新人教版八年级数学上轴对称》全章导学案

合集下载

人教版-数学-八年级上册-13-1 轴对称 导学案6

人教版-数学-八年级上册-13-1 轴对称 导学案6

轴对称
一、学习目标:
1、理解轴对称图形、两个图形关于某直线对称的概念。

2、了解轴对称图形的对称轴,两个图形关于某直线对称的对称轴、对应点。

3、了解轴对称图形与两个图形关于某直线对称的区别与联系。

教学重、难点
重点:轴对称图形和两个图形关于某直线对称的概念。

难点:比较观察轴对称图形和两个图形关于某直线对称的区别与联系。

二、自主预习:
三、合作探究:
探究1:画轴对称图形的对称轴。

四、当堂评价:
五、拓展提升:
六、课后检测:
七、课堂小结:学生总结,这堂课我们学到了什么?
八、教学反思:。

八年级数学上册第十二章轴对称导学案

八年级数学上册第十二章轴对称导学案

八年级数学上册第十二章《轴对称》导学案学习课题:12.1轴对称(第一课时)学习内容:教材P29-31学习目标:一、通过实例熟悉轴对称,把握轴对称图形和关于直线成轴对称这两个概念。

二、培育自己的观看能力、思维能力、操作能力、归纳能力。

学习重点:准确把握轴对称图形和关于直线成轴对称这两个概念的实质。

学习难点:轴对称图形和关于直线成轴对称的区别和联系。

学习方式:操作,归纳。

学习进程:一、情景创设看教材P29图12.1-1(将生活中的对称美牵引到数学中来)二、探讨研讨(一)轴对称图形一、做一做把一张对折,剪出一个图案(折痕处不要完全剪断),想一想,展开后会是一个什么样的图形?二、看一看,想一想细心观看一些日常生活中常见的动物图片如学习课题:12.1轴对称(第一课时)学习内容:教材P29-31学习目标:一、通过实例熟悉轴对称,把握轴对称图形和关于直线成轴对称这两个概念。

二、培育自己的观看能力、思维能力、操作能力、归纳能力。

学习重点:准确把握轴对称图形和关于直线成轴对称这两个概念的实质。

学习难点:轴对称图形和关于直线成轴对称的区别和联系。

学习方式:操作,归纳。

学习进程:一、情景创设看教材P29图12.1-1(将生活中的对称美牵引到数学中来)二、探讨研讨(一)轴对称图形一、做一做把一张对折,剪出一个图案(折痕处不要完全剪断),想一想,展开后会是一个什么样的图形?二、看一看,想一想细心观看一些日常生活中常见的动物图片如学习课题:12.1轴对称(第一课时)学习内容:教材P29-31学习目标:一、通过实例熟悉轴对称,把握轴对称图形和关于直线成轴对称这两个概念。

二、培育自己的观看能力、思维能力、操作能力、归纳能力。

学习重点:准确把握轴对称图形和关于直线成轴对称这两个概念的实质。

学习难点:轴对称图形和关于直线成轴对称的区别和联系。

学习方式:操作,归纳。

学习进程:一、情景创设看教材P29图12.1-1(将生活中的对称美牵引到数学中来)二、探讨研讨(一)轴对称图形一、做一做把一张对折,剪出一个图案(折痕处不要完全剪断),想一想,展开后会是一个什么样的图形?二、看一看,想一想细心观看一些日常生活中常见的动物图片如。

新人教版八年级数学上册第13章《轴对称》教案(全章)

新人教版八年级数学上册第13章《轴对称》教案(全章)

第1课时轴对称(1)教学目标1.在生活实例中认识轴对称图.2.分析轴对称图形,理解轴对称的概念.教学重点由具体情境抽象出轴对称图形与轴对称的概念.教学难点理解轴对称与轴对称图形之间的区别与联系.教学互动设计设计意图一、创设情境感受新知【问题】观察、讨论、交流,尝试用自己的语言描述这些实物、图片的共同特征小结:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,?甚至日常生活用品,人们都可以找到对称的例子.现在同学们就从我们生活周围的事物中来找一些具有对称特征的例子.我们的黑板、课桌、椅子等.我们的身体,还有飞机、汽车、枫叶等都是对称的.这些图形都是对称的.这些图形从中间分开后,左右两部分能够完全重合.二、合作交流解读探究⑴轴对称图形1、做一做把一张纸对折,剪出一个图案(折痕处不要完全剪断),想一想,展开后会是一个什么样的图形?位于折痕两侧图案有什么关系?2、想一想日常生活中常见的动物图片如:蝴蝶、蜻蜓、对称简笔画等,能发现它们有什么共同特征?3、轴对称图形定义:如果一个图形沿一条折叠,直线两旁的部分能够这个图形就叫做轴对称图形。

就是它的对称轴。

⑵轴对称1、做一做: 折纸印墨迹问题1:你发现折痕两边的墨迹形状一样吗?问题2:两边墨迹的位置与折痕有什么关系?2、想一想: 教材P30-----思考3、轴对称定义把一个图形沿着某一条直线折叠,如果它能够与重合,那么就说这两个图形关于这条直线成轴对称。

这条直线就是,两个图形中的对应点(即两个图形重合时互相重叠的点)叫做。

⑶关于某条直线成轴对称的图形的性质特征经过学生讨论,找到特征后,引导学生归纳轴对称图形的概念.学生观察图片,在独立思考的基础1、想一想:教材P31 ---思考1结论:2、轴对称与轴对称图形的联系与区别.轴对称图形轴对称区别联系如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线成轴对称;反过来,?如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形.上进行交流,共同总结每对图形所具有的特征,学生可能发现:沿某条直线对折,两个图形能够完全重合.三、应用迁移巩固提高【例1】下列汉字,如果用一样粗细的笔写出来,哪些是轴对称图形?是轴对称图形的,有几条对称轴?大小口中朋木【例2】在26个英文字母中,请你说出几个成轴对称图形的字母,并且指出有几条对称轴【例3】判断下面每组图形是否关于某条直线成轴对称.【例4】标出下列图形中的对称点【例5】观察下列各种图形,判断是不是轴对称图形,若是,请画出对称轴。

新人教版八年级数学上册第十三章《轴对称》导学案

新人教版八年级数学上册第十三章《轴对称》导学案

第十三章轴对称13.1.1 轴对称学习目标1、初步认识轴对称图形;判掌握关于某条直线成轴对称的两个图形的对应线段相等、对应角相等;2、断一个图形是否是轴对称图形;理解轴对称图形和两个图形成轴对称这两个概念的区别与联系。

3、能够判别两个图形是否成轴对称。

通过试验,归纳出轴对称图形概念,能用概念;培养良好的动手试验能力、归纳能力和语言表述能力。

重点:理解轴对称图形的概念;轴对称图形的对应线段相等、对应角相等难点:判断图形是否是轴对称图形;两个图形成轴对称与轴对称图形两个概念的区别与联系。

一、预习新知P581、观察课本中的7副图片,你能找出它们的共同特征吗?2、你能列举出一些现实生活中具有这种特征的物体和建筑物吗?3、动手做一做:把一张纸对折,然后从折叠处剪出一个图形,展开后会是一个什么样的图形?它有什么特征?4、如果一个图形沿一条__________折叠,________两旁的部分能够完全________.这个图形就叫做轴对称图形,这条________就是它的对称轴,这时,我们也说这个图形关于这条_________(成轴) 对称.5、观察课本P59图13.1-3中的三幅图形,并试着沿虚线折叠,每对图形有什么共同特征?6、一个图形沿着某条直线折叠,如果他能够与________重合,那么就说_______关于这条直线对称,这条直线叫做__________,折叠后________叫做对称点.7、在课本中的图13.1-3的第三个图中,(1)标出A、B、C的对称点,∠A、∠B、∠C的对应角,(2)连接AA′,BB′,CC′,你发现这三条线段有什么关系?你找到规律了吗?8、成轴对称的两个图形全等吗?为什么?9、全等的两个图形成轴对称吗?试举例说明。

(可以画图说明)10、课本P60练习题做下面的题,检验你预习的结果1、轴对称图形的对称轴是一条___________(A ) (B ) (C )(D )(A ) (B ) (C ) (D ) A 直线 B 射线 C 线段1、 右面的图形是轴对称图形吗?如果是,指出对称轴。

新人教八年级数学上册13.1轴对称导学案

新人教八年级数学上册13.1轴对称导学案

新人教八年级数学上册13.1轴对称导学案【学习目标】1、(知识与技能):通过实例认识轴对称,掌握轴对称图形和关于直线成轴对称这两个概念。

2、(过程与方法):通过独立思考、小组合作、展示质疑发展学生的观察、归纳、想象能力3、(情感、态度与价值观):激情投入,快乐学习,感受对称美,培养良好的动手试验能力、归纳能力和语言表述能力【重点难点】重点:对轴对称图形与轴对称概念的理解。

