行政能力测验之常用数学公式汇总

合集下载

公务员行测必备数学公式总结(全)

公务员行测必备数学公式总结(全)

一、基础公式1. 加法交换律:a + b = b + a2. 加法结合律:(a + b) + c = a + (b + c)3. 乘法交换律:a × b = b × a4. 乘法结合律:(a × b) × c = a × (b × c)5. 乘法分配律:a × (b + c) = a × b + a × c二、分数和小数1. 分数的基本性质:分子和分母同时乘以或除以相同的数(0除外),分数的值不变。

2. 小数的基本性质:小数点向左或向右移动一位,数值相应地乘以或除以10。

三、百分比和比例1. 百分比的基本性质:百分比可以表示为分数或小数,例如50% = 0.5 = 1/2。

2. 比例的基本性质:比例是两个分数的等价关系,例如a:b =c:d可以表示为a/b = c/d。

四、代数1. 一元一次方程:ax + b = 0,其中a和b是常数,x是未知数。

2. 二元一次方程组:ax + = c,dx + ey = f,其中a、b、c、d、e、f是常数,x和y是未知数。

3. 一元二次方程:ax^2 + bx + c = 0,其中a、b、c是常数,x是未知数。

五、几何1. 三角形面积公式:S = 1/2 底高2. 矩形面积公式:S = 长宽3. 圆面积公式:S = π r^2,其中r是圆的半径4. 球体积公式:V = 4/3 π r^3,其中r是球的半径六、概率1. 概率的基本性质:概率的值介于0和1之间,包括0和1。

2. 独立事件的概率:两个独立事件同时发生的概率等于各自发生的概率的乘积。

3. 条件概率:在已知一个事件发生的条件下,另一个事件发生的概率。

七、统计学1. 平均数:一组数值的总和除以数值的个数。

2. 中位数:一组数值按照大小排列后,位于中间位置的数值。

3. 众数:一组数值中出现次数最多的数值。

八、其他1. 对数的基本性质:对数可以表示为指数的倒数,例如log_a(b) = c等价于a^c = b。

行测中常见的数学公式

行测中常见的数学公式

1.两次相遇公式:单岸型 S=(3S1+S2)/2 两岸型 S=3S1-S2例题:两艘渡轮在同一时刻垂直驶离H 河的甲、乙两岸相向而行,一艘从甲岸驶向乙岸,另一艘从乙岸开往甲岸,它们在距离较近的甲岸720 米处相遇。

到达预定地点后,每艘船都要停留10 分钟,以便让乘客上船下船,然后返航。

这两艘船在距离乙岸400 米处又重新相遇。

问:该河的宽度是多少?A. 1120 米B. 1280 米C. 1520 米D. 1760 米典型两次相遇问题,这题属于两岸型(距离较近的甲岸720 米处相遇、距离乙岸400 米处又重新相遇)代入公式3*720-400=1760选D如果第一次相遇距离甲岸X米,第二次相遇距离甲岸Y米,这就属于单岸型了,也就是说属于哪类型取决于参照的是一边岸还是两边岸2.漂流瓶公式:T=(2t逆*t顺)/ (t逆-t顺)例题:AB两城由一条河流相连,轮船匀速前进,A――B,从A城到B城需行3天时间,而从B城到A城需行4天,从A城放一个无动力的木筏,它漂到B城需多少天?A、3天B、21天C、24天D、木筏无法自己漂到B城解:公式代入直接求得243.沿途数车问题公式:发车时间间隔T=(2t1*t2)/ (t1+t2 )车速/人速=(t1+t2)/ (t2-t1)例题:小红沿某路公共汽车路线以不变速度骑车去学校,该路公共汽车也以不变速度不停地运行,没隔6分钟就有辆公共汽车从后面超过她,每隔10分钟就遇到迎面开来的一辆公共汽车,公共汽车的速度是小红骑车速度的()倍?A. 3B.4C. 5D.6解:车速/人速=(10+6)/(10-6)=4 选B4.往返运动问题公式:V均=(2v1*v2)/(v1+v2)例题:一辆汽车从A地到B地的速度为每小时30千米,返回时速度为每小时20千米,则它的平均速度为多少千米/小时?()A.24B.24.5C.25D.25.5解:代入公式得2*30*20/(30+20)=24选A5.电梯问题:能看到级数=(人速+电梯速度)*顺行运动所需时间(顺)能看到级数=(人速-电梯速度)*逆行运动所需时间(逆)6.什锦糖问题公式:均价A=n /{(1/a1)+(1/a2)+(1/a3)+(1/an)}例题:商店购进甲、乙、丙三种不同的糖,所有费用相等,已知甲、乙、丙三种糖每千克费用分别为4.4 元,6 元,6.6 元,如果把这三种糖混在一起成为什锦糖,那么这种什锦糖每千克成本多少元?A.4.8 元B.5 元C.5.3 元D.5.5 元7.十字交叉法:A/B=(r-b)/(a-r)例:某班男生比女生人数多80%,一次考试后,全班平均成级为75 分,而女生的平均分比男生的平均分高20% ,则此班女生的平均分是:析:男生平均分X,女生1.2X1.2X 75-X 175 =X 1.2X-75 1.8得X=70 女生为848.N人传接球M次公式:次数=(N-1)的M次方/N 最接近的整数为末次传他人次数,第二接近的整数为末次传给自己的次数例题:四人进行篮球传接球练习,要求每人接球后再传给别人。

行测常用数学公式汇总(非常全)

行测常用数学公式汇总(非常全)

《行测》常用数学公式汇总一、基础代数公式1. 平方差公式:(a +b )×(a -b )=a2-b22. 完全平方公式:(a±b )2=a2±2ab +b2完全立方公式:(a±b )3=(a±b )(a2 ab+b2)3. 同底数幂相乘: am ×an =am +n (m 、n 为正整数,a≠0)同底数幂相除:am÷an =am -n (m 、n 为正整数,a≠0)a0=1(a≠0)a-p =p a 1(a≠0,p 为正整数)4. 等差数列:(1)sn =2)(1n a a n ⨯+=na1+21n(n-1)d ;(2)an =a1+(n -1)d ;(3)n =d a a n 1-+1; (4)若a,A,b 成等差数列,则:2A =a+b ;(5)若m+n=k+i ,则:am+an=ak+ai ;(其中:n 为项数,a1为首项,an 为末项,d 为公差,sn 为等差数列前n 项的和)5. 等比数列:(1)an =a1q -1;(2)sn =q q a n -11 ·1)-((q ≠1)(3)若a,G ,b 成等比数列,则:G2=ab ;(4)若m+n=k+i ,则:am ·an=ak ·ai ;(5)am-an=(m-n)d(6)n ma a =q(m-n)(其中:n 为项数,a1为首项,an 为末项,q 为公比,sn 为等比数列前n 项的和)6.一元二次方程求根公式:ax2+bx+c=a(x-x1)(x-x2)其中:x1=a ac b b 242-+-;x2=a acb b 242---(b2-4ac ≥0)根与系数的关系:x1+x2=-a b ,x1·x2=a c二、基础几何公式1. 三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两 边之和大于第三边、任两边之差小于第三边;(1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。

