《平方根》教学设计(第1课时)
平方根 教案(教学设计)
平方根【第一课时】【教学目标】1.了解算术平方根的概念,会用根号表示一个数的算术平方根。
2.会求一个正数的算术平方根。
3.了解算术平方根的性质。
【教学重难点】1.算术平方根的概念、性质,会用根号表示一个正数的算术平方根。
2.算术平方根的概念、性质。
【教学过程】一、问题引入1.教师活动:回顾上节课的拼图活动及探索无理数的过程,提出问题:面积为13的正方形的边长究竟是多少?学生活动:(1)完成填空:a2=_____;b2=_____;c2=_____;d2=_____;e2=_____;f2=_____。
(2)a,b,c,d,e,f中哪些是有理数,哪些是无理数?你能表示它们吗?2.师生互动:集体交流后,说明无理数也需要一种表示方法。
二、讲授新课算术平方根的概念:一般地,如果一个正数的平方等于___,那么,这个正数就叫做___的算术平方根。
记为:“”读做根号。
特别地,0的算术平方根是0。
例1:分别写出下列各数的算术平方根。
(要求一个数的算术平方根,一般的方法是先按平方的概念来找哪个数的平方等于这个数。
)例2:自由下落物体的高度h(米)与下落时间t(秒)的关系为h=4.9t2.有一铁球从19.6 米高的建筑物上自由下落,到达地面需要多长时间?学生活动:一个同学在黑板上板演,其他同学在练习本上做,然后交流。
三、小结1.内容总结:算术平方根的定义、表示;2.方法归纳:转化的数学方法:即将陌生的问题转化为熟悉的问题解决。
【第二课时】【教学目标】1.了解平方根的概念,会用根号表示一个数的平方根。
2.会求一个正数的平方根。
3.了解平方根和算术平方根的性质。
4.了解乘方和开方是互逆运算,会利用这个互逆运算求某些非负数的算术平方根和平方根。
【教学重难点】1.了解平方根和开平方的概念、性质,会用根号表示一个正数的算术平方根和平方根。
2.平方根和算术平方根的区别。
负数没有平方根,即负数不能进行开平方运算。
【教学过程】一、复习提问1.算术平方根的概念,任何一个有理数都有算术平方根吗?算术平方根有什么性质。
平方根第一课时教学设计
平方根第一课时教学设计第一篇嘿,亲爱的小伙伴们!今天咱们要来一起探索平方根这个神奇的数学概念啦!咱们先从一个简单的问题入手哈。
比如说,一个正方形的面积是9 平方厘米,那它的边长是多少呢?这时候,平方根就派上用场啦!咱们想想,因为 3 的平方是 9,所以这个正方形的边长就是 3 厘米。
那 3 就叫做 9 的平方根。
比如说,4 的平方根是多少呢?因为 2 的平方是 4,还有 2 的平方也是 4,所以 4 的平方根就是 2 和 2 。
那怎么表示平方根呢?咱们用符号“ ± ”来表示,就像±√4 ,这里的“ ± ”就表示有两个值,一个正的,一个负的。
好啦,现在咱们来做几个小练习试试手。
比如,求 25 的平方根,大家动动脑,很快就能算出来啦!怎么样,小伙伴们,平方根是不是也没有那么难理解呀?咱们继续加油!第二篇嗨呀,亲爱的同学们!今天咱们要开启平方根的奇妙之旅咯!咱们先来讲个小故事吧。
小明有一块正方形的地毯,面积是 16 平方分米,他特别想知道这块地毯的边长。
那咱们来帮他算算呗。
因为 4 的平方是 16,所以地毯的边长就是 4 分米。
这里的 4 就是 16 的平方根。
那同学们想想,是不是只有 4 是 16 的平方根呢?其实呀,4 也是哦!因为 (4) 的平方也是 16 。
比如说,9 的平方根是±3 ,是不是很好理解?咱们再看看平方根的符号表示,像±√a ,这就表示 a 的两个平方根。
来,咱们实战一下。
算算 100 的平方根是多少?大家别紧张,大胆地想,大胆地算。
相信通过今天的学习,大家对平方根都能有清楚的认识啦!加油哦,同学们!。
6.1平方根(第1课时) 教学设计
6.1平方根(第1课时)教学目标1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性;2.了解开方与乘方互为逆运算,会求某些非负数的算术平方根,能化简某些带根号的数,掌握计算根式范围的方法;3.通过学习算术平方根,提升学生的数感和符号感,发展抽象思维;4.通过解决实际生活中的问题,让学生体会数学与生活是紧密联系的.教学重点表示正数的算数平方根教学难点√2多大探究教学过程一、情景引入讲述数学史第一次数学危机:的出现,却在当时的数学界掀起了一场巨大风暴。
它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。
实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。
对于当时所有古希腊人的观念这都是一个极大的冲击。
这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。
这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。
更糟糕的是,面对这一荒谬人们竟然毫无办法。
这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。