难点:轴对称图形与轴对称的联系与区别。

【学法指导】采用“观察——实践——自主探究——合作探究”的方法.指导学生学会观察事物,善于把握事物规律与本质的学习方法.通过自主探究、合作探究导学过程方法导引课前导学案【自主学习,基础过关】一、课前准备每小组准备若干张干净整洁能折叠的纸,剪刀,墨水。

二、动手、观察实验,探究结论观察、讨论、交流,尝试用自己的语言描述这些实物、图片的共同特征共同特征:___________________________________________________________<一> 轴对称图形1、做一做把一张纸对折,剪出一个图案(折痕处不要完全剪断),想一想,展开后会是一个什么样的图形?位于折痕两侧图案有什么关系?2、想一想日常生活中常见的动物图片如:蝴蝶、蜻蜓、对称简笔画等,能发现它们有什么共同特征?3、轴对称图形定义:如果一个图形沿一条折叠,直线两旁的部分能够这个图形就叫做轴对称图形。

就是它的对称轴。

鼓励学生独立自主解决问题,让学生初步感受通过动手操作来掌握掌握轴对称图形和关于直线成轴对称这两个概念,引导学生由观察得到的感性认识。

由学生通过作图,通过实例认识轴对称,掌握轴对称图形和关于直线<二> 轴对称1、做一做: 折纸印墨迹问题1:你发现折痕两边的墨迹形状一样吗?问题2:两边墨迹的位置与折痕有什么关系?2、想一想: 教材P59-----思考1(最上面一个)3、轴对称定义把一个图形沿着某一条直线折叠,如果它能够与重合,那么就说这两个图形关于这条直线成轴对称。

新人教八年级数学上册导学案:13.1.1 轴对称

新人教八年级数学上册导学案:13.1.1 轴对称

新人教八年级数学上册导学案:13.1.1 轴对称【学习目标】1.初步认识轴对称图形;2. 理解轴对称图形和两个图形成轴对称这两个概念的区别与联系,能用概念判断一个图形是否是轴对称图形;3.通过动手实验,掌握关于某条直线成轴对称的两个图形是全等的。

重点:轴对称图形的性质难点:两个图形成轴对称与轴对称图形两个概念的区别与联系。

一、【预习导学】【问题探究一】轴对称图形1、观察课本P58图13.1-1中的6幅图,你能找出它们的共同特征吗?2、你能列举出一些现实生活中具有这种特征的物体和建筑物吗?3、动手做一做:把一张纸对折,然后从折叠处随意剪出一个图形,展开后得到的图形是的,即能够沿完全重合。

【归纳总结】如果一个平面图形沿一条_____折叠,_____两旁的部分能够互相_____,这个图形就叫做轴对称图形,这条____就是它的对称轴,这时,我们也说这个图形关于这条____(成轴) 对称.【探究一自测】下面的图形是轴对称图形吗?如果是,指出对称轴。

【问题探究二】轴对称观察课本P59的图13.1-3中的3幅图形,并沿虚线折叠,虚线两旁的部分能。

【归纳总结】一个图形沿着某条直线折叠,如果他能够与________重合,那么就说这两个图形关于这条直线对称,这条直线叫做_______,折叠后________叫做对称点.【讨论】1、成轴对称的两个图形全等吗?为什么?班级姓名第小组2、全等的两个图形成轴对称吗?试举例说明。

(可以画图说明)【问题探究三】轴对称的性质阅读课本P59最后一个“思考”及P60“练习”前面的内容,解决下列……………………………………1.(1)设AA′交对称轴MN于点P,将△ABC和△A′B′C′沿MN折叠后,点A与A′重合吗?(PA =,∠MPA==度)(2)对于其他的对应点,如点B,B′;C,C′也有类似的情况吗?(3)那么MN与线段AA′,BB′,CC′的连线有什么关系呢?2、垂直平分线的定义:经过线段并且这条线段的直线,叫做这条线段的垂直平分线 .【归纳总结】如果两个图形关于某条直线对称,那么是任何一对对应点所连线段的。

(完整版)新人教版八年级数学上册导学案(全-有答案)

(完整版)新人教版八年级数学上册导学案(全-有答案)

教学目标:河南省实验中学资料第一章轴对称与轴对称图形1.1 我们身边的轴对称图形1、观察、感受生活中的轴对称图形,认识轴对称图形。

2、能判断一个图形是否是轴对称图形。

3、理解两个图形关于某条直线成轴对称的意义。

4、正确区分轴对称图形与两个图形关于某条直线成轴对称。

5、理解并能应用轴对称的有关性质。

教学重点:1、能判断一个图形是否是轴对称图形。

2、轴对称的有关性质。

难点:1、判断一个图形是否是轴对称图形。

2、正确区分轴对称图形与两个图形关于某条直线成轴对称。

教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。

学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。

教师巡回指导、点评。

2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。

3、教师给出轴对称图形的定义。

问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。

⑴指形状相同,大小相等。

⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则从轴对称的角度,你觉得哪些图形比较独特?简要说明你的理由。

5、画出一个只有三条对称轴的轴对称图形。

A B CD必然经过这个图形的本身。

⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。

4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论? 学生思考、讨论、交流。

5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图 1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系? 7、教师给出两个图形关于某条直线成轴对称的定义。

八年级数学上册 13.1.1 轴对称导学案(含解析)(新版)新人教版

八年级数学上册 13.1.1 轴对称导学案(含解析)(新版)新人教版

八年级数学上册 13.1.1 轴对称导学案(含解析)(新版)新人教版一、新课导入1、轴对称图形是我们经常见到的图形,你能列举出日常生活中见到过的轴对称图形吗?2、对于轴对称图形,你了解了哪些方面的知识?你能画一个轴对称图形吗?二、学习目标1、掌握关于轴对称的概念;2、掌握掌握轴对称的性质,利用轴对称的性质解决问题。

三、研读课本认真阅读课本的内容,完成以下练习。

(一)划出你认为重点的语句。

(二)完成下面练习,并体验知识点的形成过程。

研读一、认真阅读课本要求:知道轴对称的定义;能说出关于某直线轴对称的两个图形的对应点、对应边、对应角。

一边阅读一边完成检测一。

检测练习一、1、把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,折叠后重合的两点叫对应点也叫对称点,重合的两个角叫对应角,重合的两条边叫对应边。

2、如图,把△ABC沿直线MN折叠后,可以与△A′B′C′重合,则△ABC与△A′B′C′关于直线MN轴对称,直线MN是对称轴,点A′、B′、C′分别是点A、B、C 的对称点,线段AB、AC、BC分别是线段A′B′、A′C′、B′C′的对应边,∠A、∠B、∠C分别是∠A′、∠B′、∠C′的对应角。

3、轴对称是两个图形的位置关系,对称轴是一条直线。

4、如下图所示,把左边的五边形沿虚线折叠后可以与右边的五边形重合,这两个五边形关于这条直线轴对称,这条直线是这两个五边形的对称轴,点A的对称点是点B,点C的对称点是点D。

研读二、认真阅读课本要求:理解轴对称与轴对称图形的联系与区别;下图中蝴蝶左边的翅膀与右边的翅膀关于直线轴对称,这个蝴蝶是轴对称图形;6、把成轴对称的两个图形看成一个整体,它就是一个轴对称图形、把一个轴对称图形沿对称轴分成两个图形,这两个图形关于对称轴轴对称。

7、轴对称图形是具有特殊性质的一个图形;轴对称是两个图形的位置关系。

结论:轴对称图形只涉及到一个图形,轴对称涉及到两个图形、检测练习二、8、等腰三角形是轴对称图形,等腰三角形有1条对称轴,等腰三角形的对称轴是底边上的高所在的直线;9、圆是轴对称图形,圆有无数条对称轴,圆的对称轴是圆的直径所在的直线。