最新行测常用数学公式

最新行测常用数学公式

最新行测常用数学公式在行政能力测验(行测)中,数学公式是一个重要的考点。

掌握常用的数学公式不仅可以提高解题速度,还可以帮助我们更好地理解问题和利用公式解决问题。

下面是一些常用的数学公式:1.比例公式:比例公式常用于解决两个或多个变量之间的比例关系问题。

对于两个变量x和y,若它们之间成比例,则有:x1/y1 = x2/y2 = ... = xn/yn2.百分比公式:百分比公式是用来计算百分比的一种常用方法。

对于一个数x的p%(p是一个百分数)的百分比,可以表示为:x * p/100 = p% of x3.面积公式:面积公式用于计算各种几何图形的面积。

以下是一些常用的面积公式:-矩形的面积:面积=长×宽-三角形的面积:面积=底边×高/2-圆的面积:面积=πr²(其中r是半径)-正方形的面积:面积=边长²-梯形的面积:面积=(上底+下底)×高/24.周长公式:周长公式用于计算各种几何图形的周长。

以下是一些常用的周长公式:-矩形的周长:周长=2×(长+宽)-三角形的周长:周长=边1+边2+边3-圆的周长:周长=2πr(其中r是半径)-正方形的周长:周长=4×边长5.体积公式:体积公式用于计算各种立体图形的体积。

以下是一些常用的体积公式:-立方体的体积:体积=边长³-圆柱体的体积:体积=πr²h(其中r是底面半径,h是高)-圆锥体的体积:体积=1/3×πr²h-球体的体积:体积=4/3×πr³6.平均值公式:平均值公式用于计算一组数的平均值。

对于一组n个数x1,x2,...,xn,它们的平均值为:平均值 = (x1 + x2 + ... + xn)/n7.利率公式:利率公式用于计算利息或利润。

对于一笔本金P,按照年利率r,存放时间为t年,则利率公式可以表示为:利息=P×r×t8.速度公式:速度公式用于计算速度、时间和距离之间的关系。

公务员考试行测常用公式汇总

公务员考试行测常用公式汇总

公务员考试行测常用公式汇总在公务员考试的行政职业能力测试中,行测部分是一个非常重要的组成部分。

在行测中,常常会涉及到一些数学和逻辑方面的问题,需要运用一些公式来解答。

掌握一些常用的公式将有助于提高解题能力和效率。

本文将为大家总结一些常用的行测公式。

1. 百分数转化公式:百分数转化为小数:百分数/100小数转化为百分数:小数×1002. 比例的计算公式:比例公式:已知两个比例中的三项,求第四项。

设已知比例为a:b=c:d,求第四项x。

则有a/b=c/d,即x=b×(c/d)。

3. 平均数的计算公式:平均数 = 总和 / 个数4. 利息的计算公式:简单利息:利息 = 本金×利率×时间复利公式:利息 = 本金× (1 + 利率) ^ 时间,其中,^ 表示乘方运算。

5. 面积和体积的计算公式:矩形面积:面积 = 长×宽三角形面积:面积 = 底边×高 / 2圆的面积:面积 = π×半径^2,其中,π可以取近似值3.14长方体体积:体积 = 长×宽×高6. 比例尺的计算公式:比例尺公式:图上距离 / 实际距离 = 图上长度 / 实际长度7. 工作效率的计算公式:工作效率 = 完成的工作量 / 耗费的时间8. 速度、距离和时间的计算公式:速度 = 距离 / 时间时间 = 距离 / 速度距离 = 速度×时间9. 利率的计算公式:利率 = 利息 / 本金× 100%本金 = 利息 / 利率× 100%10. 计票百分比的计算公式:计票百分比 = 得票数 / 总票数× 100%11. 正方形的对角线长度公式:对角线长度 = 边长×√212. 三角形三边关系公式:设三角形的三边长度分别为a、b、c,则有以下关系: a + b > ca + c > bb +c > a13. 速度与距离的关系公式:v = s / t,其中v为速度,s为距离,t为时间。

行测常用数学公式汇总(非常全)

行测常用数学公式汇总(非常全)

行测常用数学公式汇总(非常全)一、基本数学公式1. 加法公式:加法是数学中最基本的运算之一,公式为 A + B = C,其中 A 和 B 是加数,C 是和。

2. 减法公式:减法是数学中的基本运算之一,公式为 A B = C,其中 A 是被减数,B 是减数,C 是差。

3. 乘法公式:乘法是数学中的基本运算之一,公式为A × B = C,其中 A 和 B 是乘数,C 是积。

4. 除法公式:除法是数学中的基本运算之一,公式为A ÷ B = C,其中 A 是被除数,B 是除数,C 是商。

5. 平方公式:平方是一个数乘以自身的运算,公式为 A^2 = A× A,其中 A 是底数,A^2 是平方数。

6. 立方公式:立方是一个数乘以自身的两次运算,公式为 A^3 =A × A × A,其中 A 是底数,A^3 是立方数。

7. 分数公式:分数是一个数除以另一个数的运算,公式为 A/B = C,其中 A 是分子,B 是分母,C 是分数。

8. 百分比公式:百分比是一个数与100的比值,公式为 A% =A/100,其中 A 是数值,A% 是百分比。

二、代数公式1. 一元一次方程公式:一元一次方程是形如 ax + b = 0 的方程,其中 a 和 b 是已知数,x 是未知数。

解方程的公式为 x = b/a。

2. 二元一次方程组公式:二元一次方程组是形如 ax + = c 和dx + ey = f 的方程组,其中 a、b、c、d、e、f 是已知数,x 和 y是未知数。