二、新知探究活动一:算数平方根探究:问题1:学校要举行美术作品比赛,你想裁出一块面积为25 dm2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?说一说,你是怎样算出来的?因为52=25,所以这个正方形画布的边长应取5 dm.问题2:完成表1:正方形的边长/dm 1 3 9 2 3正方形的面积/dm²1 9 81 49思考:你能从表1发现什么共同点吗?已知一个正数,求这个正数的平方,这是平方运算问题3:完成表2:正方形的面积/dm² 4 49 0.36964正方形的边长/dm 2 7 0.6 3 8思考:你能从表2发现什么共同点吗?表1与表2中两种运算有什么关系?已知一个正数的平方,求这个正数;互为逆运算归纳:一般地,如果一个正数x的平方等于a,即x²=a,那么这个正数x叫做a 的算术平方根。
人教版七年级数学下册实数《平方根(第1课时)》示范教学设计
平方根(第1课时)教学目标1.了解算术平方根的概念,会用根号表示一个非负数的算术平方根.2.了解求一个非负数的平方运算与求一个非负数的算术平方根互为逆运算的关系,会通过平方运算求某些非负数的算术平方根.教学重点通过平方运算求某些非负数的算术平方根.教学难点通过平方运算求某些非负数的算术平方根.教学过程新课导入【问题】学校要举行美术作品比赛,小鸥想裁出一块面积为25 dm2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?【师生活动】学生思考,教师追问:你一定会算出边长应取5 dm,说一说,你是怎样算出来的?【答案】因为52=25,所以这个正方形画布的边长应取5 dm.【设计意图】从学生已知的正方形面积入手,让学生能根据面积求边长,为下文探究算术平方根做准备.新知探究一、探究学习【问题】填表:你能指出它们的共同特点吗?【师生活动】学生独立回答,教师引导补充.【答案】填表如下:上面的问题,实际上是已知一个正数的平方,求这个正数的问题.【新知】一般地,如果一个正数x的平方等于a,即2x a=,那么这个正数x叫做a的算术平方根.a a”,a叫做被开方数.规定:0的算术平方根是0.=(x≥0),则x所以,若2x a【设计意图】由正方形的边长与面积的关系引出算术平方根和被开方数的概念,让学生更容易理解和记忆.【思考】由2x a=和x=(1)a的取值范围是什么?(2)算术平方根x的取值范围是什么?【师生活动】教师引导,小组讨论,然后找学生代表回答.【答案】(1)a是非负数,即a≥0.(20,x≥0.【新知】非负数的算术平方根是非负数.负数不存在算术平方根,即当a<0【设计意图】通过回顾平方数和算术平方根的概念,得出被开方数和算术平方根的非负性,巩固学生对新知的理解.二、典例精讲【例1】求下列各数的算术平方根:(1)100;(2)4964;(3)0.000 1.【答案】解:(1)因为210100=,所以100的算术平方根是10.(2)因为2749864⎛⎫= ⎪⎝⎭,所以4964的算术平方根是7878.(3)因为20.010.0001=,所以0.000 1的算术平方根是0.01. 【归纳】被开方数越大,对应的算术平方根也越大.这个结论对所有正数都成立. 【思考】通过上面的例题,大家思考一下,我们在求算术平方根时是借助于哪一种运算来求的?【答案】平方运算【新知】求一个数的算术平方根与求一个非负数的平方恰好是互逆的运算.因此,求一个数的算术平方根的运算实际上可以转化为求一个非负数的平方的运算.【设计意图】检验学生对算术平方根的掌握情况,让学生知道求一个数的算术平方根与求一个非负数的平方恰好是互逆的运算. 【例2】求下列各式的值:(1(2(3.【答案】解:(1;(235;(3. 【新知】(1)在求a 的算术平方根时,若a 是有理数的平方,则a 的算术平方根就不带根号:若a 不是有理数的平方,则a(2)求一个非负数的算术平方根常借助于平方运算.熟记常用平方数对求一个数的算术平方根有着事半功倍的效果.【设计意图】进一步检验学生对算术平方根的掌握情况,总结求算术平方根的规律和技巧.【例3】计算:(-1)2 023-|-5|×(-6) 【答案】解:原式=-1-5×(-6)+7=-1+30+7 =36.【新知】综合计算题的运算顺序:解决综合计算题要从高级运算到低级运算,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行. 【设计意图】通过该例,让学生清楚综合计算的运算顺序.【例4】已知21(2)02x y -++,求x +y +z 的值.【答案】解:21(2)02x y -++, 由绝对值、平方及算术平方根的非负性知 102x -=,y +2=0,302z +=, 得x =12,y =-2,z =32-, 所以x +y +z =12-2-32=-3. 【新知】“几个非负数的和为0”问题的解决方法:目前学过的典型的非负数有a 2,|b |和为0,则每一个非负数均为0,即若a 2+|b |0,则a 2=0,|b |=00. 【设计意图】检验学生对算术平方根非负性的掌握情况,总结“几个非负数的和为0”问题的解决方法.课堂小结板书设计一、算术平方根的相关概念二、算术平方根的非负性三、算术平方根的应用课后任务完成教材第41页练习1题.。
平方根(第一课时) 教学设计
平方根(第一课时)教学设计一、教学目标1.理解平方根的概念2.掌握平方根的计算方法3.运用平方根解决实际问题二、教学重点1.平方根的概念和计算方法2.平方根的应用三、教学内容和方法1. 平方根的概念和计算方法1.1 通过定义引入平方根的概念•定义:如果一个数的平方等于另一个数,那么这个数就叫做这个数的平方根。
•举例:如果a² = b,那么a就是b的平方根。
