=b ,∴b =0,∴a +b =1.(2)∵f ′(x )=3ax 2+1,∴f ′(1)=3a +1.又f (1)=a +2,∴切线方程为y -(a +2)=(3a +1)(x -1).∵切线过点(2,7),∴7-(a +2)=3a +1,解得a =1.(3)法一:∵y =x +ln x ,∴y ′=1+1x,y ′x =1=2. ∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1.∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0. 由Δ=a 2-8a =0,解得a =8.法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1).∵y ′=2ax +(a +2),∴y ′x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧ 2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧ x 0=-12,a =8.答案:(1)1 (2)1 (3)8小结:(1)根据导数的几何意义求参数的值时,一般是利用切点P (x 0,y 0)既在曲线上又在切线上构造方程组求解.(2)当切线方程中x (或y )的系数含有字母参数时,则切线恒过定点.总结:1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,而函数值f (x 0)是一个常数,其导数一定为0,即(f (x 0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.3.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.注意:1.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0,y 0)为切点,而后者P (x 0,y 0)不一定为切点.2.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.3.直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.4.曲线未必在其切线的同侧,如曲线y =x 3在其过(0,0)点的切线y =0的两侧.课后作业:1.曲线y =e x 在点A (0,1)处的切线斜率为________.解析:由题意知y ′=e x ,故所求切线斜率k =e x x =0=e 0=1.答案:12.已知函数f (x )=1xcos x ,则f (π)+f ′⎝⎛⎭⎫π2=________. 解析:∵f ′(x )=-1x 2cos x +1x (-sin x ),∴f (π)+f ′⎝⎛⎭⎫π2=-1π+2π·(-1)=-3π. 答案:-3π3.设曲线y =1+cos x sin x在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a 等于________.解析:∵y ′=-1-cos x sin 2x ,∴y ′x =π2=-1,由条件知1a=-1,∴a =-1. 答案:-14.设直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b 的值为________. 解析:设切点坐标为(x 0,ln x 0),则1x 0=12,即x 0=2,∴切点坐标为(2,ln 2),又切点在直线y =12x +b 上,∴ln 2=1+b ,即b =ln 2-1. 答案:ln 2-15.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小值为________.解析:因为定义域为(0,+∞),所以y ′=2x -1x=1,解得x =1,则在P (1,1)处的切线方程为x -y =0,所以两平行线间的距离为d =22= 2. 答案:26.已知函数f (x )=x ln x ,若f ′(x 0)=2,则x 0=________.解析:f ′(x )=ln x +1,由f ′(x 0)=2,即ln x 0+1=2,解得x 0=e.答案:e7.若直线l 与幂函数y =x n 的图象相切于点A (2,8),则直线l 的方程为________. 解析:由题意知,A (2,8)在y =x n 上,∴2n =8,∴n =3,∴y ′=3x 2,直线l 的斜率k =3×22=12,又直线l 过点(2,8).∴y -8=12(x -2),即直线l 的方程为12x -y -16=0.答案:12x -y -16=08.在平面直角坐标系xOy 中,点M 在曲线C :y =x 3-x 上,且在第二象限内,已知曲线C 在点M 处的切线的斜率为2,则点M 的坐标为________.解析:∵y ′=3x 2-1,曲线C 在点M 处的切线的斜率为2,∴3x 2-1=2,x =±1,又∵点M 在第二象限,∴x =-1,∴y =(-1)3-(-1)=0,∴M 点的坐标为(-1,0).答案:(-1,0)9.若曲线f (x )=ax 3+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析:由题意,可知f ′(x )=3ax 2+1x ,又存在垂直于y 轴的切线,所以3ax 2+1x=0,即a =-13x3(x >0),故a ∈(-∞,0). 答案:(-∞,0)10.已知曲线C :f (x )=x 3-ax +a ,若过曲线C 外一点A (1,0)引曲线C 的两条切线,它们的倾斜角互补,则a 的值为________.解析:设切点坐标为(t ,t 3-at +a ).由题意知,f ′(x )=3x 2-a ,切线的斜率k =3t 2-a ①,所以切线方程为y -(t 3-at +a )=(3t 2-a )(x -t ) ②.将点A (1,0)代入②式得-(t 3-at +a )=(3t 2-a )(1-t ),解得t =0或t =32.分别将t =0和t =32代入①式,得k =-a 和k =274-a ,由题意得它们互为相反数,故a =278. 答案:27811.函数f (x )=e x +x 2+x +1与g (x )的图象关于直线2x -y -3=0对称,P ,Q 分别是函数f (x ),g (x )图象上的动点,则|PQ |的最小值为________.解析:因为f (x )与g (x )的图象关于直线2x -y -3=0对称,所以当f (x )与g (x )在P ,Q 处的切线与2x -y -3=0平行时,|PQ |的长度最小.f ′(x )=e x +2x +1,令e x +2x +1=2,得x =0,此时P (0,2),且P 到2x -y -3=0的距离为5,所以|PQ |min =2 5.答案:2512.已知函数f (x )=x ,g (x )=a ln x ,a ∈R .若曲线y =f (x )与曲线y =g (x )相交,且在交点处有相同的切线,则a =________,切线方程为________.解析:f ′(x )=12x,g ′(x )=a x (x >0), 由已知得⎩⎪⎨⎪⎧x =a ln x ,12x=a x ,解得a =e 2,x =e 2, ∴两条曲线交点的坐标为(e 2,e),切线的斜率为k =f ′(e 2)=12e, ∴切线的方程为y -e =12e (x -e 2),即x -2e y +e 2=0.答案:e 2x -2e y +e 2=013.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标. 解:(1)可判定点(2,-6)在曲线y =f (x )上.∵f ′(x )=(x 3+x -16)′=3x 2+1,∴f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13.∴切线的方程为y +6=13(x -2),即y =13x -32.(2)设切点坐标为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,y 0=x 30+x 0-16,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16.又∵直线l 过原点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得,x 30=-8, ∴x 0=-2,∴y 0=(-2)3+(-2)-16=-26,得切点坐标(-2,-26),k =3×(-2)2+1=13. ∴直线l 的方程为y =13x ,切点坐标为(-2,-26).14.设函数y =x 2-2x +2的图象为C 1,函数y =-x 2+ax +b 的图象为C 2,已知过C 1与C 2的一个交点的两切线互相垂直,求a +b 的值.解:对于C 1:y =x 2-2x +2,有y ′=2x -2,对于C 2:y =-x 2+ax +b ,有y ′=-2x +a ,设C 1与C 2的一个交点为(x 0,y 0),由题意知过交点(x 0,y 0)的两条切线互相垂直.∴(2x 0-2)·(-2x 0+a )=-1,即4x 20-2(a +2)x 0+2a -1=0,①又点(x 0,y 0)在C 1与C 2上,故有⎩⎪⎨⎪⎧y 0=x 20-2x 0+2,y 0=-x 20+ax 0+b ,⇒2x 20-(a +2)x 0+2-b =0.②由①②消去x 0,可得a +b =52. 15.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C . (1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.解:(1)由题意得f ′(x )=x 2-4x +3,则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞).(2)设曲线C 的其中一条切线的斜率为k , 则由(2)中条件并结合(1)中结论可知,⎩⎪⎨⎪⎧ k ≥-1,-1k≥-1, 解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1,得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).。
导数的计算(一轮复习)
5.曲线 y=9x在点 M(3,3)处的切线方程是 x+y-6=0 . 解析 ∵y′=-x92, ∴y′|x=3=-1, ∴过点(3,3)的斜率为-1的切线方程为y-3=-(x-3), 即x+y-6=0.
12345
10.已知抛物线 y=x2,求过点-12,-2且与抛物线相切的直线方程.
12345
2.已知 f(x)
解析
f(x)=
x,得
f′(x)=
1
-
x
1
2,
2
∴
f
8 =
1
-
8
1 2
2
2
8
12345
D.-1
3.(多选)下列结论正确的是
√A.若 y=3,则 y′=0 √C.若 y= x,则 y′=21 x
B.若
y=
1 ,则 x
y′=-12
x
√D.若 y=x,则 y′=1
解析 只有B是错误的.
因为y
1 x
'
1
x2
'
1 2
3
x2
1 2x
x
12345
4.已知 f(x)=ln x 且 f′(x0)=x120,则 x0= 1 .
解析 因为f(x)=ln x(x>0), 所以 f′(x)=1x, 所以 f′(x0)=x10=x120, 所以x0=1.
一点的函数值
思考辨析 巩固知识
1.函数在某点处的导数f′(x0)是一个常数.( √ )
2.函数y=f(x)在点x0处的导数f′(x0)就是导函数f′(x)在点x=x0处的函数值.
(√ ) 3.函数f(x)=0没有导数.( × ) 4.直线与曲线相切,则直线与该曲线只有一个公共点.( × )
高中数学第三章导数及其应用32导数的计算课件新人教A版选修1
sin x
x
,f′(x)为函数f(x)的导函数,则f′
(π)=________.
解析:因为f′(x)=(sin
x)′x-sin x2
x·(x)′
=x·cosxx2-sin x
所以f′(π)=π·cos
π-sin π2
π=-ππ-2 0=-π1 .
答案:-π1
5.曲线 y=ln x 在 x=a 处的切线倾斜角为π4,则 a =____.
(2)准确记忆公式. (3)根式、分式求导时,应将根式、分式转化为幂的 形式. 2.解决函数求导的问题,应先分析所给函数的结构 特点,选择正确的公式和法则.对较为复杂的求导运算, 在求导之前应先将函数化简,然后求导,以减少运算量.
结束
语 同学们,你们要相信梦想是价值的源泉,相信成
功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念,
x x
+
1- 1+
x x
=
(1+ x)2 1-x
+
(11--xx)2=2(11-+xx)=1-4 x-2,
所以
y′
=
1-4 x-2
′
=
4′(1-x)-4(1-x)′ (1-x)2
=
4 (1-x)2.