解方程组的公式可以通过消元法或代入法得到。

3. 二次方程公式:二次方程是形如 ax^2 + bx + c = 0 的方程,其中 a、b、c 是已知数,x 是未知数。

解二次方程的公式为 x = (b± √(b^2 4ac)) / (2a)。

4. 因式分解公式:因式分解是将一个多项式分解为两个或多个因子的乘积。

公务员行测计算公式大全

公务员行测计算公式大全

行测计算公式1. 分数比例形式整除:若a∶b=m∶n(m、n互质),则a是m的倍数,b是n的倍数。

若a=m/n×b,则a=m/(m+n)×(a+b),即a+b是m+n的倍数2. 尾数法(1)选项尾数不同,且运算法则为加、减、乘、乘方运算,优先使用尾数进行判定;(2)所需计算数据多,计算复杂时考虑尾数判断快速得到答案。

常用在容斥原理中。

3. 等差数列相关公式:和=(首项+末项)×项数÷2=平均数×项数=中位数×项数;项数=(末项-首项)÷项数+1。

从1开始,连续的n个奇数相加,总和=n×n,如:1+3+5+7=4×4=16,……4. 几何边端问题相关公式:(1)单边线型植树公式(两头植树):棵树=总长÷间隔+1,总长=(棵树-1)×间隔(2)植树不移动公式:在一条路的一侧等距离栽种m棵树,然后要调整为种n棵树,则不需要移动的树木棵树为:(m-1)与(n-1)的最大公约数+1棵;(3)单边环型植树公式(环型植树):棵树=总长÷间隔,总长=棵树×间隔(4)单边楼间植树公式(两头不植):棵树=总长÷间隔-1,总长=(棵树+1)×间隔(5)方阵问题:最外层总人数=4×(N-1),相邻两层人数相差8人,n阶方阵的总人数为n²。

5-10:行程问题5. 火车过桥核心公式:路程=桥长+车长(火车过桥过的不是桥,而是桥长+车长)6. 相遇追及问题公式:相遇距离=(速度1+速度2)×相遇时间追及距离=(速度1-速度2)×追及时间7. 队伍行进问题公式:队首→队尾:队伍长度=(人速+队伍速度)×时间队尾→队首:队伍长度=(人速-队伍速度)×时间8. 流水行船问题公式:顺速=船速+水速,逆速=船速-水速9. 往返相遇问题公式:两岸型两次相遇:S=3S1-S2,(第一次相遇距离A为S1,第二次相遇距离B为S2)单岸型两次相遇:S=(3S1+S2)/2,(第一次相遇距离A为S1,第二次相遇距离A为S2);左右点出发:第N次迎面相遇,路程和=(2N-1)×全程;第N次追上相遇,路程差=(2N-1)×全程。

公务员考试行测常见基础公式汇总

公务员考试行测常见基础公式汇总

公务员考试行测常见基础公式汇总公务员考试中,行政职业能力测验(简称行测)是重要的组成部分。

其中涉及到众多的知识点和公式,掌握这些基础公式对于提高解题效率和准确性至关重要。

下面为大家汇总了一些行测常见的基础公式。

一、数量关系1、等差数列通项公式:$a_n = a_1 +(n 1)d$,其中$a_n$表示第$n$项的值,$a_1$表示首项,$d$表示公差。

例如,已知一个等差数列的首项为 3,公差为 2,求第 10 项的值。

则$a_{10} = 3 +(10 1)×2 = 21$等差数列求和公式:$S_n =\frac{n(a_1 + a_n)}{2}$,其中$S_n$表示前$n$项的和。

例如,求上述等差数列前 10 项的和,$a_{10} = 21$,则$S_{10}=\frac{10×(3 + 21)}{2} = 120$2、等比数列通项公式:$a_n = a_1×q^{n 1}$,其中$q$为公比。

例如,一个等比数列的首项为 2,公比为 3,求第 5 项的值。

则$a_{5} = 2×3^{5 1} = 162$等比数列求和公式:$S_n =\frac{a_1(1 q^n)}{1 q}$($q ≠1$)3、行程问题相遇问题:$S =(v_1 + v_2)×t$,其中$S$表示路程,$v_1$、$v_2$表示两个物体的速度,$t$表示相遇时间。

例如,甲、乙两人分别以 5 米/秒和 3 米/秒的速度相向而行,经过10 秒相遇,求他们最初的距离。

则$S =(5 + 3)×10 = 80$米追及问题:$S =(v_1 v_2)×t$例如,甲以 8 米/秒的速度追赶以 5 米/秒速度前行的乙,经过 10 秒追上,求他们最初的距离差。

则$S =(8 5)×10 = 30$米4、工程问题工作总量=工作效率×工作时间例如,一项工程,甲单独完成需要 10 天,乙单独完成需要 15 天,两人合作需要的时间为:$1÷(\frac{1}{10} +\frac{1}{15})=6$天5、利润问题利润=售价成本利润率=利润÷成本×100%例如,一件商品成本为 80 元,售价为 100 元,则利润为$100 80 =20$元,利润率为$20÷80×100\%= 25\%$二、资料分析1、增长率增长率=(现期量基期量)÷基期量×100%例如,某地区去年的 GDP 为 100 亿元,今年为 120 亿元,则增长率为$(120 100)÷100×100\%= 20\%$2、平均数平均数=总数÷个数例如,某班级 5 名学生的成绩分别为 80、90、85、95、70 分,平均成绩为$(80 + 90 + 85 + 95 + 70)÷5 = 84$分3、比重比重=部分÷整体×100%例如,某公司总人数为 500 人,其中男性 250 人,则男性所占比重为$250÷500×100\%= 50\%$三、判断推理1、集合推理“所有的 S 都是P”可以推出“有的 S 是P”“某个 S 是P”可以推出“有的 S 是P”2、翻译推理“如果……那么……”:前推后“只有……才……”:后推前3、逻辑论证加强论证:增加论据、建立联系、补充前提削弱论证:削弱论据、切断联系、否定前提四、言语理解与表达虽然言语理解与表达部分没有像数量关系和资料分析那样有明确的公式,但一些解题技巧和规律还是需要掌握的。