1.2 计算平方根的方法•平方根的符号:√•计算方法:1.列举并观察完全平方数的特点2.借助观察结果计算非完全平方数的近似值2. 平方根的应用2.1 使用平方根解决实际问题•示例:小明要把一个方形园地的面积分成两个等面积的部分,他应该如何划分?–步骤:1.设园地的边长为x,则该园地的面积为x²2.根据题目要求,将x²分成两个等面积的部分3.求解方程x²/2 = x4.解得x = 2的平方根5.将x带回原方程,得到园地的边长四、教学步骤1.引入平方根的概念和计算方法。
通过生活中的例子和学生的实际体验,引导学生理解平方根的含义,并介绍计算平方根的方法。
2.带领学生观察完全平方数的特点,引导学生发现非完全平方数的计算方法。
3.给学生提供一些练习题,让学生进一步熟悉平方根的计算。
4.引入平方根的应用。
通过实际问题的解决过程,让学生理解平方根的实际应用价值。
5.继续给学生提供一些应用题,让学生运用所学知识解决问题。
6.对学生进行巩固练习,检验他们对平方根的理解和应用能力。
五、教学评价1.在引入概念和计算方法环节,观察学生的反应,确保学生理解平方根的概念和计算方法。
2.在应用环节,检查学生对平方根应用的理解和解题能力。
3.给学生一定的巩固练习,检验他们的掌握情况。
六、教学反思1.教学重点和难点:平方根的计算方法和应用,需要通过引导学生观察、思考和实际运用,培养学生的分析解决问题的能力。
2.教学步骤:教学过程设计合理,能够引导学生逐步理解和掌握平方根的概念和应用。
平方根(第1课时) 教学设计
平方根(第1课时) 教学设计教材分析:平方根是北师大数学教材八年级上册内容,它与乘方互为逆运算,它的引入,从而导出了无理数,使的数的范围扩大到实数,并且它为后面二次根式打下基础,在整个教材中占有很重要的地位。
学情分析:学生对乘方知识的学习不错,开方是乘方的逆运算,学生不难理解,在此基础上老师细心引导,使学生学习更加有兴趣,为学习实数和根式打好基础。
教学目标:1,了解开平方、平方根和算术平方根的意义及其表示方法.2,理解平方运算与开平方运算是互逆运算的关系.3,会用平方运算求非负数的平方根与算术平方根。
教学重点:平方根与算术平方根的定义与运算教学难点:平方根与算术平方根的定义教具准备:多媒体课件教学流程:1、情境导入:教师利用多媒体播放幻灯片1(如图16-1-1所示).问题:要剪出一块面积为25c扩的正方形纸片,纸片的边长应是多少?你能用方程表示这个问题吗?试试看.如果正方形的面积是21c扩,那么它的边长又是多少呢?2.课前热身根据上述提出的间题,请同学们作如下讨论:(1)这种运算(=25)是已知什么?求什么?(2)这种运算与平方运算之间存有怎样的关系?3、合作探究(1)整体感知数学来源于社会生活,并为社会生活服务,为了解决课本开始提出的问题,这节课我们开始学习一种新的运算---开平方运算。
(2)四边互动互动1:师:教师利用多媒体演示幻灯片2.先填空,再观察两种运算的结构特点,回答问题。
平方运算是已知,求;后面的运算是已知,这节课我们开始学习一种新的运算是。
生:先动手操作尝试,再在相互交流的基础上逐个举手回答提出的问题,持续补充完善,达成共识。
师:逐个点击空格,显示答案,验证学生回答的结果。
明确:已知平方的结果,求底数的运算叫做开平方运算,开平方的结果叫做平方根。
若=a(a≥0),则把求x 的运算叫做开平方运算,开平方运算用符号“”表示(读作“二次根号”或“根号”),其运算结果我们用符号“”表示(读作“正负根号a”),叫做a的平方根,其中非负数平方根“”简记为,叫做a的算术平方根。
北师大版数学八年级上册2.2平方根(第一课时)教学设计
教师应及时对学生的学习情况进行评价,关注他们在知识掌握、思维能力和情感态度等方面的表现。根据评价结果,调整教学策略,以提高教学效果。
四、教学内容与过程
(一)导入新课,500字
1.复习导入:让学生回顾乘方的概念及性质,提出问题:“乘方是解决什么问题的运算?乘方的逆运算是什么?”引导学生思考乘方与平方根的关系。
针对不同学生的学习能力,设计不同难度的题目,使每个学生都能在课堂上得到锻炼和提升。关注学困生,给予他们更多的关注和指导,提高他们的学习兴趣和自信心。
7.创设互动环节,提高课堂氛围
在教学过程中,教师应注重与学生的互动,鼓励学生提问和发表观点,营造积极向上的课堂氛围。通过提问、讨论等方式,激发学生的思维,提高他们的课堂参与度。
2.自主探究,理解概念
让学生自主探究平方根的定义,引导他们从乘方的角度去理解平方根,并学会用符号表示平方根。在此过程中,关注学生对概念的理解,及时解答学生的疑问。
3.案例分析,掌握方法
通过讲解典型例题,让学生掌握求简单数的平方根的方法,如:完全平方数、近似计算等。强调平方根符号的正确书写,培养学生严谨的学术态度。
1.在自主探究平方根的定义和性质的过程中,培养学生的逻辑思维能力。
2.在求解实际问题的过程中,培养学生将数学知识应用于实际情境的能力。
3.在合作交流中,培养学生倾听他人意见、表达自己观点的能力。
(三)情感态度与价值观
1.培养学生积极探究数学知识的精神,激发学生对数学的好奇心和求知欲。
2.鼓励学生面对数学问题时,保持积极的态度,相信自己能够解决问题。
(二)讲授新知,500字
1.讲解平方根的定义,用符号表示平方根,强调平方根符号的正确书写。
《平方根》设计2
1.使学生理解数的平方根的概念,能运用根号表示一个数的平方根;2.掌握用平方运算求某些数的平方根的方法.重点:平方根的概念及求某些数的平方根的方法。