类型 3 导数的应用(巧思妙解) [典例 3] 求抛物线 y=x2 上的点到直线 x-y-2=0 的最短距离. [常规解法]设与抛物线 y=x2 相切且与直线 x-y-2 =0 平行的直线 l 的方程 x-y+m=0(m≠-2),
1.基本初等函数的导数公式
原函数
导函数
f(x)=c f(x)=xa(a∈Q*)
f(x)=sin x f(x)=cos x
数学人教A版选修2-2自我小测:1.2 导数的计算(第1课时) Word版含解析
自我小测1.若f (x )=3x ,则f ′(-1)=( )A .0B .-13C .3D .132.函数y =1x在点P 处的切线斜率为-4,则P 的坐标为( ) A .⎝⎛⎭⎫12,2B .⎝⎛⎭⎫2,12 C .⎝⎛⎭⎫12,2或⎝⎛⎭⎫-12,-2 D .⎝⎛⎭⎫2,12或⎝⎛⎭⎫-2,-12 3.已知直线y =kx 是曲线y =ln x 的切线,则k =( )A .eB .-eC .1eD .-1e4.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2 015(x )等于( )A .sin xB .-sin xC .cos xD .-cos x5.函数f (x )=x 2,g (x )=ln x ,若f ′(x )-g ′(x )=1,则x =( )A .-12B .1C .-12或1D .12或1 6.设函数f (x )=log a x ,f ′(1)=-1,则a =________.7.直线y =e 2x +b 是曲线y =e x 的一条切线,则b =__________.8.设曲线y =x n +1(x ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则log 2x 1+log 2x 2+log 2x 3=__________.9.若质点P 的运动方程是s =3t 2(s 的单位为m ,t 的单位为s),求质点P 在t =8 s 时的瞬时速度.10.已知点P (-1,1),Q (2,4)是曲线y =x 2上的两点,求与直线PQ 平行的曲线y =x 2的切线方程.参考答案1.解析:∵f ′(x )=(3x )′=13()x '=13·23x -=133x 2, ∴f ′(-1)=13. 答案:D2.解析:∵y ′=-1x 2,令-1x 2=-4,得x =±12, ∴P 的坐标为⎝⎛⎭⎫12,2或⎝⎛⎭⎫-12,-2. 答案:C3.解析:设切点为(x 0,y 0),则由y ′=1x ,得1x 0=k , 又y 0=kx 0,y 0=ln x 0,从而联立解得y 0=1,x 0=e ,k =1e. 答案:C4.解析:∵f 0(x )=sin x ,∴f 1(x )=f ′0(x )=cos x ,f 2(x )=f ′1(x )=-sin x ,f 3(x )=f ′2(x )=-cos x ,f 4(x )=f ′3(x )=sin x ,∴f n (x )的值具有周期性,且4为周期.∴f 2 015(x )=f 3(x )=-cos x .答案:D5.解析:∵f ′(x )=2x ,g ′(x )=1x, ∴2x -1x=1. ∴2x 2-x -1=0,解得x =1或x =-12. 又∵g (x )有意义时,x >0,∴所求x =1.答案:B6.解析:∵f ′(x )=1x ln a ,∴f ′(1)=1ln a =-1. ∴ln a =-1.∴a =1e. 答案:1e7.解析:∵y ′≤e x ,设切点为(x 0,y 0),则0e x=e 2.∴x 0=2,∴y 0=e 2.又y 0=e 2x 0+b ,∴b =-e 2x 0+y 0=-2e 2+e 2=-e 2.答案:-e 28.解析:曲线y =x n +1(n ∈N *)在点(1,1)处的切线斜率k =y ′|x =1=(n +1)×1n =n +1,则在点(1,1)处的切线方程为y -1=(n +1)(x -1),令y =0,得x n =n n +1, 所以log 2x 1+log 2x 2+log 2x 3=log 212+log 223+log 234=log 2⎝⎛⎭⎫12×23×34=log 214=-2. 答案:-29.解:∵s ′=(3t 2)′=23()t '=1323t -, ∴s ′|t =8=23×138-=23×2-1=13. ∴质点P 在t =8 s 时的瞬时速度为13m/s. 10.解:y ′=(x 2)′=2x ,设切点M (x 0,y 0),则0=|x x y '=2x 0.又PQ 的斜率为k =4-12+1=1,切线平行于直线PQ , ∴k =2x 0=1,即x 0=12. ∴切点坐标为⎝⎛⎭⎫12,14.∴所求的切线方程为y -14=x -12, 即4x -4y -1=0.高中数学学习技巧:在学习的过程中逐步做到:提出问题,实验探究,展开讨论,形成新知,应用反思。
《导数的计算(第1课时)》教学设计
3.2.1 导数的计算(第1课时)一、教学目标 1.核心素养:通过学习常用函数的导数,培养学生的数学抽象和数学运算能力. 2.学习目标(1)学会应用定义求函数的三个步骤推导五种常见函数的导数公式. (2)掌握并能运用这五个公式正确求函数的导数. 3.学习重点五种常见函数的导数公式及应用. 4.学习难点五种常见函数的导数公式的推导. 二、教学设计 (一)课前设计 1.预习任务 任务1阅读教材P81—P82,思考:推导常见函数的导函数的方法是什么?函数变化的快慢与其导函数有怎样的关系? 2.预习自测1.下列函数中哪两个导函数是相同的A.2y x =B.23y x =C.234y x =+D.9y = 解:B2.下列哪个函数的变化速率最快A.2y x =B.32y x =-+C.13y x = D.4y x =+解:B(二)课堂设计 1.知识回顾(1)求()f x 在0x x =的导数的步骤为: ①求增量:00()()y f x x f x ∆=+∆- ②算比值:()()y f x x f x x x∆+∆-=∆∆③求极限:00'()limx y f x x∆→∆=∆(2)导数的几何意义:0'()f x 表示函数()y f x =在点00(,())x f x 处的切线斜率. 2.问题探究问题探究一 (1)函数()y f x c ==的导数 根据导数定义,因为()()0y f x x f x c c x x x∆+∆--===∆∆∆, 所以00limlim 00x x yy x ∆→∆→∆'===∆.0y '=表示函数y c =图像上每一点处的切线的斜率都为0.若y c =表示路程关于时间的函数,则0y '=可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态. (2)函数()y f x x ==的导数 因为()()1y f x x f x x x x x x x∆+∆-+∆-===∆∆∆,所以00lim lim 11x x y y x ∆→∆→∆'===∆.1y '=表示函数y x =图像上每一点处的切线的斜率都为1.若y x =表示路程关于时间的函数,则1y '=可以解释为某物体做瞬时速度为1的匀速运动. (3)函数2()y f x x ==的导数因为22()()()y f x x f x x x x x x x ∆+∆-+∆-==∆∆∆2222()2x x x x x x x x +∆+∆-==+∆∆所以00limlim (2)2x x yy x x x x ∆→∆→∆'==+∆=∆.2y x '=表示函数2y x =图像上点(,)x y 处的切线的斜率都为2x ,说明随着x 的变化,切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当0x <时,随着x的增加,函数2y x =减少得越来越慢;当0x >时,随着x 的增加,函数2y x =增加得越来越快.若2y x =表示路程关于时间的函数,则2y x '=可以解释为某物体做变速运动,它在时刻x 的瞬时速度为2x . (4)函数1()y f x x==的导数 因为11()()y f x x f x x x xx x x -∆+∆-+∆==∆∆∆2()1()x x x x x x x x x x -+∆==-+∆∆+⋅∆ 所以220011limlim ()x x y y x x x x x∆→∆→∆'==-=-∆+⋅∆.因为1y x=的图象是双曲线,所以图象上点(,)x y 处的切线的斜率随着x 的变化而变化.当0x >时,随着x 的不断增加,切线的斜率由负值不断增大,函数1y x=的值减少得越来越慢;随着x 的不断减小,切线的斜率由负值不断减小,函数1y x=的值增加得越来越快;当0x <时,与上面情况正好相反.(5)函数()y f x ==因为()()y f x x f x x x∆+∆-==∆∆==0lim lim x x y y x ∆→∆→∆'===∆想一想:对于幂函数*()()n y f x x n Q ==∈,其导函数是怎样的? 若*()()n y f x x n Q ==∈,则1()n f x nx -'=. 问题探究二 常见函数的导数的应用 例1 求函数2()f x x =在(1,1)处的切线方程. 【知识点:导数的几何意义】详解:因为2()f x x =,所以'()2f x x =,因为切点为(1,1),所以切线斜率'(1)2k f ==,所以切线方程为12(1)y x -=-,即21y x =-. 3.课堂总结 【知识梳理】 常见导数的公式:'0c =,'1x =,2()'2x x =,211()'x x =-,=.【重难点突破】准确应用推导方法推导出公式并掌握其应用. 4.随堂检测1.物体的运动方程是22s t =,则其在t 时刻的瞬时速度为( ) A.22t B.2t C.4t D.t 【知识点:导数的物理意义】 解:C2.2()f x x=在1x =处的切线斜率为( ) A.1 B.2 C.1- D.2- 【知识点:导数的几何意义】 解:D3.已知函数2()f x x =,分别计算()f x 在下列时刻的瞬时变化率: (1)1x =;(2) 1.1x =;(3)2x =-;(4)x t =. 【知识点:导数的几何意义】解:'()2f x x = (1)'(1)2f =;(2)'(1.1) 2.2f =;(3)'(2)4f -=-;(4)'()2f t t =. 4.求函数12()f x x =在(1,1)处的切线方程. 【知识点:导数的几何意义】解:'()f x =1'(1)2f ∴=,∴函数在(1,1)处的切线方程为1122y x =+. (三)课后作业 基础型1.下列结论不正确的是( )A.若0=y ,则0='yB.若x y 5=,则5='yC.若1-=x y ,则2--='x y D.若21x y =,则212-='x y【知识点:导数的求法】 解:D2.若函数x x f =)(,则)1(f '等于( )A.0B.12-C.2D.12【知识点:导数的求法】 解:D 3.抛物线241x y =在点(2,1)处的切线方程是( ) A.01=--y x B.03=-+y x C.01=+-y x D.01=-+y x 【知识点:导数的几何意义】 解:A4.已知3)(x x f =,则)2(f '=( ) A.0 B.23x C.8 D.12 【知识点:导数的求法】 解:D5.质点作直线运动的方程是4t s =,则质点在3=t 时的速度是( ) 【知识点:导数的循物理意义】 A.43341 B.34341 C.34321 D.43431解:A 能力型6.过点P (-2,0)作曲线x y =的切线,求切线方程. 【知识点:导数的求法】解:因为点P 不在曲线x y =上,故设切点为Q (x 0,∵'y =,∴过点Q 的切线0=,∴x 0=2,∴切线方程为:2)y x -=-,即:x-+2=0.7.质点的运动方程为21t s =,求质点在第几秒的速度为264-. 【知识点:导数的物理意义】解析:∵21t s =,∴221)(1t t t s -∆+=∆2222)()(t t t t t t ∆+∆+-=222)()(2t t t t t t ∆+∆+∆-=, ∴322022limt t t t t s t -=⋅-=∆∆→∆.∴64223-=-t,∴4=t .即质点在第4秒的速度为264- 8.求曲线xy 1=与2x y =在它们交点处的两条切线与x 轴所围成的三角形的面积. 【知识点:导数的几何意义】解:两曲线方程联立得⎪⎩⎪⎨⎧==21x y x y ,解得⎩⎨⎧==11y x .∴21x y -=',∴11-=k ,2|212===x x k ,∴两切线方程为02=-+y x ,012=--y x .∴1131(2).224S =⨯⨯-=探究型9.函数2x y =)0(>x 的图像在点),(2k k a a 处的切线与x 轴的交点的横坐标为1+k a ,其中+∈N k ,若1a =16,则531a a a ++的值是________. 【知识点:导数的几何意义】 解:21解析:∵x y 2=',∴过点),(2k k a a 的切线方程为)(22k k k a x a a y -=-,又该切线与x 轴的交点为(1+k a ,0),所以1+k a =12k a ,即数列}{k a 是等比数列,首项1a =16,其公比q =12,∴3a =4,5a =1,∴531a a a ++=21. (四)自助餐1.已知a x x f =)(,若2)1(-=-'f ,则a 的值等于( ) A.2 B.-2 C.3 D.-3 【知识点:导数的求法】 解:A2.函数)1()1(2-+=x x y 在1=x 处的导数等于( ) 【知识点:导数的求法】 A.1 B.2 C.3 D.4 解:D3.曲线2x y =在点P 处切线斜率为k ,当2=k 时的P 点坐标为( )A.(-2,-8)B.(-1,-1)C.(1,1)D.11(,)28--【知识点:导数的求法】 解:C4.已知2)1()(x f x f '=,则)0(f '等于( ) A.0 B.1 C.2 D.3 【知识点:导数的求法】 解:A5.曲线3x y =上的点P 的切线方程为( ) A.x y -= B.0=x C.0=y D.不存在 【知识点:导数的求法】 解:B6.若x y =表示路程关于时间的函数,则1='y 可以解释为________. 【知识点:导数的物理意义】解:某物体做瞬时速度为1的匀速运动.7.若曲线2x y =的某一切线与直线64+=x y 平行,则切点坐标是________. 【知识点:导数的几何意义】 解:(2,4) 8.过抛物线251x y =上点4(2,)5A 的切线的斜率为______________.【知识点:导数的几何意义】解:459.已知曲线xy 1=. (1)求曲线在点P (1,1)处的切线方程; (2)求曲线过点Q (1,0)处的切线方程;(3)求满足斜率为13-的曲线的切线方程.【知识点:导数的几何意义】 解:∵1y x =,21'y x∴=-.(1)显然P (1,1)是曲线上的点.所以P 为切点,所求切线斜率为函数xy 1=在P (1,1)点导数.即1)1(-='=f k .所以曲线在P (1,1)处的切线方程为)1(1--=-x y ,即为2+-=x y .(2)显然Q (1,0)不在曲线x y 1=上.则可设过该点的切线的切点为)1,(aa A ,那么该切线斜率为21)(a a f k -='=.则切线方程为)(112a x aa y --=-.① 将Q (1,0)坐标代入方程:)1(1102a aa --=-.解得21=a ,代回方程①整理可得:切线方程为44+-=x y .(3)设切点坐标为)1,(a a A ,则切线斜率为21)(a a f k -='==13-,解得a =,那么)33,3(A ,)33,3(--'A .代入点斜式方程得)3(3133--=-x y 或)3(3133+-=+x y .整理得切线方程为33231+-=x y 或33231--=x y .。
2019教育第一章12123基本初等函数的导数及导数的运算法则(二)数学
类型 1 导数运算法则的应用(自主研析)
[典例 1] 求下列函数的导数: (1)y=15x5+23x3; (2)y=lg x-ex; (3)y= 1x·cos x; (4)y=x-sinx2·cosx2.