行测公式大全

行测公式大全

行测公式大汇总数字运算公式1.分数比例形式整除若a∶b=m∶n(m、n互质),则a是m的倍数,b是n的倍数。

若a=m/n×b,则a=m/(m+n)×(a+b),即a+b是m+n的倍数。

2. 尾数法(1)选项尾数不同,且运算法则为加、减、乘、乘方运算,优先使用尾数进行判定;(2)所需计算数据多,计算复杂时考虑尾数判断快速得到答案。

常用在容斥原理中。

3. 等差数列相关公式和=(首项+末项)×项数÷2=平均数×项数=中位数×项数;项数=(末项-首项)÷项数+1。

从1开始,连续的n个奇数相加,总和=n×n,如:1+3+5+7=4×4=16,……4.几何边端问题相关公式(1)单边线型植树公式(两头植树):棵树=总长÷间隔+1,总长=(棵树-1)×间隔;(2)植树不移动公式:在一条路的一侧等距离栽种m棵树,然后要调整为种n棵树,则不需要移动的树木棵树为:(m-1)与(n-1)的最大公约数+1棵;(3)单边环型植树公式(环型植树):棵树=总长÷间隔,总长=棵树×间隔;(4)单边楼间植树公式(两头不植):棵树=总长÷间隔-1,总长=(棵树+1)×间隔;(5)方阵问题:最外层总人数=4×(N-1),相邻两层人数相差8人,n阶方阵的总人数为n²。

5-10:行程问题5. 火车过桥核心公式:路程=桥长+车长(火车过桥过的不是桥,而是桥长+车长);6. 相遇追及问题公式:相遇距离=(速度1+速度2)×相遇时间追及距离=(速度1-速度2)×追及时间;7. 队伍行进问题公式:队首→队尾:队伍长度=(人速+队伍速度)×时间队尾→队首:队伍长度=(人速-队伍速度)×时间;8. 流水行船问题公式:顺速=船速+水速,逆速=船速-水速;9. 往返相遇问题公式:两岸型两次相遇:S=3S1-S2,(第一次相遇距离A为S1,第二次相遇距离B为S2)单岸型两次相遇:S=(3S1+S2)/2,(第一次相遇距离A为S1,第二次相遇距离A为S2);左右点出发:第N次迎面相遇,路程和=(2N-1)×全程;第N次追上相遇,路程差=(2N-1)×全程。

行测数学公式大全

行测数学公式大全

常用数学公式汇总一、基础代数公式1. 平方差公式:(a +b )·(a -b )=a 2-b 22. 完全平方公式:(a±b )2=a 2±2ab +b23. 完全立方公式:(a ±b)3=(a±b)(a 2 ab+b 2)4. 立方和差公式:a 3+b 3=(a ±b)(a 2+ ab+b 2) 5. a m·a n=a m +na m ÷a n =a m -n (a m )n =a mn (ab)n =a n ·b n二、等差数列 (1)s n =2)(1n a a n +⨯=na 1+21n(n-1)d ;(2)a n =a 1+(n -1)d ;(3)项数n =da a n 1-+1; (4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ;(6)前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 2(其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和) 三、等比数列 (1)a n =a 1qn -1;(2)s n =qq a n -11 ·1)-((q ≠1)(3)若a,G,b 成等比数列,则:G 2=ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6)nma a =q (m-n) (其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和) 四、不等式(1)一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2)其中:x 1=a ac b b 242-+-;x 2=aac b b 242---(b 2-4ac ≥0)根与系数的关系:x 1+x 2=-a b ,x 1·x 2=a c(2)ab b a 2≥+ ab b a ≥+2)2( ab b a 222≥+ abc c b a ≥++3)3( (3)abc c b a 3222≥++ abc c b a 33≥++推广:n n n x x x n x x x x ......21321≥++++(4)一阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零。

行测公式口诀大全

行测公式口诀大全

行测公式口诀大全一、数量关系。

(一)数字推理。

1. 等差数列。

- 通项公式:a_n=a_1+(n - 1)d(a_1为首项,d为公差,n为项数)- 口诀:数列等差有规律,首项公差要牢记。

n项数值轻松觅,通项公式来帮你。

2. 等比数列。

- 通项公式:a_n=a_1q^n-1(a_1为首项,q为公比,n为项数)- 口诀:等比数列看公比,首项乘上它幂次。

n项数值由此知,通项公式莫忽视。

(二)数学运算。

1. 工程问题。

- 基本公式:工作总量 = 工作效率×工作时间。

- 口诀:工程问题三要素,总量效率和时间。

已知两者求其一,公式变形来计算。

2. 行程问题。

- 基本公式:路程 = 速度×时间。

- 相遇问题公式:s=(v_1+v_2)t(s为路程,v_1、v_2为两者速度,t为相遇时间)- 追及问题公式:s=(v_1-v_2)t(s为路程,v_1为快者速度,v_2为慢者速度,t 为追及时间)- 口诀:行程问题路速时,相遇追及有公式。