难点:平方根的概念.一、导入新课我们学习了有理数的加、减、乘、除和乘方运算,但在现实生活中,有些问题仅运用这五种运算是无法解决的.例如已知正方形一边长是 4 厘米,那末它的一条对角线的长是多少厘米?解决这个问题就要运用一种新的运算方法,这种运算叫做开方.这节课我们就要学习开方运算和平方根.二、新课计算:42; (-4)2; (23)2; (-23) 2; 2; (-2;答 42=16; (-4)2=16; (23)2=49; (-23)2=49; 2=; (-2=.问:什么叫乘方?什么叫幂?答:求相同因数的积的运算叫做乘方,运算的结果叫做幂.在式子 42=16 中, 4 叫做底数, 2 叫做指数, 16 叫做 4 的二次幂.乘方运算是已知底数和指数,求幂.如果已知一个数的平方等于 16,怎样求这个数?我们可以设这个数为x,则 x2=16,问题归结为求 x.这个问题可以通过乘方运算来解决.因为 42=16 所以 x=4;又因为(-4)2=16,所以 x=-或者-4 的平方都等于 16,可以表示为(±4)2=16.因为 4 或者-4 的平方都等于 16,我们把 4 及-4 叫做 16 的平方根. 1.平方根.普通地,如果一个数的平方等于 a,这个数就叫做 a 的平方根(或者二次方根).就是说,如果 x2=a,那末 x 就叫做 a 的平方根.如 23 与-23 都是 49 的平方根.因为(±23)2=49,所以±23 是 49 的平方根.问: 100 的平方根是什么?1 100 呢?答:100 的平方根是 10 与-10.因为(±10)2=100,所以 10 与-10 是 100 的平方根.1 100 的平方根是 1 10 与-1 10.因为(±1 10)2=1 100,所以 1 10 与-1 10 是 1 100 的平方根.上面例子可以看到求一个数的平方根,可经转化为通过乘方运算来求.问: 16,49,100,1 100 都是正数,它们有几个平方根?平方根之间有什么关系?答:这些数都是正数,它们都有两个平方根,这些数的两个平方根都分别是互为相反数.问: 0 的平方根是什么?答: 0 的平方根是 0,这是因为 02=0.由于任何不为零的数的平方都不等于零,所以零的平方根惟独一个,它就是零本身.问:负数有平方根吗?为什么?答:负数没有平方根.由于正数、零和负数的平方都不是负数,所以负数没有平方根.请同学概括数的平方根的定义.答:一个正数有两个平方根,它们互为相反数; 0 有一个平方根,它是0 本身;负数没有平方根.2.一个非负数 a 的平方根的表示法.当 a>0 时, a 的正的平方根用符号“2 a”表示,其中 a 叫做被开方数,2 叫做根指数, a 的负的平方根用符号“-2a”表示,这两个平方根合起来可以记作“±2a”.这里符号“2”读作“二次根号”,2a 读作“二次根号a”.当根指数是 2 时,通常将这个 2 省稍不写,如 2a 记作 a,读作“根号a”;±2a 记作±a,读作“正负根号a”.普通地,如果x2=a(a≥0),那末 a 的平方根可以表示为x=±a.例如, 9 的平方根记作±9,读作正负根号 9.那末 3a 的根指数是 3,应读作三次根号 a,na 的根指数是 n,读作 n 次根号 a.3.开平方.求一个数 a(a≥0)的平方根的运算,叫做开平方.开平方运算是已知指数和幂求底数.平方与开平方互为逆运算.一个数可以是正数、负数或者是 0,它的平方数惟独一个,正数或者负数的平方都是正数, 0 的平方是 0.但一个正数的平方根却有两个,这两个数互为相反数, 0 的平方根是 0.负数没有平方根.因为平方与开平方互为逆运算,因此我们可以通过平方运算来求一个数的平方根,也可以通过平方运算来检验一个数是不是另一个数的平方根.例 1 求下列各数的平方根:(1)81; (2)1916; (3).分析:求平方根是开方运算,我们可以通过平方运算来解决.解 (1)因为(±9)2=81,所以 81 的平方根是±9,即±81=±9.(2)因为 19 16=25 16,(±54)2=25 16,所以 1916 的平方根是±54,即±1916=±2516=±54.(3)因为(±2=,所以的平方根是±,即±=±.例 2 下列各数有平方根吗?如果有,求出它的平方根;如果没有,请说明理由.(1)-64; (2)0; (3)(-4)2 (4)10-2.分析:因为惟独正数和零才有平方根,所以首先应观察所给出的数是否为正数或者 0.解 (1)因为-62 是负数,所以-64 没有平方根;(2)0 有一个平方根,它是 0;(3)因为(-4)2=16>0,所以(-4)2,有两个平方根,且± (-4)2= ±16=±4;(4)因为 10-2=1 102 >0 所以 10-2 有两个平方根,且±10 -2=± (1 10)2=±1 10.问: (1)-42 有平方根吗? (2)(-4)2 与-4 相等吗?为什么?答: (1)因为-42=-16 是负数,所以-42 没有平方根.(2)因为(-4)2=16=4,16 是(-4)2 的正的平方根,所以等于 4,而不等于-4.三、课堂练习1.填空:(1)因为(±37)2=9 49 所以______是______的平方根;(2)因为(±2=,所以______是______的平方根;(3)(-2)2 的平方根是 ,(12)2 的平方根是 ;(4)的平方根是,10-6 的平方根是 .2.求下列各数的平方根:(1)49 81; (2)25 64; (3);(4)49×10-4.3.