5.7 抽屉原理(二)
抽屉原理的三个公式
抽屉原理的三个公式抽屉原理(也称为鸽笼原理)是离散数学中的一项基本原理,用于解决一类关于集合和计数的问题。
该原理指出,当将n+1个物体放入n个容器中时,至少有一个容器中必然有两个或两个以上的物体。
这个原理虽然看似简单,却被广泛应用于各个领域,如图论、计算机科学等。
在本文中,我们将通过阐述抽屉原理的三个公式来进一步理解和应用这一原理。
公式一:抽屉问题公式在抽屉问题中,我们要研究的是如何将n个物体放入m个抽屉中,使得至少有一个抽屉中装有k个或更多的物体。
那么根据抽屉原理,我们可以得到如下公式:n ≥ (k-1) * m + 1这个公式告诉我们,当抽屉的数量m不足以容纳k个物体时,至少有一个抽屉中会有k个以上的物体。
公式二:鸽笼问题公式鸽笼问题是抽屉原理的一种特殊形式,它要求从n个物体中选择m 个物体,保证至少有一个物体被选中两次。
根据抽屉原理,我们可以得到如下公式:m ≥ n这个公式告诉我们,当鸽笼的数量m小于等于物体的数量n时,至少有一个鸽笼会被分配到两个或更多的物体。
公式三:化简公式在某些情况下,我们需要对抽屉原理进行化简,以求得更简洁的表达式。
当物体的数量n不足以填满抽屉的数量m时,我们可以利用抽屉原理进行化简,得到如下公式:n ≤ (k-1) * m这个公式告诉我们,当抽屉的数量m过多时,至少会有一个抽屉为空。
同时,它也提醒我们在实际问题中进行有效的资源利用,避免抽屉的浪费。
综上所述,抽屉原理是离散数学中一项重要的原理,通过公式的运用,我们能够更好地理解和应用这一原理。
通过抽屉问题公式,我们可以确定至少某抽屉中装有一定数量的物体;通过鸽笼问题公式,我们可以确定至少某个物体会被选中两次;通过化简公式,我们可以对抽屉原理进行简化,提醒我们有效利用资源。
无论是在理论还是实践中,抽屉原理的三个公式都具有重要的指导意义。
所以,我们应该深入学习和掌握这些公式,并能够在适当的时候灵活运用,解决实际问题。
抽屉原理精解
第一抽屉原理原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。
[证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能。
原理2 把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。
[证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn 个物体,与题设不符,故不可能。
第二抽屉原理把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。
[证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。
抽屉原理,又叫狄利克雷原则,它是一个重要而又基本的数学原理,应用它可以解决各种有趣的问题,并且常常能够得到令人惊奇的结果,许多看起来相当复杂,甚至无从下手的问题,利用它能很容易得到解决.那么,什么是抽屉原理呢?我们先从一个最简单的例子谈起.将三个苹果放到两只抽屉里,想一想,可能会有什么样的结果呢?要么在一只抽屉里放两个苹果,而另一只抽屉里放一个苹果;要么一只抽屉里放有三个苹果,而另一只抽屉里不放.这两种情况可用一句话概括:一定有一只抽屉里放入了两个或两个以上的苹果.虽然哪只抽屉里放入至少两个苹果我们无法断定,但这是无关紧要的,重要的是有这样一只抽屉放入了两个或两个以上的苹果.如果我们将上面问题做一下变动,例如不是将三个苹果放入两只抽屉里,而是将八个苹果放到七只抽屉里,我们不难发现,这八个苹果无论以怎样的方式放入抽屉,仍然一定会有一只抽屉里至少有两个苹果。
通过上面的分析,我们可以将上面问题中包含的基本原理写成下面的一般形式.抽屉原理(一):把多于几个的元素按任一确定的方式分成几个集合,那么一定至少有一个集合中,至少含有两个元素.应用抽屉原理来解题,首先要审题,即分清什么作为“元素”,什么作为“抽屉”;其次要根据题目的条件和结论,结合有关的数学知识,来设计抽屉,在应用抽屉原理解题时,正确地设计抽屉是解题的关键.例1 有红、黄、绿三种颜色的小球各四颗混放在一只盒子里,为了保证一次能取到两颗颜色相同的小球,一次至少要取几颗?A、3B、4C、5D、6分析:将三种不同的颜色看作三个抽屉,为了保证一次能取到两颗颜色相同的小球,即要求至少有两颗小球出自同一抽屉,因此一次至少要取4颗小球.例2 某班有30名学生,班里建立一个小书库,同学们可以任意借阅,问小书库中至少要有多少本书,才能保证至少有一个同学一次能至少借到两本书?A、28B、29C、30D、31分析:将30名同学看作30个“抽屉”,而将书看作“苹果”,根据抽屉原理,“苹果”数目要比“抽屉”数目大,才能保证至少有一个抽屉里有两个或两个以上的“苹果”,因此,小书库中至少要有31本书,才能保证至少有一位同学一次能借到两本或两本以上的图书。
抽屉原理2
至少数 = 商数 + 1
至少数= 物体数÷抽屉数 +1
例3:盒子里有同样大小的红球和 蓝球各4个。要想摸出的球一定有2 个同色的,最少要摸出几个球? 想一想: 1、在这道题中,什么是“物体”? 什么是“抽屉”?什么是“至少 数 ”? 2、从题目可知,问题相当于求抽屉 原理中的( 物体 )?怎样求?
3
1、如果盒子里有蓝、红、黄球各6个,从盒 子里摸出两个同色的球,至少要摸出几个球?
2、有红色、白色、黑色的筷子各10根混放在 一起,让你闭上眼睛去摸,让你闭上眼睛去摸, (1)你至少要摸出几根才敢保证有两根筷子 是同色的? (2)至少拿几根,才能保证有两双同色的筷 子?为什么?
盒子里有红袜子和黑袜子各6只。要 想摸出的袜子一定能配成一双,最 少要摸出几只? 物体:?只袜子 抽屉:2种颜色 至少数:2
(3)要保证取出的彩球中至少有两个是同 色的,则至少应取出多少个球?
物体:57位同学
抽屉:12个月
57÷12=4……9 4+1=5(人)
2、把15个球放进4个箱子里, 至少有( 4 )个球要放进同 一个箱子里。 物体:15个球
抽屉:4个箱子
15÷4=3……3 3+1=4(个)
3、把红、黄两种颜色的球各6 个放到一个袋子里,任意取出5 个,至少有(3)个同色。
物体:5个球 抽屉:2种颜色
抽屉原理(二)
把4枝笔放进3个笔筒里,不管怎么放,总 有一个笔筒里至少放进2枝笔.