相向速度来求和,同向速度做差之。

3. 利润问题。

- 基本公式:利润 = 售价 - 成本;利润率=(利润)/(成本)×100%;售价 = 成本×(1 + 利润率)- 口诀:利润问题要记清,售价成本和利润。

利润率也很重要,公式之间会变形。

二、资料分析。

(一)增长相关。

1. 增长量。

- 公式:增长量=现期量 - 基期量;增长量=(基期量×增长率)/(1 + 增长率)- 口诀:增长量,有两种,现减基期最普通。

还有基期乘率除一加率,计算准确就成功。

2. 增长率。

- 公式:增长率=(现期量 - 基期量)/(基期量)×100%=(增长量)/(基期量)×100%- 口诀:增长率,分式求,现减基期除以基。

增长量与基期比,概念理解不费力。

(二)比重相关。

1. 比重。

- 公式:比重=(部分量)/(整体量)- 口诀:比重部分比整体,公式简单要牢记。

2024国考行测资料公式汇总

2024国考行测资料公式汇总

2024国考行测资料公式汇总一、概述随着国家发展和改革的不断推进,国家公务员考试作为选拔和录用优秀人才的重要途径,备受关注和热议。

而国家公务员考试中的行政职业能力测验(简称行测),作为其中的一项重要考试科目,涵盖了诸多知识点和应试技巧。

其中,数学实在是行测中的一大难点,而其中的公式更是让考生头疼的部分。

我们特整理了以下2024国考行测资料公式,以便考生备考时能够更好地复习和掌握相关知识点。

二、数量关系题目公式1. 平均值计算公式平均值 = 总值 / 个数2. 比例计算公式两者之比 = 较多者 / 较少者3. 反比例计算公式两者之比 = 较少者 / 较多者4. 增减百分比计算公式百分比增加 = (增加值 / 原值) * 100百分比减少 = (减少值 / 原值) * 1005. 资料图计算公式根据柱状图、折线图或饼状图进行计算6. 存在关系计算公式混合物的平均浓度 = (已知浓度1 * 体积1 + 已知浓度2 * 体积2) / (体积1 + 体积2)三、判断推理题目公式1. 判断题公式真命题的否定为假命题假命题的否定为真命题2. 排序题公式正序排列:A<B<C逆序排列:A>B>C3. 相同字母代表相同物品四、言语理解与表达题目公式1. 近义词、反义词近义词:意思相近的词反义词:意思相反的词2. 词类变化名词→形容词→动词→副词→数词→代词→连词→介词→感叹词3. 词语搭配正词相反:冷热、高低动名结合:吃饭、送信五、综合分析题目公式1. 逻辑判断公式A→B 非B→非AA→B 非A→非B2. 选择判断公式对A的肯定是否定了B的否定3. 数字推理公式数字之和、差、乘积、商之间的规律4. 资料分析公式根据给出的数据进行图表和数据的计算和分析六、总结以上整理的2024国考行测资料公式只是行测知识点的冰山一角,但通过对这些公式的学习和掌握,能让考生更快地应对行测考试中的数量关系、判断推理、言语理解与表达、综合分析等题目类型。

行测数学公式大全

行测数学公式大全

行测数学公式大全1.基本运算公式:-加法:a+b=c-减法:a-b=c-乘法:a×b=c-除法:a÷b=c2.代数公式:- 二次方程:ax² + bx + c = 0- 因式分解:(a + b)² = a² + 2ab + b²- 提取公因式:ab + ac = a(b + c)-幂的乘法:(a^m)×(a^n)=a^(m+n)-幂的除法:(a^m)÷(a^n)=a^(m-n)3.几何公式:-周长:周长=2×(长+宽)-面积:面积=长×宽-体积:体积=高×底面积-三角形面积:面积=1/2×底×高-圆周长:周长=2×π×半径-圆面积:面积=π×半径²-圆柱体体积:体积=π×半径²×高-圆锥体体积:体积=1/3×π×半径²×高4.概率与统计公式:-事件的概率:P(A)=m/n-互斥事件的概率:P(A或B)=P(A)+P(B)-独立事件的概率:P(A且B)=P(A)×P(B)-组合计数:C(n,r)=n!/(r!×(n-r)!)-排列计数:P(n,r)=n!/(n-r)!-平均数:平均数=(数值之和)/(数据个数)-方差:方差=[(每个数据值减去均值的差的平方和)/(数据个数)] -标准差:标准差=方差的平方根5.三角函数公式:- 正弦函数:sin(A) = 对边 / 斜边- 余弦函数:cos(A) = 邻边 / 斜边- 正切函数:tan(A) = 对边 / 邻边- 余切函数:cot(A) = 邻边 / 对边- 正割函数:sec(A) = 斜边 / 对边- 余割函数:csc(A) = 斜边 / 邻边- 三角恒等式:sin²(A) + cos²(A) = 1以上只是数学公式的一小部分,根据复杂程度、考试的具体内容和要求,还有更多的数学公式需要考生掌握。

行测资料公式大全汇总

行测资料公式大全汇总

行测资料公式大全汇总
1、回归方程:y=a+bx。

2、理论物料损耗率公式:理论物料损耗率=(1-设计比)/设计比。

3、磨耗指数公式:磨耗指数=(模具磨耗量/原始模具磨耗量)*100%。

4、冲压工艺参数公式:冲压力=单块厚度*冲压面积*冲压比*20%*900负荷。

5、模拟分析公式:模拟结果=给定输入参数*(模拟规则条件+工艺
参数)。

6、拉伸力学性能测试公式:抗拉强度=拉伸力/(抗拉试样宽度*
厚度)。

7、冻结件强度检测公式:冻结件强度=推力/(冻结件的长度*宽度)。

8、直线度误差测试公式:直线度误差=(两点距离差)/(实际距离)*100%。

9、刚性检测公式:刚性=F2/F1。

10、离心强度检测公式:离心强度=(Pmax-P0)/P0×100%。

行测常用公式汇总

行测常用公式汇总

行测常用公式汇总行政能力测验,简称行测,是国家公务员考试中的一个重要组成部分。

行测的考试题目以公式和计算为主,因此熟悉和掌握相关公式是非常重要的。

下面就是一些常用的行测公式。

1.百分数的换算公式常见的百分数有25%、50%、75%、100%,这些百分数的换算公式如下:25% = 1/450% = 1/275% = 3/4100% = 1这些换算公式不仅在行测中常用,还在其他领域中也很实用。

