整式的乘除的法则及公式复习课程

合集下载

《整式的乘除》复习教案

《整式的乘除》复习教案

第12章整式的乘除一、知识结构二、【方法指导与教材延伸】(一)同底数幂相乘、幂的乘方、积的乘方这三个幂运算,特别是同底数幂相乘的法则是学习整式乘法的基础,其他的如:后面的多项式乘以多项式是转化变成单项式乘以多项式,再转化为单项式乘以单项式,最后转化为同底数幂相乘,所以我们要熟练掌握其法则:1.同底数幂的相乘的法则是:底数不变,指数相加.即a m·a n=a m+n,幂的乘方法则是:底数不变,指数相乘.即(a m)n=a m n,积的乘方法则是:积的乘方等于乘方的积.即(a b)n=a n b n,同底数幂的相除的法则是:底数不变,指数相减.即a m÷a n=a m-n2.其中m、n为正整数,底数a不但代表具体的数,也能够代表单项式、多项式或其他代数式.3.幂的乘方法则与同底数幂的相乘的法则有共同之处,即运算中底数不变,但不同之处一个是指数相乘,一个是指数相加4.这三个幂运算相互容易混淆,出现错误,在初学时要注意辨明“同底数幂”、“幂的乘方”、“积的乘方”等基本概念,对公式的记忆要联系相对应的文字表述,使用法则计算时,要注意识别是同底数幂的相乘、幂的乘方还是积的乘方,法则中各字母分别代表什么?再对照法则运算.(二)整式的乘法1.单项式与单项式相乘:由单项式与单项式法则可知,单项式与单项式相乘实为完成三项工作:(1)系数相乘的积作为积的系数;(2)同字母的指数相加的和作为积中这个字母的指数;(3)只在一个单项式中出现的字母连同它的指数一起作为积中的一个因式.单项式乘法法则对两个以上单项式相乘同样成立.2.单项式与多项式相乘:单项式与多项式相乘,实际上是转化为单项式与单项式相乘:用单项式去乘以多项式中的每一项,再把所得的积相加,即m(a+b+c)=ma+m b+mc 单项式与多项式相乘,结果是多项式,积的项数与因式中多项式的项数相同. 3.多项式与多项式相乘:多项式与多项式相乘,实际上是先转化为单项式与多项式相乘,即将一个多项式看成一个整体,即(m+n)(a+b)=a(m+n)+b(m+n),再用一次单项式与多项式相乘,得(m+n)(a+b)=ma+n a+m b+b n.多项式乘以多项式其积仍是多项式,积的次数等于两个多项式的次数之和,积的项数在末合并同类项之前等于两个多项式项数之和.(三)乘法公式1.“两数和乘以它们的差等于这两个数的平方差”即(a+b)(a-b)=a2-b2,应用这个乘法公式计算时,应掌握公式的特征:①公式的左边是两个二项式相乘;并且这两个二项式中有一项为哪一项完全相同的项a,另一项为哪一项相反数项b;②公式的右边是相同项的平方a2减去相反数项的平方b2.公式中的a和b,能够是单项式,也能够是多项式或具体数字.2.“两数和的平方等于它们的平方和加上它们乘积的2倍”.即(a+b)2=a2+2ab+b2.要理解公式的特征:①公式的左边是一个二项式的平方,右边是一个二次三项式.公式的适用范围:公式中的a和b能够是具体的数,也能够是单项式或多项式;任何形式的两数和(或差)的平方都能够使用这个公式计算.(四)整式的除法整式的除法关键是掌握好同底数幂的除法和单项式与单项式相除的法则。

整式的乘除与因式分解复习课

整式的乘除与因式分解复习课

学习目标:1.使学生通过学习巩固整式的乘除法则.并会运用这些法则计算.2. 使学生通过学习巩固乘法公式,会运用乘方公式进行计算3. 使学生通过学习巩固因式分解.学习过程:问题一整式的乘法:1、同底数的幂相乘,;公式: .2、幂的乘方,,;公式: .3、积的乘方,,再把 .公式: .4、单项式乘以单项式,把、分别相乘,对于 .5、单项式乘以多项式,就是用,再把6、多项式乘以多项式,先用,再把 .7、同底数幂的除法,, .公式: .8、单项式相除,把、分别相除作为的因式,对于 .9、多项式除以单项式,先把多项式的每一项除以这个,再把所得的相加10、=a()题组训练一1、填空:(1)x·x2= ; (2)x3·x2·x= ; (3)10·102·105= ;(4)x2·x3+x·x4= ;(5) (103)2= ; (6) (x3)4= ;(7) (-x3)5= ; (8)(-x)2= .2、计算:(1) (-5xy2)3 (2) (-2a2b3)4 (3) (-3×102)3(4)若x n=3,y n=2,则(xy)n= ;(5)若10x=2,10y=3,则10 2x+3y= .3、计算:(1) (3a2b3)2·(- 2ab3c)2(2)x(x-1)-2x(-x+1)-3x(2x-5)(3)先化简,再求值:(3a+1)(2a-3)-6(a+2)(a-1),其中a=-3 4、下列计算正确的是()A()23510a a a÷=B()2442a a a÷=C()()23335210a b a a b--=D()33224122a b a b a b-÷=-5、()()426533x x x x-+-÷-的结果是()A、32253x x x-+ B、35213x x+-C、35213x x++D、3523x x-6、当x___________时,()04-x等于__________;问题二乘法公式1.平方差公式:,文字叙述: .2.完全平方公式:,文字叙述: .题组训练二1、填空:(1)、 (3x+2) (3x-2) = (2)、(-x+2y) (-x-2y)= (3)、 (x+y+z)(x+y-z) = (4)、205×195 = (5)、(3x-7y)2= (6)、(-x-2y)2= (7)、(-3a+b)2= (8)、( 4a2 - b2 )2=2、若多项式9x2-kx+25是完全平方式,则K=3、若多项式mx2-12x+9是完全平方式,则m=4、下列两个多项式相乘,不能用平方差公式的是【】A、)32)(32(baba++- B、)32)(32(baba--+-C、)32)(32(baba--+ D、)32)(32(baba---5、已知31=+a a ,则221a a +的值是 。