2、把27个苹果放在4个筐,不管怎么放, 总有一个筐里至少放进( )个苹果。
计算绝招
至少数 = 商数 + 1
至少数= 物体数÷抽屉数 +1
要把a个物体放进n个抽屉, 如果a÷n =b …… c
抽屉原理——精选推荐
抽屉原理知识点解析:原理1:把多于n个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
原理2 :如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:①k=[n/m ]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
当抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:元素总数=商×抽屉数+余数如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。
原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。
典型例题例1、学校开办了绘画、笛子、足球和电脑四个课外学习班,每个学生最多可以参加两个(可以不参加)。
某班有52名同学,问至少有几名同学参加课外学习班的情况完全相同?例2、一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?例3、(14年博才)六一班有45个学生,去岳麓山、植物园、橘子洲三个景点玩,每个学生可选择其中的一个或者两个景点,则至少有多少位学生游玩的地点是相同的。
例4、(14年博才)将100个苹果分给10个小朋友,每个小朋友的苹果个数互不相同。
分得的苹果个数最多的小朋友,至少得到了几个苹果?例5、甲乙丙三位老师分别教数学,物理,化学,生物,语文和历史,每位老师教两门课程,化学老师和数学老师住在一起;甲老师最年轻;数学老师和丙老师爱下象棋;物理老师比生物老师年长,比乙老师年轻;三人中最年长的老师比其他两位老师远。
三位老师分别教哪两门课程?例6、有红色、白色、黑色的筷子各10根混放在一起,让你闭上眼睛去摸,(1)你至少要摸出几根才敢保证有两根筷子是同色的?(2)至少拿几根,才能保证有两双同色的筷子?为什么?例7、某校五年级学生共有380人,年龄最大的与年龄最小的相差不到1岁,我们不用去查看学生的出生日期,就可断定在这380个学生中至少有两个是同年同月同日出生的,你知道为什么吗?例8、从任意3个整数中,一定可以找到两个。
抽屉原理ppt(共10篇)
抽屉原理ppt(共10篇)抽屉原理ppt(一): 什么叫抽屉原理桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放两个苹果.这一现象就是我们所说的“抽屉原理”.抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素.” 抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”).它是组合数学中一个重要的原理.抽屉原理ppt(二): 人教版小学数学六年级数学广角《抽屉原理》的小组活动怎样设计人教版小学数学六年级数学广角《抽屉原理》的学生小组活动怎样设计我这样设计可以吗活动1、如果把3根小棒放进2个杯子里,或4根小棒放进3个杯子里,你们摆一摆会有什么发现活动2、把5根小棒或7根小棒放进2个杯子里,会出现什么情况活动3、8根小棒放进3个杯子里,总有一个杯子里至少有几根小棒学生填写的表格:小棒杯子记录实验过程(用画图、数字或其它方法)实验结果这样能达到最佳的教学效果吗请专家指点,不甚感激!抽屉原理一、知识要点抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理.把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果.这个人所皆知的常识就是抽屉原理在日常生活中的体现.用它可以解决一些相当复杂甚至无从下手的问题.原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素.原理2:把m个元素任意放入n(n<m=个集合,则一定有一个集合呈至少要有k个元素.其中 k=(当n能整除m时)〔〕+1 (当n不能整除m时)(〔〕表示不大于的最大整数,即的整数部分)原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素.二、应用抽屉原理解题的步骤第一步:分析题意.分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”.第二步:制造抽屉.这个是关键的一步,这一步就是如何设计抽屉.根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路.第三步:运用抽屉原理.观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决.例1、教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业求证:这5名学生中,至少有两个人在做同一科作业.证明:将5名学生看作5个苹果将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉由抽屉原理1,一定存在一个抽屉,在这个抽屉里至少有2个苹果.即至少有两名学生在做同一科的作业.例2、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球把3种颜色看作3个抽屉若要符合题意,则小球的数目必须大于3大于3的最小数字是4故至少取出4个小球才能符合要求答:最少要取出4个球.例3、班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书.把50名学生看作50个抽屉,把书看成苹果根据原理1,书的数目要比学生的人数多即书至少需要50+1=51本答:最少需要51本.例4、在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米.把这条小路分成每段1米长,共100段每段看作是一个抽屉,共100个抽屉,把101棵树看作是101个苹果于是101个苹果放入100个抽屉中,至少有一个抽屉中有两个苹果即至少有一段有两棵或两棵以上的树例5、 11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本试证明:必有两个学生所借的书的类型相同证明:若学生只借一本书,则不同的类型有A、B、C、D四种若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种共有10种类型把这10种类型看作10个“抽屉”把11个学生看作11个“苹果”如果谁借哪种类型的书,就进入哪个抽屉由抽屉原理,至少有两个学生,他们所借的书的类型相同例6、有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜试证明:一定有两个运动员积分相同证明:设每胜一局得一分由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能以这49种可能得分的情况为49个抽屉现有50名运动员得分则一定有两名运动员得分相同例7、体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的解题关键:利用抽屉原理2.根据规定,多有同学拿球的配组方式共有以下9种:{足}{排}{蓝}{足足}{排排}{蓝蓝}{足排}{足蓝}{排蓝}以这9种配组方式制造9个抽屉将这50个同学看作苹果=5.5 (5)由抽屉原理2k=〔〕+1可得,至少有6人,他们所拿的球类是完全一致的抽屉原理ppt(五): "抽屉原理"是谁提出的抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里至少有两个元素.”抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”).它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理.它是组合数学中一个重要的原理.抽屉原理ppt(六): 数学中抽屉原理是什么抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品件数不少于2件.抽屉原理2:将多于mxn件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于(m+1)件.抽屉原理的本质是最差原则,很多题目不能直接用抽屉原理来解答的,均可以通过最差原则来求解.抽屉原理ppt(七): “抽屉原理”中,至少数=()+()急哦是物体数!!!!!!(总数/抽屉数)+1抽屉原理ppt(八): 抽屉原理的由来是什么抽屉原理日常生活中,人们只要稍加留意,就不难发现某些带有规律性的事物.比如,将10个苹果放进9个抽屉,那么肯定有一个抽屉里放进了两个或更多的苹果.这是大家都能理解的一个简单道理,该道理即被称为抽屉原理或鸽笼原理(以鸽子比做苹果,以笼子比做抽屉).抽屉原理的一般形式为:将n+1个苹果放进n个抽屉里,则至少有一个抽屉里放进了两个或两个以上的苹果. 千万别小看这个既平常又简单的原理,许多有趣的问题,都可以用抽屉原理来解决.比如,任意13个人中,必然有2个人是在同一个月份出生的.只需要将13个人看成苹果,12个月份看成抽屉,于是由抽屉原理就得到了结论.再比如,在边长为1的正方形内,任意给定5个点,则其中必有2个点,它们之间的距离不会大于1/2 .证明这个问题只需要将正方形分为面积相等的4等分,则4个小正方形的边长都是1/2,每个小正方形内任意两点之间的距离均不会大于大正方形的对角线长1/2. 将5个点看成苹果,4个小正方形看成抽屉,由抽屉原理,必然有一个小正方形中有2个点,于是这两个点之间的距离不大于1/2.抽屉原理ppt(九): 根据抽屉原理的理解,编一道利用抽屉原理解决的问题六年二班共有37名学生,问:至少有几人在同一月出生(假设所有人年龄相同)抽屉原理ppt(十): 抽屉原理的为什么该怎么答如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素. 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果.这一现象就是我们所说的“抽屉原理”. 抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素.” 抽屉原理有时也被称为鸽巢原理.它是组合数学中一个重要的原理.为小学六年级课程.【第一抽屉原理】:原理1:把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件.抽屉原理证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),故不可能.原理2 :把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体.证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能.原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体.原理1 、2 、3都是第一抽屉原理的表述.【第二抽屉原理】:把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2).证明(反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能.抽屉原理ppt课件简单抽屉原理ppt。
《抽屉原理》PPT课件.ppt2
2、把4枝笔放进3个笔筒里,不管怎 么放,总有一个笔筒里至少放进2枝 笔,这是为什么?
2、把4枝笔放进3个笔筒里,不管怎 么放,总有一个笔筒里至少放进2枝 笔,这是为什么?
至少放进2枝
2、把4枝笔放进3个笔筒里,不管怎 么放,总有一个笔筒里至少放进2枝 笔,这是为什么? 我们从最不利的原则去考虑:
把3本书放进两个抽屉,有几种放法?试试看。
方法一
(3,0)
方法二
(2,1)
2、把4枝笔放进3个笔筒里,不管怎 么放,总有一个笔筒里至少放进2枝 笔,这是为什么?
2、把4枝笔放进3个笔筒里,不管怎 么放,总有一个笔筒里至少放进2枝 笔,这是为什么?