2.圆的面积公式圆的面积公式是每个人都很熟悉的一个公式。

圆的面积公式如下:S=πr²其中S是圆的面积,π是圆周率,r是圆的半径。

值得注意的是,在计算时半径需要平方,而不是直接乘以2。

3.长方形和正方形的面积和周长公式长方形的面积和周长公式如下:S=abC=2(a+b)其中S是长方形的面积,a和b是长方形的两个边长,C是长方形的周长。

正方形是一种特殊的长方形,它的各边相等,因此其面积和周长的公式如下:S=a²C=4a其中a是正方形的边长。

4.三角形的面积和周长公式三角形的面积公式比较复杂,它涉及到三角形的高。

三角形的面积公式如下:S=½bh其中S是三角形的面积,b是底边长,h是高。

三角形的周长公式与长方形的周长公式类似,是三个边长之和:C=a+b+c其中a、b和c是三角形的三个边长。

5.圆柱体和圆锥体的体积公式圆柱体和圆锥体的体积公式也是常用的公式。

圆柱体的体积公式如下:V=πr²h其中V是圆柱体的体积,π是圆周率,r是底面半径,h是圆柱体的高度。

圆锥体的体积公式如下:V=1/3πr²h其中V是圆锥体的体积,π是圆周率,r是底面半径,h是圆锥体的高度。

圆锥体是一种特殊的圆柱体,所以它们的体积公式也有很多相似之处。

6.简单利息和复利利息的计算公式利息是银行、保险公司和其他金融机构赚取收益的途径之一。

简单利息和复利利息是计算利息的两种常用方法。

简单利息的计算公式如下:I=Prt其中I是利息,P是本金,r是利率,t是时间。

行测数学运算公式大全

行测数学运算公式大全

行测数学运算公式大全数学运算公式是行测考试中不可或缺的重要知识点,掌握各种数学运算公式可以帮助我们在考试中更加高效地解题。

下面是行测数学运算公式的大全,包括常见的四则运算、百分数、比例、利率、速度、面积、体积等方面的数学运算公式。

1. 四则运算:- 加法:a + b = c- 减法:a - b = c- 乘法:a × b = c- 除法:a ÷ b = c2. 百分数:- 百分数转化为小数:百分数 ÷ 100 = 小数- 小数转化为百分数:小数 × 100 = 百分数3. 比例:- 比例公式:a:b = c:d- 比例扩大/缩小:a/b = c/d4. 利率:- 简单利息公式:利息 = 本金 ×利率 ×时间- 复利公式:复利 = 本金 × (1 + 利率)^时间 - 本金5. 速度:- 速度 = 距离 ÷时间- 相对速度:速度之差6. 面积:- 三角形面积公式:面积 = 1/2 ×底 ×高- 矩形面积公式:面积 = 长 ×宽- 圆面积公式:面积= π × 半径^27. 体积:- 立方体体积公式:体积 = 长 ×宽 ×高- 圆柱体积公式:体积= π × 半径^2 ×高- 锥体积公式:体积 = 1/3 ×底面积 ×高以上是行测数学运算公式的大全,通过掌握这些数学运算公式,我们可以更加轻松地解答数学相关的题目,提高行测的应试能力。

希望以上内容对您有所帮助,如需了解更多数学运算公式,请继续学习相关数学知识。

行测考试数学运算公式梳理

行测考试数学运算公式梳理

行测考试数学运算公式梳理大部分小伙伴毕业后都有考公务员的想法,考公务员有什么技能呢,该如何去复习从而更容易考上呢,下面作者给大家带来关于行测考试数学运算公式梳理,期望会对大家的工作与学习有所帮助。

行测考试数学运算公式梳理1、分数比例情势整除若a∶b=m∶n(m、n互质),则a是m的倍数,b是n的倍数。

若a=m/n×b,则a=m/(m+n)×(a+b),即a+b是m+n的倍数2、尾数法(1)选项尾数不同,且运算法则为加、减、乘、乘方运算,优先使用尾数进行判定;(2)所需运算数据多,运算复杂时推敲尾数判定快速得到答案。

常用在容斥原理中。

3、等差数列相干公式和=(首项+末项)×项数÷2=平均数×项数=中位数×项数;项数=(末项-首项)÷项数+1。

从1开始,连续的n个奇数相加,总和=n×n,如:1+3+5+7=4×4=16,……4、几何边端问题相干公式(1)单边线型植树公式(两头植树):棵树=总长÷间隔+1,总长=(棵树-1)×间隔(2)植树不移动公式:在一条路的一侧等距离栽种m棵树,然后要调剂为种n棵树,则不需要移动的树木棵树为:(m-1)与(n-1)的最大公约数+1棵;(3)单边环型植树公式(环型植树):棵树=总长÷间隔,总长=棵树×间隔(4)单边楼间植树公式(两头不植):棵树=总长÷间隔-1,总长=(棵树+1)×间隔(5)方阵问题:最外层总人数=4×(N-1),相邻两层人数相差8人,n阶方阵的总人数为n2。

5、行程问题(1)火车过桥核心公式:路程=桥长+车长(火车过桥过的不是桥,而是桥长+车长)(2) 相遇追及问题公式:相遇距离=(速度1+速度2)×相遇时间追及距离=(速度1-速度2)×追及时间(3)队伍行进问题公式:队首→队尾:队伍长度=(人速+队伍速度)×时间;队尾→队首:队伍长度=(人速-队伍速度)×时间(4)流水行船问题公式:顺速=船速+水速,逆速=船速-水速(5)往返相遇问题公式:两岸型两次相遇:S=3S1-S2,(第一次相遇距离A为S1,第二次相遇距离B 为S2)单岸型两次相遇:S=(3S1+S2)/2,(第一次相遇距离A为S1,第二次相遇距离A为S2);左右点动身:第N次迎面相遇,路程和=(2N-1)×全程;第N次追上相遇,路程差=(2N-1)×全程。

行测常用公式集锦

行测常用公式集锦

行测常用公式集锦(一)之“数”的运算一、平均数公式:平均数=总数量÷总份数,或者:总份数=平均数 总数量例1.A,B,C,D,E五个人在一次满分为100分的考试中,得分都是大于91的互不相同的整数。

如果A,B,C的平均分为95分,B,C,D的平均分为94分,A是第一名,E是第三名得96分。

则D的得分是多少?A.96分B.98分C.97分D.99分例1.【答案】C。

中公解析:由于几个人得分不同,所以D得分不可能为96分,排除A。

A+B+C=95 3,B+C+D=94 3,联立两式得:A-D=3,由于A≤100,故D≤97,排除B、D,选择C。

二、质合数质数:一个数如果只有1和它本身两个因数,这样的数叫做质数。

如:2、3、5、7、都是质数,质数有无限多个,最小的质数是2。

合数:一个数如果除了1和它本身还有别的因数,这样的数叫做合数。

如: 4、6、15、49都是合数,合数也有无限多个,最小的合数是4。

例2.一个星期天的早晨,母亲对孩子们说:“你们是否发现在你们中间,大哥的年龄等于两个弟弟年龄之和?”儿子们齐声回答说:“是的,我们的年龄和您年龄的乘积,等于您儿子人数的立方乘以1000加上您儿子人数的平方乘以10。

”从这次谈话中,你能否确定母亲在多大时,才生下第二个儿子?例2.【答案】34。

中公解析:由题意可知,母亲有三个儿子。

母亲的年龄与三个儿子年龄的乘积等于:3 ×1000+3 ×10=27090把27090分解质因数:27090=43×7×5×3 ×2根据“大哥的年龄等于两个弟弟年龄之和”,重新组合上面的质因式得:43×14×9×5这个质因式中14就是9与5之和。