人教版数学八年级上册《轴对称》教学全章设计

人教版数学八年级上册《轴对称》教学全章设计

人教版数学八年级上册《轴对称》教学全章设计一、教学目标1. 理解轴对称的概念和特征。

2. 学会判断图形是否具有轴对称性。

3. 掌握绘制具有轴对称性的图形的方法。

4. 运用轴对称的知识解决实际问题。

二、教学内容1. 轴对称的概念和特征。

2. 判断图形是否具有轴对称性的方法。

3. 绘制具有轴对称性的图形的方法。

4. 运用轴对称的知识解决实际问题的例题。

三、教学重点1. 理解轴对称的概念和特征。

2. 学会判断图形是否具有轴对称性。

3. 掌握绘制具有轴对称性的图形的方法。

四、教学难点1. 运用轴对称的知识解决实际问题的例题。

2. 绘制具有轴对称性的图形的方法。

五、教学方法1. 导入法:通过展示一些具有轴对称性的图形,引起学生对轴对称的兴趣。

2. 讲授法:通过讲解轴对称的概念、特征以及判断和绘制轴对称图形的方法,提高学生的理解和操作能力。

3. 练习法:设计一系列练习题,让学生进行判断和绘制轴对称图形的练习,巩固所学知识。

4. 案例法:引导学生通过解决实际问题的案例,运用轴对称的知识,培养学生的应用能力。

六、教学步骤1. 导入:展示一些具有轴对称性的图形,引起学生对轴对称的兴趣。

2. 引入:介绍轴对称的概念和特征,让学生对轴对称有一个初步的了解。

3. 讲解:详细讲解判断图形是否具有轴对称性的方法,以及绘制具有轴对称性的图形的方法。

4. 练习:设计一些练习题,让学生进行判断和绘制轴对称图形的练习。

5. 拓展:通过解决实际问题的案例,让学生运用轴对称的知识解决问题。

6. 总结:对轴对称的概念、特征和操作方法进行总结,并强调学习的重点和难点。

7. 作业布置:布置相关的课后作业,巩固所学知识。

七、教学资源1. 人教版数学八年级上册教材。

2. 多媒体投影仪、电脑、幻灯片等教学设备。

3. 相关练习题和案例题。

八、教学评价1. 课堂表现:观察学生的积极性、参与度和表现情况。

2. 练习成绩:检查学生在练习中的答题情况和得分情况。

新人教版八年级数学上册《13.1——13.2轴对称复习》导学案

新人教版八年级数学上册《13.1——13.2轴对称复习》导学案

新人教版八年级数学上册《13.1——13.2轴对称复习》导学案班级小组姓名一、学习目标:目标:对轴对称的概念、性质、判定及画法的进一步巩固和应用二、知识点回顾三、考点透视考点1:轴对称的概念及性质:1、下面是我们熟悉的四个交通标志图形,请从几何图形的性质考虑,哪一个..与其他三个..不同?请指出这个图形,并说明理由.答:这个图形是(写出序号即可),理由是.2、已知△ABC与△A1B1C1关于直线MN对称,且BC与B1C1交于直线MN上一点O,则() A.点O是BC的中点; B.点O是B1C1的中点; C.线段OA与OA1关于直线MN对称; D.以上都不对.3、已知平面上的两点A、B,下列说法不正确的是()A.点A、B关于AB的中垂线对称B.点A、B可以看作以直线AB为轴的轴对称图形C.点A、B是轴对称图形,有且只有一条对称轴D.点A、B是轴对称图形,有两条对称轴4、如图,若两个三角形关于某条直线对称,∠1=110°,∠2=46°,则x= .5、如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=65°,则∠AED′等于 .6、在平面镜里看到背后墙上的电子钟示数如图所示,这时的实际时间应是()A. 21:02B. 21:05C. 20:15D. 20:05考点2:线段垂直平分线的性质7、 如图,有A 、B 、C 三个村庄,现要建一个车站,到三个村庄的距离相等,这样的车站选址有( ) A.1处 B. 2处 C. 3处 D. 4处8、如图:△ABC 中,AB=AC=5,AB 的垂直平分线DE 交AB 、AC 于E 、D , ① 若△BCD 的周长为8,求BC 的长;② 若BC=4,求△BCD 的周长.9、如图,已知AB 比AC 长3cm ,BC 的垂直平分线交AB 于D ,交BC 于E ,△ACD•的周长是15cm ,求AB 和AC 的长.考点3:线段垂直平分线的判定:10、点P 是△ABC 中边AB 的垂直平分线上的点,则一定有( ) A .PB=PC B.PA=PC C.PA=PB D.点P 到∠ABC 的两边距离相等(7题)(8题)∶(4题)(5题)(6题)(9题)11、下列说法错误的是()A.D、E是线段AB的垂直平分线上的两点,则 AD=BD,AE=BEB.若AD=BD,AE=BE,则线段DE是线段AB的垂直平分线C.若PA=PB,则点P在线段AB的垂直平分线上D.若PA=PB,则过点P的直线是线段AB的垂直平分线12、已知E是∠AOB的平分线上一点,EC⊥OA ,ED⊥OB 垂足分别为C、D.求证:OE是CD的垂直平分线.考点4:轴对称的作图13、如图,方格纸上画有AB、CD两条线段,按下列要求作图(不保留作图痕迹,不要求写出作法)(1)请你在图(1)中画出线段AB关于CD所在直线成轴对称的图形;(2)请你在图(2)中添上一条线段,使图中的3条线段组成一个轴对称图形,请画出所有情形。

人教版数学八年级上全章导学案 第13章轴对称全章导学案

人教版数学八年级上全章导学案 第13章轴对称全章导学案

人教版数学八年级上全章导学案 第13章轴对称全章导学案 人教版数学八年级上导学案 13.1.2 线段的垂直平分线的性质第1课时 线段的垂直平分线的性质和判定一、学习目标1、掌握线段垂直平分线的性质2、掌握线段垂直平分线的判定3、运用线段垂直平分线的性质解决问题二、复习右面的图形是轴对称图形吗?如果是,画出它的对称轴。

三、探究(一) 教材探究问题1、 量出AP 1、AP2、AP3、与BP 1、BP 2、BP 3…讨论发现什么样的规律: 。

总结线段垂直平分线的性质 : 2、你能利用判定两个三角形全等的方法证明这个性质吗? 如图(1),直线l AB ⊥,垂足是C ,AC=BC,点P 在l 上。

求证: PA PB =探究(二)反过来,图(2)中如果PA=PB,那么点P 是否在线段AB 的垂直平分线上呢?说明理由. (1)已知: (2)求证:(3)需要作辅助线吗?怎么作?证明:AB总结线段垂直平分线的性质判定:四、练习1.如右图所示,△ABC 中,BC =10,边BC 的垂直平分线分别交AB 、BC 于点E 、D ,BE =6,求△BCE 的周长。

2、如图,△ABC 中,AB =AC =18cm ,BC = 10cm ,AB 的垂直平分线ED 交AC 于D 点,求:△BCD 的周长。

五、小结与反思:人教版数学八年级上导学案第2课时线段的垂直平分线的有关作图一、学习目标1、会依据轴对称的性质找出两个图形成轴对称及轴对称图形的对称轴;2、掌握作出轴对称图形的对称轴的方法,即线段垂直平分线的尺规作图。

二、温故知新(口答)1、下面的图形是轴对称图形吗?如果是,请说出它的对称轴。

2、如果两个图形关于某条直线对称,那么对称轴是任何一对所连的线.3、与一条线段两个端点距离相等的点,在这条线段的上。

三、自主探究合作展示【问题】1、如果我们感觉两个图形是成轴对称的,你准备用什么方法去验证?2、两个成轴对称的图形,不经过折叠,你有什么方法画出它的对称轴?归纳:作轴对称图形的对称轴的方法是:找到一对,作出连接它们的的线,就可以得到这两个图形的对称轴.【新知应用】例题1:如图(1),点A和点B关于某条直线成轴对称,你能作出这条直线吗?1、请同学们按照以下作法在图(1)中完成作图。

第1章-轴对称图形-全章导学案(含答案)

第1章-轴对称图形-全章导学案(含答案)

课题1.1轴对称与轴对称图形自主空间学习目标1、能够认识轴对称和轴对称图形,并能找出对称轴2、知道轴对称与轴对称图形的区别与联系3、经历观察生活中的轴对称现象和轴对称图形,探索它们的共同特征的活动过程,发展空间观念。

4、欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的广泛应用和它的丰富的文化价值,培养学生的审美观学习重难点轴对称与轴对称图形的概念及识别以及轴对称与轴对称图形的区别和联系教学流程预习导航问题:下列图片形状是怎么样的?它们有什么共同的特性?这些图片的形状是:它们的共同特征是:把图形沿着某一条直线,直线两旁的部分能够。

操作:把一张纸对折,然后从折叠处剪出一个图形;想一想:把纸展开后会是什么样的图形?位于折痕两侧的图案有什么关系?它是否也具有上述图形的共同特征?合作探究一、概念探究:1、活动:折纸印墨迹:让学生分组活动,在纸的一侧滴上墨水后,对折、压平,再展开,每组展示所得到的结果。

问题(1):你发现折痕两边的墨迹形状一样吗?为什么?问题(2):两边墨迹的位置与折痕有什么关系?2、归纳:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。

把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴。

3、思考:你能说明轴对称与轴对称图形的区别与联系吗?如果把成轴对称的两个图形看成一个整体,那么这个整体就是一个;(1)(2)(3) (4)图1如果把一个轴对称图形位于轴对称两旁的部分看成两个图形,那么这两部分就成 . 二、例题分析:下列图形是否是轴对称图形,如果是,请找出它的所有的对称轴。

问题(1)、判断一个图案是否是轴对称图形的关键是 问题(2)、根据轴对称图形的定义,你觉得能否用对折的方法进行检验?思考:正三角形有 条对称轴 正四边形有 条对称轴 正五边形有 条对称轴 正六边形有 条对称轴 圆有 条对称轴小结:一个轴对称图形的对称轴的条数 。