判断下列说法是否正确?(1)0 的平方根是 0; (2)1 的平方根是 1;(3)-1 是 1 的平方根; (4)-1 的平方根是-1;(5)(-1)2 的平方根是-1.答案:1. (1) ±37 是 9 49 的平方根;(2) ±是的平方根;(3)(-2)2 的平方根是±2; (12)2 的平方根是±12;(4)的平方根是±; 10-6 的平方根是±10-3.2. (1)49 81 的平方根是±; (2)25 64 的平方根是±5 8;(3)的平方根是±79;(4)49×10-4=,平方根为± .3. (1)正确; (2)错误, 1 的平方根是± 1; (3)正确; (4)错误,- 1 没有平主根; (5)错误,因为(-1)2=1,1 的平方根是±1.四、小结1.如果 x2=a,那末x 就叫做 a 的平方根,用±a 来表示.当 a>0 时, a 有两个平方根,即±a,a 表示 a 的正的平方根,-a 表示a 的负的平方根,它们互为相反数;当 a=0 时, a 有一个平方根,就是它本身;负数没有平方根.2.求一个数 a 的平方根的运算,叫做开平方,平方和开平方运算有区别又有联系.区别在于,平方运算中,已知的是底数和指数,求的是幂;而在开平方运算中,已知的是指数和幂,求的是底数.在平方运算中的底数可以是任意数,平方的结果是惟一的;在开平方运中,被开方数必须是非负数,开平方的结果不一定是惟一的.平方和开平方运算又有联系,二者互为逆运算.求一个数的平方根,可以通过平方运算来解决.五、作业(一)选择题:1.在四个数 0,-9,2, (-2)2 中,有平方根的是( ).与-9;,-9 和(-2)2;与(-2)2;,2 和(-2)2.2.数 16 的平方根是( ).;; C.-4;或者-4.3.数的平方根是( ).;; C.-;或者-.4.数 1 79 的平方根是( ).或者-49;或者-43;; .5.数(-6)2 的平方根是( ).A.-6;;或者-6. D.无平方根.(二)填空题:1.数 61925 的平方根是;2.数的平方根是;3.数 11549 的负的平方根是;4.数(-2 的平方根是;5.-是的负的平方根.(三)写出下列各数的平方根.121,144,169,196,225,256,289,324,361.答案:( (一);;(二)1. ± 135; 2. ±;; 4. ±; (三)±11;±12;±13;±14;±15;±16;±17;±18;±19.。
平方根(第1课时)教学设计(新版)新人教版
平方根课题平方根主备人执教者课型新授课课时第一课时时间教学目标情感态度通过学习算术平方根,认识数与人类生活的密切联系,建立初步的数感和符号感,发展抽象思维,为学生以后学习无理数做好准备。
知识与技能1.通过实际生活中的例子理解算术平方根的概念;2.会求非负数的算术平方根并会用符号表示;3.理解算术平方根及其被开方数的双重非负性。
过程与方法通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。
教学重难点重点算术平方根的概念和求法。
难点算术平方根的求法及双重非负性的理解。
教法与学法自主探究、启发引导、小组合作教学准备一块正方形纸板教学过程教学环节及时间分配教师活动学生活动一、情境引入:(3分钟)二、探索归纳:(7分钟)问题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为225dm的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少?1.探索:学生能根据已有的知识即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为dm5。
接下来教师可以再深入地引导此问题:如果正方形的面积分别是1、9、16、36、254,那么正方形的边长分别是多少呢?学生会求出边长分别是1、3、4、6、52,学生画示意图并计算1.求出边长分别是1、3、4、6、三、习题应用:(10分钟)四.升华理解:(12分钟)接下来教师可以引导性地提问:上面的问题它们有共同点吗?它们的本质是什么呢?这个问题学生可能总结不出来,教师需加以引导。
上面的问题,实际上是已知一个正数的平方,求这个正数的问题。
2.归纳:⑴算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a那么这个正数x叫做a的算术平方根。
⑵算术平方根的表示方法:a的算术平方根记为a,读作“根号a”或“二次很号a”,a叫做被开方数。
例1、求下列各数的算术平方根:⑴100⑵6449⑶971⑷0001.0⑸0注:①根据算术平方根的定义解题,明确平方与开平方互为逆运算;②求带分数的算术平方根,需要先把带分数化成假分数,然后根据定义去求解;③0的算术平方根是0。
七年级数学下册第三章平方根教案浙教版
七年级数学下册第三章平方根教案浙教版一、教学内容本节课选自浙教版七年级数学下册第三章《平方根》的第一课时。
详细内容包括:1. 平方根的定义及性质;2. 平方根的计算方法;3. 平方根在实际问题中的应用。
二、教学目标1. 让学生理解平方根的概念,掌握平方根的性质及计算方法;2. 培养学生运用平方根解决实际问题的能力;3. 培养学生的逻辑思维能力和数学运算能力。
三、教学难点与重点教学难点:平方根的性质和计算方法。