所以母亲43岁,大儿子14岁,二儿子9岁,小儿子5岁。

43-9=34(岁)三、奇偶数偶数±偶数=偶数,奇数±奇数=偶数。

公务员考试行测数学公式大全

公务员考试行测数学公式大全

常用数学公式汇总一、基础代数公式1. 平方差公式:(a +b )·(a -b )=a 2-b 22. 完全平方公式:(a±b )2=a 2±2ab +b2 3. 完全立方公式:(a ±b)3=(a±b)(a 2ab+b 2) 4. 立方和差公式:a 3+b 3=(a ±b)(a 2+ ab+b 2)5. a m ·a n =am +na m ÷a n =a m -n (a m )n =a mn (ab)n =a n ·b n二、等差数列 (1)s n =2)(1n a a n +⨯=na 1+21n(n-1)d ;(2)a n =a 1+(n -1)d ;(3)项数n =da a n 1-+1; (4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ;(6)前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 2(其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和) 三、等比数列 (1)a n =a 1qn -1;(2)s n =qq a n -11 ·1)-((q ≠1)(3)若a,G,b 成等比数列,则:G 2=ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6)nma a =q (m-n) (其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和)四、不等式(1)一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2)其中:x 1=a ac b b 242-+-;x 2=aac b b 242---(b 2-4ac ≥0)根与系数的关系:x 1+x 2=-a b ,x 1·x 2=a c(2)ab b a 2≥+ ab b a ≥+2)2( ab b a 222≥+ abc c b a ≥++3)3((3)abc c b a 3222≥++ abc c b a 33≥++推广:n n n x x x n x x x x ......21321≥++++(4)一阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零。

行测数学运算公式

行测数学运算公式

行测数学运算公式一、加法运算公式加法是数学中最基本的运算之一,它可以用来计算两个或多个数的和。

加法运算公式可以简洁地表示为A + B = C,其中A和B是被加数,C是和。

二、减法运算公式减法是加法的逆运算,它可以用来计算两个数的差。

减法运算公式可以表示为A - B = C,其中A是被减数,B是减数,C是差。

三、乘法运算公式乘法是指将两个或多个数相乘的运算。

乘法运算公式可以简洁地表示为A × B = C,其中A和B是因数,C是积。

四、除法运算公式除法是乘法的逆运算,它可以用来计算两个数的商。

除法运算公式可以表示为A ÷ B = C,其中A是被除数,B是除数,C是商。

需要注意的是,除数不能为0,否则运算结果将没有意义。

五、百分数运算公式百分数是一种特殊的表示方式,它表示一个数相对于100的比例关系。

百分数运算公式可以表示为A% = B,其中A是百分数,B是原数。

六、平方运算公式平方是将一个数自乘的运算。

平方运算公式可以表示为A² = B,其中A是底数,B是平方数。

七、平方根运算公式平方根是指一个数的平方等于另一个数的运算。

平方根运算公式可以表示为√A = B,其中A是被开方数,B是平方根。

八、立方运算公式立方是将一个数自乘两次的运算。

立方运算公式可以表示为A³ = B,其中A是底数,B是立方数。

九、立方根运算公式立方根是指一个数的立方等于另一个数的运算。

立方根运算公式可以表示为³√A = B,其中A是被开立方的数,B是立方根。

十、分数运算公式分数是指一个数相对于另一个数的比值。

分数运算公式可以表示为A/B = C,其中A是分子,B是分母,C是一个有理数。

十一、比例运算公式比例是指两个数之间的比较关系。

比例运算公式可以表示为A:B = C:D,其中A和C是第一个比例的两个数,B和D是第二个比例的两个数。

数学运算公式是数学中用来描述各种运算关系的表达式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行政能力测验之常用数学公式汇总一、基础代数公式1. 平方差公式:(a +b )³(a -b )=a 2-b 22. 完全平方公式:(a±b)2=a 2±2ab +b 2完全立方公式:(a ±b )3=(a±b)(a 2 ab+b 2)3. 同底数幂相乘: a m ³a n =a m +n(m 、n 为正整数,a≠0)同底数幂相除:a m ÷a n =a m -n (m 、n 为正整数,a≠0)a 0=1(a≠0) a -p =p a1(a≠0,p 为正整数) 4. 等差数列:(1)s n =2)(1n a a n ⨯+=na 1+21n(n-1)d ; (2)a n =a 1+(n -1)d ;(3)n =da a n 1-+1; (4)若a,A,b 成等差数列,则:2A =a+b ;(5)若m+n=k+i ,则:a m +a n =a k +a i ;(其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和)5. 等比数列:(1)a n =a 1q -1;(2)s n =qq a n -11 ·1)-((q ≠1) (3)若a,G,b 成等比数列,则:G 2=ab ;(4)若m+n=k+i ,则:a m ²a n =a k ²a i ;(5)a m -a n =(m-n)d(6)nm a a =q (m-n) (其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和)6.一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2)其中:x 1=a ac b b 242-+-;x 2=aac b b 242---(b 2-4ac ≥0) 根与系数的关系:x 1+x 2=-a b ,x 1²x 2=ac 二、基础几何公式1. 三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两 边之和大于第三边、任两边之差小于第三边;(1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。