解:(1)y′=15x5+23x3′=15x5′+23x3′=x4+2x2. (2)y′=(lg x-ex)′=(lg x)′-(ex)′=xln110-ex.
温馨提示 求导过程中,分步计算的每一步必须明 确是对哪个变量求导,而其中特别要注意的是中间变量 的导数.
1.思考判断(正确的打“√”,错误的打“×”). (1)已知 f(x)=xcos x,则 f′(x)=cos x+xsin x.( ) (2)已知 f(x)=exx,则 f′(x)=e1x.( ) (3)若函数 y=f(x)的导数 f′(x)=2x,则 f(x)=x2.( ) (4)y=e2x 的导数是 y′=2·e2x.( )
(3)法一
y′=
1x·cos
x′=
1x′cos
x+
1 x(cos
x)′=(x
-12)′cos x- 1xsin x=-12x-32cos x- 1xsin x=-c2osxx3-
1 xsin
x=-2coxs
xx-
1 xsin
x.
法二
y′
=
1x·cos
x
(2)由题意可得 f′(x)=3ax2+1, 所以 f′(1)=3a+1, 又 f(1)=a+2,所以 f(x)=ax3+x+1 的图象在点(1, f(1))处的切线方程为 y-(a+2)=(3a+1)(x-1),又此切线 过点(2,7), 所以 7-(a+2)=(3a+1)(2-1),解得 a=1. 答案:(1)4x-y-3=0 (2)1
高考数学导数专题1:导数的概念及运算
导数的概念及运算1.导数的概念及几何意义(1)了解导数概念的实际背景.(2)理解导数的几何意义.2.导数的运算(1)能根据导数的定义求函数y=C(C为常数),y=x,y=x(1),y=x2,y=x3,y=的导数.(2)能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.(3)能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.一导数的概念(1)函数y=f(x)在x=x0处的导数:称函数y=f(x)在x=x0处的瞬时变化率limΔx→0Δx(f(x0+Δx)-f(x0))=limΔx→0Δx(Δy)为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=limΔx→0Δx(Δy)=limΔx→0Δx(f(x0+Δx)-f(x0)).(2)导数的几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x-x0).(3)函数f(x)的导函数:称函数f′(x)=limΔx→0Δx(f(x+Δx)-f(x))为f(x)的导函数.易错点1.求曲线切线时,要分清在点P处的切线与过P点的切线的区别,前者只有一条,而后者包括了前者.2.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.二导数的运算1.基本初等函数的导数公式2.导数的运算法则2.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ). (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ). (3)⎣⎢⎡⎦⎥⎤f x g x ′=f ′x g x -f x g ′x [g x ]2(g (x )≠0).3.复合函数的导数复合函数y =f(g(x))的导数和函数y =f(u),u =g(x)的导数间的关系为yx ′=yu ′·ux ′,即y 对x的导数等于y 对u 的导数与 u 对x 的导数的乘积. 易误提醒1.利用公式求导时,一定要注意公式的适用范围及符号,如(xn)′=nxn -1中n ≠0且n ∈Q ,(cos x)′=-sin x.2.注意公式不要用混,如(ax)′=axln a ,而不是(ax)′=xax -1. 3.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆易误提醒1.利用公式求导时,一定要注意公式的适用范围及符号,如(x n)′=nxn -1中n ≠0且n ∈Q ,(cosx )′=-sin x .2.注意公式不要用混,如(a x)′=a xln a ,而不是(a x)′=xax -1.3.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆. 题型一 导数的概念1.已知函数f(x)=2ln 3x +8x , 求f(1-2Δx)-f(1)Δx的值.解析f(1-2Δx)-f(1)Δx=-2f(1-2Δx)-f(1)-2Δx=-2f ′(1)=-20.【点拨】导数的实质是求函数值相对于自变量的变化率,即求当Δx →0时, 平均变化率ΔyΔx2.某市在一次降雨过程中,降雨量y(mm)与时间t(min)的函数关系可以近似地表示为f(t)=t2100,则在时刻t =10 min 的降雨强度为( ) A.15 mm/min B.14 mm/min C.12mm/minD.1 mm/min【解析】选A.3.(2015·陕西一检)已知直线y =-x +m 是曲线y =x 2-3ln x 的一条切线,则m 的值为( )A .0B .2C .1D .3解析:因为直线y =-x +m 是曲线y =x 2-3ln x 的切线,所以令y ′=2x -3x =-1,得x =1,x =-32(舍),即切点为(1,1),又切点(1,1)在直线y =-x +m 上,所以m =2,故选B.4.(2015·洛阳期末)函数f (x )=e xsin x 的图象在点(0,f (0))处的切线的倾斜角为( )A.3π4 B.π3 C.π4D.π6解析:因为f ′(x )=e xsin x +e xcos x ,所以f ′(0)=1,即曲线y =f (x )在点(0,f (0))处的切线的斜率为1, 题型二 导数运算 1. 求下列函数的导数. (1)y =ln(x +1+x2); (2)y =(x2-2x +3)e2x ;(3)y =3x 1-x. 【解析】运用求导数公式及复合函数求导数法则.(1)y ′=1x +1+x2(x +1+x2)′=1x +1+x2(1+x 1+x2)=11+x2. (2)y ′=(2x -2)e2x +2(x2-2x +3)e2x =2(x2-x +2)e2x.Δlim →x 0Δlim →x 0Δlim →x(3)y ′=13(x 1-x 1-x +x(1-x)2=13(x 1-x1(1-x)2=13x (1-x) 2. 如下图,函数f(x)的图象是折线段ABC ,其中A 、B 、C 的坐标分别为(0,4),(2,0),(6,4),则f(f(0))=( );f(1+Δx)-f(1)Δx=( ) (用数字作答).【解析】f(0)=4,f(f(0))=f(4)=2, 由导数定义f(1+Δx)-f(1)Δx=f ′(1).当0≤x ≤2时,f(x)=4-2x ,f ′(x)=-2,f ′(1)=-2.3.(2015·济宁模拟)已知f (x )=x (2 014+ln x ),f ′(x 0)=2 015,则x 0=( )A .e 2B .1C .ln 2D .e解析:由题意可知f ′(x )=2 014+ln x +x ·1x=2 015+ln x .由f ′(x 0)=2 015,得ln x 0=0,解得x 0=1.答案:B4.若函数f (x )=ln x -f ′(-1)x 2+3x -4,则f ′(1)=________.解析:∵f ′(x )=1x-2f ′(-1)x +3,∴f ′(-1)=-1+2f ′(-1)+3,解得f ′(-1)=-2,∴f ′(1)=1+4+3=8. 答案:85.下列求导运算正确的是( )A.⎝ ⎛⎭⎪⎫x +1x ′=1+1x2B .(log 2x )′=1x ln 2C .(3x )′=3xlog 3eD .(x 2cos x )′=-2sin x解析:选B ⎝ ⎛⎭⎪⎫x +1x ′=1-1x 2;(log 2x )′=1x ln 2;(3x )′=3x ln 3;(x 2cos x )′=2x cos x -x 2sin x ,故选B.32)-32)-32-34-0Δlim →x 0Δlim →x6.函数f (x )=(x +2a )(x -a )2的导数为( )A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)解析:选C ∵f (x )=(x +2a )(x -a )2=x 3-3a 2x +2a 3, ∴f ′(x )=3(x 2-a 2).6.函数f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( )A.193B.163C.133D.103解析:选D 因为f ′(x )=3ax 2+6x , 所以f ′(-1)=3a -6=4, 所以a =103.4.(2016·天津高考)已知函数f (x )=(2x +1)e x,f ′(x )为f (x )的导函数,则f ′(0)的值为________.解析:因为f (x )=(2x +1)e x,所以f ′(x )=2e x +(2x +1)e x =(2x +3)e x, 所以f ′(0)=3e 0=3. 答案:3题型三 导数的几何意义导数的几何意义为高考热点内容,考查题型多为选择、填空题,也常出现在解答题中前几问,难度较低.归纳起来常见的命题探究角度有: 1.求切线方程问题. 2.确定切点坐标问题. 3.已知切线问题求参数. 4.切线的综合应用.求切线方程问题1.(2015·云南一检)函数f (x )=ln x -2xx的图象在点(1,-2)处的切线方程为( )已知切线求参数范围3.(2015·河北五校联考)若曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x存在公共切线,则a 的取值范围为( )A.⎣⎢⎡⎭⎪⎫e 28,+∞ B.⎝ ⎛⎦⎥⎤0,e 28C.⎣⎢⎡⎭⎪⎫e 24,+∞ D.⎝ ⎛⎦⎥⎤0,e 24 解析:结合函数y =ax 2(a >0)和y =e x的图象可知,要使曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x存在公共切线,只要ax 2=e x在(0,+∞)上有解,从而a =ex x 2.令h (x )=e x x 2(x >0),则h ′(x )=e x ·x 2-e x·2xx4=x -2e x x 3,令h ′(x )=0,得x =2,易知h (x )min =h (2)=e 24,所以a ≥e 24.答案:C 切线的综合应用4.(2015·重庆一诊)若点P 是函数f (x )=x 2-ln x 图象上的任意一点,则点P 到直线x -y -2=0的最小距离为( )A.22B. 2C.12D .3解析:由f ′(x )=2x -1x=1得x =1(负值舍去),所以曲线y =f (x )=x 2-ln x 上的切线斜率为1的点是(1,1),所以点P 到直线x -y -2=0的最小距离为|1-1-2|2=2,故选B.答案:B导数的几何意义是切点处切线的斜率,应用时主要体现在以下三个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)已知过某点M (x 1,f (x 1))(不是切点)的切线斜率为k 时,常需设出切点A (x 0,f (x 0)),利用k =f x 1-f x 0x 1-x 0求解.易错题:混淆“在某点处的切线”与“过某点的切线”致误1. 若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7[解析] 因为y =x 3,所以y ′=3x 2, 设过(1,0)的直线与y =x 3相切于点(x 0,x 30), 则在该点处的切线斜率为k =3x 20,所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30,又(1,0)在切线上,则x 0=0或x 0=32,当x 0=0时,由y =0与y =ax 2+154x -9相切,可得a =-2564,当x 0=32时,由y =274x -274与y =ax 2+154x -9相切,可得a =-1,所以选A.[答案] A2.(2015·兰州一模)已知直线y =2x +1与曲线y =x 3+ax +b 相切于点(1,3),则实数b 的值为________.解析:因为函数y =x 3+ax +b 的导函数为y ′=3x 2+a ,所以此函数的图象在点(1,3)处的切线斜率为3+a ,所以⎩⎪⎨⎪⎧3+a =2,3=1+a +b ,解得⎩⎪⎨⎪⎧a =-1,b =3.答案:3[易误点评] 没有对点(1,0)的位置进行分析,误认为是切点而失误. [防范措施]对于曲线切线方程问题的求解,对曲线的求导是一个关键点,因此求导公式,求导法则及导数的计算原则要熟练掌握.(2)对于已知的点,应首先确定其是否为曲线的切点,进而选择相应的方法求解. 随堂测试1、已知函数y =f (x )的图象在点(1,f (1))处的切线方程x -2y +1=0,则f (1)+2f ′(1)的值是( ) A.12 B .1 C .32D .2【答案】D【解析】∵函数y =f (x )的图象在点(1, f (1))处的切线方程是x -2y +1=0,∴f (1)=1, f ′(1)=12.