八年级上册《轴对称》全章教学设计-人教版数学

八年级上册《轴对称》全章教学设计-人教版数学

八年级上册《轴对称》全章教学设计-人教版数学教学目标1. 理解轴对称的概念和特点。

2. 能够通过折纸法判断图形是否具有轴对称性。

3. 能够找出图形的轴对称轴,并在图形上标出。

4. 能够绘制具有轴对称性的图形。

教学内容1. 轴对称的概念和特点。

2. 折纸法判断图形是否具有轴对称性。

3. 找出图形的轴对称轴,并在图形上标出。

4. 绘制具有轴对称性的图形。

教学步骤1. 导入:通过展示一些具有轴对称性的图形,引起学生对轴对称的兴趣,并让学生尝试找出这些图形的轴对称轴。

2. 概念讲解:简要介绍轴对称的概念和特点,帮助学生理解轴对称的含义。

3. 折纸法示范:通过折纸法示范,让学生亲自体验如何判断图形是否具有轴对称性。

4. 折纸法练习:给学生发放一些图形卡片,让他们用折纸法判断图形是否具有轴对称性,并在卡片上标出轴对称轴。

5. 轴对称轴的寻找:给学生展示一些图形,并要求他们找出图形的轴对称轴,并在图形上标出。

6. 绘制轴对称图形:让学生根据给定的图形和轴对称轴,绘制具有轴对称性的图形。

7. 练习与巩固:布置一些练习题,让学生独立完成,巩固所学的知识。

8. 总结与评价:对本节课的内容进行总结,并对学生的表现进行评价。

教学资源1. 具有轴对称性的图形卡片。

2. 折纸。

3. 练习题。

教学评价1. 学生在折纸法判断图形是否具有轴对称性时的准确率。

2. 学生能否找出图形的轴对称轴,并在图形上标出。

3. 学生绘制轴对称图形的准确性和美观度。

教学延伸1. 引导学生思考轴对称与镜像对称的异同点。

2. 让学生寻找日常生活中具有轴对称性的物体,并进行观察和记录。

教学反思本节课通过折纸法和绘制图形等多种教学方法,帮助学生理解和掌握了轴对称的概念和特点。

在教学过程中,学生积极参与,对于折纸法的应用有了更深入的理解。

同时,教师还能够及时发现和纠正学生的错误,提高了学习效果。

下一步可以进一步引导学生拓展思维,将轴对称与其他数学知识进行联系,提高学生的综合应用能力。

八年级数学上册第13章《轴对称》全章教案(人教版)

八年级数学上册第13章《轴对称》全章教案(人教版)