教学重点:平方根的概念及其在实际问题中的应用。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔;2. 学具:练习本、草稿纸、计算器。
五、教学过程1. 实践情景引入利用多媒体展示一个正方形,边长为a,面积为a²。
提问:如果已知正方形的面积,如何求解边长?2. 新课导入根据实践情景,引导学生探讨平方根的概念。
给出平方根的定义,讲解平方根的性质。
3. 例题讲解(1)计算9的平方根;(2)计算±4的平方;(3)求解方程x²=16。
4. 随堂练习(1)计算16的平方根;(2)计算±3的平方;(3)求解方程x²=25。
6. 应用拓展出示一些实际问题,让学生运用平方根知识解决问题。
六、板书设计1. 平方根的定义及性质;2. 平方根的计算方法;3. 实际问题的解答过程。
七、作业设计1. 作业题目:2. 答案:(1)±2、±3、±5;(2)4、9、25;(3)x=±6,x=±7。
八、课后反思及拓展延伸1. 反思:本节课学生掌握平方根的概念及计算方法情况,以及对实际问题的解决能力;2. 拓展延伸:引入立方根的概念,让学生了解更多的数学知识。
重点和难点解析1. 平方根的定义及性质;2. 平方根的计算方法;3. 实际问题的解答过程;4. 作业设计中的题目及答案。
一、平方根的定义及性质平方根的定义:如果一个数的平方等于另一个数,那么这个数叫做另一个数的平方根。
苏科版数学八年级上册 4.1 平方根 教案 (1)
《平方根》教学设计[课题名称]苏科版数学八年级上册第四章第一节《平方根》第一课时。
[教材简解]本节教材是学生在七年级上册学习“棋盘上的故事”认识了运算“乘方”,并能熟练计算任何一个数的平方。
在这节内容的学习中要认识学习平方根,学习平方根的概念及其运用。
并对“乘方”和“开方”、“平方”和“开平方”的概念做辨析,使学生在“引导——探索——类比——发现”中发展学习数学的能力。
对平方根的性质,教材是考虑学生的年龄特征,先通过“探究”中的具体问题,让学生根据平方根的意义,举例讨论分析类比得出结果,再分析结果的共同特征,由特殊到一般地归纳出结论。
因此学生必须了解平方根的性质产生的背景,经历性质的探索过程、理解、掌握基本技能;同时也力图在学习中逐步达成学生的有关情感态度目标。
[目标预设]1、培养学生的逻辑分析能力。
使学生理解经历数的平方根的概念形成过程,,能运用根号表示一个数的平方根;让学生不仅掌握概念,而且提高和巩固所学知识的应用能力,使学生能把本节课知识与先前已学经验、知识建立联系,更好地分析问题,使知识系统化。
2、培养学生的综合转化能力。
掌握用平方运算求某些数的平方根的方法。
通过学生利用利用观察、归纳、类比、概括、推理等多种综合分析手段,从而由特殊到一般地探究出平方根性质,提高处理实际问题的能力。
3、培育学生合作交流的能力。
通过了解乘方与开方是互逆的运算,会利用这个互逆运算关系求非负数的平方根,让学生利用已经具有的合作学习的经验,感受到创造性活动带来的愉快,体会真正的数学美,增强相互间的合作与交流,培养的数学情感。
[重点难点]1、重点:平方根的概念,会用根号表示一个非负数的平方根。
2、难点:学会理解归纳平方根的性质,并能运用开平方运算求一个非负数的平方根。
[设计思路]本小节安排两课时,第一课时:在具体的例子中抽象出数的平方根的概念,会用根号表示一个数的平方根,发展学生的抽象概括能力。
先通过对乘方的意义到总结出平方根的基本概念,然后解决单纯数或者式子的平方根的计算;第二课时,归纳类比得到算术平方根的概念和基本性质并解决一些简单的现实问题。
人教版七年级数学下册6.1平方根(第1课时)教学设计
3.将实际问题抽象为数学模型,运用平方根知识解决问题。
(三)教学设想
1.创设生活情境,导入新课
以学生熟悉的实际情境为例,如正方形的面积、体积计算等,引导学生发现平方根的存在,激发他们的学习兴趣。
2.自主探究,合作交流
在学生初步了解平方根的概念后,组织他们进行自主探究和合作交流,发现平方根的性质,探讨求平方根的方法。
六、板书设计
1.标题:6.1平方根(第1课时)
2.主要内容:
(1)平方根的定义
(2)平方根的性质
(3)求平方根的方法
(4)平方根的应用
二、学情分析
七年级学生在前期的数学学习中,已经掌握了实数的初步概念,具备了基本的运算能力。在此基础上,他们对平方根的概念具备了一定的认知基础,但可能对平方根的性质和求法还不够熟悉。此外,学生在解决实际问题时,可能缺乏将问题抽象为数学模型的能力,需要教师在教学过程中给予引导和帮助。
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结平方根的定义、性质和求法。
2.强调平方根在实际问题中的应用,让学生认识到学习平方根的重要性。
3.鼓励学生提出疑问,解答他们在学习过程中遇到的问题。
4.布置课后作业,巩固所学知识。
五、作业布置
为了巩固学生对平方根知识的掌握,提高他们的运算能力和解决实际问题的能力,特布置以下作业:
1.基础知识巩固:
(1)请学生完成课本第92页的练习题1、2、3。
(2)根据平方根的定义和性质,求解以下正数的平方根:9、16、25、36。
(3)填空题:根据平方根的性质,判断以下各题的正误,并说明理由。
a.一个正数的平方根有两个,它们互为相反数。
沪科版数学七年级下册6.1《平方根》教学设计1)
沪科版数学七年级下册6.1《平方根》教学设计1)一. 教材分析《平方根》是沪科版数学七年级下册第六章第一节的内容。
本节课主要学习了平方根的概念,以及如何求一个数的平方根。