冀教版数学七年级下册课件:第八章整式的乘除复习课

冀教版数学七年级下册课件:第八章整式的乘除复习课
解: (5a-3b)(4a+7b) =5a×4a+5a×7b-3b×4a-3b×7b =20a2+35ab-12ab-21b2 =20a2+23ab-21b2
三、乘法公式
知识点
公式
注意
平方差公式 (a+b)(a-b)=a2-b2
字母a、b既可 以是数,也可
以是“式”
(a b)2=a2 中间项的符号
只在被除式里 出现的字母
1)符号 2)不要漏项
计算: (1)(a3)2÷a3 =a3×2÷a3 =a6÷a3 =a6-3 =a3
(2)(b2)3·(b3)2÷b4 =b2×3·b3×2÷b4 =b6+6-4 =b8
(3)(a-2b)3·(a-2b)4÷(a-2b)5 =(a-2b)3+4-5 =(a-2b)2 =a2-4ab+4b2
(4)将4x2 看作是中间项, 所以加上4x4即可。
综上所述:可以添加: 4x, -4x, -1, -4x2, 4x4.
例:设m2+m-1=0,
求m3+2m2+2003的值。
解:因为m2+m-1=0, 所以m2+m=1 故m3+m2=m m3+2m2+2003 =m3+m2+m2+2003 =m2+m+2003 =1+2003 =2004
求(1)a2+b2 (2)ab
解(1)a2+b2=
1 2
[(a+b)2+(a-b)2]
= 1 (324+16) =170
2
(2)ab =
1 4
[(a+b)2-(a-b)2]

《整式的乘除》知识结构课件

《整式的乘除》知识结构课件

多项式图像
将整式代入变量,可以绘制多项式的图像,帮助我 们更好地理解函数的特性和变化。
整式乘除运算的注意事项
1 去括号
在进行整式乘除运算前,需要根据分配律将 括号内的项分别进行乘法运算。
2 合并同类项
在乘法时,需要将相同指数的变量相乘,并 将其结果合并为一个单项式。
整式乘除运算的习题练习
现在是你的练习时间!通过完成一系列习题,你可以提高整式乘除运算的技巧和速度。
整式的乘法和除法运算,包括单项式和多项式的 运算法则,并提供实际的应用举例和习题练习,让你轻松掌握整式的乘除运 算。
整式的定义
整式是由常数、变量和它们的积的和组成的代数表达式。
整式的乘法运算
单项式的乘法
单项式的乘法就是将两个单项式相乘,并使用乘法法则进行计算。
多项式的乘法
多项式的乘法是将每个单项式相乘,并将结果相加得到最终的结果。
整式的除法运算
单项式的除法
单项式的除法就是将一个单项式除以另一个单项式, 并使用除法法则进行计算。
多项式的除法
多项式的除法是将多项式分解为两个部分,然后对 每个部分进行除法运算,并将结果合并。
整式乘除运算的应用举例
方程求解
通过整式的乘除运算,我们可以解决各种代数方程, 包括线性方程和二次方程。
总结和回顾
通过学习整式的乘除运算,你已经掌握了代数表达式的基本操作技巧,为进 一步理解和解决复杂的数学问题打下了坚实的基础。

整式的乘除(重点、难点、考点复习总结)

整式的乘除(重点、难点、考点复习总结)

整式的乘除(重点、难点、考点复习总结)1.知识系统总结2.重点难点易错点归纳(1)几种幂的运算法则的推广及逆用例1:(1)已知52x=4,5y=3,求(53x)2; 54x+2y-2练习:1. 已知a x=2,a y=3, a z=4求a3x+2y-z(2)46×0.256= (-8)2013×0.1252014 =(2)同底数幂的乘除法:底数互为相反数时如何换底能使计算简便判断是否同底:判断底数是否互为相反数:看成省略加号的和,每一项都相反结果就互为相反数换底常用的两种变形:例2:(1)-x7÷(-x)5·(-x)2 (2)(2a-b)7·(-b+2a)5÷(b-2a)8(3)区分积的乘方与幂的乘方例3:计算(1)(x3)2 (2) (-x3)2 (3)(-2x3)2(4)-(2x3)2(4)比较法:逆用幂的乘方的运算性质求字母的值(或者解复杂的、字母含指数的方程)例4:(1)如果2×8n×16n=28n ,求n的值(2)如果(9n)2=316,求n的值(3)3x=,求x的值(4)(-2)x= -,求x的值(5)利用乘方比较数的大小指数比较法:833,1625, 3219底数比较法:355,444,533乘方比较法:a2=5,b3=12,a>0,b>0,比较a,b的大小比较840与6320的大小(6)分类讨论思想例6:是否存在有理数a,使(│a│-3)a =1成立,若存在,求出a的值,若不存在,请说明理由整式的乘法(1)计算法则明确单项式乘以单项式、单项式乘以多项式、多项式乘以多项式的计算法则,尤其注意符号的问题,结果一定要是最简形式。