∴f (1)+2f ′(1)=2.故选D.2、曲线y =sin x +e x 在点(0,1)处的切线方程是( ) A .x -3y +3=0 B .x -2y +2=0 C .2x -y +1=0 D .3x -y +1=0 【答案】C【解析】y ′=cos x +e x ,故切线斜率为k =2,切线方程为y =2x +1,即2x -y +1=0.3、.已知奇函数y=f (x )在区间(-∞,0]上的解析式为f (x )=x 2+x ,则曲线y=f (x )在横坐标为1的点处的切线方程是( ) A.x+y+1=0 B.x+y-1=0 C.3x-y-1=0 D.3x-y+1=0【答案】B【解析】由函数y=f (x )为奇函数,可得f (x )在[0,+∞)内的解析式为f (x )=-x 2+x ,故切点为(1,0). 因为f'(x )=-2x+1, 所以f'(1)=-1,故切线方程为y=-(x -1), 即x+y -1=0.4、已知函数f (x )=sin x -cos x ,且f ′(x )=12f (x ),则tan 2x 的值是( )A .-23B .-43C .43D .34【答案】D【解析】因为f ′(x )=cos x +sin x =12sin x -12cos x ,所以tan x =-3,所以tan 2x =2tan x1-tan 2x =-61-9=34.故选D.5、过函数f (x )=13x 3-x 2图像上一个动点作函数的切线,则切线倾斜角的范围为( )A.⎣⎡⎦⎤0,3π4 B .⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π C.⎣⎡⎭⎫3π4,π D .⎝⎛⎦⎤π2,3π4 【答案】B【解析】设切线的倾斜角为α.由题意得k =f ′(x )=x 2-2x =(x -1)2-1≥-1,即k =tan α≥-1,解得0≤α<π2或3π4≤α<π,即切线倾斜角的范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π.故选B. 6.(2015·长春二模)若函数f (x )=ln xx ,则f ′(2)=________.解析:由f ′(x )=1-ln x x 2,得f ′(2)=1-ln 24.答案:1-ln 247.如果f ′(x )是二次函数,且f ′(x )的图象开口向上,顶点坐标为(1,3),那么曲线y =f (x )上任意一点的切线的倾斜角α的取值范围是________.解析:根据已知可得f ′(x )≥ 3,即曲线y =f (x )上任意一点的切线的斜率k =tan α≥ 3,结合正切函数的图象,可知α∈⎣⎡⎭⎫π3,π2.答案:⎣⎡⎭⎫π3,π28.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意得⎩⎪⎨⎪⎧f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或1.(2)∵曲线y =f (x )存在两条垂直于y 轴的切线,∴关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, ∴Δ=4(1-a )2+12a (a +2)>0,即4a 2+4a +1>0, ∴a ≠-12.∴a 的取值范围是⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,+∞. 94.(2016·临沂一模)已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围. 解:(1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞). (2)设曲线C 的其中一条切线的斜率为k ,则由(2)中条件并结合(1)中结论可知,⎩⎪⎨⎪⎧k ≥-1,-1k ≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).。
高考数学一轮总复习课件:导数的概念与运算
(4)f(x)= 1-1 2x2;
π (5)f(x)=cos(3x2- 6 ).
【解析】 (1)∵f′(x)=(2x5+8x4-5x3+2x2+8x-5)′,
∴f′(x)=10x4+32x3-15x2+4x+8.
(2)∵f(x)=11+ -
xx+11+-
x x
=(1+ 1-xx)2+(1- 1-xx)2
π 5.设正弦函数y=sinx在x=0和x= 2 处的瞬时变化率为
k1,k2,则k1,k2的大小关系为( A )
A.k1>k2
B.k1<k2
C.k1=k2
D.不确定
解析 ∵y=sinx,∴y′=(sinx)′=cosx. π
k1=cos0=1,k2=cos 2 =0,∴k1>k2.
授人以渔
题型一 导数的概念(自主学习)
(3)设切点为(x0,y0),则切线的斜率为k=x02=1, 解得x0=±1,故切点为1,53或(-1,1). 故所求切线方程为y-53=x-1或y-1=x+1. 即3x-3y+2=0或x-y+2=0.
【答案】 (1)4x-y-4=0 (2)4x-y-4=0或x-y+2=0 (3)3x-3y+2=0或x-y+2=0
状元笔记
求曲线的切线方程的两种类型 (1)在求曲线的切线方程时,注意两个“说法”:求曲线在 点P处的切线方程和求曲线过点P的切线方程,在点P处的切线, 一定是以点P为切点;过点P的切线,不确定点P在不在曲线上, 点P不一定是切点. (2)求曲线过点P(x0,y0)的切线方程的步骤为: 第一步,设出切点坐标P′(x1,f(x1));
数的平均变化率Δ Δyx的极限是否存在.
(2)利用导数定义求函数的导数时,先算函数的增量Δy,
( 人教A版第2课时导数的运算法则课件 (共36张PPT)
(5)y=sincxo+s 2cxos x =csoins2xx+-csoins2xx=cos x-sin x, ∴y′=(cos x-sin x)′=-sin x-cos x. (6)y=xln x=12xln x, ∴y′=12(x)′·ln x+12x·(ln x)′=12ln x+12.
1.运用可导函数求导法则和导数公式求可导函数的导数,一定要先分析 函数 y=f(x)的结构和特征,若直接求导很烦琐,一定要先进行合理的化简 变形,再选择恰当的求导法则和导数公式求导. 2.若要求导的函数解析式与三角函数有关,往往需要先运用相关的三角 函数公式对解析式进行化简、整理,然后再套用公式求导.
1.2 导数的计算
1.2.1 几个常用函数的导数
1.2.2 基本初等函数的导数公式及导数的运算法则
第 2 课时 导数的运算法则
考纲定位
重难突破
1.能利用导数的四则运算法 则求解导函数. 2.能运用复合函数的求导法 则进行复合函数的求导.
重点:用导数的运算法则求 函数的导数. 难点:求复合函数的导数.
又点 P 在第二象限内,∴x0=-2. 又点 P 在曲线 C 上, ∴y0=(-2)3-10×(-2)+3=15, ∴点 P 的坐标为(-2,15).
求解与切线有关的综合问题: (1)在求曲线的切线方程时,注意两个“说法”:求曲线在点 P 处的切线方程 和求曲线过点 P 的切线方程.在点 P 处的切线,一定是以点 P 为切点,过点 P 的切线,点 P 不一定是切点; (2)求过点 P 的曲线的切线方程的步骤为:先设出切点坐标为(x0,y0),然后写 出切线方程 y-y0=f′(x0)(x-x0),最后代入点 P 的坐标,求出(x0,y0).切点 在解决此类问题时起着至关重要的作用.
【精品高中数学必修第二册】1.2 导数的计算1.2.1-1.2.2 Word版含答案
1.2导数的计算1.2.1几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则(一)[学习目标]1.能根据定义求函数y=c(c为常数),y=x,y=x2,y=1x,y=x的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数.[知识链接]在前面,我们利用导数的定义能求出函数在某一点处的导数,那么能不能利用导数的定义求出比较简单的函数及基本函数的导数呢?类比用导数定义求函数在某点处导数的方法,如何用定义求函数y=f(x)的导数?答(1)计算ΔyΔx,并化简;(2)观察当Δx趋近于0时,ΔyΔx趋近于哪个定值;(3)ΔyΔx趋近于的定值就是函数y=f(x)的导数.[预习导引]1.几个常用函数的导数2.基本初等函数的导数公式要点一利用导数定义求函数的导数例1用导数的定义求函数f(x)=2 013x2的导数.解f′(x)=limΔx→02 013(x+Δx)2-2 013x2x+Δx-x=limΔx→02 013[x2+2x·Δx+(Δx)2]-2 013x2Δx=limΔx→04 026x·Δx+2 013(Δx)2Δx=limΔx→0(4 026x+2 013Δx)=4 026x.规律方法 解答此类问题,应注意以下几条: (1)严格遵循“一差、二比、三取极限”的步骤. (2)当Δx 趋于0时,k ·Δx (k ∈R )、(Δx )n (n ∈N *)等也趋于0.(3)注意通分、分母(或分子)有理化、因式分解、配方等技巧的应用. 跟踪演练1 用导数的定义求函数y =x 2+ax +b (a ,b 为常数)的导数. 解 y ′=lim Δx →0 (x +Δx )2+a (x +Δx )+b -(x 2+ax +b )Δx =lim Δx →0 x 2+2x ·Δx +(Δx )2+ax +a ·Δx +b -x 2-ax -b Δx =lim Δx →0 2x ·Δx +a ·Δx +(Δx )2Δx =lim Δx →0(2x +a +Δx )=2x +a . 要点二 利用导数公式求函数的导数 例2 求下列函数的导数(1)y =sin π3;(2)y =5x ;(3)y =1x 3;(4)y =4x 3;(5)y =log 3x . 解 (1)y ′=0; (2)y ′=(5x )′=5x ln 5; (3)y ′=(x -3)′=-3x -4;(4)y ′=⎝⎛⎭⎫4x 3′=⎝ ⎛⎭⎪⎫x 34′=34x -14=344x ; (5)y ′=(log 3x )′=1x ln 3.规律方法 求简单函数的导函数的基本方法: (1)用导数的定义求导,但运算比较繁杂;(2)用导数公式求导,可以简化运算过程、降低运算难度.解题时根据所给问题的特征,将题中函数的结构进行调整,再选择合适的求导公式.跟踪演练2 求下列函数的导数:(1)y =x 8;(2)y =⎝ ⎛⎭⎪⎫12x ;(3)y =x x ;(4)y =log 13x .解 (1)y ′=8x 7;(2)y ′=⎝ ⎛⎭⎪⎫12x ln 12=-⎝ ⎛⎭⎪⎫12xln 2;(3)∵y =x x =x 32,∴y ′=32x 12; (4) y ′=1x ln 13=-1x ln 3.要点三 利用导数公式求曲线的切线方程例3 求过曲线y =sin x 上点P ⎝ ⎛⎭⎪⎫π6,12且与过这点的切线垂直的直线方程.解 ∵y =sin x ,∴y ′=cos x , 曲线在点P ⎝ ⎛⎭⎪⎫π6,12处的切线斜率是:y ′|x =π6=cos π6=32.∴过点P 且与切线垂直的直线的斜率为-23, 故所求的直线方程为y -12=-23⎝ ⎛⎭⎪⎫x -π6,即2x +3y -32-π3=0.规律方法 导数的几何意义是曲线在某点处的切线的斜率;相互垂直的直线斜率乘积等于-1是解题的关键.跟踪演练3 已知点P (-1,1),点Q (2,4)是曲线y =x 2上的两点,求与直线PQ 平行的曲线y =x 2的切线方程.解 ∵y ′=(x 2)′=2x ,设切点为M (x 0,y 0), 则y ′|x =x 0=2x 0,又∵PQ 的斜率为k =4-12+1=1,而切线平行于PQ ,∴k =2x 0=1,即x 0=12,所以切点为M ⎝ ⎛⎭⎪⎫12,14.∴所求的切线方程为y -14=x -12,即4x -4y -1=0.1.已知f (x )=x 2,则f ′(3)=( )A .0B .2xC .6D .9答案 C解析 ∵f (x )=x 2,∴f ′(x )=2x ,∴f ′(3)=6. 2.函数f (x )=x ,则f ′(3)等于( ) A.36 B .0 C .12xD .32答案 A解析 ∵f ′(x )=(x )′=12x,∴f ′(3)=123=36. 3.设正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( ) A.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π B .[0,π)C .⎣⎢⎡⎦⎥⎤π4,3π4D .⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎦⎥⎤π2,3π4 答案 A解析 ∵(sin x )′=cos x ,∵k l =cos x ,∴-1≤k l ≤1, ∴αl ∈⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.4.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为________. 