13.1轴对称13.1.1轴对称1.在生活实例中认识轴对称图形.(重点)2.分析轴对称图形,理解轴对称的概念.(重点)3.通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形及其对称轴.(难点)一、情境导入请同学们认真观看动画片,听故事,思考最后的问题.(配合动画讲故事)故事:在小河边的花丛中,有一只美丽的蝴蝶正在采花蜜.忽然,来了一只蜻蜓在它面前飞来飞去,蝴蝶生气地说:“谁在跟我捣乱?”蜻蜓笑嘻嘻地说:“你怎么连一家人都不认识了,我是来找你玩的.”这时蝴蝶更生气了,说道:“你是蜻蜓,我是蝴蝶,我们怎么可能是一家呢?”于是,蜻蜓就落在了旁边的一片叶子上,说:“这你就不知道了吧,不仅蜻蜓、蝴蝶是一家,有些树叶,还有我们身边的很多物体都和我们是一家呢.”(播放动画)思考问题:为什么蜻蜓、蝴蝶、树叶是一家?二、合作探究探究点一:轴对称图形【类型一】轴对称图形的识别下列体育运动标志中,从图案看不是轴对称图形的有( )A.4个 B.3个 C.2个 D.1个解析:根据轴对称图形的概念可得(1)(2)(4)都不是轴对称图形,只有(3)是轴对称图形.故选B.方法总结:要确定一个图形是否是轴对称图形要根据定义进行判断,关键是寻找对称轴,图形两部分折叠后可重合.【类型二】判断对称轴的条数下列轴对称图形中,恰好有两条对称轴的是( )A .正方形B .等腰三角形C .长方形D .圆解析:A.正方形有四条对称轴;B.等腰三角形有一条对称轴;C.长方形有两条对称轴;D.圆有无数条对称轴.故选C.方法总结:判断对称轴的条数,仍然是根据定义进行判断,判断轴对称图形的关键是寻找对称轴,注意不要遗漏.探究点二:轴对称及轴对称图形的性质【类型一】 应用轴对称的性质求角度如图,一种滑翔伞的形状是左右成轴对称的四边形ABCD ,其中∠BAD =150°,∠B =40°,则∠BCD 的度数是( )A .130°B .150°C .40°D .65°解析:∵这种滑翔伞的形状是左右成轴对称的四边形ABCD ,其中∠BAD =150°,∠B =40°,∴∠D =40°,∴∠BCD =360°-150°-40°-40°=130°.故选A.方法总结:轴对称其实就是一种全等变换,所以轴对称往往和三角形的内角和、外角的性质综合考查.【类型二】 利用轴对称的性质求阴影部分的面积如图,正方形ABCD 的边长为4cm ,则图中阴影部分的面积为( )A .4cm 2B .8cm 2C .12cm 2D .16cm 2解析:根据正方形的轴对称性可得,阴影部分的面积等于正方形ABCD 面积的一半,∵正方形ABCD 的边长为4cm ,∴S 阴影=12×42=8(cm)2.故选B. 方法总结:正方形是轴对称图形,根据图形判断出阴影部分的面积等于正方形面积的一半是解题的关键.【类型三】 用轴对称的性质证明线段之间的关系如图,O 为△ABC 内部一点,OB =72,P 、R 为O 分别以直线AB 、BC 为对称轴的对称点.(1)请指出当∠ABC 是什么角度时,会使得PR 的长度等于7?并完整说明PR 的长度为何在此时等于7的理由.(2)承(1)小题,请判断当∠ABC 不是你指出的角度时,PR 的长度小于7还是大于7?并完整说明你判断的理由.解析:(1)连接PB 、RB ,根据轴对称的性质可得PB =OB ,RB =OB ,然后判断出点P 、B 、R 三点共线时PR =7,再根据平角的定义求解;(2)根据三角形的任意两边之和大于第三边解答.解:(1)如图,∠ABC =90°时,PR =7.证明如下:连接PB 、RB ,∵P 、R 为O 分别以直线AB 、BC 为对称轴的对称点,∴PB =OB =72,RB =OB =72.∵∠ABC =90°,∴∠ABP +∠CBR =∠ABO +∠CBO =∠ABC =90°,∴点P 、B 、R 三点共线,∴PR =2×72=7; (2)PR 的长度小于7,理由如下:∠ABC ≠90°,则点P 、B 、R 三点不在同一直线上,∴PB +BR >PR ,∵PB +BR =2OB =2×72=7,∴PR <7.方法总结:利用轴对称的性质可以将线段进行转化,然后结合三角形的任意两边之和大于第三边的性质予以解答,总之熟记各性质是解题的关键.【类型四】 轴对称在折叠问题中的应用如图,将长方形纸片先沿虚线AB 向右对折,接着将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,再将纸片打开,那么打开后的展开图是( )解析:∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A.∵再展开可知两个短边正对着,∴选择答案D ,排除B 与C.故选D.方法总结:对于此类问题,要充分发挥空间想象能力,或亲自动手操作答案即可呈现.三、板书设计轴对称图形1.轴对称图形的定义;2.对称轴; 3.轴对称图形的设计方法.这节课充分利用多媒体教学,给学生以直观指导,主动向学生质疑,促使学生思考与发现,形成认识,独立获取知识和技能.另外,借助多媒体教学给学生创设宽松的学习氛围,使学生在学习中始终保持兴奋、愉悦、渴求思索的心理状态,有利于学生主体性的发挥和创新能力的培养.13.1.2线段的垂直平分线的性质第1课时线段的垂直平分线的性质和判定1.掌握线段垂直平分线的性质.(重点)2.探索并总结出线段垂直平分线的性质,能运用其性质解答简单的问题.(难点)一、情境导入如图所示,有一块三角形田地,AB=AC=10m,作AB的垂直平分线ED交AC于D,交AB 于E,量得△BDC的周长为17m,你能帮测量人员计算BC的长吗?二、合作探究探究点一:线段垂直平分线的性质【类型一】应用线段垂直平分线的性质求线段的长如图,在△ABC中,AB=AC=20cm,DE垂直平分AB,垂足为E,交AC于D,若△DBC的周长为35cm,则BC的长为( )A.5cmB.10cmC.15cmD.17.5cm解析:∵△DBC的周长=BC+BD+CD=35cm,又∵DE垂直平分AB,∴AD=BD,故BC+AD+CD=35cm.∵AC=AD+DC=20cm,∴BC=35-20=15cm.故选C.方法总结:利用线段垂直平分线的性质,可以实现线段之间的相互转化,从而求出未知线段的长.【类型二】 线段垂直平分线的性质与全等三角形的综合运用如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .求证:(1)FC =AD ;(2)AB =BC +AD .解析:(1)根据AD ∥BC 可知∠ADC =∠ECF ,再根据E 是CD 的中点可求出△ADE ≌△FCE ,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB =BF 即可.证明:(1)∵AD ∥BC ,∴∠ADC =∠ECF .∵E 是CD 的中点,∴DE =EC .又∵∠AED =∠CEF ,∴△ADE ≌△FCE ,∴FC =AD .(2)∵△ADE ≌△FCE ,∴AE =EF ,AD =CF .∵BE ⊥AE ,∴BE 是线段AF 的垂直平分线,∴AB =BF =BC +CF .∵AD =CF ,∴AB =BC +AD .方法总结:此题主要考查线段的垂直平分线的性质等几何知识.线段垂直平分线上的点到线段两个端点的距离相等,利用它可以证明线段相等.【类型三】 线段垂直平分线与角平分线的综合运用如图,在四边形ADBC 中,AB 与CD 互相垂直平分,垂足为点O .(1)找出图中相等的线段;(2)OE ,OF 分别是点O 到∠CAD 两边的垂线段,试说明它们的大小有什么关系.解析:(1)由垂直平分线的性质可得出相等的线段;(2)由条件可证明△AOC ≌△AOD ,可得AO 平分∠DAC ,根据角平分线的性质可得OE =OF .解:(1)∵AB 、CD 互相垂直平分,∴OC =OD ,AO =OB ,且AC =BC =AD =BD ;(2)OE =OF ,理由如下:在△AOC 和△AOD 中,∵⎩⎪⎨⎪⎧AC =AD ,OC =OD ,AO =AO ,∴△AOC ≌△AOD (SSS),∴∠CAO =∠DAO .又∵OE ⊥AC ,OF ⊥AD ,∴OE =OF .方法总结:本题是线段垂直平分线的性质和角平分线的性质的综合,掌握它们的适用条件和表示方法是解题的关键.探究点二:线段垂直平分线的判定如图所示,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,试说明AD 与EF 的关系.解析:先利用角平分线的性质得出DE =DF ,再证△AED ≌△AFD ,易证AD 垂直平分EF .解:AD 垂直平分EF .∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴∠EAD =∠FAD ,DE =DF .在△ADE 和△ADF 中,∵⎩⎪⎨⎪⎧∠DAE =∠DAF ,∠AED =∠AFD ,AD =AD ,∴△ADE ≌△ADF ,∴AE =AF ,∴A 、D 均在线段EF 的垂直平分线上,即直线AD 垂直平分线段EF .方法总结:当一条直线上有两点都在同一线段的垂直平分线上时,这条直线就是该线段的垂直平分线,解题时常需利用此性质进行线段相等关系的转化.三、板书设计线段的垂直平分线1.线段的垂直平分线的作法.2.线段的垂直平分线性质定理和逆定理.3.三角形三边的垂直平分线交于一点.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因此本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.第2课时 线段的垂直平分线的有关作图1.作出轴对称图形的对称轴,即线段垂直平分线的尺规作图.(重点)2.依据轴对称的性质找出两个图形成轴对称及轴对称图形的对称轴.(重点)一、情境导入有时我们感觉两个平面图形成轴对称,如何验证呢?不折叠图形,你能准确地作出轴对称图形的对称轴吗?二、合作探究探究点一:作线段的垂直平分线【类型一】 作某条线段的垂直平分线如图,点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?(注:作一对对应点的对称轴就是作线段AB 的垂直平分线)解析:本题其实就是作线段AB 的垂直平分线,根据线段垂直平分线的作法作出即可.解:作法:(1)分别以点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧相交于E 、F 两点;(2)作直线EF ,EF 即为所求的直线.同样,对于轴对称图形,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.方法总结:要熟练掌握线段垂直平分线的作法,作出的图形中的作图痕迹要保留.【类型二】 垂直平分线的作法与垂直平分线的性质的综合如图,已知点A 、点B 以及直线l .(1)用尺规作图的方法在直线l 上求作一点P ,使PA =PB .(保留作图痕迹,不要求写出作法);(2)在(1)中所作的图中,若AM =PN ,BN =PM ,求证:∠MAP =∠NPB .解析:(1)利用线段垂直平分线的作法作出即可;(2)利用全等三角形的判定方法以及利用其性质得出即可.解:(1)如图所示:(2)在△AMP 和△BNP 中,∵⎩⎪⎨⎪⎧AM =PN ,PM =BN ,AP =BP ,∴△AMP ≌△PNB (SSS),∴∠MAP =∠NPB .方法总结:解决此类问题首先要正确作出图形,然后运用相关的知识解决其他问题.【类型三】 垂直平分线作法的应用如图,某地由于居民增多,要在公路l 边增加一个公共汽车站,A ,B 是路边两个新建小区,这个公共汽车站C 建在什么位置,能使两个小区到车站的路程一样长(要求:尺规作图,保留作图痕迹,不写画法)?解析:作线段AB的垂直平分线,由垂直平分线的定理可知,垂直平分线上的点到A,B的距离相等.解:连接AB,作AB的垂直平分线交直线l于O,交AB于E.∵EO是线段AB的垂直平分线,∴点O到A,B的距离相等,∴这个公共汽车站C应建在O点处,才能使到两个小区的路程一样长.方法总结:对于作图题首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.【类型四】线段垂直平分线与角平分线作法的综合运用如图,某地有两所大学和两条交叉的公路.图中点M,N表示大学,OA,OB表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计.(尺规作图,不写作法,保留作图痕迹)解析:到两条公路的距离相等,在这两条公路的夹角的平分线上;到两所大学的距离相等,在这两所大学两个端点的连线的垂直平分线上,所画两条直线的交点即为所求的位置.解:如图,点P为所求.方法总结:通过本题要熟练地掌握角平分线的作法以及线段垂直平分线的作法.探究点二:对称轴的画法【类型一】画出已知图形的对称轴画出下列轴对称图形的所有对称轴(不考虑颜色).解析:利用轴对称图形的性质分别得出其对称轴即可.