2、把4枝笔放进3个笔筒里,不管怎 么放,总有源自个笔筒里至少放进2枝 笔,这是为什么?
把红、黄、蓝、白四种颜色 的球各10个放到一个袋子里。 至少取多少个球,可以保证 取到两个颜色相同的球?
谢谢
解一:5月份有31天,看作31个抽屉(类),32 名同学看作苹果,根据抽屉原理,总有一个抽 屉至少放入了2个苹果,所以至少有2名同学是 在同一天出生的。 解一:假设结论错误,那么5月的31天,每天过 生日的少于2人,也就最多1人,那这样5月份过 生日的最多31人,这与5月份有32名同学过生日 相矛盾,所以假设错误。
一副扑克牌(除去大小王)52张中有四种花色, 从中随意抽5张牌,无论怎么抽,为什么总有两 张牌是同一花色的?
四种花色
抽 牌
一盒围棋棋子,黑白子混放,我们任意摸出 3个棋子,至少有2个棋子是同颜色的,为什 么?
六(6)班有32名同学是在五月份出生的, 那么,其中至少有两名同学是在同一天出 生的。为什么?
45÷8=5……5
6只鸽子飞会6个鸽舍,至少又只鸽 子飞回同一个鸽舍里,为什么?
组合数学 抽屉原理
第五章 抽屉原理和Ramsey 理论抽屉原理又称鸽巢原理或重叠原理,是组合数学中两大基本原理之一,是一个极其初等而又应用较广的数学原理。
其道理并无深奥之处,且正确性也很明显。
但若能灵活运用,便可能得到一些意料不到的结果。
抽屉原理要解决的是存在性问题,即在具体的组合问题中,要计算某些特定问题求解的方案数,其前提就是要知道这些方案的存在性。
1930年英国逻辑学家F. P. Ramsey 将这个简单原理作了深刻推广,即Ramsey 定理,也被称为广义抽屉原理。
它是一个重要的组合定理,有许多应用。
5.1 抽屉原理(一)基本形式定理5.1.1 (基本形式)将n +1个物品放入n 个抽屉,则至少有一个抽屉中的物品数不少于两个。
证 反证之。
将抽屉编号为:1,2, …,n ,设第i 个抽屉放有i q 个物品,则 121+=+++n q q q n Λ但若定理结论不成立,即1≤i q ,即有n q q q +++Λ21≤n ,从而有n q q q n n ≤+++=+Λ211矛盾。
例 5.1.1 一年365天,今有366人,那么,其中至少有两人在同一天过生日。
注:与概率的区别:抽屉原理讲的是所给出的结论是必然成立的,即100%成立。
而概率反映的是不确定性现象发生的可能性问题,不讨论100%成立的确定性概率问题。
生日悖论:随机选出n 个人,则其中至少有二人同一天出生的概率为()A P n =n n P 3651365- 特例:()A P 23=50.73%,()A P 100=99.99997%例 5.1.2 箱子中放有10双手套,从中随意取出11只,则至少有两只是完整配对的。
(二)推广形式定理5.1.2 (推广形式)将121+-+++n q q q n Λ个物品放入n 个抽屉,则下列事件至少有一个成立:即第i 个抽屉的物品数不少于i q 个。
(证)反证。
不然,设第i 个抽屉的物品数小于i q (i =1,2, …,n )(即该抽屉最多有1-i q 个物品),则有 11+-∑=n q n i i =物品总数≤()n q q ni i n i i -=-∑∑==111与假设矛盾。
初中数学《抽屉原理(二)》讲义及练习
抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。
本讲的主要教学目标是:1.理解抽屉原理的基本概念、基本用法;2.掌握用抽屉原理解题的基本过程;3. 能够构造抽屉进行解题;4. 利用最不利原则进行解题;5.利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。
一、知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。
(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。
我们称这种现象为抽屉原理。
三、抽屉原理的解题方案(一)、利用公式进行解题苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里(2)余数=x ()()11x n -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里(二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.知识点拨教学目标第八讲:抽屉原理(二)【例 1】 在一只口袋中有红色、黄色、蓝色球若干个,小聪明和其他六个小朋友一起做游戏,每人可以从口袋中随意取出2个球,那么不管怎样挑选,总有两个小朋友取出的两个球的颜色完全一样.你能说明这是为什么吗?【解析】 从三种颜色的球中挑选两个球,可能情况只有下面6种:红、红;黄、黄;蓝、蓝;红、黄;红、蓝;黄、蓝,我们把6种搭配方式当作6个“抽屉”,把7个小朋友当作7个“苹果”,根据抽屉原理,至少有两个“苹果”要放进一个“抽屉”中,也就是说,至少有两个人挑选的颜色完全一样.【巩固】 11名学生到老师家借书,老师的书房中有文学、科技、天文、历史四类书,每名学生最多可借两本不同类的书,最少借一本.试说明:必有两个学生所借的书的类型相同【解析】 设不同的类型书为A、B、C、D四种,若学生只借一本书,则不同的类型有A、B、C、D四种;若学生借两本不同类型的书,则不同的类型有AB 、AC 、AD 、BC 、BD 、CD 六种.共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”.如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同.【巩固】 体育用品的仓库里有许多足球、排球和篮球,有66个同学来仓库拿球,要求每个人至少拿一个,最多拿两个球,问至少有多少名同学所拿的球的种类是完全一样的?【解析】 以拿球配组的方式为抽屉,每人拿一个或两个球,所以抽屉有:足、排、篮、足足、排排、篮篮、足排、足篮、排篮共9种情况,即有9个抽屉,则:66973÷=,718+=,即至少有8名同学所拿球的种类是一样的.【巩固】 幼儿园买来很多玩具小汽车、小火车、小飞机,每个小朋友任意选择两件不同的,那么至少要有几个小朋友才能保证有两人选的玩具是相同的?【解析】 根有个小朋友就有三种不同的选择方法,当第四个小朋友准备拿时,不管他怎么选择都可以跟前面三个同学其中的一个选法相同.所以至少要有4个小朋友才能保证有两人选的玩具是相同的.总结: 本题是抽屉原理应用的典型例题,作为重点讲解.学生们可能会这么认为:铺垫:2件⨯3种6=件,6件÷2个3=人,要保证有相同的所以至少要有314+=人;对于例题中的题目同样2件⨯4种8=件,8件÷2个4=人,要保证有相同的所以至少要有415+=人.因为铺垫是正好配上数了,而例题中的问题在于4种东西任选两种的选择有几种.可以简单跟学生讲一下简单乘法原理的思想,但建议还是运用枚举法列表进行分析,按顺序列表可以做到不遗漏,不重复.【例 2】 红、蓝两种颜色将一个25⨯方格图中的小方格随意涂色(见下图),每个小方格涂一种颜色.是否存在两列,它们的小方格中涂的颜色完全相同?第二行第一行第五列第四列第三列第二列第一列蓝蓝红蓝蓝红红红将上面的四种情形看成四个“抽屉”,把五列方格看成五个“苹果”,根据抽屉原理,将五个苹果放入四个抽屉,至少有一个抽屉中有不少于两个苹果,也就是至少有一种情形占据两列方格,即这两列的小方格中涂的颜色完全相同.【例 3】 从2、4、6、8、、50这25个偶数中至少任意取出多少个数,才能保证有2个数的和是52?【解析】 构造抽屉:{2,50},{4,48},{6,46},{8,44},,{24,28},{26},共13种搭配,即13个抽屉,所以任意取出14个数,无论怎样取,有两个数必同在一个抽屉里,这两数和为52,所以应取出14个数.或者从小数入手考虑,2、4、6、、26,当再取28时,与其中的一个去陪,总能找到一个数使这两个数之和为52.【巩固】 证明:在从1开始的前10个奇数中任取6个,一定有2个数的和是20.【解析】 将10个奇数分为五组(1、19),(3、17),(5、15),(7、13),(9、11),任取6个必有两个奇数在同一组中,这两个数的和为20.