答案 12e 2解析 ∵y ′=(e x )′=e x ,∴k =e 2,∴曲线在点(2,e 2)处的切线方程为y -e 2=e 2(x -2), 即y =e 2x -e 2.当x =0时,y =-e 2,当y =0时,x =1. ∴S △=12×1×||-e 2=12e 2.1.利用常见函数的导数公式可以比较简捷的求出函数的导数,其关键是牢记和运用好导数公式.解题时,能认真观察函数的结构特征,积极地进行联想化归. 2.有些函数可先化简再应用公式求导.如求y =1-2sin 2x 2的导数.因为y =1-2sin 2x2=cos x , 所以y ′=(cos x )′=-sin x .3.对于正、余弦函数的导数,一是注意函数的变化,二是注意符号的变化.一、基础达标1.下列结论中正确的个数为( )①y =ln 2,则y ′=12;②y =1x 2,则y ′|x =3=-227;③y =2x ,则y ′=2x ln 2;④y =log 2x ,则y ′=1x ln 2. A .0 B .1 C .2 D .3答案 D解析 ①y =ln 2为常数,所以y ′=0.①错.②③④正确.2.过曲线y =1x 上一点P 的切线的斜率为-4,则点P 的坐标为( ) A.⎝ ⎛⎭⎪⎫12,2 B .⎝ ⎛⎭⎪⎫12,2或⎝ ⎛⎭⎪⎫-12,-2 C .⎝ ⎛⎭⎪⎫-12,-2D .⎝ ⎛⎭⎪⎫12,-2答案 B解析 y ′=⎝ ⎛⎭⎪⎫1x ′=-1x 2=-4,x =±12,故选B. 3.已知f (x )=x a ,若f ′(-1)=-4,则a 的值等于( ) A .4 B .-4 C .5 D .-5答案 A解析 f ′(x )=ax a -1,f ′(-1)=a (-1)a -1=-4,a =4.4.函数f (x )=x 3的斜率等于1的切线有( ) A .1条 B .2条 C .3条 D .不确定答案 B解析 ∵f ′(x )=3x 2,设切点为(x 0,y 0),则3x 20=1,得x 0=±33,即在点⎝ ⎛⎭⎪⎫33,39和点⎝ ⎛⎭⎪⎫-33,-39处有斜率为1的切线.5.曲线y =9x 在点M (3,3)处的切线方程是________.答案 x +y -6=0解析 ∵y ′=-9x 2,∴y ′|x =3=-1, ∴过点(3,3)的斜率为-1的切线方程为: y -3=-(x -3)即x +y -6=0.6.若曲线y =x -12在点⎝ ⎛⎭⎪⎫a ,a -12处的切线与两个坐标轴围成的三角形的面积为18,则a =________. 答案 64解析 ∵y =x -12,∴y ′=-12x -32,∴曲线在点⎝ ⎛⎭⎪⎫a ,a -12处的切线斜率k =-12a -32,∴切线方程为y -a -12=-12a -32(x -a ). 令x =0得y =32a -12;令y =0得x =3a . ∵该切线与两坐标轴围成的三角形的面积为 S =12·3a ·32a -12=94a 12=18,∴a =64. 7.求下列函数的导数:(1) y =5x 3;(2)y =1x 4;(3)y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4; (4)y =log 2x 2-log 2x .解 (1)y ′=⎝⎛⎭⎫5x 3′=⎝ ⎛⎭⎪⎫x 35′=35x 35-1=35x -25=355x 2. (2)y ′=⎝ ⎛⎭⎪⎫1x 4′=(x -4)′=-4x -4-1=-4x -5=-4x 5.(3)∵y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4=2sin x 2⎝ ⎛⎭⎪⎫2cos 2x 4-1=2sin x 2cos x 2=sin x ,∴y ′=(sin x )′=cos x . (4)∵y =log 2x 2-log 2x =log 2x , ∴y ′=(log 2x )′=1x ·ln 2. 二、能力提升8.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为( ) A.1e B .-1e C .-e D .e答案 D解析y ′=e x ,设切点为(x 0,y 0),则⎩⎨⎧y 0=kx 0y 0=e x 0k =e x 0.∴e x 0=e x 0·x 0,∴x 0=1,∴k =e.9.曲线y =ln x 在x =a 处的切线倾斜角为π4,则a =________. 答案 1解析 y ′=1x ,∴y ′|x =a =1a =1,∴a =1.10.点P 是曲线y =e x 上任意一点,则点P 到直线y =x 的最小距离为________. 答案 22 解析根据题意设平行于直线y =x 的直线与曲线y =e x 相切于点(x 0,y 0),该切点即为与y =x 距离最近的点,如图.则在点(x 0,y 0)处的切线斜率为1,即y ′|x =x 0=1.∵y ′=(e x )′=e x ,∴e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1).利用点到直线的距离公式得距离为22.11.已知f (x )=cos x ,g (x )=x ,求适合f ′(x )+g ′(x )≤0的x 的值. 解 ∵f (x )=cos x ,g (x )=x ,∴f ′(x )=(cos x )′=-sin x ,g ′(x )=x ′=1, 由f ′(x )+g ′(x )≤0,得-sin x +1≤0, 即sin x ≥1,但sin x ∈[-1,1], ∴sin x =1,∴x =2k π+π2,k ∈Z .12.已知抛物线y =x 2,直线x -y -2=0,求抛物线上的点到直线的最短距离. 解 根据题意可知与直线x -y -2=0平行的抛物线y =x 2的切线,对应的切点到直线x -y -2=0的距离最短,设切点坐标为(x 0,x 20),则y ′|x =x 0=2x 0=1,所以x 0=12,所以切点坐标为⎝ ⎛⎭⎪⎫12,14,切点到直线x -y -2=0的距离 d =⎪⎪⎪⎪⎪⎪12-14-22=728,所以抛物线上的点到直线x -y -2=0的最短距离为728. 三、探究与创新13.设f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N ,试求f 2 014(x ).解 f 1(x )=(sin x )′=cos x ,f2(x)=(cos x)′=-sin x,f3(x)=(-sin x)′=-cos x,f4(x)=(-cos x)′=sin x,f5(x)=(sin x)′=f1(x),f6(x)=f2(x),…,f n+4(x)=f n(x),可知周期为4,∴f2 014(x)=f2(x)=-sin x.1.2.2基本初等函数的导数公式及导数的运算法则(二)[学习目标]1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.3.能运用复合函数的求导法则进行复合函数的求导.[知识链接]前面我们已经学习了几个常用函数的导数和基本初等函数的导数公式,这样做起题来比用导数的定义显得格外轻松.我们已经会求f(x)=5和g(x)=1.05x等基本初等函数的导数,那么怎样求f(x)与g(x)的和、差、积、商的导数呢?答利用导数的运算法则.[预习导引]1.导数运算法则2.复合函数的求导法则要点一利用导数的运算法则求函数的导数例1求下列函数的导数:(1) y=x3-2x+3;(2)y=(x2+1)(x-1);(3)y=3x-lg x.解(1)y′=(x3)′-(2x)′+3′=3x2-2.(2)∵y=(x2+1)(x-1)=x3-x2+x-1,∴y′=(x3)′-(x2)′+x′-1′=3x2-2x+1.(3)函数y=3x-lg x是函数f(x)=3x与函数g(x)=lg x的差.由导数公式表分别得出f′(x)=3x ln 3,g′(x)=1x ln 10,利用函数差的求导法则可得(3x-lg x)′=f′(x)-g′(x)=3x ln 3-1x ln 10.规律方法本题是基本函数和(差)的求导问题,求导过程要紧扣求导法则,联系基本函数求导法则,对于不具备求导法则结构形式的可先进行适当的恒等变形转化为较易求导的结构形式再求导数.跟踪演练1求下列函数的导数:(1)y=5-4x3;(2)y=3x2+x cos x;(3)y=e x·ln x;(4)y=lg x-1 x2.解(1)y′=-12x2;(2)y′=(3x2+x cos x)′=6x+cos x-x sin x;(3)y′=e xx+ex·ln x;(4)y′=1x ln 10+2x3.要点二求复合函数的导数例2求下列函数的导数:(1)y=ln(x+2);(2)y=(1+sin x)2;解(1)y=ln u,u=x+2∴y′x=y′u·u′x=(ln u)′·(x+2)′=1u·1=1x+2.(2)y=u2,u=1+sin x,∴y x′=y u′·u x′=(u2)′·(1+sin x)′=2u·cos x=2cos x(1+sin x).规律方法应用复合函数的求导法则求导,应注意以下几个方面:(1)中间变量的选取应是基本函数结构.(2)正确分析函数的复合层次,并要弄清每一步是哪个变量对哪个变量的求导.(3)一般是从最外层开始,由外及里,一层层地求导.(4)善于把一部分表达式作为一个整体.(5)最后要把中间变量换成自变量的函数.熟练后,就不必再写中间步骤.跟踪演练2(1)y=e2x+1;(2)y=(x-2)2.解(1)y=e u,u=2x+1,∴y′x=y′u·u′x=(e u)′·(2x+1)′=2e u=2e2x+1.(2)法一∵y=(x-2)2=x-4x+4,∴y′=x′-(4x)′+4′=1-4×12x-12=1-2x.法二 令u =x -2,则y x ′=y u ′·u x ′=2(x -2)·(x -2)′= 2(x -2)⎝ ⎛⎭⎪⎫12·1x -0=1-2x .要点三 导数的应用例3 求过点(1,-1)与曲线f (x )=x 3-2x 相切的直线方程. 解 设P (x 0,y 0)为切点,则切线斜率为 k =f ′(x 0)=3x 20-2故切线方程为y -y 0=(3x 20-2)(x -x 0) ① ∵(x 0,y 0)在曲线上,∴y 0=x 30-2x 0 ②又∵(1,-1)在切线上, ∴将②式和(1,-1)代入①式得-1-(x 30-2x 0)=(3x 20-2)(1-x 0).解得x 0=1或x 0=-12.故所求的切线方程为y +1=x -1或y +1=-54(x -1). 即x -y -2=0或5x +4y -1=0.规律方法 (1,-1)虽然在曲线上,但是经过该点的切线不一定只有一条,即该点有可能是切点,也可能是切线与曲线的交点,解题时注意不要失解. 跟踪演练3 已知某运动着的物体的运动方程为s (t )=t -1t 2+2t 2(位移单位:m ,时间单位:s),求t =3 s 时物体的瞬时速度. 解 ∵s (t )=t -1t 2+2t 2=t t 2-1t 2+2t 2=1t -1t 2+2t 2, ∴s ′(t )=-1t 2+2·1t 3+4t , ∴s ′(3)=-19+227+12=32327,即物体在t =3 s 时的瞬时速度为32327 m/s.1.下列结论不正确的是( )A .若y =3,则y ′=0B .若f (x )=3x +1,则f ′(1)=3C .若y =-x +x ,则y ′=-12x+1D .若y =sin x +cos x ,则y ′=cos x +sin x 答案 D解析 利用求导公式和导数的加、减运算法则求解.D 项,∵y =sin x +cos x , ∴y ′=(sin x )′+(cos x )′=cos x -sin x . 2.函数y =cos x1-x的导数是( ) A.-sin x +x sin x(1-x )2B.x sin x -sin x -cos x(1-x )2C .cos x -sin x +x sin x(1-x )2D.cos x -sin x +x sin x1-x答案 C解析 y ′=⎝ ⎛⎭⎪⎫cos x 1-x ′=(-sin x )(1-x )-cos x ·(-1)(1-x )2=cos x -sin x +x sin x(1-x )2.3.曲线y =xx +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x +2答案 A解析∵y′=x′(x+2)-x(x+2)′(x+2)2=2(x+2)2,∴k=y′|x=-1=2(-1+2)2=2,∴切线方程为y+1=2(x+1),即y=2x+1.4.直线y=12x+b是曲线y=ln x(x>0)的一条切线,则实数b=________.答案ln 2-1解析设切点为(x0,y0),∵y′=1x,∴12=1x0,∴x0=2,∴y0=ln 2,ln 2=12×2+b,∴b=ln 2-1.求函数的导数要准确把函数分割为基本函数的和、差、积、商,再利用运算法则求导数.在求导过程中,要仔细分析出函数解析式的结构特征,根据导数运算法则,联系基本函数的导数公式.对于不具备导数运算法则结构形式的要进行适当恒等变形,转化为较易求导的结构形式,再求导数,进而解决一些切线斜率、瞬时速度等问题.一、基础达标1.设y=-2e x sin x,则y′等于()A.