(2)三角形的中线:连结三角形一个顶点和它对边中点的线段叫做三角形的中线。

(3)三角形的高:三角形一个顶点到它的对边所在直线的垂线段,叫做三角形的高。

(4)三角形的中位线:连结三角形两边中点的线段,叫做三角形的中位线。

(5)内心:角平分线的交点叫做内心;内心到三角形三边的距离相等。

重心:中线的交点叫做重心;重心到每边中点的距离等于这边中线的三分之一。

垂线:高线的交点叫做垂线;三角形的一个顶点与垂心连线必垂直于对边。

外心:三角形三边的垂直平分线的交点,叫做三角形的外心。

外心到三角形的三个顶点的距离相等。

直角三角形:有一个角为90度的三角形,就是直角三角形。

直角三角形的性质:(1)直角三角形两个锐角互余;(2)直角三角形斜边上的中线等于斜边的一半;(3)直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;(4)直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角是30°;(5)直角三角形中,c 2=a 2+b 2(其中:a 、b 为两直角边长,c 为斜边长);(6)直角三角形的外接圆半径,同时也是斜边上的中线;直角三角形的判定:(1)有一个角为90°;(2)边上的中线等于这条边长的一半;(3)若c 2=a 2+b 2,则以a 、b 、c 为边的三角形是直角三角形;2. 面积公式:正方形=边长³边长;长方形= 长³宽;三角形=21³ 底³高; 梯形 =2高(上底+下底)⨯; 圆形 =πR 2平行四边形=底³高扇形 =0360n πR 2 正方体=6³边长³边长长方体=2³(长³宽+宽³高+长³高);圆柱体=2πr 2+2πrh ;球的表面积=4πR 23. 体积公式正方体=边长³边长³边长;长方体=长³宽³高;圆柱体=底面积³高=Sh =πr 2h圆锥 =31πr 2h 球 =334R π 4. 与圆有关的公式设圆的半径为r ,点到圆心的距离为d ,则有:(1)d ﹤r :点在圆内(即圆的内部是到圆心的距离小于半径的点的集合);(2)d =r :点在圆上(即圆上部分是到圆心的距离等于半径的点的集合);(3)d ﹥r :点在圆外(即圆的外部是到圆心的距离大于半径的点的集合);线与圆的位置关系的性质和判定:如果⊙O 的半径为r ,圆心O 到直线l 的距离为d ,那么:(1)直线l 与⊙O 相交:d ﹤r ;(2)直线l 与⊙O 相切:d =r ;(3)直线l 与⊙O 相离:d ﹥r ;圆与圆的位置关系的性质和判定:设两圆半径分别为R 和r ,圆心距为d ,那么:(1)两圆外离:r R d +>;(2)两圆外切:r R d +=;(3)两圆相交:r R d r R +<<-(r R ≥);(4)两圆内切:r R d -=(r R >);(5)两圆内含:r R d -<(r R >).圆周长公式:C =2πR =πd (其中R 为圆半径,d 为圆直径,π≈3.1415926≈10);n 的圆心角所对的弧长l 的计算公式:l =180R n π; 扇形的面积:(1)S 扇=360n πR 2;(2)S 扇=21l R ; 若圆锥的底面半径为r ,母线长为l ,则它的侧面积:S 侧=πr l ;圆锥的体积:V =31Sh =31πr 2h 。

三、其他常用知识1. 2X 、3X 、7X 、8X 的尾数都是以4为周期进行变化的;4X 、9X 的尾数都是以2为周期进行变化的;另外5X 和6X 的尾数恒为5和6,其中x 属于自然数。

2. 对任意两数a 、b ,如果a -b >0,则a >b ;如果a -b <0,则a <b ;如果a -b =0,则a =b 。

当a 、b 为任意两正数时,如果a/b >1,则a >b ;如果a/b <1,则a <b ;如果a/b =1,则a =b 。

当a 、b 为任意两负数时,如果a/b >1,则a <b ;如果a/b <1,则a >b ;如果a/b =1,则a =b 。

对任意两数a 、b ,当很难直接用作差法或者作商法比较大小时,我们通常选取中间值C ,如果a >C ,且C >b ,则我们说a >b 。

3. 工程问题:工作量=工作效率³工作时间;工作效率=工作量÷工作时间;工作时间=工作量÷工作效率;总工作量=各分工作量之和;注:在解决实际问题时,常设总工作量为1。

4. 方阵问题:(1)实心方阵:方阵总人数=(最外层每边人数)2最外层人数=(最外层每边人数-1)³4(2)空心方阵:中空方阵的人数=(最外层每边人数)2-(最外层每边人数-2³层数)2 =(最外层每边人数-层数)³层数³4=中空方阵的人数。

例:有一个3层的中空方阵,最外层有10人,问全阵有多少人?解:(10-3)×3×4=84(人)5. 利润问题:(1)利润=销售价(卖出价)-成本; 利润率=成本利润=成本销售价-成本=成本销售价-1; 销售价=成本³(1+利润率);成本=+利润率销售价1。

(2)单利问题利息=本金³利率³时期;本利和=本金+利息=本金³(1+利率³时期);本金=本利和÷(1+利率³时期)。

年利率÷12=月利率;月利率³12=年利率。

例:某人存款2400元,存期3年,月利率为10.2‰(即月利1分零2毫),三年到期后,本利和共是多少元?” 解:用月利率求。

3年=12月×3=36个月∴2400×(1+10.2%×36) =2400×1.3672 =3281.28(元)6. 排列数公式:P m n =n (n -1)(n -2)…(n -m +1),(m≤n) 组合数公式:C m n =P m n ÷P m m=(规定0n C =1)。

“装错信封”问题:D 1=0,D 2=1,D 3=2,D 4=9,D 5=44,D 6=265,7. 年龄问题:关键是年龄差不变;几年后年龄=大小年龄差÷倍数差-小年龄几年前年龄=小年龄-大小年龄差÷倍数差8. 日期问题:闰年是366天,平年是365天,其中:1、3、5、7、8、10、12月都是31天,4、6、9、11是30天,闰年时候2月份29天,平年2月份是28天。

9. 植树问题(1)线形植树:棵数=总长÷间隔+1(2)环形植树:棵数=总长÷间隔(3)楼间植树:棵数=总长÷间隔-1(4)剪绳问题:对折N 次,从中剪M 刀,则被剪成了(2N ³M +1)段10. 鸡兔同笼问题:鸡数=(兔脚数³总头数-总脚数)÷(兔脚数-鸡脚数)(一般将“每”量视为“脚数” )得失问题(鸡兔同笼问题的推广):不合格品数=(1只合格品得分数³产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数) =总产品数-(每只不合格品扣分数³总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)例:“灯泡厂生产灯泡的工人,按得分的多少给工资。

每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。

某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”解:(4×1000-3525)÷(4+15) =475÷19=25(个)11.盈亏问题:(1)一次盈,一次亏:(盈+亏)÷(两次每人分配数的差)=人数(2)两次都有盈: (大盈-小盈)÷(两次每人分配数的差)=人数(3)两次都是亏: (大亏-小亏)÷(两次每人分配数的差)=人数(4)一次亏,一次刚好:亏÷(两次每人分配数的差)=人数(5)一次盈,一次刚好:盈÷(两次每人分配数的差)=人数例:“小朋友分桃子,每人10个少9个,每人8个多7个。

问:有多少个小朋友和多少个桃子?” 解(7+9)÷(10-8)=16÷2=8(个)………………人数10×8-9=80-9=71(个)………………桃子12.行程问题:(1)平均速度:平均速度=21212v v v v + (2)相遇追及:相遇(背离):路程÷速度和=时间追及:路程÷速度差=时间(3)流水行船:顺水速度=船速+水速;逆水速度=船速-水速。

相关文档
最新文档