【巩固】 从1,4,7,10,…,37,40这14个数中任取8个数,试证:其中至少有2个数的和是41.【解析】 构造和为41的抽屉:(1,40),(4,37),(7,34),(10,31),(13,28),(16,25),(19,22),现在取8个数,一定有两个数取在同一个抽屉,所以至少有2个数的和是41.【巩固】 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34.【解析】 我们用题目中的15个偶数制造8个抽屉,(2),(4,30),(6,28),…,(16,18),凡是抽屉中的有两个数,都具有一个共同的特点:这两个数的和是34.现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数在同一个抽屉中.由制造的抽屉的特点,这两个数的和是34.【例 4】 (北京市第十一届“迎春杯”刊赛)从1,2,3,4,…,1994这些自然数中,最多可以取 个数,能使这些数中任意两个数的差都不等于9.【解析】 方法一:把1994个数一次每18个分成一组,最后14个数也成一组,共分成111组.即1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18;19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36;…………………1963,1964,…,1979,1980;1981,1982, (1994)每一组中取前9个数,共取出9111999⨯=(个)数,这些数中任两个的差都不等于9.因此,最多可以取999个数.方法二:构造公差为9的9个数列(除以9的余数){}1,10,19,28,,1990,共计222个数{}2,11,20,29,,1991,共计222个数 {}3,12,21,30,,1992,共计222个数 {}4,13,22,31,,1993,共计222个数 {}5,14,23,32,,1994,共计222个数 {}6,15,24,33,,1986,共计221个数 {}7,16,25,34,,1987,共计221个数 {}8,17,26,35,,1988,共计221个数 9,18,27,36,,1989,共计221个数邻的项.因此,前五个数列只能取出一半,后四个数列最多能取出一半多一个数,所以最多取⨯=个数1119999【巩固】从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12.【解析】在这20个自然数中,差是12的有以下8对:{20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}.另外还有4个不能配对的数{9},{10},{11},{12},共制成12个抽屉(每个括号看成一个抽屉).只要有两个数取自同一个抽屉,那么它们的差就等于12,根据抽屉原理至少任选13个数,即可办到(取12个数:从12个抽屉中各取一个数(例如取1,2,3,…,12),那么这12个数中任意两个数的差必不等于12).【巩固】(小学数学奥林匹克决赛)从1,2,3,4,…,1988,1989这些自然数中,最多可以取____个数,其中每两个数的差不等于4.【解析】将1~1989排成四个数列:1,5,9,…,1985,19892,6,10,…,19863,7,11,…,19874,8,12,…,1988每个数列相邻两项的差是4,因此,要使取出的数中,每两个的差不等于4,每个数列中不能取相邻的项.因此,第一个数列只能取出一半,因为有(19891)41498-÷+=项,所以最多取出249项,例如1,9,17,…,1985.同样,后三个数列每个最多可取249项.因而最多取出2494996⨯=个数,其中每两个的差不等于4.【例 5】(2008年第八届“春蕾杯”小学数学邀请赛决赛)从1、2、3、4、5、6、7、8、9、10、11和12中至多选出个数,使得在选出的数中,每一个数都不是另一个数的2倍.【解析】把这12个数分成6个组:第1组:1,2,4,8第2组:3,6,12第3组:5,10第4组:7第5组:9第6组:11每组中相邻两数都是2倍关系,不同组中没有2倍关系.选没有2倍关系的数,第1组最多2个(1,4或2,8或1,8),第2组最多2个(3,12),第3组只有1个,第4,5,6组都可以取,一共2211118+++++=个.如果任意取9个数,因为第3,4,5,6组一共5个数中,最多能取4个数,剩下945-=个数在2个组中,根据抽屉原理,至少有3个数是同一组的,必有2个数是同组相邻的数,是2倍关系.【巩固】从1到20这20个数中,任取11个不同的数,必有两个数其中一个是另一个数的倍数.【解析】把这20个数分成以下10组,看成10个抽屉:(1,2,4,8,16),(3,6,12),(5,10,20),(7,14),(9,18),(11),(13),(15),(17),(19),前5个抽屉中,任意两个数都有倍数关系.从这10个抽屉中任选11个数,必有一个抽屉中要取2个数,它们只能从前5个抽屉中取出,这两个数就满足题目要求.【巩固】从1,3,5,7,…,97,99中最多可以选出多少个数,使得选出的数中,每一个数都不是另一个数的倍数?【解析】方法一:因为均是奇数,所以如果存在倍数关系,那么也一定是3、5、7等奇数倍.3×33:99,于是从35开始,1~99的奇数中没有一个是35~99的奇数倍(不包括1倍),所以选出35,37,39,…,99这些奇数即可.共可选出33个数,使得选出的数中,每一个数都不是另一个数的倍数.(7,21,63),(11,33),(13,39),(17,51),(19,57),(23,69),(25,75),(29,87),(31,93),(35),(37),(41),(43),…,(97)共33组.前11组,每组内任意两个数都存在倍数关系,所以每组内最多只能选择一个数.即最多可以选出33个数,使得选出的数中,每一个数都不是另一个数的倍数.评注:1~2n 个自然数中,任意取出n+1个数,则其中必定有两个数,它们一个是另一个的整数倍;从2,3.……,2n+1中任取n+2个数,必有两个数,它们一个是另一个的整数倍;从1,2,3.……3n 中任取2n+1个数,则其中必有两个数,它们中一个是另一个的整数倍,且至少是3倍;从1,2,3,……, mn 中任取(m-1)n+1个数,则其中必有两个数,它们中一个是另一个的整数倍,且至少是m 倍(m 、n 为正整数).【巩固】 从整数1、2、3、…、199、200中任选101个数,求证在选出的这些自然数中至少有两个数,其中的一个是另一个的倍数.【解析】 把这200个数分类如下:(1)1,12⨯,212⨯,312⨯,…,712⨯,(2)3,32⨯,232⨯,332⨯,…,632⨯,(3)5,52⨯,252⨯,352⨯,…,552⨯,…(50)99,992⨯,(51)101,(52)103,…(100)199,以上共分为100类,即100个抽屉,显然在同一类中的数若不少于两个,那么这类中的任意两个数都有倍数关系.从中任取101个数,根据抽屉原理,一定至少有两个数取自同一类,因此其中一个数是另一个数的倍数.【例 6】 从1,2,3,……49,50这50个数中取出若干个数,使其中任意两个数的和都不能被7整除,则最多能取出多少个数?【解析】 将1至50这50个数,按除以7的余数分为7类:[0],[1],[2],[3],[4],[5],[6],所含的数的个数分别为7,8,7,7,7,7,7.被7除余1与余6的两个数之和是7的倍数,所以取出的数只能是这两种之一;同样的,被7除余2与余5的两个数之和是7的倍数,所以取出的数只能是这两种之一;被7除余3与余4的两个数之和是7的倍数,所以取出的数只能是这两种之一;两个数都是7的倍数,它们的和也是7的倍数,所以7的倍数中只能取1个.所以最多可以取出877123+++=个【例 7】 从1,2,3,…,99,100这100个数中任意选出51个数.证明:(1)在这51个数中,一定有两个数互质;(2)在这51个数中,一定有两个数的差等于50;(3)在这51个数中,一定存在9个数,它们的最大公约数大于1.【解析】 (1)我们将1~100分成(1,2),(3,4),(5,6),(7,8),…,(99,100)这50组,每组内的数相邻.