-2e x cos x B.-2e x sin xC.2e x sin x D.-2e x(sin x+cos x)答案D解析y′=-2(e x sin x+e x cos x)=-2e x(sin x+cos x).2.当函数y=x2+a2x(a>0)在x=x0处的导数为0时,那么x0=()A.a B.±aC .-aD .a 2答案 B解析 y ′=⎝ ⎛⎭⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2,由x 20-a 2=0得x 0=±a .3.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( )A .2B .12 C .-12 D .-2答案 D解析 ∵y =x +1x -1=1+2x -1,∴y ′=-2(x -1)2.∴y ′|x =3=-12. ∴-a =2,即a =-2.4.已知曲线y =x 3在点P 处的切线斜率为k ,则当k =3时的P 点坐标为( ) A .(-2,-8) B .(-1,-1)或(1,1) C .(2,8) D .⎝ ⎛⎭⎪⎫-12,-18答案 B解析 y ′=3x 2,∵k =3,∴3x 2=3,∴x =±1, 则P 点坐标为(-1,-1)或(1,1).5.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为________. 答案 4解析 依题意得f ′(x )=g ′(x )+2x , f ′(1)=g ′(1)+2=4.6.已知f (x )=13x 3+3xf ′(0),则f ′(1)=________. 答案 1解析 由于f ′(0)是一常数,所以f ′(x )=x 2+3f ′(0),令x =0,则f ′(0)=0, ∴f ′(1)=12+3f ′(0)=1. 7.求下列函数的导数: (1)y =(2x 2+3)(3x -1); (2)y =x -sin x 2cos x2.解 (1)法一 y ′=(2x 2+3)′(3x -1)+(2x 2+3)(3x -1)′=4x (3x -1)+3(2x 2+3)=18x 2-4x +9.法二 ∵y =(2x 2+3)(3x -1)=6x 3-2x 2+9x -3, ∴y ′=(6x 3-2x 2+9x -3)′=18x 2-4x +9. (2)∵y =x -sin x 2cos x 2=x -12sin x , ∴y ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x .二、能力提升8.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12 B .12 C .-22 D .22答案 B解析 y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=1(sin x +cos x )2,故y ′|x =π4=12,∴曲线在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为12.9.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A .[0,π4)B .[π4,π2)C .(π2,3π4]D .[3π4,π)答案 D解析 y ′=-4e x (e x +1)2=-4e x e 2x +2e x +1,设t =e x∈(0,+∞),则y ′=-4t t 2+2t +1=-4t +1t +2,∵t +1t ≥2,∴y ′∈[-1,0),α∈[3π4,π).10.(2020·江西)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(1)=________. 答案 2解析 令t =e x ,则x =ln t ,所以函数为f (t )=ln t +t ,即f (x )=ln x +x ,所以f ′(x )=1x +1,即f ′(1)=11+1=2.11.求过点(2,0)且与曲线y =x 3相切的直线方程.解 点(2,0)不在曲线y =x 3上,可令切点坐标为(x 0,x 30).由题意,所求直线方程的斜率k =x 30-0x 0-2=y ′|x =x 0=3x 20,即x 30x 0-2=3x 20,解得x 0=0或x 0=3.当x 0=0时,得切点坐标是(0,0),斜率k =0,则所求直线方程是y =0; 当x 0=3时,得切点坐标是(3,27),斜率k =27, 则所求直线方程是y -27=27(x -3), 即27x -y -54=0.综上,所求的直线方程为y =0或27x -y -54=0.12.已知曲线f (x )=x 3-3x ,过点A (0,16)作曲线f (x )的切线,求曲线的切线方程. 解 设切点为(x 0,y 0),则由导数定义得切线的斜率k =f ′(x 0)=3x 20-3, ∴切线方程为y =(3x 20-3)x +16, 又切点(x 0,y 0)在切线上,∴y 0=3(x 20-1)x 0+16, 即x 30-3x 0=3(x 20-1)x 0+16,解得x 0=-2,∴切线方程为9x -y +16=0. 三、探究与创新13.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值. (1)解 由7x -4y -12=0得y =74x -3. 当x =2时,y =12,∴f (2)=12, ①又f ′(x )=a +bx 2, ∴f ′(2)=74, ② 由①,②得⎩⎪⎨⎪⎧2a -b 2=12a +b 4=74.解之得⎩⎨⎧a =1b =3.故f (x )=x -3x .(2)证明 设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知 曲线在点P (x 0,y 0)处的切线方程为 y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0),即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0). 令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0.令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0). 所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪⎪⎪-6x 0||2x 0=6.故曲线y=f(x)上任一点处的切线与直线x=0,y=x所围成的三角形的面积为定值,此定值为6.1.2导数的计算1.2.1几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则(一)[学习目标]1.能根据定义求函数y=c(c为常数),y=x,y=x2,y=1x,y=x的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数.[知识链接]在前面,我们利用导数的定义能求出函数在某一点处的导数,那么能不能利用导数的定义求出比较简单的函数及基本函数的导数呢?类比用导数定义求函数在某点处导数的方法,如何用定义求函数y=f(x)的导数?答(1)计算ΔyΔx,并化简;(2)观察当Δx趋近于0时,ΔyΔx趋近于哪个定值;(3)ΔyΔx趋近于的定值就是函数y=f(x)的导数.[预习导引]1.几个常用函数的导数2.基本初等函数的导数公式要点一利用导数定义求函数的导数例1用导数的定义求函数f(x)=2 013x2的导数.解f′(x)=limΔx→02 013(x+Δx)2-2 013x2x+Δx-x=limΔx→02 013[x2+2x·Δx+(Δx)2]-2 013x2Δx=limΔx→04 026x·Δx+2 013(Δx)2Δx=lim Δx →0 (4 026x +2 013Δx ) =4 026x .规律方法 解答此类问题,应注意以下几条: (1)严格遵循“一差、二比、三取极限”的步骤. (2)当Δx 趋于0时,k ·Δx (k ∈R )、(Δx )n (n ∈N *)等也趋于0.(3)注意通分、分母(或分子)有理化、因式分解、配方等技巧的应用. 跟踪演练1 用导数的定义求函数y =x 2+ax +b (a ,b 为常数)的导数. 解 y ′=lim Δx →0 (x +Δx )2+a (x +Δx )+b -(x 2+ax +b )Δx =lim Δx →0 x 2+2x ·Δx +(Δx )2+ax +a ·Δx +b -x 2-ax -b Δx =lim Δx →0 2x ·Δx +a ·Δx +(Δx )2Δx =lim Δx →0(2x +a +Δx )=2x +a . 要点二 利用导数公式求函数的导数 例2 求下列函数的导数(1)y =sin π3;(2)y =5x ;(3)y =1x 3;(4)y =4x 3;(5)y =log 3x . 解 (1)y ′=0; (2)y ′=(5x )′=5x ln 5; (3)y ′=(x -3)′=-3x -4;(4)y ′=⎝⎛⎭⎫4x 3′=⎝ ⎛⎭⎪⎫x 34′=34x -14=344x ; (5)y ′=(log 3x )′=1x ln 3.规律方法 求简单函数的导函数的基本方法: (1)用导数的定义求导,但运算比较繁杂;(2)用导数公式求导,可以简化运算过程、降低运算难度.解题时根据所给问题的特征,将题中函数的结构进行调整,再选择合适的求导公式.跟踪演练2 求下列函数的导数:(1)y =x 8;(2)y =⎝ ⎛⎭⎪⎫12x ;(3)y =x x ;(4)y =log 13x .解 (1)y ′=8x 7;(2)y ′=⎝ ⎛⎭⎪⎫12x ln 12=-⎝ ⎛⎭⎪⎫12xln 2;(3)∵y =x x =x 32,∴y ′=32x 12; (4) y ′=1x ln 13=-1x ln 3.要点三 利用导数公式求曲线的切线方程例3 求过曲线y =sin x 上点P ⎝ ⎛⎭⎪⎫π6,12且与过这点的切线垂直的直线方程.解 ∵y =sin x ,∴y ′=cos x , 曲线在点P ⎝ ⎛⎭⎪⎫π6,12处的切线斜率是:y ′|x =π6=cos π6=32.∴过点P 且与切线垂直的直线的斜率为-23, 故所求的直线方程为y -12=-23⎝ ⎛⎭⎪⎫x -π6,即2x +3y -32-π3=0.规律方法 导数的几何意义是曲线在某点处的切线的斜率;相互垂直的直线斜率乘积等于-1是解题的关键.跟踪演练3 已知点P (-1,1),点Q (2,4)是曲线y =x 2上的两点,求与直线PQ 平行的曲线y =x 2的切线方程.解 ∵y ′=(x 2)′=2x ,设切点为M (x 0,y 0), 则y ′|x =x 0=2x 0, 又∵PQ 的斜率为k =4-12+1=1,而切线平行于PQ , ∴k =2x 0=1,即x 0=12,所以切点为M ⎝ ⎛⎭⎪⎫12,14.∴所求的切线方程为y -14=x -12,即4x -4y -1=0.1.已知f (x )=x 2,则f ′(3)=( ) A .0 B .2x C .6 D .9答案 C解析 ∵f (x )=x 2,∴f ′(x )=2x ,∴f ′(3)=6. 2.函数f (x )=x ,则f ′(3)等于( ) A.36 B .0 C .12xD .32 答案 A解析 ∵f ′(x )=(x )′=12x,∴f ′(3)=123=36. 3.设正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( ) A.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π B .[0,π)C .⎣⎢⎡⎦⎥⎤π4,3π4D .⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎦⎥⎤π2,3π4 答案 A解析 ∵(sin x )′=cos x ,∵k l =cos x ,∴-1≤k l ≤1, ∴αl ∈⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.4.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为________. 答案 12e 2解析 ∵y ′=(e x )′=e x ,∴k =e 2,∴曲线在点(2,e 2)处的切线方程为y -e 2=e 2(x -2), 即y =e 2x -e 2.当x =0时,y =-e 2,当y =0时,x =1.∴S △=12×1×||-e 2=12e 2.1.利用常见函数的导数公式可以比较简捷的求出函数的导数,其关键是牢记和运用好导数公式.解题时,能认真观察函数的结构特征,积极地进行联想化归. 2.有些函数可先化简再应用公式求导.如求y =1-2sin 2x 2的导数.因为y =1-2sin 2x2=cos x , 所以y ′=(cos x )′=-sin x .3.对于正、余弦函数的导数,一是注意函数的变化,二是注意符号的变化.一、基础达标1.