圆的周长计算公式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的周长计算公式有哪些
圆的周长计算方法
圆的周长=直径×圆周率=半径×2×圆周率
字母公式:C=πD=2πR
公式说明:
π是圆周率,约等于3.14,D是圆的直径,R是圆的半径
应用实例:
圆的直径是6米,周长C=πD=3.14×6=18.84米
圆的半径是3米,周长C=2πr=2×3.14×3=18.84米
2圆相关公式有哪些
面积公式
1.圆的面积:S=πr²=πd²/4
2.扇形弧长:L=圆心角(弧度制) * r = n°πr/180°(n为圆心角)
3.扇形面积:S=nπ r²/360=Lr/2(L为扇形的弧长)
4.圆的直径: d=2r
5.圆锥侧面积: S=πrl(l为母线长)
6.圆锥底面半径: r=n°/360°L(L为母线长)(r为底面半径)
周长公式
圆的周长:C=2πr 或 C=πd
圆的方程
1、圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。
特别地,以原点为圆心,半径为r(r>0)的圆的标准方程为x^2+y^2=r^2。
2、圆的一般方程:方程x^2+y^2+Dx+Ey+F=0可变形为(x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4.故有:
(1)当D^2+E^2-4F>0时,方程表示以(-D/2,-E/2)为圆心,以(√D^2+E^2-4F)/2为半径的圆;
(2)当D^2+E^2-4F=0时,方程表示一个点(-D/2,-E/2);
(3)当D^2+E^2-4F<0时,方程不表示任何图形。
怎样推导圆的周长公式?
推导圆的周长公式是小学数学教学的重要内容之一。这是因为在这部分知识中,不仅要使学生认识圆的周长、理解圆的周长与直径之间的关系;还要掌握圆的周长公式,并能正确计算圆的周长。在这些教学要求中,推导并掌握圆的周长公式,无疑是教学的重点。
新课前,教师要安排必要的铺垫性练习,可从复习长、正方形的周长公式入手,结合提问做如下板书:
C=2(a+b)
在长方形周长公式的基础上,出示有关正方形周长的板书:
C=4a
随着铺垫性练习教师可让学生以正方形对角线的交点为圆心,用事先准备好的正方形纸画一个最大的圆,然后量出这个圆的直径,并把这个圆剪下来,明确圆周长的概念,进而自然地导入新知识。
新知识的实践,讨论可大体上按下列步骤安排:
(1)动手实践:用直尺测量圆的周长。将图沿直尺滚动,并用小线围绕圆周,然后进行测量。测量结果填在下表内。
(2)激疑设问:教师可通过圆铅笔的截面、黑板画圆和抡动一端系有物品的小线,提问如何测量这些圆的周长,此时还可以通过投影器中的各种圆,启发学生观察圆的周长与直径的关系。
(3)概括小结:在组织学生进行同桌或分组议论的基础上,初步概括:圆有周长总是它直径的3倍多。同时指出:在同一个圆里,周长与直径的倍数是固定不变的。这个不变的倍数在数学中叫做“圆周率”。此时可简要介绍祖冲之在圆周率研究上的杰出贡献。
圆周率用字母π来表示,在小学中π值取小数点后两位,即3.14。
归纳圆周长公式:圆的周长=直径×π
抽象成字母公式:c=πd
或c=2πr
(4)反馈练习:(略)
进行上述安排时,要求课前做好充分的准备,如教师的投影片等其他教具,学生的正方形纸、剪刀等各种学具。在推导圆的周长公式前,要明确建立圆周率的概念,在教学的全过程中,这是一个必须突破的难点。
圆的周长公式推导微课教学设计
【教学背景】数学是一门需要思维的学科,在学习过程中,有些学生会出现囫囵吞枣的现象,知其然而不知其所以然。圆的周长公式推导是关于圆的知识学习中的一个重难点,理解圆的公式推导过程是帮助学生学习圆周长公式的关键。由于本班学生已经是六年级的学生,在平时的训练中体现出良好的信息技术能力,于是将公式推导这一部分设计为学生应用互动学习软件,在预设的任务中以同桌俩俩合作和四人小组合作的方式进行探究式的学习活动。这样的自主学习活动更注重于学生学习内容的获取过程,让学生在学习过程中自主、积极地去探究,通过“再发现”、“再创造”,建构数学模型,从而对所获得的知识有更深刻的理解和掌握,并灵活应用所学知识解决实际问题,充分体现了“授之以鱼不如授之以渔”
的教学理念。而现代化技术的运用,则让学生在有限的时间里经历数学建构的过程,关注到学生的个体差异,为学生的学习创造了良好的环境,提高了学习效率,获得较好的教学效果。
【教材分析】圆的周长公式推导是小学数学六年级上册的一个知识点。为了突破这个知识的重难点,应用学习互动软件《圆的工具》辅助学生进行探究活动,让学生自主探究圆周长与直径的关系,推导出圆的周长公式。学生在这一活动中,用交互工具建构数学模型,应用对比、分析、概括等去解决问题,在合作探究中获得能力发展。
【学情分析】本班学生是六年级学生,具有良好的信息技术能力,在学生的知识系统中,对于圆的各部分名称有了初步的认识。在此基础上,本节课的学习
任务是要学生借助学习软件,在给出的任务和要求中自主探究完成实验活动,从而归纳出圆的周长计算公式。
【教学目标】推导并总结出圆周长的计算公式。
【教学重难点】推导出圆周长的计算公式。
【教学方法】以引导探究为主的探究法。
【学习环境与资源】
1、学生分组,每一组至少有一台联网的计算机。
2、探究工具软件《圆的工具》
3、学生探究活动纸
【教学过程】
这一环节主要是进行实验探究,构建模型。
一、出示实验任务,提出实验要求。
1、把用来记录探究数据的学生活动纸分发给学生。
2、介绍实验软件:圆的工具
3、出示探究活动一的任务:
二、学生应用软件开展数学实验
1、同桌合作,轮流进行操作和记录;
【软件使用说明】
2、四人小组进一步协作整理数据,发现规律;
学生应用软件探究圆的周长和直径的关系,将相关数据填入活动报告单,小组进行汇报交流,获得结论。
当学生在完成作业纸时,根据需要可引导学生。例如,当问“圆的直径和周长之间有什么样的关系?圆的周长和直径的关系会不会随着周长的变化而变化”时,引导学生通过观察、对比、分析、归纳出圆周率是固定的一个数值,从而对圆周率有一定的认识,并推导出圆的周长计算公式。并让学生讨论并归纳:“根据圆的半径和直径的关系,如何用半径算出圆的周长?”
这样的过程将探索圆周率的过程简单化,借助现代化技术提高了课堂效率,丰富了学生对圆的认识和理解。
3、组间分享:通过组间的汇报,相互补充各组的发现,阅读相关资料,了解圆周率。
三、建构数学模型