而相邻的两个自然数互质.将这50组数作为50个抽屉,同一个抽屉内的两个数互质.而现在51个数,放进50个抽屉,则必定有两个数在同一抽屉,于是这两个数互质.问题得证.(2)我们将1—100分成(1,51),(2,52),(3,53),…,(40,90),…(50,100)这50组,每组内的数相差50.将这50组数视为抽屉,则现在有51个数放进50个抽屉内,则必定有2个数在同一抽屉,那么这两个数的差为50.问题得证.(3)我们将1—100按2的倍数、3的奇数倍、既不是2又不是3的倍数的情况分组,有(2,4,6,8,...,98,100),(3,9,15,21,27,...,93,99),(5,7,11,13,17,19,23, (95)97)这三组.第一、二、三组分别有50、17、33个元素.最不利的情况下,51个数中有33个元素在第三组,那么剩下的18个数分到第一、二两组内,那么至少有9个数在同一组.所以这9个数的最大公约数为2或3或它们的倍数,显然大于1.【例 8】有49个小孩,每人胸前有一个号码,号码从1到49各不相同.现在请你挑选若干个小孩,排成一个圆圈,使任何相邻两个小孩的号码数的乘积小于100,那么你最多能挑选出多少个孩子? 【解析】将1至49中相乘小于100的两个数,按被乘数分成9组,如下:(1×2)、(1×3)、(1×4)、…、(1×49);(2×3)、(2×4)、(2×5)、…、(2×49);(8×9)、(8×10)、(8 ×11)、(8×12);(9×10)、(9×11).因为每个数只能与左右两个数相乘,也就是每个数作为被乘数或乘数最多两次,所以每一组中最多会有两对数出现在圆圈中,最多可以取出18个数对,共18 ×2=36次,但是每个数都出现两次,故出现了18个数.例如:(10×9)、(9×11)、(1×8)、(8×12)、(12×7)、(7×13)、(13×6)、(6×14)、(14×5)、(5×15)、(15×4)、(4 ×16)、(16 X 3)、(3×17)、(17×2)、(2×18)、(18 ×1)、(1×10).共出现l~18号,共18个孩子.若随意选取出19个孩子,那么共有19个号码,由于每个号码数要与旁边两数分别相乘,则会形成19个相乘的数对.那么在9组中取出19个数时,有19=9×2+1,由抽屉原则知,必有三个数对落入同一组中,这样某个数字会在数对中出现三次(或三次以上),由分析知,这是不允许的.故最多挑出18个孩子.【例 9】要把61个乒乓球分装在若干个乒乓球盒中,每个盒子最多可以装5个乒乓球,问:至少有多少个盒子中的乒乓球数目相同?【解析】每个盒子不超过5个球,最“坏”的情况是每个盒子的球数尽量不相同,为1、2、3、4、5这5种各不相同的个数,共有:1234 5 15÷=,最不利的分法是:装1、2、3、++++=,6115414、5个球的各4个,还剩1个球,要使每个盒子不超过5个球,无论放入哪个盒子,都会使至少有5个盒子的球数相同.【例 10】有苹果和桔子若干个,任意分成5堆,能否找到这样两堆,使苹果的总数与桔子的总数都是偶数?【解析】需先跟学生介绍奇偶性:奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数。
抽屉原理
抽屉原理大家知道,两个抽屉要放置三只苹果,那么一定有两只苹果放在同一个抽屉里,更一般地说,只要被放置的苹果数比抽屉数目大,就一定会有两只或更多只的苹果放进同一个抽屉,可不要小看这个简单事实,它包含着一个重要而又十分基本的原则——抽屉原则.1.抽屉原则有几种最常见的形式原则1如果把n+k(k≥1)个物体放进n只抽屉里,则至少有一只抽屉要放进两个或更多个物体。
原则本身十分浅显,为了加深对它的理解,我们还是使用反证法给予证明;如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能.原则虽简单.巧妙地使用原则却可十分便利地解决一些看上去相当复杂、甚至感到无从下手的总是,比如说,我们能够断言在我国至少有两个人出生的时间相差不超过4秒钟,这是个惊人的结论,该是经过很多人的艰苦劳动,统计所得的吧!不,只须我们稍动手算一下:不妨假设人的寿命不超过4万天(约110岁,超过这个年龄数的人为数甚少),则,10亿人口安排在8亿6千4百万个“抽屉”里,根据原则1,即知结论成立.下面我们再举一个例子:例1幼儿园买来了很多白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理.【解析】从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。
把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原则1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同.原则2如果把mn+k(k≥1)个物体放进n个抽屉,则至少有一个抽屉至多放进m+1个物体.证明同原则相仿.若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能.原则1可看作原则2的物例(m=1)例2正方体各面上涂上红色或蓝色的油漆(每面只涂一种色),证明正方体一定有三个面颜色相同. 【解析】证明把两种颜色当作两个抽屉,把正方体六个面当作物体,那么6=2×2+2,根据原则二,至少有三个面涂上相同的颜色.例3把1到10的自然数摆成一个圆圈,证明一定存有在个相邻的数,它们的和数大于17.【解析】如图所示,设分别代表不超过10的十个自然数,它们围成一个圈,三个相邻的数的组成是,,,共十组.现把它们看作十个抽屉,每a10a9a8a7a6a5a4a3a2a1个抽屉的物体数是,,,,,因为根据原则2,至少有一个括号内的三数和很多于17,即至少有三个相邻的数的和不小于17.原则1、原则2可归结到期更一般形式:原则3把个物体放入n个抽屉里,那么或在第一个抽屉里至少放入个物体,或在第二个抽屉里至少放入个物体,……,或在第n个抽屉里至少放入1个物体.【解析】假定第一个抽屉放入物体的数不超过个,第二个抽屉放入物体的数不超过个,……,第n个抽屉放入物体的个数不超过,那么放入所有抽屉的物体总数不超过个,与题设矛盾.例4 有红袜2双,白袜3双,黑袜4双,黄袜5双,蓝袜6双(每双袜子包装在一起)若取出9双,证明其中必有黑袜或黄袜2双.【解析】除可能取出红袜、白袜3双外.还至少从其它三种颜色的袜子里取出4双,根据原理3,必在黑袜或黄袜、蓝袜里取2双.上面数例论证的似乎都是“存有”、“总有”、“至少有”的问题,不错,这正是抽屉原则的主要作用.需要说明的是,使用抽屉原则仅仅肯定了“存有”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存有多少.2.制造抽屉是使用原则的一大关键首先要指出的是,对于同一问题,常可依据情况,从不同角度设计抽屉,从而导致不同的制造抽屉的方式.例5在边长为1的正方形内,任意给定13个点,试证:其中必有4个点,以此4点为顶点的四边开面积不超过(假定四点在一直线上构成面积为零的四边形).【解析】如图(1)所示,把正方形分成四个相同的小正方形.因13=3×4+1,根据原则2,总有4点落在同一个小正方形内(或边界上),以此4点为顶点的四边形的面积不超过小正方形的面积,也就不超过整个正方形面积的.事实上,因为解决问题的核心在于将正方形分割成四个面积相等的部分,所以还能够把正方形按图(2)所示的形式分割.合理地制造抽屉必须建立在充分考虑问题自身特点的基础上.例6 在一条笔直的马路旁种树,从起点起,每隔一米种一棵树,如果把三块“爱护树木”的小牌分别挂在三棵树上,那么不管怎样挂,至少有两棵挂牌的树之间的距离是偶数(以米为单位),这是为什么?【解析】如图所示(设挂牌的三棵树依次为A 、B 、C.AB=a ,BC=b ,若a 、b 中有一为偶数,命题得证.否则a 、b 均为奇数,则AC=a+b 为偶数,命题得证.下面我们换一个角度考虑:给每棵树上编上号,于是两棵树之间的距离就是号码差,因为树的号码只能为奇数和偶数两类,那么挂牌的三棵树号码至少有两个同为奇数或偶数,它们的差必为偶数,问题得证.后一证明十分巧妙,通过编号码,将两树间距离转化为号码差.