单项式乘以多项式、多项式乘以多项式最终都是要转化为单项式乘以单项式,通过省略加号的和巧妙简化符号问题。

【例1】计算:(1)(-3x2y)(-xz4)(-2y3zt) (2)-5x n y n+2(3x n+2y-2x n y n-1+y n) (3)(-x+2)(x3-x2)练一练:先化简再求值:[xy(x2-3y)+3xy2](-2xy)+x3y2(2x-y),其中x=-0.25,y=4(2)利用整式的乘法求字母的值①指数类问题:②系数类问题:【例2】已知-2x3m+1y2n与7x m-6y-3-n的积与x4y是同【例3】在x2+ax+b与2x2-3x-1的积中,x3项项,求m与n的值的系数为—5,x2项的系数为-6,求a,b的值(3)新定义题【例4】现规定一种新运算:a*b=ab+a-b,其中a,b为有理数,则(a*b)+[(b-a)*b]=练一练:现规定一种新运算:a※b=ab+a-b,其中a,b为有理数,计算:[(m+n)※n]+[(n-m)※n] 课后提升:1.(-0.7×104)×(0.4×103)×(-10)=2.若(2x-3)(5-2x)=ax2+bx+c,则a= ,b=3.若(-2x+a)(x-1)的结果不含x的一次项,则a=4.计算:(1)(-5x-6y+z)(3x-6y) (2)-2xy(x2-3y2)- 4xy(2x2+y2)平方差公式(1)公式:(a+b)(a-b)=a2-b2注意:公式中的a,b既可以是具体的数字,也可以是单项式或多项式,只要不是单独的数字或字母,写成平方的差时都要加括号公式的验证:根据面积的不同表达方式是验证整式乘法公式常用的方法(2)平方差公式的不同变化形式【例1】计算下列各式:(1)(-5x+2y)(-2y-5x)= (2)(2a-1)(2a+1)(4a2+1)=(3)20132-2012×2014 =练一练:1、(2y-x-3z)(-x-2y-3z)=2、99×101×10001=3、 3×(22+1)×(24+1)×(28+1)×…×(232+1)+1=(3)平方差公式的逆用【例2】∣x+y-3∣+(x-y+5)2=0,求3x2-3y2的值练一练:已知实数a,b满足a+b=2,a-b=5,求(a+b)3(a-b)3的值.课后提升:1.已知下列式子:①(x-y)(-x-y);②(-x+y)(x-y);③(-x-y)(x+y);④(x-y)(y-x).其中能利用平方差公式计算的是2.(-a-3)( )=9-a23.如果a2-2k=(a-0.5)(a+0.5),那么k=4.为了美化城市,经统一规划,将一正方形的南北方向增加3米,东西方向缩短3米,将改造后的长方形草坪面积与原来的正方形草坪面积相比()A.增加6平方米B.增加9平方米C.减少9平方米D.保持不变5.解方程:(3x+4)(3x-4)=9(x-2)26.计算:(2+1)×(22+1)×(24+1)×…×(22014+1)完全平方公式(1)公式:(a±b)2=a2±2ab +b2首平方,尾平方,2倍乘积放中央,同号加,异号减注意:公式中的a,b既可以是具体的数字,也可以是单项式或多项式【例1】计算下列各式:(2x-5y)2 = (-mn+1)2 =(-t2-2)2=(2)完全平方公式的推广应用①直接推广②间接推广【例2】计算(a-2b+3c)2【例3】已知x+y+z=10,xy+xz+yz=8,求x2+y2+z2的值(3)利用完全平方公式求字母的值【例4】两数和的平方的结果是x2+(a-1)x+25,则a的值是()A.-9B.1C.9或-11D.-9或11(4)利用完全平方公式进行简化计算【例5】计算:(1)1992 (2)3.012(5)完全平方公式的变形应用【例6】(1)已知m+n=7,mn=10,求8m2+8n2的值(2)已知(x+y)2=16,(x-y)2=4,求xy的值课后提升:1.下列展开结果是2mn-m2-n2的式子是()A.(m+n)2B.(-m+n)2C.-(m-n)2D.-(m+n)22.(x+2y-z)2=3.若∣x+y-7∣+(xy-6)2=0,则3x2+3y2=4.若代数式x2+3x+2可以表示为 (x-1)2+a(x-1)+b的形式,则a+b的值是5.计算:(2x-y)2(2x+y)2整式的除法(1)计算法则整式乘法的逆运算,可以互相验证。