下列结论中正确的个数为( )①y =ln 2,则y ′=12;②y =1x 2,则y ′|x =3=-227;③y =2x ,则y ′=2x ln 2;④y =log 2x ,则y ′=1x ln 2. A .0 B .1 C .2 D .3答案 D解析 ①y =ln 2为常数,所以y ′=0.①错.②③④正确.2.过曲线y =1x 上一点P 的切线的斜率为-4,则点P 的坐标为( ) A.⎝ ⎛⎭⎪⎫12,2 B .⎝ ⎛⎭⎪⎫12,2或⎝ ⎛⎭⎪⎫-12,-2 C .⎝ ⎛⎭⎪⎫-12,-2D .⎝ ⎛⎭⎪⎫12,-2答案 B解析 y ′=⎝ ⎛⎭⎪⎫1x ′=-1x 2=-4,x =±12,故选B.3.已知f (x )=x a ,若f ′(-1)=-4,则a 的值等于( )A .4B .-4C .5D .-5答案 A解析 f ′(x )=ax a -1,f ′(-1)=a (-1)a -1=-4,a =4. 4.函数f (x )=x 3的斜率等于1的切线有( ) A .1条 B .2条 C .3条 D .不确定答案 B解析 ∵f ′(x )=3x 2,设切点为(x 0,y 0),则3x 20=1,得x 0=±33,即在点⎝ ⎛⎭⎪⎫33,39和点⎝ ⎛⎭⎪⎫-33,-39处有斜率为1的切线.5.曲线y =9x 在点M (3,3)处的切线方程是________. 答案 x +y -6=0解析 ∵y ′=-9x 2,∴y ′|x =3=-1, ∴过点(3,3)的斜率为-1的切线方程为: y -3=-(x -3)即x +y -6=0.6.若曲线y =x -12在点⎝ ⎛⎭⎪⎫a ,a -12处的切线与两个坐标轴围成的三角形的面积为18,则a =________. 答案 64解析 ∵y =x -12,∴y ′=-12x -32,∴曲线在点⎝ ⎛⎭⎪⎫a ,a -12处的切线斜率k =-12a -32,∴切线方程为y -a -12=-12a -32(x -a ). 令x =0得y =32a -12;令y =0得x =3a . ∵该切线与两坐标轴围成的三角形的面积为 S =12·3a ·32a -12=94a 12=18,∴a =64.7.求下列函数的导数:(1) y =5x 3;(2)y =1x 4;(3)y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4;(4)y =log 2x 2-log 2x .解 (1)y ′=⎝⎛⎭⎫5x 3′=⎝ ⎛⎭⎪⎫x 35′=35x 35-1=35x -25=355x 2.(2)y ′=⎝ ⎛⎭⎪⎫1x 4′=(x -4)′=-4x -4-1=-4x -5=-4x 5.(3)∵y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4=2sin x 2⎝ ⎛⎭⎪⎫2cos 2x 4-1=2sin x 2cos x 2=sin x ,∴y ′=(sin x )′=cos x . (4)∵y =log 2x 2-log 2x =log 2x , ∴y ′=(log 2x )′=1x ·ln 2. 二、能力提升8.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为( ) A.1e B .-1e C .-e D .e答案 D解析y ′=e x ,设切点为(x 0,y 0),则⎩⎨⎧y 0=kx 0y 0=e x 0k =e x 0.∴e x 0=e x 0·x 0,∴x 0=1,∴k =e.9.曲线y =ln x 在x =a 处的切线倾斜角为π4,则a =________. 答案 1解析 y ′=1x ,∴y ′|x =a =1a =1,∴a =1.10.点P 是曲线y =e x 上任意一点,则点P 到直线y =x 的最小距离为________.答案 22 解析根据题意设平行于直线y =x 的直线与曲线y =e x 相切于点(x 0,y 0),该切点即为与y =x 距离最近的点,如图.则在点(x 0,y 0)处的切线斜率为1,即y ′|x =x 0=1.∵y ′=(e x )′=e x ,∴e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1).利用点到直线的距离公式得距离为22.11.已知f (x )=cos x ,g (x )=x ,求适合f ′(x )+g ′(x )≤0的x 的值. 解 ∵f (x )=cos x ,g (x )=x ,∴f ′(x )=(cos x )′=-sin x ,g ′(x )=x ′=1, 由f ′(x )+g ′(x )≤0,得-sin x +1≤0, 即sin x ≥1,但sin x ∈[-1,1], ∴sin x =1,∴x =2k π+π2,k ∈Z .12.已知抛物线y =x 2,直线x -y -2=0,求抛物线上的点到直线的最短距离. 解 根据题意可知与直线x -y -2=0平行的抛物线y =x 2的切线,对应的切点到直线x -y -2=0的距离最短,设切点坐标为(x 0,x 20),则y ′|x =x 0=2x 0=1,所以x 0=12,所以切点坐标为⎝ ⎛⎭⎪⎫12,14,切点到直线x -y -2=0的距离 d =⎪⎪⎪⎪⎪⎪12-14-22=728,所以抛物线上的点到直线x -y -2=0的最短距离为728. 三、探究与创新13.设f0(x)=sin x,f1(x)=f′0(x),f2(x)=f′1(x),…,f n+1(x)=f′n(x),n∈N,试求f2 014(x).解f1(x)=(sin x)′=cos x,f2(x)=(cos x)′=-sin x,f3(x)=(-sin x)′=-cos x,f4(x)=(-cos x)′=sin x,f5(x)=(sin x)′=f1(x),f6(x)=f2(x),…,f n+4(x)=f n(x),可知周期为4,∴f2 014(x)=f2(x)=-sin x.1.2.2基本初等函数的导数公式及导数的运算法则(二)[学习目标]1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.3.能运用复合函数的求导法则进行复合函数的求导.[知识链接]前面我们已经学习了几个常用函数的导数和基本初等函数的导数公式,这样做起题来比用导数的定义显得格外轻松.我们已经会求f(x)=5和g(x)=1.05x等基本初等函数的导数,那么怎样求f(x)与g(x)的和、差、积、商的导数呢?答利用导数的运算法则.[预习导引]1.导数运算法则2.复合函数的求导法则要点一 利用导数的运算法则求函数的导数 例1 求下列函数的导数: (1) y =x 3-2x +3; (2)y =(x 2+1)(x -1); (3)y =3x -lg x .解 (1)y ′=(x 3)′-(2x )′+3′=3x 2-2. (2)∵y =(x 2+1)(x -1)=x 3-x 2+x -1, ∴y ′=(x 3)′-(x 2)′+x ′-1′=3x 2-2x +1.(3)函数y =3x -lg x 是函数f (x )=3x 与函数g (x )=lg x 的差.由导数公式表分别得出f ′(x )=3x ln 3,g ′(x )=1x ln 10,利用函数差的求导法则可得 (3x -lg x )′=f ′(x )-g ′(x )=3x ln 3-1x ln 10.规律方法 本题是基本函数和(差)的求导问题,求导过程要紧扣求导法则,联系基本函数求导法则,对于不具备求导法则结构形式的可先进行适当的恒等变形转化为较易求导的结构形式再求导数. 跟踪演练1 求下列函数的导数:(1)y=5-4x3;(2)y=3x2+x cos x;(3)y=e x·ln x;(4)y=lg x-1 x2.解(1)y′=-12x2;(2)y′=(3x2+x cos x)′=6x+cos x-x sin x;(3)y′=e xx+ex·ln x;(4)y′=1x ln 10+2x3.要点二求复合函数的导数例2求下列函数的导数:(1)y=ln(x+2);(2)y=(1+sin x)2;解(1)y=ln u,u=x+2∴y′x=y′u·u′x=(ln u)′·(x+2)′=1u·1=1x+2.(2)y=u2,u=1+sin x,∴y x′=y u′·u x′=(u2)′·(1+sin x)′=2u·cos x=2cos x(1+sin x).规律方法应用复合函数的求导法则求导,应注意以下几个方面:(1)中间变量的选取应是基本函数结构.(2)正确分析函数的复合层次,并要弄清每一步是哪个变量对哪个变量的求导.(3)一般是从最外层开始,由外及里,一层层地求导.(4)善于把一部分表达式作为一个整体.(5)最后要把中间变量换成自变量的函数.熟练后,就不必再写中间步骤.跟踪演练2(1)y=e2x+1;(2)y=(x-2)2.解(1)y=e u,u=2x+1,∴y′x=y′u·u′x=(e u)′·(2x+1)′=2e u=2e2x+1.(2)法一∵y=(x-2)2=x-4x+4,∴y′=x′-(4x)′+4′=1-4×12x -12=1-2x .法二 令u =x -2,则y x ′=y u ′·u x ′=2(x -2)·(x -2)′= 2(x -2)⎝ ⎛⎭⎪⎫12·1x -0=1-2x .要点三 导数的应用例3 求过点(1,-1)与曲线f (x )=x 3-2x 相切的直线方程. 解 设P (x 0,y 0)为切点,则切线斜率为 k =f ′(x 0)=3x 20-2故切线方程为y -y 0=(3x 20-2)(x -x 0) ① ∵(x 0,y 0)在曲线上,∴y 0=x 30-2x 0 ②又∵(1,-1)在切线上, ∴将②式和(1,-1)代入①式得-1-(x 30-2x 0)=(3x 20-2)(1-x 0).解得x 0=1或x 0=-12.故所求的切线方程为y +1=x -1或y +1=-54(x -1). 即x -y -2=0或5x +4y -1=0.规律方法 (1,-1)虽然在曲线上,但是经过该点的切线不一定只有一条,即该点有可能是切点,也可能是切线与曲线的交点,解题时注意不要失解. 跟踪演练3 已知某运动着的物体的运动方程为s (t )=t -1t 2+2t 2(位移单位:m ,时间单位:s),求t =3 s 时物体的瞬时速度. 解 ∵s (t )=t -1t 2+2t 2=t t 2-1t 2+2t 2=1t -1t 2+2t 2, ∴s ′(t )=-1t 2+2·1t 3+4t , ∴s ′(3)=-19+227+12=32327,即物体在t =3 s 时的瞬时速度为32327 m/s.1.下列结论不正确的是( )A .若y =3,则y ′=0B .若f (x )=3x +1,则f ′(1)=3C .若y =-x +x ,则y ′=-12x+1D .若y =sin x +cos x ,则y ′=cos x +sin x 答案 D解析 利用求导公式和导数的加、减运算法则求解.D 项,∵y =sin x +cos x , ∴y ′=(sin x )′+(cos x )′=cos x -sin x . 2.函数y =cos x1-x的导数是( ) A.-sin x +x sin x(1-x )2B.x sin x -sin x -cos x(1-x )2C .cos x -sin x +x sin x(1-x )2D.cos x -sin x +x sin x1-x答案 C解析 y ′=⎝ ⎛⎭⎪⎫cos x 1-x ′=(-sin x )(1-x )-cos x ·(-1)(1-x )2=cos x -sin x +x sin x(1-x )2.3.曲线y =xx +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x +2答案A解析∵y′=x′(x+2)-x(x+2)′(x+2)2=2(x+2)2,∴k=y′|x=-1=2(-1+2)2=2,∴切线方程为y+1=2(x+1),即y=2x+1.4.直线y=12x+b是曲线y=ln x(x>0)的一条切线,则实数b=________.答案ln 2-1解析设切点为(x0,y0),∵y′=1x,∴12=1x0,∴x0=2,∴y0=ln 2,ln 2=12×2+b,∴b=ln 2-1.求函数的导数要准确把函数分割为基本函数的和、差、积、商,再利用运算法则求导数.在求导过程中,要仔细分析出函数解析式的结构特征,根据导数运算法则,联系基本函数的导数公式.对于不具备导数运算法则结构形式的要进行适当恒等变形,转化为较易求导的结构形式,再求导数,进而解决一些切线斜率、瞬时速度等问题.一、基础达标1.设y=-2e x sin x,则y′等于()A.-2e x cos x B.-2e x sin xC.2e x sin x D.-2e x(sin x+cos x)答案D解析y′=-2(e x sin x+e x cos x)=-2e x(sin x+cos x).2.当函数y=x2+a2x(a>0)在x=x0处的导数为0时,那么x0=()A .aB .±aC .-aD .a 2答案 B解析 y ′=⎝ ⎛⎭⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2,由x 20-a 2=0得x 0=±a .3.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( )A .2B .12C .-12D .-2答案 D解析 ∵y =x +1x -1=1+2x -1,∴y ′=-2(x -1)2.