这种转化的思想方法是一种非常重要的数学方法 例7 从自然数1,2,3,…99,100这100个数中随意取出51个数来,求证:其中一定有两个数,,它们中的一个是另一个的倍数.图(2)图(1)b a C【解析】分析设法制造抽屉:(1)不超过50个;(2)每个抽屉的里的数(除仅有的一个外),其中一个数是另一个数的倍数,一个自然数的想法是从数的质因数表示形式入手.解设第一个抽屉里放进数:;第二个抽屉时放进数:;第三个抽屉里放进数:;………………第二十五个抽屉里放进数:;第二十六个抽屉里放进数:.………………第五十个抽屉里放进数:.那么随意取出51个数中,必有两个数同属一个抽屉,其中一个数是另一个数的倍数.制造抽屉并非总是一帆风顺的,有时要边制造边调整、改进.例8 任意给定7个不同的自然数,求证其中必有两个整数,其和或差是10的倍数.【解析】分析注意到这些数队以10的余数即个位数字,以0,1,…,9为标准制造10个抽屉,标以[0],[1],…,[9].若有两数落入同一抽屉,其差是10的倍数,仅仅仅有7个自然数,似不便使用抽屉原则,再作调整:[6],[7],[8],[9]四个抽屉分别与[4],[3],[2],[1]合并,则可保证至少有一个抽屉里有两个数,它们的和或差是10的倍数.3.较复杂的问题须反复地使用抽屉原则,将复杂问题转化为简单问题.例9以(x,y,z)表示三元有序整数组,其中x、y、z为整数,试证:在任意七个三元整数组中,至少有两个三元数组,它们的x、y、z元中有两对都是奇数或都是偶数.【解析】设七个三元素组为、、…、.现在逐步探索,从x元开始,由抽屉原则,,,…,这七个数中,必定有四个数具有相同的奇偶性,不妨设这四个数是,且为偶数,接着集中考虑这四组数的y元,若比如,中有两个是偶数,则问题已证,否则至多有一个是偶数,比如是偶数,这时我们再来集中考虑3的z元.在中,由抽屉原则必有两个数具有相同的奇偶性,如,这时无论它们是奇数,还是偶数,问题都已得到证明.下面介绍一个著名问题.例10任选6人,试证其中必有3人,他们互相理解或都不理解.【解析】用A、B、C、D、E、F表示这6个人,首先以A为中心考虑,他与另外五个人B、C、D、E、F只有两种可能的关系:理解或不理解,那么由抽屉原则,他必定与其中某三人理解或不理解,现不妨设A理解B、C、D三人,当B、C、D三人都互不理解时,问题得证;当B、C、D三人中有两人理解,如B、C理解时,则A、B、C互相理解,问题也得证.本例和上例都采用了舍去保留、化繁为简、逐步缩小考虑范围的方法.例11为四个任意给定的整数,求证:以下六个差数的乘积一定能够被12整除.【解析】把这6个差数的乘积记为p,我们必须且只须证明:3与4都能够整除p,以下分两步实行.第一步,把a,b,c,d按以3为除数的余数来分类,这样的类只有三个,故知a,b,c,d中至少有2个除以3的余数相同,例如,不妨设为a,b,这时3可整除b-a,从而3可整除p.第二步,再把a,b,c,d按以4为除数的余数来分类,这种类至多只有四个,如果a,b,c,d中有二数除以4的余数相同,那么与第一步类似,我们立即可作出4可整除p的结论.设a,b,c,d四数除以4的余数不同,由此推知,a,b,c,d之中必有二个奇数(不妨设为a,b),也必有二个偶数(设为c,d),这时b-a为偶数,d-c也是偶数,故4可整除(b-a)(d-c),自然也可得出4可整除p.如果能进一步灵活使用原则,不但制造抽屉,还根据问题的特征,制造出放进抽屉的物体,则更可收到意想不到的效果.例12求证:从任意n个自然数a1,a2,…,a n中能够找到若干个数,使它们的和是n的倍数.【解析】分析以0,1,…,n-1即被n除的余数分类制造抽屉的合理的,但把什么样的数作为抽屉里的物体呢?扣住“和”,构造下列和数:,其中任意两个和数之差仍为和数,若他们之中有一是n的倍数,问题得证,否则至少有两个数被n除余数相同,则它们的差即它们中若干数(包括1个)的和是n的倍数,问题同样得证.例子13910瓶红、蓝墨水,排成130行,每行7瓶,证明:不论怎样排列,红蓝墨水瓶的颜色次序必定出现下述两种情况之一种:(1)至少有三行完全相同;(2)至少有两组(四行)每组的两行完全相同.【解析】910瓶红、蓝墨水排成130行,每行7瓶,对一行来说,每个位置上有红蓝两种可能,所以,一行的红、蓝墨水排法有27=128种,对每一种不同排法设为一种“行式”,共有128种行式.现有130行,在其中任取129行,依抽屉原则知,必有两行A、B行式相同.除A、B外余下128行,若有一行P与A行式相同,知满足(1)至少有三行A、B、P完全相同,若在这128行中设直一行5A行或相同,那么这128行至多有127种行式,依抽屉原则,必有两行C、D具有相同行式,这样便找到了(A、B),(C、D)两组(四行),且两组两行完全相同.。
抽屉原理讲义
抽屉原理讲义什么是抽屉原理?在数学领域中,抽屉原理是一种简单而常用的证明方法。
其核心思想是,如果将 n+1 个物品放到 n 个桶中,那么至少有一个桶中必定包含两个及以上的物品。
这个原理在组合数学、计算机科学等诸多领域都有广泛应用。
具体而言,抽屉原理包括两个基本概念:抽屉和物品。
如果将 n 个物品放到 m 个抽屉中,如果 n > m,那么至少有一个抽屉中会有两个或两个以上的物品。
抽屉原理的证明对于抽屉原理的证明,有一种简单而直观的方法。
我们可以将 n+1 个物品任意分成 m 组,其中 m = n。
假设每一组最多只有一个物品,那么总共只能分成 n 组。
由于有 n+1 个物品,所以至少有一组中包含了两个物品。
因此,根据这个假设的前提,我们可以得到一个矛盾,即最多只能将 n+1 个物品分成 n 组,每组最多只有一个物品,但又至少有两个物品在同一组中。
因此,假设不成立,抽屉原理成立。
抽屉原理应用抽屉原理有很多应用,下面我们介绍其中的两个例子。
例子1:生日悖论假设我们有一个房间里有 23 个人,那么至少有两个人生日相同的概率有多大呢?根据抽屉原理,我们将每个人的生日看做一个物品,日期看做一个抽屉,因为一年中只有 365 天,所以只有 365 个抽屉,但有 23 个生日需要放到这些抽屉中。
根据计算可知,概率公式为 P = 1 –(365 * 364 * 363 …… (365-22)) / (365 ^ 23) ≈ 0.5因此,当有 23 个人在同一个房间中时,至少有两个人生日相同的概率几乎是50%。
例子2:计算机算法在计算机算法中,抽屉原理有广泛应用。
其中一个例子是哈希表。
哈希表是一种高效的数据结构,它基于抽屉原理,使用哈希函数将每个数据项映射到不同的桶中。
在哈希表中,桶的数量通常比数据项的数量多,因此会有多个数据项映射到同一个桶中。
例如,如果我们在一个大小为 10 的哈希表中存储 11 个数据项,其中有两个数据项会映射到同一个桶中。
抽屉原理知识点总结抽屉原理复习知识点.docx
抽屉原理知识点总结抽屉原理复习知识点抽屉原理是组合数学中一个重要的原理,也是小学数学的一个重点知识。
以下是本人为你整理的抽屉原理知识点总结,希望你喜欢。
抽屉原理知识点总结抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1 或多于 n+1个元素放到 n 个集合中去,其中必定至少有一个集合里至少有两个元素。
”抽屉原理有时也被称为鸽巢原理 ( “如果有五个鸽子笼,养鸽人养了 6 只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有 2 只鸽子” ) 。
它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。
它是组合数学中一个重要的原理。
抽屉原理知识点总结:抽屉原则一如果把 (n+1) 个物体放在n 个抽屉里,那么必有一个抽屉中至少放有 2 个物体。
例:把 4 个物体放在 3 个抽屉里,也就是把 4 分解成三个整数的和,那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有 2 个或多于 2 个物体,也就是说必有一个抽屉中至少放有 2 个物体。
抽屉原理知识点总结:抽屉原则二如果把 n 个物体放在 m个抽屉里,其中 n>m,那么必有一个抽屉至少有:①k=[n/m ]+1个物体:当n 不能被 m整除时。