整式乘除与因式分解复习教案

整式乘除与因式分解复习教案

整式乘除与因式分解复习教案第一篇:整式乘除与因式分解复习教案整式的乘除与因式分解复习菱湖五中教学内容复习整式乘除的基本运算规律和法则,因式分解的概念、方法以及两者之间的关系。

通过练习,熟悉常规题型的运算,并能灵活运用。

教学目标通过知识的梳理和题型训练,提高学生观察、分析、推导能力,培养学生运用数学知识解决问题的意识。

教学分析重点根据新课标要求,整式的乘除运算法则与方法和因式分解的方法与应用是本课重点。

难点整式的除法与因式分解的应用是本课难点。

教学方法与手段采用多媒体课件,由于本课内容较多,故设计了大量的练习,使学生理解各种类型的运算方法。

本课教学以练习为主。

教学过程一.回顾知识点(一)整式的乘法1、同底数的幂相乘2、幂的乘方3、积的乘方4、同底数的幂相除5、单项式乘以单项式6、单项式乘以多项式7、多项式乘以多项式8、平方差公式9、完全平方公式(二)整式的除法1、单项式除以单项式2、多项式除以单项式(三)因式分解1、因式分解的概念2、因式分解与整式乘法的关系3、因式分解的方法4、因式分解的应用二.练习巩固(一)单项式乘单项式(1)(5x3)⋅(-2x2y),(2)(-3ab)2⋅(-4b3)(3)(-am)2b⋅(-a3b2n),231(4)(-a2bc3)⋅(-c5)⋅(ab2c)343(二)单项式与多项式的乘法(1)(-2a)⋅(x+2y-3c),(2)(x+2)(y+3)-(x+1)(y-2)(3)(x+y)(-2x-1y)2(三)乘法公式应用(1)(-6x+y)(-6x-y)(2)(x+4y)(x-9y)(3)(3x+7y)(-3x-7y)(四)整式的除法1(1)(-a6b4c)÷((2a3c)41(2)6(a-b)5÷[(a-b)2]3(3)(5x2y3-4x3y2 +6x)÷(6x)13(4)x3my2n-x2m-1y2+x2m+1y3)÷(-0.5x2m-1y2)3 4(五)提取公因式法因式分解(1)3ay-3by+3y(2)-4a3b2+6a2b-2ab(3)3(x-y)3-6(x-y)2(4)5m(a-b)4-4m2(b-a)3(六)乘法公式因式分解(1)25-16x2(2)-81x2+4(y-1)2(3)x2-14x+49(4)(x+y)2-6(x+y)+9(七)因式分解的应用1、解方程(1)9x2+4x=0(2)x2=(2x-5)22、计算(1)(2mp-3mq+4mr)÷(2p-3q+4r)(2)(16-x4)÷(4+x2)÷(x-2)探究活动:求满足4x2-9y2=31的正整数解。

第一章整式的乘除小结与复习课件

第一章整式的乘除小结与复习课件

第一章整式的乘除小结与复习课件一、教学内容二、教学目标1. 熟练掌握整式的乘法法则,能够正确运用平方差公式和完全平方公式进行乘法运算。

2. 掌握整式的除法法则,能够进行整式的除法运算。

3. 能够运用整式的乘除法则解决实际问题,提高运算能力和解决问题的能力。

三、教学难点与重点教学难点:平方差公式和完全平方公式的运用;整式的除法运算。

教学重点:整式的乘法法则;平方差公式和完全平方公式的推导和应用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:练习本、草稿纸、计算器。