教材通过引入平方根的概念,让学生理解平方根的性质,并能运用平方根解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘方、相反数和绝对值等概念。
但他们对平方根的概念和性质可能还不够了解,需要通过实例和练习来进一步理解和掌握。
三. 教学目标1.理解平方根的概念,掌握求一个数的平方根的方法。
2.能够运用平方根解决实际问题,提高解决问题的能力。
3.培养学生的逻辑思维能力和团队合作精神。
四. 教学重难点1.平方根的概念和性质。
2.求一个数的平方根的方法。
3.运用平方根解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入平方根的概念,让学生在实际情境中理解平方根。
2.小组合作学习:学生分组讨论,共同探究平方根的性质和求解方法。
3.练习法:通过大量的练习题,巩固学生对平方根的理解和运用。
六. 教学准备1.教学PPT:制作包含平方根概念、性质和求解方法的PPT。
2.练习题:准备一些有关平方根的练习题,用于课堂练习和巩固。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用生活实例,如正方形的面积公式,引出平方根的概念。
让学生思考:什么是平方根?为什么需要平方根?2.呈现(10分钟)通过PPT展示平方根的定义和性质,让学生直观地理解平方根的概念。
同时,讲解如何求一个数的平方根,以及平方根的性质。
3.操练(10分钟)让学生分组讨论,共同探究如何求一个数的平方根。
每组选一个数,尝试求出它的平方根,并解释求解过程。
4.巩固(10分钟)出示一些有关平方根的练习题,让学生独立完成。
然后,学生进行讲解,互相交流解题思路。
5.拓展(10分钟)让学生运用平方根解决实际问题,如:一个正方形的边长是a,求它的面积;一个数的平方根是5,求这个数。
北师大版数学八年级上册2.2平方根第一课时教学设计
教师根据学生的课堂表现和作业完成情况,反思教学方法,调整教学策略,以提高教学效果。
二、学情分析
八年级学生在前期的数学学习过程中,已经掌握了有理数的乘法运算,具备了一定的数学基础。在此基础上,学习平方根的知识,有助于他们拓展数的概念,提高解决问题的能力。然而,由于平方根的概念较为抽象,学生可能会在理解上存在一定难度。因此,在教学过程中,应注重引导学生通过具体实例,感受平方根的实际意义,帮助他们建立直观的数学模型。
北师大版数学八年级上册2.2平方根第一课时教学设计
一、教学目标
(一)知识与技能
1.理解平方根的定义,掌握求一个数的平方根的方法,能正确计算并求解简单问题。
2.熟练运用平方根的性质,解决实际问题,如面积、速度等与平方根相关的问题。
3.了解平方根在生活中的应用,提高将数学知识应用于实际问题的能力。
(二)过程与方法
2.自主探究,合作交流
在新课讲解环节,鼓励学生通过实际操作、自主探究、合作交流的方式,发现平方根的性质和求法。教师在此过程中发挥引导作用,帮助学生搭建知识框架。
3.分层教学,关注个体差异
针对不同学生的学习能力,设计不同难度的练习题,让每一个学生都能在原有基础上得到提高。同时,关注学生的情感需求,鼓励他们积极参与课堂讨论,提高自信心。
2.结合生活实际,思考平方根在以下情境中的应用,并给出至少两个实例:
a.面积问题
b.速度问题
3.小组合作,探讨以下问题,并在下节课分享你们的讨论成果:
a.平方根在数学以外的领域有哪些应用?
b.如何运用平方根的知识解决实际问题?
4.选做作业(针对学有余力的同学):
a.请同学们预习下一节课的内容,了解立方根的定义和性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平方根》教学设计(第1课时)
一、内容和内容解析
1.内容
算术平方根的概念,被开方数越大,对应的算术平方根也越大.
2.内容解析
算术平方根是初中数学中的重要概念,引入算术平方根,是解决实际问题的需要.作为《实数》的开篇第一课,掌握好算术平方根的概念和计算,一方面可为后续研究平方根、立方根提供方法上的借鉴,另一方面也是为认识无理数,完成数集的扩充,解决数学内部运算,以及二次根式的学习等作准备.
算术平方根的概念分两个部分,分别是关于一个正数算术平方根的定义和关于0的算术平方根的规定.由算术平方根的概念引出其符号表示、读法及什么是被开方数.根据算术平方根的概念,可以利用互逆关系,求一些数的算术平方根.根据这些数的算术平方根的结果,不难归纳得出“被开方数越大,对应的算术平方根也越大”的结论,其间体现了从特殊到一般的思想方法.
基于以上分析,确定本节课的教学重点为:算术平方根的概念和求法.
二、目标和目标解析
1.教学目标
(1)了解算术平方根的概念,会用根号表示一个非负数的算术平方根.
(2)会求一些数的算术平方根.
2.目标解析
(1)学生能说出正数的算术平方根的定义,记住0的算术平方根是0;会用符号
表示一个非负数的算术平方根,并能正确读出符号,能够说出中数的名称;理解符号中被开方数≥0(即是一个非负数)的条件,了解也是一个非负数.(2)学生能依据算术平方根的定义判断一个数有没有算术平方根;掌握用平方运算求某些数的算术平方根的方法,会求出100以内完全平方数或分子、分母均是这类数的分数的算术平方根,以及上述这类数扩大(或缩小)100倍、10000倍的数的算术平方根;了解被开方数越大,对应的算术平方根也越大.