②k=n/m 个物体:当n 能被 m整除时。
理解知识点: [X] 表示不超过X 的最大整数。
例 [4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉。
也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。
抽屉原理知识点总结:抽屉原理练习1.木箱里装有红色球 3 个、黄色球 5 个、蓝色球 7 个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球 ?解:把 3 种颜色看作 3 个抽屉,要符合题意,则小球的数目必须大于 3,故至少取出 4 个小球才能符合要求。
抽屉原理
抽屉原理在数学问题中有一类与“存在性”有关的问题,例如:“13个人中至少有两个人出生在相同月份”;“某校400名学生中,一定存在两名学生,他们在同一天过生日”;“2003个人任意分成200个小组,一定存在一组,其成员数不少于11”。
这类存在性问题中,“存在”的含义是“至少有一个”。
在解决这类问题时,只要求指明存在,一般并不需要指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。
这类问题相对来说涉及到的运算较少,依据的理论也不复杂,我们把这些理论称之为“抽屉原理”。
(一)抽屉原理的常见形式定理1:如果把n+1个元素分成n个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素。
证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1个元素,从而n个集合至多有n个元素,此与共有n+1个元素矛盾,故命题成立。
在定理1的叙述中,可以把“元素”改为“物件”,把“集合”改成“抽屉”,抽屉原理正是由此得名。
定理2:把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。
证明:(反证法)若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能定理3:把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。
.定理4:把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。
证明:(反证法)若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,(二)抽屉原理研究的几类问题分析:(1)整除问题:例1:对于任意的五个自然数,证明其中必有3个数的和能被3整除.证明∵任何数除以3所得余数只能是0,1,2,不妨分别构造为3个抽屉:[0],[1],[2]①若这五个自然数除以3后所得余数分别分布在这3个抽屉中(即抽屉中分别为含有余数为0,1,2的数),我们从这三个抽屉中各取1个(如1~5中取3,4,5),其和(3 +4+5=12)必能被3整除.②若这5个余数分布在其中的两个抽屉中,则其中必有一个抽屉,包含有3个余数(抽屉原理),而这三个余数之和或为0,或为3,或为6,故所对应的3个自然数之和是3的倍数.③若这5个余数分布在其中的一个抽屉中,很显然,必有3个自然数之和能被3整除.例1′:对于任意的11个整数,证明其中一定有6个数,它们的和能被6整除.证明:设这11个整数为:a1,a2,a3……a11 又6=2×3①先考虑被3整除的情形由例2知,在11个任意整数中,必存在:3|a1+a2+a3,不妨设a1+a2+a3=b1;同理,剩下的8个任意整数中,由例2,必存在:3 | a4+a5+a6.设a4+a5+a6=b 2;同理,其余的5个任意整数中,有:3|a7+a8+a9,设:a7+a8+a9=b3②再考虑b1、b2、b3被2整除.依据抽屉原理,b1、b2、b3这三个整数中,至少有两个是同奇或同偶,这两个同奇(或同偶)的整数之和必为偶数.不妨设2|b1+b2则:6|b1+b2,即:6|a1+a2+a3+a4+a5+a6∴任意11个整数,其中必有6个数的和是6的倍数.(2)面积问题:例1:九条直线中的每一条直线都将正方形分成面积比为2:3的梯形证明:这九条直线中至少有三条经过同一点.证明:如图,设直线EF将正方形分成两个梯形,作中位线MN。
《抽屉原理》教学课件
鸽巢原理的变种
VS
应用在概率论中的抽屉原理是指将抽屉原理与概率论相结合,以解决概率论中的一些问题。
详细描述
在概率论中,抽屉原理可以应用于解决一些概率分布的问题。例如,可以将抽屉原理应用于计算概率密度函数或者概率分布函数的性质。通过将抽屉原理与概率论相结合,可以更好地理解概率分布的性质和特点,并解决一些概率论中的难题。
整数划分问题
应用抽屉原理解析
总结词
整数划分问题是指将一个正整数拆分成若干个正整数之和。抽屉原理在这个问题中发挥了关键作用,通过巧妙地将各个整数视为“抽屉”,而将划分方式视为“物品”,利用抽屉原理证明了某些特定划分的不可能性。
详细描述
04
CHAPTER
抽屉原理的变种与推广
总结词
有限制的鸽巢原理的推广是指将有限制的鸽巢原理应用到更广泛的场景中,以解决更为复杂的问题。
抽屉原理的定义
19世纪中叶,德国数学家鲁布里奇正式提出了抽屉原理这一名称,并进行了系统的研究和发展。
随着组合数学的发展,抽屉原理在数学、计算机科学、信息科学等领域得到了广泛的应用和推广。
抽屉原理的起源可以追溯到古希腊数学家欧几里得,他在《几何原本》中提出了类似的原理。
抽屉原理的起源与发展
实例分析
提供多种形式的练习题,让学生通过变式训练加深对抽屉原理的理解和应用。
变式训练
组织小组讨论,让学生互相交流思路和方法,拓展解决问题的思路和途径。
小组讨论
如何引导学生应用抽屉原理解决问题
THANKS
感谢您的观看。
总结词
应用在概率论中的抽屉原理
05
CHAPTER
抽屉原理的教学建议
通过日常生活中的实例,如“四个苹果放入三个抽屉,至少有一个抽屉有两个苹果”来引入抽屉原理的概念。
初中数学重点梳理:抽屉原理
抽屉原理知识定位抽屉原理也叫鸽笼原理,是由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,就能很快使问题得到解决.知识梳理知识梳理1.抽屉原理1、抽屉原理1把n+1个东西,任意地分放到n 个抽屉里,那么必有一个抽屉里至少有2个东西。
2、抽屉原理2把m 个东西,任意地分放到n 个抽屉里,那么必有一个抽屉里至少有k 个东西。
其中n m n m n m n m k n m n m k 表示,的倍数时不是当或的倍数时是当⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡==)(1)(的整数部分。
上述原理称为抽屉原理。
抽屉原理虽然简单、浅显,却是解决很多存在性问题的有力工具。
利用抽屉原理解题的一般步骤是:(1)构造抽屉,指出东西;(2)将东西放入抽屉,或从抽屉里取出;(3)说明理由,得出结论。
例题精讲【试题来源】【题目】某校有学生2000人,问至少有几个学生生日是同一天?【答案】6【解析】我们把2000名学生看作是苹果,一年365天(闰年366天)看作是抽屉,即把m (2000)个元素,分成n(366)个集合,至少有一个集合的元素不少于{}n m个 ∵=3662000536617 ∴{}3662000=6 【知识点】抽屉原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】从1到10这十个自然数中,任意取出6个数,其中至少有两个是倍数关系,试说明这是为什么。
【答案】我们把1到10的奇数及它们的倍数放在同一集合里,则可分为5个集合,它们是:{1,2,4,8,},{3,6,},{5,10},{7},{9}。
∵要在5个集合里取出6个数,∴至少有两个是在同一集合,而在同一集合里的任意两个数都是倍数关系。
【解析】我们把1到10的奇数及它们的倍数放在同一集合里,则可分为5个集合,它们是:{1,2,4,8,},{3,6,},{5,10},{7},{9}。
小升初数学知识手册:抽屉原理知识点总结
小升初数学知识手册:抽屉原理知识点总结
为您编辑了小升初数学知识手册:抽屉原理,希望您阅读愉快!