五、教学过程1. 导入:通过一个实际问题引入整式的乘除,让学生认识到整式乘除在实际生活中的应用。

2. 教学内容讲解:(2)讲解平方差公式和完全平方公式的推导过程,通过例题进行讲解。

(3)讲解整式的除法法则,结合例题进行讲解。

3. 随堂练习:(1)给出几道整式乘法的题目,让学生独立完成。

(2)给出几道整式除法的题目,让学生独立完成。

4. 答疑解惑:针对学生在练习过程中遇到的问题进行解答。

六、板书设计1. 整式的乘法法则。

2. 平方差公式和完全平方公式。

3. 整式的除法法则。

4. 例题及解答过程。

七、作业设计1. 作业题目:(1)计算题:计算下列整式的乘积。

(2)应用题:运用整式的乘除法则解决实际问题。

2. 答案:见附页。

八、课后反思及拓展延伸1. 反思:对本节课的教学效果进行反思,针对学生的掌握情况调整教学方法。

2. 拓展延伸:(1)引导学生研究整式的乘除法则在几何图形中的应用。

(2)探讨整式的乘除法则在生活中的应用,提高学生的实际应用能力。

(3)引入整式的乘除与方程、不等式的关系,为后续学习打下基础。

重点和难点解析1. 教学内容的选择与组织。

2. 教学目标的制定。

3. 教学难点与重点的识别。

4. 教学过程中的实践情景引入、例题讲解和随堂练习。

5. 板书设计。

6. 作业设计与答案提供。

7. 课后反思与拓展延伸。

详细补充和说明:一、教学内容的选择与组织1. 确保章节的连贯性,从单项式乘以单项式逐步过渡到多项式乘以多项式,再到平方差公式和完全平方公式,引入整式的除法。

第12章 整式的乘除 期末复习课件

第12章 整式的乘除 期末复习课件

顺口溜
公式的常 用变形
a2=(a+b)(a-b)+b2; b2=a2-(a+b)(a-b)
5.因式分解
(1)因式分解的意义 把一个多项式化成几个整式的 因式分解的过程和 (2)因式分解的方法 ①提取公因式法; ②运用公式法; ③十字相,四查。 的形式,叫做多项式的因式分解.
2 3 4
例 3:计算-(-3a b ) 的结果是( D ) A.81a8b12 B.12a6b7 C.-12a6b7 D.-81a8b12
数学·人教版(RJ)
第十二章 |复习(一) 考点四 同底数幂的除法 例4 下列运算正确的是( B ) A.a6 ÷a2 =a6 ÷2 =a3 B.x3 ÷x2 =x3 -2 =x C.(-a)2×a3÷a3=a2×(a3÷a3)=a2 D.(-0.25)2012×42013=-4×(0.25×4)2012=-4 易错警示 (1)要牢记幂的运算性质,相关知识不要混淆; (2)混合运算要按从高级到低级、同级运算从左到右的顺序进 行.
数学·人教版(RJ)
第十二章 |复习(一) 考点五 整式的乘法
例5:当x=-7时,求代数式(2x+5)(x+1)-(x-3)(x+1)的值.
解:原式=2x2+2x+5x+5-(x2+x-3x-3) =2x2+2x+5x+5-x2-x+3x+3 =x2+9x+8, 当 x=-7 时, 原式=(-7)2+9ⅹ(-7)+8=-6.
的过程正好相反.
考点攻略 第十二章 |复习(一)
考点一 同底数幂的乘法
2 3
例 1:计算 a · a 的结果是( D ) 6 5 A.2a B.2a 6 5 C.a D.a
考点二 幂的乘方

整式的乘法运算复习教案

整式的乘法运算复习教案

整式的乘法运算复习教案课题:整式的乘除运算复教学目标:1.熟练进行同底数幂乘法、幂的乘方、积的乘方、单项式与单项式和多项式的乘法、多项式与多项式的乘法的运算;2.正确运用公式:平方差与完全平方公式;3.巩固整式乘法及除法的运算方法;4.培养学生的综合能力。

教学重点:1.整式的乘法及其注意事项;2.幂的运算法则及其应用;3.整式的除法及其注意事项;4.平方差公式和完全平方公式的应用。

教学难点:1.幂的运算法则的应用;2.平方差公式和完全平方公式的灵活运用。

教学方法:启发式、讲练结合素材来源:教辅资料教学步骤:一、知识点梳理:1.整式的乘法:①单项式乘以单项式:把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

②单项式乘以多项式:用单项式去乘多项式的每一项,再把所得的积相加,即m(a+b+c)=。

③多项式乘以多项式:先用第一个多项式的每一项去乘另一个多项式的每一项,再把所得的积相加,即(m+n)(a+b)=。

注意:在多项式的乘法中有三点注意:一是避免漏乘项,二是要避免符号的错误,三是展开式中有同类项的一定要合并。

2.幂的运算法则:其中m、n都是正整数。

同底数幂相乘:am×an=am+n;同底数幂相除:am÷an=am-n;幂的乘方:(am)n=amn;积的乘方:(ab)n=anbn;零指数:a⁰=1(a≠0);负整数指数:a⁻ⁿ=1/(an)(a≠0,n为正整数)。

注意:运用幂的性质进行运算一是要注意不要出现符号错误,(-a)ⁿ=(-a)(n为奇数),(-a)ⁿ=(a)(n为偶数),二是应知道所有的性质都可以逆用。

3.乘法公式:平方差公式:(a+b)(a-b)=a²-b²;完全平方公式:(a+b)²=a²+2ab+b²,(a-b)²=a²-2ab+b²。

注意:两个乘法公式在代数中有着非常广泛的应用,要注意各自的形式特点,灵活进行运用。

整式的乘除复习演示文稿

整式的乘除复习演示文稿

单项式乘以单项式 乘法分配率
单项式乘以多项式 乘法分配率
多项式乘以多项式
单项式除以单项式
科学记数法
平方差公式 完全平方公式
多项式除以单项式
巩固训练
1.计算-(-3a2b3)4的结果是( ) (A)81a8b12 (B)12a6b7 (C)-12a6b7 (D)-81a8b12 【解析】选D.-(-3a2b3)4=-(-3)4a8b12=-81a8b12.
因为am÷am=1,又因为am÷am=am-m=a0,所以a0
=1.其中a≠0.即:任何不等于0的数的零次幂都等 于1. 对于a0:(1)a≠0.(2)a0=1.
6.单项式与单项式相乘. 把它们的系数、相同字母的幂分别相乘,其余字 母连同它的指数不变,作为积的因式. 7.单项式与多项式相乘. 就是根据分配律用单项式去乘多项式的每一项, 再把所得的积相加. 8.多项式与多项式相乘. 先用一个多项式的每一项乘另一个多项式的每一 项,再把所得的积相加.
探究点二 乘法公式 【相关链接】
乘法公式包括平方差公式和完全平方公式,即
(a+b)(a-b)=a2-b2和(a±b)2=a2±2ab+b2.这类公式是
简便计算整式乘法的有利工具,也是我们继续学 习新知识的基础.解决此类问题的关键是把握公式 的结构特征,准确应用.
例题学习
【例】如图,边长为m+4的正方形纸片剪出一个边 长为m的正方形之后,剩余部分可剪拼成一个长方 形,若拼成的长方形一边长为4,则另一边长为
首页
例题学习
【例】下列运算正确的是( )
(A)a2·a3=a6
(B)a3÷a2=a (C)(a3)2=a9
(D)a2+a3ቤተ መጻሕፍቲ ባይዱa5