解:如图所示:方法总结:画轴对称图形的对称轴,先找出对称点,然后作对称点的垂直平分线即可.【类型二】补全图形,并画出对称轴如图,在4×3的正方形网格中,阴影部分是由4个正方形组成的一个图形,请你用两种方法分别在如图方格内填涂2个小正方形,使这6个小正方形组成的图形是轴对称图形,并画出其对称轴.解析:根据轴对称的性质画出图形即可.解:如图所示:方法总结:解答此类问题,一般要先设计出轴对称图形,然后根据图形的特点,画出对称轴.三、板书设计线段的垂直平分线的有关作图1.线段垂直平分线的作法.2.作轴对称图形的对称轴的方法.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.13.2画轴对称图形第1课时画轴对称图形1.理解图形轴对称变换的性质.(难点)2.能按要求画出一个图形关于某直线对称的另一个图形.(重点)一、情境导入观察下面的图形:(1)这些图案有什么共同特点?(2)能否根据其中一部分画出整个图案?二、合作探究探究点一:轴对称变换【类型一】剪纸问题将一张正方形纸片按如图①,图②所示的方向对折,然后沿图③中的虚线剪裁得到图④,将图④的纸片展开铺平,再得到的图案是( )解析:严格按照图中的顺序先向右上翻折,再向左上翻折,剪去左上角,展开得到图形B.故选B.方法总结:此类题目主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【类型二】折叠问题如图,将矩形ABCD沿DE折叠,使A点落在BC上的F处,若∠EFB=60°,则∠CFD =( )A.20° B.30° C.40° D.50°解析:根据图形翻折变换后全等可得△ADE≌△FDE,∴∠EAD=∠EFD=90°.∵∠EFB=60°,∴∠CFD=30°,故选B.方法总结:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.探究点二:作轴对称图形【类型一】画一个图形关于已知直线对称的另一个图形画出△ABC关于直线l的对称图形.解析:分别作出点A、B、C关于直线l的对称点,然后连接各点即可.解:如图所示:方法总结:我们在画一个图形关于某条直线对称的图形时,先确定一些特殊的点,然后作这些特殊点的对称点,顺次连接即可得到.【类型二】在方格中设计轴对称图形在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.解析:对称轴可以随意确定,根据你确定的对称轴去画另一半对称图形即可.解:如图所示:方法总结:作一个图形关于一条已知直线的对称图形,关键是作出图形上一些点关于这条直线的对称点,然后再根据已知图形将这些点连接起来.【类型三】利用轴对称设计图案某居民小区搞绿化,要在一块矩形空地(如下图)上建花坛,现征集设计方案,要求设计的图案由圆和正方形组成(圆与正方形的个数不限),并且使整个矩形场地成轴对称图形.请在下边矩形中画出你的设计方案.K解析:矩形是轴对称图形,而正方形和圆也是轴对称图形,设计出的图案只要折叠重合即可.解:如图所示:方法总结:利用轴对称可以设计出精美的图案,一个图形经过不同位置的几次变换,若再结合平移、旋转等,便可以得到非常美丽的图案.三、板书设计作轴对称图形1.如何由一个平面图形得到它的轴对称图形.2.利用轴对称设计图案.本节课尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容.重视动手操作,实践探究,但如果只有操作,而没有数学体验,数学课很容易上成劳技课,所以,本节课的设计在重视活动的同时,又重视知识的获取,因为动手操作的目的本身就在于更直观地发现新知识.练习的设计具有一定的层次性,使不同的学生在学习数学的过程中得到不同的发展.第2课时用坐标表示轴对称1.直角坐标系中关于x轴、y轴对称的点的特征.(重点)2.直角坐标系中关于某条直线对称的点的特征.(难点)一、情境导入十一黄金周,北京吸引了许多游客.一天,小红在天安门广场玩,一位外国友人向小红问西直门的位置,可小红只知道东直门的位置,不过,小红想了想,就准确的告诉了他.你知道为什么吗?结合老北京的地图向学生介绍:老北京城关于中轴线成轴对称设计,东直门、西直门就关于中轴线对称.如果以天安门为原点,分别以长安街和中轴线为x轴和y轴,就可以在这个平面图上建立直角坐标系,各个景点的地理位置就可以用坐标表示出来.提问:这些景点关于坐标轴的对称点你可以找出来吗?这些对称点的坐标与已知点的坐标有什么关系呢?二、合作探究探究点一:用坐标表示轴对称【类型一】求一个点关于坐标轴的对称点的坐标在平面直角坐标系中,与点P(2,3)关于x轴或y轴成轴对称的点是( )A.(-3,2) B.(-2,-3)C.(-3,-2) D.(-2,3)解析:点P(2,3)关于x轴对称的点的坐标为(2,-3),关于y轴对称的点的坐标为(-2,3),故选D.方法总结:关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数.关于y 轴对称的点的坐标特点:横坐标互为相反数,纵坐标不变.【类型二】关于坐标轴对称的点与方程的综合已知点A(2a-b,5+a),B(2b-1,-a+b).(1)若点A、B关于x轴对称,求a、b的值;(2)若A、B关于y轴对称,求(4a+b)2016的值.解析:(1)根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数可得2a-b =2b -1,5+a -a +b =0,解方程(组)即可;(2)根据关于y 轴对称的点的坐标特点:横坐标互为相反数,纵坐标不变可得2a -b +2b -1=0,5+a =-a +b ,解方程(组)即可.解:(1)∵点A 、B 关于x 轴对称,∴2a -b =2b -1,5+a -a +b =0,解得a =-8,b=-5;(2)∵A 、B 关于y 轴对称,∴2a -b +2b -1=0,5+a =-a +b ,解得a =-1,b =3,∴(4a +b )2016=1.方法总结:根据关于x 轴、y 轴对称的点的特征列方程(组)求解.【类型三】 关于坐标轴对称的点与不等式(组)的综合已知点P (a +1,2a -1)关于x 轴的对称点在第一象限,求a 的取值范围.解析:点P (a +1,2a -1)关于x 轴的对称点在第一象限,则点P (a +1,2a -1)在第四象限.解:依题意得P点在第四象限,∴⎩⎪⎨⎪⎧a +1>0,2a -1<0,解得-1<a <12,即a 的取值范围是-1<a <12. 方法总结:根据点的坐标关于坐标轴对称,判断出对称点所在的象限,由各象限内坐标的符号,列不等式(组)求解.探究点二:作关于坐标轴对称的图形【类型一】 作关于x 轴或y 轴对称的图形在平面直角坐标系中,已知点A (-3,1),B (-1,0),C (-2,-1),请在图中画出△ABC ,并画出与△ABC 关于y 轴对称的图形.解析:作出A ,B ,C 三点关于y 轴的对称点,顺次连接各点即可.解:如图所示,△DEF 是△ABC 关于y 轴对称的图形.方法总结:在坐标系中作出关于坐标轴的对称点,然后顺次连接,此类问题一般比较简单.【类型二】 与对称点有关的综合题如图,在10×10的正方形网格中,每个小方格的边长都是1,四边形ABCD 的四个顶点在格点上.(1)若以点B 为原点,线段BC 所在直线为x 轴建立平面直角坐标系,画出四边形ABCD关于y 轴对称的四边形A 1B 1C 1D 1;(2)点D 1的坐标是________;(3)求四边形ABCD 的面积.解析:(1)以点B 为原点,线段BC 所在直线为x 轴建立平面直角坐标系,然后作出各点关于y 轴对称的点,顺次连接即可;(2)根据直角坐标系的特点,写出点D 1的坐标;(3)把四边形ABCD 分解为两个直角三角形,求出面积.解:(1)如图所示;(2)点D 1的坐标为(-1,1);(3)四边形ABCD 的面积为12×1×3+12×1×2=52. 方法总结:轴对称变换作图,基本作法是:(1)先确定图形的关键点;(2)利用轴对称性质作出关键点的对称点;(3)按原图形中的方式顺次连接对称点.求多边形的面积可将多边形转化为规则图形的面积的和或差求解.三、板书设计用坐标表示轴对称1.直角坐标系中关于x 轴、y 轴对称的点的特征.2.直角坐标系中关于某条直线对称的点的特征.从本节课的授课过程来看,灵活运用了多种教学方法,既有教师的讲解,又有讨论,在教师指导下的自学,组织学生活动等.调动了学生学习的积极性,充分发挥了学生的主体作用.课堂拓展了学生的学习空间,给学生充分发表意见的自由度.13.3 等腰三角形13.3.1 等腰三角形第1课时 等腰三角形的性质1.理解并掌握等腰三角形的性质.(重点)2.经历等腰三角形的探究过程,能初步运用等腰三角形的性质解决有关问题.(难点)一、情境导入探究:如图所示,把一张长方形的纸按照图中虚线对折并减去阴影部分,再把它展开得到的△ABC有什么特点?二、合作探究探究点一:等腰三角形的概念【类型一】利用等腰三角形的概念求边长或周长如果等腰三角形两边长是6cm和3cm,那么它的周长是( )A.9cm B.12cmC.15cm或12cm D.15cm解析:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm 时,6-3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15(cm).故选D.方法总结:在解决等腰三角形边长的问题时,如果不明确底和腰时,要进行分类讨论,同时要养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.探究点二:等腰三角形的性质【类型一】利用“等边对等角”求角度等腰三角形的一个内角是50°,则这个三角形的底角的大小是( )A.65°或50° B.80°或40°C.65°或80° D.50°或80°解析:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°.故选A.方法总结:等腰三角形的两个底角相等,已知一个内角,则这个角可能是底角也可能是顶角,要分两种情况讨论.【类型二】利用方程思想求等腰三角形角的度数如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.解析:设∠A=x,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.解:设∠A =x .∵AD =BD ,∴∠ABD =∠A =x .∵BD =BC ,∴∠BCD =∠BDC =∠ABD +∠A =2x .∵AB =AC ,∴∠ABC =∠BCD =2x .在△ABC 中,∠A +∠ABC +∠ACB =180°,∴x +2x +2x =180°,∴x =36°,∴∠A =36°,∠ABC =∠ACB =72°.方法总结:利用等腰三角形的性质和三角形外角的性质可以得到角与角之间的关系,当这种等量关系或和差关系较多时,可考虑列方程解答,设未知数时,一般设较小的角的度数为x .【类型三】 利用“等边对等角”的性质进行证明如图,已知△ABC 为等腰三角形,BD 、CE 为底角的平分线,且∠DBC =∠F ,求证:EC ∥DF .解析:先由等腰三角形的性质得出∠ABC =∠ACB ,根据角平分线定义得到∠DBC =12∠ABC ,∠ECB =12∠ACB ,那么∠DBC =∠ECB ,再由∠DBC =∠F ,等量代换得到∠ECB =∠F ,于是根据平行线的判定得出EC ∥DF .证明:∵△ABC 为等腰三角形,AB =AC ,∴∠ABC =∠ACB .又∵BD 、CE 为底角的平分线,∴∠DBC =12∠ABC ,∠ECB =12∠ACB ,∴∠DBC =∠ECB .∵∠DBC =∠F ,∴∠ECB =∠F ,∴EC ∥DF .方法总结:证明线段的平行关系,主要是通过证明角相等或互补.【类型四】 利用等腰三角形“三线合一”的性质进行证明如图,点D 、E 在△ABC 的边BC 上,AB =AC .(1)若AD =AE ,求证:BD =CE ;(2)若BD =CE ,F 为DE 的中点,如图②,求证:AF ⊥BC .解析:(1)过A 作AG ⊥BC 于G ,根据等腰三角形的性质得出BG =CG ,DG =EG 即可证明;(2)先证BF =CF ,再根据等腰三角形的性质证明.证明:(1)如图①,过A 作AG ⊥BC 于G .∵AB =AC ,AD =AE ,∴BG =CG ,DG =EG ,∴BG -DG =CG -EG ,∴BD =CE ;(2)∵BD =CE ,F 为DE 的中点,∴BD +DF =CE +EF ,∴BF =CF .∵AB =AC ,∴AF ⊥BC . 方法总结:在等腰三角形有关计算或证明中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线.【类型五】 与等腰三角形的性质有关的探究性问题如图,已知△ABC 是等腰直角三角形,∠BAC =90°,BE 是∠ABC 的平分线,DE ⊥。