三、教学问题诊断分析
在本课学习之前,学生们已经掌握了一些完全平方数,对乘方运算也有一定的认识.但对于算术平方根为什么只是就正数进行定义,并对0的算术平方根作出规定,大多数学生不习惯.还有就是负数没有算术平方根,这种某数不能进行某种运算的情况在有理数的前五种代数运算中,一般不会碰到(0不能作除数除外);加之算术平方根的符号表示只涉及一个数,这与前面所学都涉及两个数的运算不一样,学生可能难以理解.
基于以上分析,本节课的教学难点是:深化对算术平方根的理解.
四、教学过程设计
1.创设情境,引入新课
教师展示教科书中本章的章前图,说明这是神舟七号宇宙飞船升空的照片,并提出下面的问题.
问题 1 请同学们阅读本章的引言,你从引言中发现了哪些与数有关的概念?本章将要学习的主要内容以及大致的研究思路是什么?
师生活动学生阅读,回答;教师补充说明数的范围不断扩大体现了人类在数的认识上的不断深入,让学生感受数的扩充的必要性.
设计意图:通过“神州七号载人飞船发射成功”引入本章学习,激发兴趣,增强学生的学习热情.
2.师生互动,学习新知
问题2学校要举行美术作品比赛,小鸥想裁出一块面积为25dm的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?
师生活动:学生可能很快答出边长为5dm.
追问请说一说,你是怎样算出来的?
师生活动:学生理清解决问题的思路,回答,教师可结合图片强调思路.
设计意图:从现实生活中提出数学问题,使学生积极主动的投入到数学活动中去,同时为学习算术平方根提供实际背景和生活素材.
问题3完成下表:
设计意图:通过多个已知正方形面积求边长问题的解答,加强学生对这种运算的理解,为引出算术平方根作好铺垫.
问题4 你能指出问题2与问题3的共同特点吗?
师生活动:学生可能回答:上述问题都是“已知一个正方形的面积,求这个正方形的边长”的问题,教师可引导学生进一步归纳为“已知一个正数的平方,求这个正数”的问题,从而揭示问题的本质.在此基础上教师给出算术平方根的定义.
一般地,如果一个正数的平方等于,即,那么这个正数叫做的算术平方根.的算术平方根记为,读作“根号”,叫做被开方数.
问题5 上面就一个正数给出了算术平方根的定义,那么,你认为“0的算术平方根是多少?”“怎样表示”比较合适呢?
师生活动:学生不难回答“0的算术平方根是0”,可以表示为“”;教师指明:算术平方根的概念包含“正数算术平方根”的定义和“0的算术平方根”的规定两部分.追问(1)根据以上学习,你认为对于算术平方根中被开方数可以是哪些数?
师生活动:学生回答,教师明确:算术平方根中被开方数可以是正数或0,即非负数.追问(2)为什么负数没有算术平方根呢?
师生活动:学生思考、回答,教师点拨:因为任何一个正数的平方都不可能是负数.设计意图:通过不断追问,由学生思考解决,体会分类讨论,既加深学生对算术平方根的理解,又让学生养成全面考虑问题的习惯.
追问(3)请判断正误:
(1)-5是-25的算术平方根;
(2)6是的算术平方根;
(3)0的算术平方根是0;
(4)0.01是0.1的算术平方根;
(5)一个正方形的边长就是这个正方形的面积的算术平方根.
师生活动:学生回答,其他学生讨论,教师对有难度的进行适当引导.
设计意图:检验对算术平方根的理解.
3.例题示范,学会应用
例1 求下列各数的算术平方根:
(1)100;(2);(3)0.0001.
师生活动:教师给出第(1)小题求数的算术平方根的思考过程,学生模仿独立完成第(2)、第(3)小题,两名学生板演后,全班交流.
追问从例1中,你能发现被开方数的大小与对应的算术平方根的大小之间有什么关系吗?
师生活动:学生比较被开方数的大小以及其算术平方根的大小,试图归纳出结论.如有困难,教师再举一些具体例子加以引导,说明.
设计意图:通过求大小不同的三种形式的正数的算术平方根的实践,巩固求算术平方根的方法,由特殊到一般归纳出结论:被开方数越大,对应的算术平方根也越大.为下节课学习估计平方根的大小做准备.
例2 求下列各式的值.
(1);(2);(3).
师生活动:学生先说明所求式子的含义,然后三名学生板演,全班交流,教师点评.设计意图:使学生熟悉算术平方根的符号表示,全面了解算术平方根.
4.即时训练,巩固新知
(1)教科书第41页的练习.
(2)求的算术平方根.
师生活动:学生独立完成,教师巡视,对个别差生进行辅导.对“求的算术平方根”,要让学生明白此题包含两层运算,即先求=?,然后再求“?”的算术平方根,实际上就是上述例1、例2类型的综合题.
设计意图:通过练习使学生在了解算术平方根及有关概念的基础上,达到能自己求一个数的算术平方根,进一步巩固、深化对算术平方根的理解.
5.课堂小结
师生共同回顾本节课所学内容,并请学生回答以下问题:
(1)什么是算术平方根?
(2)如何求一个正数的算术平方根?
(3)什么数才有算术平方根?
设计意图:让学生对本节课知识进行梳理,进一步落实相关概念.
6.布置作业:
教科书习题6.1 第1、2题.
五、目标检测设计
1.若是49的算术平方根,则=( ).
A.7 B.-7 C.49 D.-49
设计意图:本题考查学生对算术平方根概念的理解.
2.说出下列各式的意义,并求它们的值.
(1);(2);(3);(4).
设计意图:本题考查学生对算术平方根概念的理解,以及是否能正确认识符号化语言.3.的算术平方根是_____.
设计意图:本题考查学生对算术平方根概念的全面理解.。