北师大版七年级数学下第一章整式的乘除复习课教案

北师大版七年级数学下第一章整式的乘除复习课教案
此外,小组讨论环节,学生的参与度很高,他们在交流中碰撞出不少思维的火花。但在分享成果时,部分学生表达不够清晰,这可能是因为他们在整理思路和语言组织方面还有所欠缺。为了提高学生的表达能力,我计划在以后的课堂上增加一些口语表达训练,鼓励他们大胆发言,提高自己的语言组织能力。
在课堂教学过程中,我也注意到了一些学生在解题过程中容易出现的错误,如指数运算混淆、漏项或重复项等。针对这些问题,我将在课后辅导中加强对学生的个别指导,帮助他们找出错误的原因,并及时纠正。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要回顾整式的乘除的基本概念。整式的乘除是指如何将单项式与单项式、单项式与多项式、多项式与多项式相乘或相除。这些运算是解决许多数学问题的基础,也是我们进一步学习代数的关键。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何使用整式的乘除解决实际问题,以及它如何帮助我们简化计算过程。
-综合运用乘除法则解决实际问题:学生可能难以将问题转化为数学表达式。
-突破方法:提供实际情境问题,引导学生学会提取关键信息,建立数学模型。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要复习的是《整式的乘除》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要将一个物品按照一定的规律进行分配或组合的情况?”比如,我们在超市购物时,可能会遇到买一箱饮料,里面有多种口味,我们需要计算出每种口味的数量。这个问题与我们将要复习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同回顾整式的乘除的奥秘。
最后,我觉得自己在教学难点和重点的把握上还有待提高。在今后的备课中,我要更加深入地研究教材,准确把握教学难点和重点,以便在课堂上进行有针对性的讲解和指导。

初中数学-整式的乘除-复习课教学设计学情分析教材分析课后反思精选全文完整版

初中数学-整式的乘除-复习课教学设计学情分析教材分析课后反思精选全文完整版

可编辑修改精选全文完整版七下第一章《整式的乘除》复习教学设计教学目标:1、掌握同底数幂的乘法、幂的乘方和积的乘方。

2、能灵活运用单项式和多项式的乘法。

3、熟练平方差公式和完全平方公式4、通过练习,梳理知识建立系统的知识体系。

教学重点:重点:掌握同底数幂的乘法、幂的乘方和积的乘方。

能灵活运用单项式和多项式的乘法。

难点:熟练和灵活运用平方差公式和完全平方公式教学思路:先复习整式乘除一系列的知识,通过学生自己对自我知识的掌握情况有针对性的找出重点题、易错题、难题,小组对题目分析和理解,然后全班交流,以学生为主体、教师主导,共同分享解决问题,最后归纳方法、思路,明确知识。

教学方法:小组分组学习为主教学过程:教学过程预设环节教师活动(教学内容的呈现)学生活动(学习活动的设计)设计意图一、梳理知识①请一位学生将梳理的整式的乘除这部分的知识进行板书。

学生板书②其余学生小组交流,互相检查,看看是否同学是否写对了,有遗漏之处,互相补充。

小组学员互助二、学生自主出题把学生分成6个大组,每个大组再分成两个小组,小组之间互相共享、推荐、解决学生自己找出的重点题、易错题、难题,然后每组派一个代表上黑板给全班同学推荐好题,并由学生充当小老师讲解,然后不当之处教师点播。

提起学生的兴趣提高学生的辨析题目的能力提高学生的语言表达能力提高学生的逻辑思维能力七下第一章《整式的乘除》学情分析及教学方法和学法从年龄特点来看,初一学生好动,好奇,好表现,爱发表见解,希望得到老师的表扬,所以在教学中要抓住这一生理特点,充分调动学生的的兴趣、创造性,另一方面要创造条件和机会,让其发表见解,发挥学习的主动性。

从知识掌握层次来看,学生已经学会了整式运算的相关知识,具备了一定解题技巧和能力,只是缺少对零散知识点进行组串,使之条理化、系统化,形成新的认知结构。

此时让学生让学生根据以往的作业、试卷、课外题等手头的资料,根据自己平时的易错题、重点题目,进行反思总结,集大家的智慧与一体,教师和学生们进行甄选。

第一章整式的乘除复习(教案)