八年级数学上册 13.1.3 轴对称导学案(新版)新人教版

八年级数学上册 13.1.3 轴对称导学案(新版)新人教版

轴对称学习目标:1.能用尺规作线段的垂直平分线.2.进一步了解作图的一般步骤和作图语言,了解作图的依据.3.运用尺规作图的方法解决简单的作图问题.学习重点:作线段的垂直平分线.预习案1.轴对称的性质是什么?A B2.说一说线段垂直平分线的性质.3.如何判断一条直线是否是线段的垂直平分线?探究案有时我们感觉两个平面图形是轴对称的,如何验证呢?不折叠图形,你能准确地作出轴对称图形的对称轴吗?我们已能用尺规完成:那么利用尺规还能解决什么作图问题呢?例1 如图,点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?怎样作线段AB 的垂直平分线呢?这种作图方法还有哪些作用?如果两个图形成轴对称,怎样作出图形的对称轴?作轴对称图形的对称轴 如图中的五角星,请作出它的一条对称轴.你能作出这个五角星的其他对称轴吗?它共有几条对称轴? 五角星的对称轴有什么特点?课堂练习练习1 作出下列图形的一条对称轴,和同学比较一下,你们作出的对称轴一样吗?练习2 如图,角是轴对称图形吗?如果是,它的对称轴是什么?练习3 如图,与图形A 成轴对称的是哪个图形? 画出它的对称轴.课堂小结:本节课你有哪些收获?还有哪些疑问?检测案1.作出下列图形的对称轴。

A B C D2.某地有两所大学和两条相交叉的公路,如图所示(点M,N表示大学,AO,BO表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.(1)你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案;(2)阐述你设计的理由.N·M·B OA。

八年级数学上册 13.1.1 轴对称导学案(新版)新人教版(3)

八年级数学上册 13.1.1 轴对称导学案(新版)新人教版(3)

轴对称【学习目标】:1、理解轴对称图形、两个图形关于某直线对称的概念。

2、了解轴对称图形的对称轴,两个图形关于某直线对称的对称轴、对应点。

3、了解轴对称图形与两个图形关于某直线对称的区别和联系【学习重点】:轴对称图形与两个图形关于某条直线对称的概念【课前预习】:1.一辆汽车的车牌在水中的倒影如图所示,你能确定该车车牌的号码吗?车牌号码是。

2.观察下列吉祥物,它们有什么共同特征?总结:如果图形沿一条折叠,直线两旁的部分能够 ,这个图形就叫做。

这条直线就是它的对称轴.【课堂学习】:【合作探究·释疑】:1.观察下面的图形,哪些是轴对称图形?试找出它们的对称轴.(1)(2)(3)(4)(5)(6)2.P59第一个思考中的每对图形有什么共同特点?小结:两个图-----------------------A A’B B’C C’ ------- ---- 形成轴对称: 把一个图形沿着某一条直线折叠,如果它能够与另一个图形 ,那么就说这 关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.3.将一张矩形纸片折叠,然后用笔尖扎出“14”这个数字,将纸打开后铺平,如图所示.(1)图中的两个“14”有什关系?(2)∠C 和∠C '有什么关系?∠D 和∠D '呢? .(3)线段CD 和线段''C D 有什么关系? . (4)连结对应点E 和点E '的线段与折痕所在的直线l 有什么关系 .我们抽出这两个点来看:线段EE'与直线l 有什么关系?线段EP 与线段E ′P 相等吗?你能说明理由吗?类似地,点B 与点B',点C 与点C'等各组点是否也有同样的关系? 你能用语言归纳上述发现的规律吗?2.线段的垂直平分线:经过 并且 于这条线段的直线,叫做这条3.图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.4.上述性质是对两个成轴对称的图形来说的,如果是一个轴对称图形,那么它的对应点的连线与对称轴之间是否也与同样的关系呢? 类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线 如图:L 垂直平分L 垂直平分L 垂直平分【知识拓展】:1.(1)成轴对称的两个图形全等吗? 全等的两个图形一定成轴对称吗?(2)轴对称图形和两个图形成轴对称有什么区别吗?(3)如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线成 ;反过来,如果把两个成轴对称的图形看成一个整体,那么它就是一个 图形.2.总结:轴对称图形和关于直线成轴对称的区别和联系:区别: 轴对称是 个图形的位置关系,轴对称图形是说 个具有特殊形状的图形。

人教版初二数学上册轴对称(复习)导学案

人教版初二数学上册轴对称(复习)导学案

第十三章轴对称导学案一、轴对称1轴对称图形:把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

2、轴对称:把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。

这条直线叫做对称轴。

折叠后重合的点是对应点,叫做对称点练习:1、判断下列图形是不是轴对称图形。

①线段;②三角形;③角;④正方形;⑤等腰梯形;⑥圆2、如图四边形ABCD是轴对称图形,BD所在的直线是它的对称轴,AB=1.6cm,CD=2.3cm,则四边形ABCD的周长为()A 3.9cmB 7.8cmC 4cmD 4.6cm的周长是22cm,则厶ABN的周长是()三、用坐标表示轴对称:在平面直角坐标系中,关于x轴对称的点横坐标相等, 纵坐标互为相反数关于y轴对称的点纵坐标相等,横坐标互为相反数。

练习:1.填表:已知点(2,-3)(-1,2)(4,0)关于x轴的对称点关于y轴的对称点2、如图,四边形ABCD的顶点坐标为A (—5,1),B (—1,1),C (—1,6),□(—5,4),请作出四边形ABCD关于y轴的对称图形,并写出坐标。

二、线段的垂直平分线知识回顾:1、线段垂直平分:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

2、定理:线段垂直平分线上的点与这条线段的两个端点的距离相等3■逆理定:与一条线段两个端点距离相等的点,在线段的垂直平分线上练习:四、等腰三角形1■等腰三角形的性质①■等腰三角形的两个底角相等。

(等边对等角)②■等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

(三线合一)2、等腰三角形的判定:如图:△ ABC中,MN是AC的垂直平分线,若练习:1等腰三角形有一个角等于70°,则它的另外两个角是:. _______ 2、在Rt△ ABC 中,/ ACB= 90°,/ A= 30°,若3. 数学课上,张老师画出下图,并写下了四个等式:①AB=DC ② BE=CE ③/ B = / C, ④/ BAE= / CDE要求同学从这四个等式中选出两个作为条件,推出△ AED是等腰三角形•请你试着完成张老师提出的问题,并说明理由. (写出一种即可)已知:__________________________ (填代号)求证:△ AED是等腰三角形.证明:A、 A EBD是等腰三角形B、折叠后/ ABE和/CBD一定相等C、折叠后得到的图形是轴对称图形D A EBA和厶EDC一定全等3如图,在△ ABC中,AB= AC, ADL BC于D点,点E、F分别是AD的三等分点,若BC= 6cm, AD=8cm,则图中阴影部分面积为__________ cm2AB D C第3题图4如图,已知△ ABC为等边三角形,点D E分别在BG AC边上,AD与BE 相交于点F,且AE=CD°(1)求证:AD=BE (2)求/ BFD的度数.如果一个三角形有两个角相等,那么这两个角所对的边也相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(A ) (B ) (C ) (D ).1 轴对称一、学习目标1、认识轴对称和轴对称图形,并能找出对称轴;2、知道轴对称和轴对称图形的区别和联系。

3、掌握轴对称的性质; 二、自主探究 合作展示探究(一) 自学课本58页,完成以下问题。

1、 什么是轴对称图形?你能举几个轴对称图形的例子吗?2、试一试:下面的图形是轴对称图形吗?如果是,画出它的对称轴。

(1) (2) (3) (4) (5)探究(二) 自学课本59页,完成以下问题。

1、什么叫做两个图形成轴对称?你能举几个生活中两个图形成轴对称的例子吗? 探究(三)成轴对称的两个图形全等吗?如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形全等吗?这两个图形对称吗? 归纳:区别:轴对称图形指的是_____个图形沿一条直线折叠,直线两旁的部分能够互相_________。

轴对称指的是_____个图形沿一条直线折叠 ,这个图形能够与另一个图形_________。

联系:把成轴对称的两个图形看成一个整体,它就是一个_______________;把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条直线对称(简称轴对称)练习1、我国的文字非常讲究对称美,下面四个图案中不是轴对称图形的是( ).2、下列图形中不是轴对称图形的有( )A 1个B 2个C 3个D 4个3、以下汽车标志中,和其他三个不同的是( ) A B C D4、下列图形中对称轴最多的是( )A.圆B.正方形C.角D.线段5、写出英文26个大写字母中是轴对称图形的字母,写出三个是轴对称图形的汉字:6、美国哈佛大学在一次数学考试中,有这样一道填空题:要求在横线上填上适当的图形.你能完成吗? 探究(四) 轴对称的性质1、如图(1),△ABC 和△A ′B ′C ′关于直线MN 对称,点A ′、 B ′、C ′分别是点A 、B 、C 的对称点,线段AA ′、BB ′、CC ′ 与直线MN 有什么关系?(1) 设AA ′交对称轴MN 于点P ,将△ABC 和△A ′B ′C ′沿 MN 折叠后,点A 与A ′重合吗?于是有PA = ,∠MPA = = 度(2)对于其他的对应点,如点B ,B ′;C ,C ′也有类似的情况吗?图(1)(3)那么MN 与线段AA ′,BB ′,CC ′的连线有什么关系呢? 2、垂直平分线的定义:经过线段 并且 这条线段的直线,叫做这条线段的垂直平分线. 3、轴对称的性质:如果两个图形关于某条直线对称,那么 是任何一对对应点所连线段的 。