∴y ′|x =3=-12. ∴-a =2,即a =-2.4.已知曲线y =x 3在点P 处的切线斜率为k ,则当k =3时的P 点坐标为( ) A .(-2,-8) B .(-1,-1)或(1,1) C .(2,8) D .⎝ ⎛⎭⎪⎫-12,-18答案 B解析 y ′=3x 2,∵k =3,∴3x 2=3,∴x =±1, 则P 点坐标为(-1,-1)或(1,1).5.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为________. 答案 4解析 依题意得f ′(x )=g ′(x )+2x , f ′(1)=g ′(1)+2=4.6.已知f (x )=13x 3+3xf ′(0),则f ′(1)=________. 答案 1解析 由于f ′(0)是一常数,所以f ′(x )=x 2+3f ′(0), 令x =0,则f ′(0)=0, ∴f ′(1)=12+3f ′(0)=1. 7.求下列函数的导数: (1)y =(2x 2+3)(3x -1); (2)y =x -sin x 2cos x2.解 (1)法一 y ′=(2x 2+3)′(3x -1)+(2x 2+3)(3x -1)′=4x (3x -1)+3(2x 2+3)=18x 2-4x +9.法二 ∵y =(2x 2+3)(3x -1)=6x 3-2x 2+9x -3, ∴y ′=(6x 3-2x 2+9x -3)′=18x 2-4x +9. (2)∵y =x -sin x 2cos x 2=x -12sin x , ∴y ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x .二、能力提升8.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12 B .12 C .-22 D .22答案 B 解析 y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=1(sin x +cos x )2,故y ′|x =π4=12,∴曲线在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为12.9.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A .[0,π4)B .[π4,π2)C .(π2,3π4]D .[3π4,π)答案 D解析 y ′=-4e x (e x +1)2=-4e x e 2x +2e x +1,设t =e x∈(0,+∞),则y ′=-4t t 2+2t +1=-4t +1t +2,∵t +1t ≥2,∴y ′∈[-1,0),α∈[3π4,π).10.(2020·江西)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(1)=________. 答案 2解析 令t =e x ,则x =ln t ,所以函数为f (t )=ln t +t ,即f (x )=ln x +x ,所以f ′(x )=1x +1,即f ′(1)=11+1=2.11.求过点(2,0)且与曲线y =x 3相切的直线方程.解 点(2,0)不在曲线y =x 3上,可令切点坐标为(x 0,x 30).由题意,所求直线方程的斜率k =x 30-0x 0-2=y ′|x =x 0=3x 20,即x 30x 0-2=3x 20,解得x 0=0或x 0=3.当x 0=0时,得切点坐标是(0,0),斜率k =0,则所求直线方程是y =0; 当x 0=3时,得切点坐标是(3,27),斜率k =27, 则所求直线方程是y -27=27(x -3), 即27x -y -54=0.综上,所求的直线方程为y =0或27x -y -54=0.12.已知曲线f (x )=x 3-3x ,过点A (0,16)作曲线f (x )的切线,求曲线的切线方程. 解 设切点为(x 0,y 0),则由导数定义得切线的斜率k =f ′(x 0)=3x 20-3, ∴切线方程为y =(3x 20-3)x +16, 又切点(x 0,y 0)在切线上,∴y 0=3(x 20-1)x 0+16, 即x 30-3x 0=3(x 20-1)x 0+16,解得x 0=-2,∴切线方程为9x -y +16=0. 三、探究与创新13.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值. (1)解 由7x -4y -12=0得y =74x -3. 当x =2时,y =12,∴f (2)=12, ①又f ′(x )=a +bx 2, ∴f ′(2)=74, ② 由①,②得⎩⎪⎨⎪⎧2a -b 2=12a +b 4=74.解之得⎩⎨⎧a =1b =3.故f (x )=x -3x .(2)证明 设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知 曲线在点P (x 0,y 0)处的切线方程为 y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0),即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0). 令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0.令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0). 所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪⎪⎪-6x 0||2x 0=6.故曲线y=f(x)上任一点处的切线与直线x=0,y=x所围成的三角形的面积为定值,此定值为6.。
1.2 导数的计算(一)
• 求下列函数的导数: • (1)y=x-2;(2)y=cosx;(3)y=log3x; • (4)y=e0.
二.新课 新课
导数的运算法则 (1)函数的和或差的导数 )
[ f ( x) ± g ( x)]′ = f ′( x) ± g ′( x).
推广: 推广 ( f1(x) ± f2(x) ±K± fn(x))′ = f1′(x) ± f2′(x) ±K± fn′(x) (2)函数的积的导数 )
练习与思考:已知两条曲线 练习与思考 已知两条曲线y=sinx,y=cosx,问是否存在 已知两条曲线 问是否存在 这两条曲线的一个公共点,使在这一点处 使在这一点处,两条曲线的 这两条曲线的一个公共点 使在这一点处 两条曲线的 切线互相垂直?并说明理由 并说明理由. 切线互相垂直 并说明理由 设存在一个公共点P(x0,y0)满足题设条件 满足题设条件. 解:设存在一个公共点 设存在一个公共点 满足题设条件 由 y ′ = (sin x )′ = cos x , 得 y ′ | x = x 0 = cos x 0 ;
x =1
2 '
'
(x )= 2 x
1 =− 2 x x
( x) = 2
1 x
函数y=f(x)=1/x的导数: 1 的导数: 函数 的导数 (2):
(xn )′ = nxn−1 (n∈Q) .
练习:求下列函数的导数,并讨论( )( )(3) 练习:求下列函数的导数,并讨论(1)( )在x=0处 处 的切线情况。 的切线情况。
(1) y = x
3
(3):
( 2) y =
1 x
(3) y = x
3
. (sin x)′ = cos x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x 0
x
lim 3( x x) 3x lim 3 3 O
x 0
x
x 0
3. 求函数y 4x的导数:
y
解:同理可得:y ' 4
4.求函数y kx(k 0)增(减)
的快慢与什么有关?与 | k | 有关. O
y 2x
x
y 3x
x
y 4x
x
例3:求函数y f ( x) x2的导数。
f ( x) A( x)
二、应用举例
例1:求函数y f ( x) c(c为常数)的导数 y
解:y ' lim f ( x x) f ( x)
x 0
x
cc
lim
lim 0 0
O
x x0
x0
yc
x
公式1:(C) 0 (C是常数)
从物理的角度理解:
若y c表示路程关于时间的函数,则: y ' 0表示物体在任意时刻的瞬时速度始终为0, 即物体一直处于静止状态。
当x 0时,随着x的增加,y x2增加得越来越快
从物理的角度理解:
若y x2表示路程关于时间的函数,则: y ' 2x表示物体做变速运动,在时刻x的瞬时速度为2x
课堂练习
求函数y f ( x) x3的导数。
解:y ' f '( x) lim f ( x x) f ( x)
x0
x
பைடு நூலகம்
x0
x( x x x )
lim
1
x0 x x x
1 2x
学生活动:请同学们归纳各题的导数
(1)y f (x) x1
y ' 1 1x11
(2)y f (x) x2
y' 2x 2x21
(3)y f (x) x3
(4)y f (x) 1 x1 x
1
(5)y f (x) x x 2
lim
x0
x
1
x x
1 x
lim
x0
(x
1 x)x
1 x2
O
x
y ' |x1
1 x2
|x1
1, 斜率k
1
所求方程为:x y 2 0
例5:求函数y f ( x) x的导数。
解:y' lim f ( x x) f ( x)
x0
x
x x x
lim
x0
x
lim ( x x x )( x x x )
(1) y (x5 ) 5x51 5x4;
(2) y (x2 ) 2x21 2x3;
(3)
y
3x
1
(x3 )
1
1 1
x3
3
1
x
2 3
3
1
3
3
x2
;
三、小结
1.导函数的概念:
函数y f ( x)在任意一点x处的导数f '( x)
(或记作y ')称为f ( x)的导函数,简称导数。
例2:求函数y f ( x) x的导数
解:y ' lim f ( x x) f ( x)
y
x 0
x
lim ( x x) x lim 1 1
x 0
x
x0
O
y x
x
从物理的角度理解:
若y x表示路程关于时间的函数,则: y ' 1表示物体在任意时刻的瞬时速度始终为1, 即物体做速度为1的匀速运动。
'( x0 )
函数y f ( x)在x x0处的导数就是过其
图象上点(x0 , f ( x0))处的切线的斜率(k)
思考: 如何由导数定义求函数的导数? 根据导数的概念,求函数导数的过程可以 用下面的流程图来表示
给定函数y f(x)
计算 y (f x x) (f x)
x
x
x 0
y A( x) x
解:y ' lim f ( x x) f ( x)
x 0
x
lim ( x x)2 x2 lim 2x x (x)2
x 0
x
x 0
x
lim(2x x) 2x x0 从几何的角度理解:
y' 2x表示y x2图像上各点处的切线斜率为2x
且随着x的变化,斜率在变化
当x 0时,随着x的增加,y x2减小得越来越慢
y' 3x2 3x31
-1x y' - 1 x2
-11
x2
y'
1
1
1
x2
2x 2
1
1 1
x2
2
猜想? 当f (x) xn 时
f'(x)=n?xn-1 nQ
练习:求下列幂函数的导数
(1) y x5 (2) y x2 (3) y 3 x (x ) x1
解: 利用幂函数的导数公式,得
f ( x+x) f ( x)
f '( x) y ' lim
x0
x
2.常用函数的导数公式:
公式1:(C) 0 (C是常数)
(xn)' nxn1(n Q)
能力训练提升
1.已知y x3,求f (2).
解: y (x3 ) 3x31 3x2
f (2) 3 (2)2 12
2.已知y
一、知识回顾
1.导函数的概念
函数y f ( x)在任意一点x处的导数f '( x)
(或记作y '), 称为f ( x)的导函数,简称导数。
f ( x+x) f ( x)
f '( x) y ' lim
x0
x
2.导数的几何意义
k lim x0
f ( x0+x) x
f ( x0 )
f
P13探究
y
1. 求函数y 2x的导数
解:y ' f '( x) lim f ( x x) f ( x)
x 0
x
O
2( x x) 2x
lim
lim 2 2
x 0
x
x 0
2. 求函数y 3x的导数
y
解:y ' f '( x) lim f ( x x) f ( x)
lim ( x x)3 x3 lim 3x2 x 3x(x)2 3(x)3
x0
x
x0
x
lim (3x2 3x x 3(x)2 ) 3x2 x0
例4:求函数y f ( x) 1 的导数。 x
解:y' lim f ( x x) f ( x)
x0
x
P14探究
y y 1 x
y x 1 4
四、作业
1) P18 A组 5 2) 预习
1 x2
, 求f
(3).
解: y (x2 ) 2x21 2x3
f (3) 2 (3)3 2 1 2 27 27
3.已知y 4 x
1)求y '
2)求曲线在点(1,1)处的切线方程
y'
1
3
x4
y 1x3
4
44
4.已知P(1,1),Q(2,4)是曲线y x2上得两点
求与直线PQ平行的曲线y x2的切线方程