第一章整式的乘除复习(教案)
最后,总结回顾环节,我觉得可以更加互动一些。下次我会尝试让同学们自己来总结今天学到的知识点,这样既能检验他们对知识的掌握程度,也能提高他们的归纳总结能力。
3.重点难点解析:在讲授过程中,我会特别强调整式的乘法法则和除法步骤这两个重点。对于难点部分,如合并同类项和运用平方差、完全平方公式,我会通过具体的例题和对比分析来帮助大家理解。
(三)实践活动
1.ห้องสมุดไป่ตู้组讨论:学生们将分成若干小组,每组讨论一个涉及整式乘除的实际问题。
2.实验操作:为了加深对整式乘除的理解,我们将进行一个简单的数学实验,通过实际操作来演示整式乘除的基本原理。
三、教学难点与重点
1.教学重点
-单项式乘以单项式的运算法则:重点掌握系数相乘、相同字母相乘、不同字母相乘的法则,并能够熟练运用。
-多项式乘以多项式的运算法则:强调先用一个多项式的每一项乘以另一个多项式的每一项,然后合并同类项。
-平方差公式和完全平方公式的应用:熟练掌握(a+b)(a-b)=a^2-b^2和(a+b)^2=a^2+2ab+b^2等公式,并能解决相关问题。
(二)新课讲授
1.理论介绍:首先,我们要复习整式的乘法和除法的基本概念。整式的乘法是指将两个或多个整式相乘,包括单项式乘单项式、单项式乘多项式、多项式乘多项式。整式的除法则是指将一个整式除以另一个整式,关键是找到商和余数。这些运算是解决许多数学问题的基础。
2.案例分析:接下来,我们通过一个具体的案例来分析整式的乘除在实际中的应用。例如,解决几何图形面积问题时,可能会涉及到整式的乘法和除法运算。
3.培养数学建模意识:将现实生活中的问题转化为整式的乘除运算,使学生体会数学建模的过程,提高解决实际问题的能力。

华师大版八年级上册数学第十二章整式的乘除与因式分解复习课件

华师大版八年级上册数学第十二章整式的乘除与因式分解复习课件

7、平方差公式:
两个数的和与这两个数的差的积,等于这 两个数的平方差.即: (a+b)(a−b)= a2−b2
例8 用平方差公式计算:(x+2y)(x-2y) 解:原式= x2 - (2y)2
=x2 - 4y2 练习:运用平方差公式计算:
(1) (3x+2 )( 3x-2 ) ;(2) (b+2a)(2a-b); (3) (-x+2y)(-x-2y); (4)2007×2013.
1 3
m 2n(4)30a5
4a 4
6a 3
例6 先化简再求值:
x2 (x2 x 1) x(x3 x2 x 5),其中x 1 .
x5 答案:化简得:
1 值为:5
25
6、多项式与多项式相乘的法则:
多项式乘以多项式,先用一个多项式的每一项乘 以另一个多项式的每一项,再把所得的积相加.
例7 计算: (1)(3x+1)(x+2)
推广:(abc)n = anbncn(n为正整数)
逆用: anbncn = (abc)n
4、单项式与单项式相乘的法则:
单项式与单项式相乘,把它们的系数、相同字 母分别相乘,对于只在一个单项式里含有的字 母,则连同它的指数作为积的一个因式。
例4 计算:(1) (-5a2b)(-3a); (2) (2x)3(-5xy2).
例9 化简:(x y)( x y)( x2 y2 )(x4+y4 )
8、完全平方公式:
两数和(或差)的平方,等于它们的平方和, 加(或减)它们的积的2倍.即:
(a+b)2=a2+2ab+b2, (a-b) 2 = a2-2ab +b2.
例9、运用完全平方公式计算:

整式的乘除复习课件

整式的乘除复习课件

整式的乘除复习课件一、教学内容本节课为整式的乘除复习,教材选用人教版《数学》四年级上册第七章“四则混合运算”中的相关内容。

复习内容包括:整式的乘法、除法,以及相关性质与法则。

二、教学目标1. 使学生掌握整式的乘除运算方法,能熟练进行整式的乘除计算。

2. 培养学生解决实际问题的能力,提高学生对整式乘除在实际情境中的应用。

3. 培养学生合作学习、积极思考的能力,提高学生的数学思维水平。

三、教学难点与重点1. 教学难点:整式乘除中的因式分解,以及含有字母的整式乘除运算。

2. 教学重点:整式乘除的运算规则,以及如何在实际问题中运用整式乘除。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体课件。

2. 学具:练习本、铅笔、橡皮。

五、教学过程1. 情景引入:以购物场景为例,顾客购买了一件商品,原价为25元,商家进行打折促销,打8折后的价格是多少?引导学生思考如何用数学知识解决问题。

2. 知识回顾:回顾整式的乘除运算方法,以及相关性质与法则。

3. 讲解与示范:讲解整式的乘法与除法运算方法,以具体例题进行讲解,如(x+y)^2、(xy)÷(x+y)等。

4. 随堂练习:让学生独立完成一些整式乘除的练习题,如:计算(x+2y)(x2y)、(a+b)^2等。

6. 拓展延伸:引导学生思考,如何在更复杂的问题中运用整式乘除,如在几何问题中,如何利用整式乘除求解面积、体积等。

六、板书设计板书整式的乘法与除法运算规则,以及相关例题。

七、作业设计(1)(x+2y)(x2y)(2)(a+b)^2(3)(x+3)÷(x1)2. 应用题:小明购买了一本书,原价为25元,书店进行打折促销,打8折后的价格是多少?八、课后反思及拓展延伸1. 课后反思:本节课学生对整式的乘除运算掌握情况较好,但在实际问题中的应用还需加强。