类似地,轴对称图形的对称轴,是任何一对对应点所连线段的 。

练习1、 教材60页1、2(在教材上完成)2、如图是我国几家银行的标志,在这几个图案中是轴对称图形的有哪些?它们各有几条对称轴,你能画出来吗?(小组讨论完成) 学习小结与反思:线段垂直平分线的性质一、学习目标1、掌握线段垂直平分线的性质2、掌握线段垂直平分线的判定3、运用线段垂直平分线的性质解决问题二、复习右面的图形是轴对称图形吗?如果是,画出它的对称轴。

三、探究(一) 探究教材61页探究问题1、 量出AP 1、AP2、AP3、与BP 1、BP 2、BP 3…讨论发现什么样的规律: 。

总结线段垂直平分线的性质 : 2、你能利用判定两个三角形全等的方法证明这个性质吗?如图(1),直线l AB ⊥,垂足是C ,AC=BC,点P 在l 上。

求证: PA PB = 探究(二)反过来,如果PA=PB,那么点P 是否在线段AB 的垂直平分线上呢?说明理由. (1)已知: (2)求证:(3)需要作辅助线吗?写出证明过程:总结线段垂直平分线的性质判定:四、练习1.如右图所示,△ABC 中,BC =10,边BC 的垂直平分线分别交AB 、BC 于点E 、D ,BE =6,求△BCE 的周长。

图(1)2、如图,△ABC 中,AB =AC =18cm ,BC = 10cm ,AB 的垂直平分线ED 交AC 于D 点,求:△BCD 的周长。

3,如图,在△ABC 中,BC =8,AB 的中垂线交BC 于D ,AC的中垂线如交BC 与E ,则△ADE 的周长等于___ ___.4、如图,△ABC 中,∠ACB=90°,AD 平分∠BAC, DE 丄AB 于E ,求证:AD 是CE 的垂直平分线.5、如图,AD ⊥BC ,BD =DC ,点C 在AE 的垂直平分线上,⑴AB ,AC ,CE 的长度有什么关系? ⑵AB+BD 与DE 有什么关系?6、如图,在Rt △ABC 中,∠C=90°,沿着过点B 的一条直线BR 折叠△ABC 使点C 恰好落在AB 边的中点D 处,则∠A 的大小等于 . 7、如图,△ABC 中,AD 垂直平分边BC交BC 于D ,AE 丄BE 于E, AF 丄CF 于F ,AE= AF ,求证:∠BAE =∠BAF.8题图8、(2013年泰州市)如图,△ABC 中,AB+AC=6 cm, BC 的垂直平分线L 与AC 相交于点D,则△ABD 的周长为cm.五、9、如图,在△ABC 中,E,F 分别为AB ,AC 上的点,∠B=40°且EF 小结与反思:轴对称(2)一、学习目标1、会依据轴对称的性质找出两个图形成轴对称及轴对称图形的对称轴;2、掌握作出轴对称图形的对称轴的方法,即线段垂直平分线的尺规作图。

3、运用线段垂直平分线的性质解决实际问题二、复习1、设A 、B 两点关于直线MN 对称,则______垂直平分________.2、轴对称图形的对称轴与对应点所连线段的垂直平分线有什么关系?ECD BADBCAE3、如图:不通过折叠的方法,你能验证出这两个四边形是否关于直线MN 对称吗? 二、预习新知P62—P631、成轴对称的两个图形其对称轴是 所连接的 。

2、作轴对称图形的对称轴就是做作出一对对应点所连线段的_____________ 。

三、探究新知 预习63页例2 思考:(1)为什么要分别以点A 、B 为圆心,大于1/2AB 的长为半径画弧? (2)为什么直线CD 就是AB 垂直平分线?也是线段AB 的对称轴?四、练习1、画出下边两个轴对称图形的对称轴。

2、课本P64练习题1、2、33、下面是我们学过的一些几何图形,说出下面图形是不是轴对称图形,并完成下表。

长方形 正方形 三角形 等腰三角形 等边三角形 平行四边形 任意梯形 等腰梯形 圆4、如图,已知线段AB. (1)用尺规作图的方法作出线段AB 的垂直平分线L(保留作图痕迹,不要求写出作法);(2)在(1)中所作的直线L 上任意取两点M,N(线段AB 的上方),连接AM, AN, BM,BN, 求证:∠MAN=∠MBN.5、如图,在中,∠C=90°,用直尺和圆规在AC 上作点P ,使P到A,B 的距离相等(保留作图痕迹,不写作法和证明).6、如图,△ABC 的周长为30 cm ,把△ABC 的边AC 对折,使顶点C 和点A 重合, 折痕交BC 边于点D,交AC 边于点E ,连接AD ,若AE=4cm , 求△ABD 的周长。

7、如图,已知,△ABC 中,AD 是角平分线,DE 丄AB 于E ,DF 丄AC 于F,求证:AD 是EF 的垂直平分线.8、已知△ABC 中,BC 的垂直平分线DE 与∠BAC 的平分线AEEDC BA图(2) 交于E ,EF 丄AB 于F,EH 丄AC 于H ,求证:BF=CH. 小结与反思:画轴对称图形一、学习目标1、认识轴对称图形,探索并了解它的基本性质;2、能够按要求作出简单平面图形经过一次对称后的图形;二、温故知新1、什么是轴对称图形?2、请画出下列图形的对称轴。

三、自主探究 合作展示探究(一)自学:认真阅读教材67页图。

1、操作:自己动手在纸上画一个图案,将这张纸折叠,描图,再打开纸,看看你得到了什么?2、归纳:(1)由一个平面图形可以得到它关于一条直线l 成轴对称的图形,这个图形与原图形 的 、 完全相同;(2)新图形上的每一点,都是原图形上的某一点关于直线l 的 点; (3)连接任意一对对应点的线段被对称轴 。

探究(二)1、请同学们尝试解决以下问题;如图(1),实线所构成的图形为已知图形,虚线为对称轴,请画出已知图形的轴对称图形。

问题:(1)你可以通过什么方法来验证你画的是否正确? (2)和其他同学比较一下,你的方法是最简单的吗?2、如图(2),已知点A 和直线l ,试画出点A 关于直线l 的对称点A ′。

A ·3、如图,已知点A 和直线l ,试画出线段AB关于直线l 的对称图形。

BA ·4、如图已知△ABC ,直线l ,画出△ABC 关于直线l 的对称图形。

四、双基检测1、把下列图形补成关于l 对称的图形。

2、小明在平面镜中看到身后墙上钟表显示的时间是12:15,这时的实际时间应该是 。

、以直线MN 为对称轴,画出△ABC 的对称图形△111C B A 。

(保留作图痕迹,不写画法,不要证明)图(1) lABC3、如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A(-3, 5), B(-4, 3); C(-l, 1). (1)作出△ABC 向右平移6个单位长度的△111C B A (2)作出关于x 轴对称的△222C B A ,并写出点2C 的坐标.4、完成课本62页练习及65页第6题,66页第10、12、13题五、学习反思用坐标表示轴对称一、学习目标1、能够经过探索利用坐标来表示轴对称;2、掌握关于x 轴、y 轴对称的点的坐标特点。

二、温故知新如图:(1)观察图(1)中两个圆脸有什么关系? (2)若已知图(1)中圆脸右眼的坐标为(4,3),左眼 的坐标为(2,3),嘴角两个端点,右端点的坐标为(4,1), 左端点的坐标为(2,1).你能根据轴对称的性质写出左边圆 脸上左眼,右眼及嘴角两端点的坐标吗?三、自主探究 合作展示探究(一)1、 在如图(2)所示平面直角坐标系内画出下列已知点以及对称点,并把坐标填在表格中,你能发现坐标间有什么规律? 已知点 A (2,-3) B (-1,2) C (-6,-5) D (,1) E (4,0)关于x 轴对称的点 'A ( ) 'B ( ) 'C ( ) 'D ( ) 'E ( ) 关于y 轴对称的点'A ( )'B ( )'C ( )'D ( )'E ( )2x x 轴对称的点的坐标是 ;点(x ,y )关于y 轴对称的点的坐标是探究(二)例题:如图(3),四边形ABCD 的四个顶点的坐标分别为A (-5,1),B (-2,1),C (-2,5),D (-5,4),分别作出四边形ABCD 关于y 轴和x 轴对称的图形。

相关文档
最新文档