抽屉原理
抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:
①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。
抽屉原则二:如果把n个物体放在m个抽屉里,其中nm,那么必有一个抽屉至少有:
①k=[n/m ]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
理解知识点:[_]表示不超过_的最大整数。
例[4.351]=4;[0.321]=0;[2.9999]=2;
关键问题:构造物体和抽屉。
也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7 抽屉原理(二)
学习目标:
1、在上节课经历“抽屉原理”的探究过程的基础上,进一步了解“抽屉原理”,会用“抽屉原理”解决较复杂的实际问题。
2、经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
3、通过“抽屉原理一、二”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
教学重点:
1、在经历“抽屉原理”的探究过程的基础上,进一步了解“抽屉原理”;
2、进一步理解“总有”“至少”的具体含义,以及为什么是商+1而不是余数+1。
教学难点:
进一步理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
教学过程:
一、情景体验
PPT展示图片
师:上节课我们已经学习了抽屉原理,并且会用抽屉原理解决一些简单的实际问题。
利用抽屉原理,关键是要弄清应当把什么看作“抽屉”,把什么看作“苹果”。
实用文档
现在请大家思考这个问题,在一间能容纳1500个座位的戏院里,如果戏院坐满人时,一定最少有多少观众是同月同日出生的呢?
学生讨论交流,汇报各自结果。
师:看来大家对于上节课的知识掌握的非常好,今天我们继续来学习有关抽屉原理的问题。
(板书:抽屉原理二)
二、思维探索(建立知识模型)
展示例1
例1:从一副扑克牌中,至少要抽出多少张牌,才能保证有3张不同样的花色。
学生读题
师:大家都玩过扑克牌吧,有谁能告诉老师一副扑克牌里有几种不同的花色呢?
生:黑桃、梅花、方块、红桃四种。
师追问:那么这四种不同的花色,每种各有多少张牌?
生:每种13张。
师:看来大家都很熟悉扑克牌哦,我们知道一副扑克牌一共有54张,除去刚才大家说的四种花色,还有哪两张牌很特殊呢?
生:大王和小王。
师:对的,所以一副扑克牌中一共有多少种不同的花色?
生:六种。
实用文档
师:现在题目要保证有3张不同的花色,至少要抽出多少张牌呢?
学生思考
生1:我可以先把方块抽完,再把黑桃抽完,那么接下来抽的就是第三种花色。
生2:我可以先抽大王,再抽小王,接下来抽的就是第三种花色,只需要抽三张牌就行。
师:大家的想法有点不一样哦,题目是问最少抽出几张牌能保证有3张不同样的花色,既然是至少,那么生2说的这种情况能不能保证抽到的一定会是大王、小王呢?
生:不一定。
师:既然不一定,那么就不能保证对不对?这时候就需要我们从极端性原则,即在最不利的情况下考虑。
先把方块抽完需要抽13张,再把黑桃抽完需要抽13张。
这时候已有两种不同的花色,且方块、黑桃已抽完,那么不管怎么抽,下一张一定是大王、小王、梅花、红桃中的一张,即出现3张不同样的花色。
师:所以至少需要抽出多少张牌?
生:13+13+1=27(张)
师小结:像这类型的题目,通常需要从极端性原则出发,在最不利的情况考虑。
学生自主完成即学即练,师再集体订正讲解。
展示例2
例2:把16支铅笔放入5个笔盒里,求证:一定有一个盒子里至少放了4支铅笔。
学生读题
实用文档
师:利用抽屉原理解决问题时,一定要先找准谁是苹果,谁是抽屉。
本题中把什么看作苹果?把什么看作抽屉?
学生思考,得出把铅笔当苹果,把笔盒当抽屉。
学生列算式解答说明,师适当补充。
学生自主完成即学即练,师再集体订正讲解。
三、思维拓展(知识模型拓展)
展示例3
例3:某班组织全班45人进行体育比赛,项目有A、B、C三项,规定每人至少参加一项,最多参加两项,至少有几个人参加的项目完全相同?
学生读题
师:本题中把什么看作苹果?把什么看作抽屉?
学生思考回答
师:把人看作苹果,因此45人就是45个苹果,而把比赛项目类型看作是抽屉,个数未知,题目说每人至少参加一项,最多参加两项,那么比赛类型一共有多少种呢?生:每人参加一项有A、B、C三种,参加两项有AB、AC、BC三种,共有六种。
师:把45个苹果放进6个抽屉,至少有几个苹果放在同一个抽屉?
生:45÷6=7……3,至少有8个苹果放在同一个抽屉。
师:所以,至少有8个人参加的项目完全相同。
实用文档
学生自主完成即学即练,师再集体订正讲解。
展示例4
例4:在一次钓鱼比赛中共有100人参加,比赛结束后,裁判宣布最少的钓了7条鱼,最多的钓了13条鱼,问这100人中,至少有几个人钓的鱼一样多?
学生读题
师:本题中把什么看作苹果?把什么看作抽屉?
学生思考回答
师:把人看作苹果,因此100人就是100个苹果,而把钓到的鱼的数量看作是抽屉,个数未知,题目说最少的钓了7条鱼,最多的钓了13条鱼,那么钓的鱼的数量可以有多少种呢?
生:钓到的鱼的数量肯定是整数,最小是7,最大是13,因此有7、8、9、10、11、12、13,共有七种。
师:把100个苹果放进7个抽屉,至少有几个苹果放在同一个抽屉?
生:100÷7=14……2,至少有15个苹果放在同一个抽屉。
师:所以,至少有15个人钓的鱼一样多。
学生自主完成即学即练,师再集体订正讲解。
四、融汇贯通(知识模型的运用)
实用文档
展示例5
例5:有一班同学,他们订阅了A、B、C三种杂志中的一种或几种,已知他们中至少有6人订的完全相同,这个班至少有多少人?最多有几人?
学生读题
师:本题中把什么看作苹果?把什么看作抽屉?
学生回答
师:已知把班级人数看作苹果,把订阅的杂志类型看作抽屉。
而题目要求的是班级人数,即苹果数未知,那么能不能根据条件找出抽屉的个数呢?
学生讨论交流,汇报结果。
师讲解:抽屉对应的是订阅的杂志类型,已知有A、B、C三种杂志,每位同学订阅一种或几种,即最少订阅一种,最多订阅三种。
因此可以先用列举法把订阅的杂志类型一一列举出来。
如果只订阅一种,有A、B、C三类;如果订阅两种,有AB、AC、BC三类;如果订阅三种,有ABC一类。
所以订阅的杂志类型一共有7类,即有7个抽屉。
苹果个数÷7=商……余数至少数=商+1
本题中至少有6人订的完全相同,至少数=6,则商=5。
当余数是1时,才能满足苹果个数最少,为7×5+1=36
当余数是0时,至少数=商,才能满足苹果个数最多,为7×6=42
所以这个班至少有36人,最多有42人。
实用文档
学生自主完成即学即练,师再集体订正讲解。
六、总结
通过这次课的学习,你学到了什么呢?
实用文档。