在今后的教学中,要注重培养学生的应用能力,提高学生在实际情境中运用数学知识解决问题的能力。

2. 拓展延伸:可以布置一些有关整式乘除的综合练习题,让学生在课后进行自主学习,提高学生的数学思维水平。

整式的乘除复习课件

整式的乘除复习课件

运算步骤:首先确定系数相乘,然 后相同字母的幂相乘,最后将剩余 的字母和指数不变。
注意事项:注意相同字母的幂相乘 时,底数不变,指数相加。
举例说明:例如单项式2x^3与单项 式3y^2相乘,结果是6x^3y^2。
单项式与多项式的乘法
定义:单项式与多项式相乘,就是单项式中的每一项与多项式中的每一项相乘 运算顺序:先乘方,再乘除,最后加减 乘法分配律:$(a+b)(m+n)=am+an+bm+bn$ 注意事项:注意符号和指数的运算
巩固练习题及解析
整式的乘除运算规则练习 常见错误分析 解题技巧分享 综合应用题解析
学生自我评价与反馈
学生自我评价:对整式的乘除运算的掌握程度进行自我评价,包括概念理解、运算技 巧等方面。
反馈内容:针对复习内容提出自己的疑问和建议,以便教师更好地了解学生的学习情 况,为后续教学提供参考。
巩固练习:提供一些与整式的乘除运算相关的练习题,让学生通过练习巩固所学知识, 提高解题能力。
除法法则:多项式 除以多项式时,按 照除法的分配律和 结合律进行计算, 即先计算括号内的 除法,再计算乘法, 最后进行加法或减 法。
注意事项:在多 项式除以多项式 时,需要注意除 数不能为零,且 结果是一个商式 和一个余式的形 式。
举例:以多项式 a(x) = 2x^3 + 3x^2 - 4x + 5 和 b(x) = x^2 x + 2 为例,进 行多项式除以多 项式的运算。
添加副标题
整式的乘除复习课件
汇报人:PPT
目录
CONTENTS
01 添加目录标题 03 整式乘法运算
02 整式乘除的回顾 04 整式除法运算

_整式的乘除_复习课件

_整式的乘除_复习课件
m n
4 4
p
mnp
(a ) a
4 4
a , [(b ) ] b
8 2 3 4 4n2 4 m
234
b
24
( x )
2 2 n 1
x
, (a ) (a ) (a )
m 4
2m 2
3、积的乘方
法则:积的乘方,等于把积的每一个因式分别乘方, 再把所得的幂相乘。 符号表示:
3
考查知识点:(当m,n是正整数时) 1、同底数幂的乘法:am · an = am+n 2、同底数幂的除法:am ÷ an = am-n ; a0=1(a≠0) x+2=1, m n mn 若 (x-3) 3、幂的乘方: (a ) = a 求 x的值 4、积的乘方: (ab)n = anbn 5、合并同类项:
解此类题应注意明确法则及各自运算的特点,避免混淆
1、若10x=5,10y=4,求102x+3y-1 的值. 2、计算:0.251000×(-2)2001 注意点: 3.( 9)
1004
1 670 ( ) 27
转化 转化 乘除 幂的乘方 转化 同底数
(1)指数:加减 (2)指数:乘法
(3)底数:不同底数
(其中a≠0,m、n为 正整数,并且m>n )
即:同底数幂相除,底数不变,指数相减。
a 1( a 0)
即任何不等于0的数的0次幂都等于1
2、幂的乘方
法则:幂的乘方,底数不变,指数相乘。 数学符号表示:
(其中m、n为正整数)
(a ) a
m n
mn
练习:判断下列各式是否正确。
[( a ) ] a (其中m、n、P为正整数)
2 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档
精品文档整式的乘除的法则及公式
1、同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。

(、为正整数)
2、幂的乘方法则:幂的乘方,底数不变,指数相乘。

(为正整数)
3、积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,在把所得的幂相乘。

(、为正整数)
4、单项式与单项式相乘的法则;单项式与单项式相乘,把它们的系数、同底数幂分别
相乘,其余字母连同它的指数不变,作为积的因式。

5、单项式与多项式相乘法则:单项式与多项式相乘,就是用单项式去乘多项式的每
一项,再把所得的积相加。

a(b-2a)=ab-2am
6、多项式与多项式相乘法则:多项式与多项式相乘,先用一个多项式的每一项乘另
一个多项式的每一项,再把所得的积相加,如果有同类项
要合并同类项。

(a+n)(b+m)=ab+an+nb+nm
7、平方差公式:两数和与这两数差的积等于这两数的平方差。

8、两数和(差)完全平方公式:两数和(差)的平方,等于这两数的平方和(差),
加上(减去)这两数积的2倍。

9、整式化简:应遵循先乘方,再乘除,最后算加减的顺序,能运用乘法公式的则运
用乘法公式。

相关文档
最新文档