史上最全的数列通项公式的求法13种
求数列通项公式的十种常用方法
求数列通项公式的十种常用方法一、构造法构造法是最常见的求解数列通项公式的方法,是根据已知的数列的前几项逐步构造出数列的通项公式的过程,主要包括归纳法、设数据项法、递推法等。
1.归纳法归纳法是根据已知数列中前几项,把同一个数列中的每一项视为全体项的一部分,由以已知项为特例,讨论出全体项的总体规律。
2.设数据项法设数据项法是根据数列的某项与它的前面几项的关系来建立通项公式的方法。
设数据项始终指代着形式未知却已给出它跟前几项关系的某一项,而根据设数据项得出的数列形式叫做设数据项形式,其通项公式就是设数据项形式的通项公式。
3.递推法递推法是根据数列中任一项与它的后面几项的关系,从已知项不断向前推出未知项,从而推出数列的通项公式的方法。
二、方程法方程法是利用数列的某一项与此数列的其它项的关系式组成的线性方程组或者非线性方程组,求解通项公式的概念,虽然它给出的通项公式也不易求解,但是它与构造法相比,可能会在某些情况下得到更简洁的通项公式,所以它也成为了求解数列通项公式常用的方法之一。
三、数学归纳法数学归纳法是一种利用一般性原理来更加正规地寻求数列通项公式的方法,它具有比构造法更多的优点,比如说,它可以处理更加复杂的情形(例如次通项不是已知项的一个常数倍)。
四、分析法分析法是指用分析几何和代数几何方法,通过考察数列中某几个项的构成方式,来推导出整个数列的通项公式的抽象方法。
五、导数比导数比是指根据数列的前几项来推算下一项的一种技巧,以项数为横坐标,相邻两项的比值为纵坐标构成一幅函数图象,然后根据曲线图象分析可以推出数列的某种规律,从而推出数列的通项公式。
六、逆序法逆序法是反其道而行之,以数列的最后一项为起点,根据已知的数列的前几项和最后一项的运算关系,得出最后一项的前一项,以此类推,一直到起始项,从而得出数列的通项公式的一种方法。
七、特殊函数解特殊函数解法是指利用特殊函数及其组合函数构成的数列通项公式的解法,在实际问题中,特殊函数有对数函数、指数函数、三角函数等,使用这些函数可以构成一种数列,从而求出数列的通项公式。
数列史上最全求通项公式10种方法并配大量习题及答案
数列史上最全求通项公式10种方法并配大量习题及答案求数列通项公式的方法有很多种。
这个问题通常是高考试卷的第一问,如果无法解决或没有思路,那么即使后面的问题可以解决,也是无济于事的。
下面我们逐个讲解这些重要的方法。
递推公式法是指利用an=Sn−Sn−1的形式,其中Sn表示数列的前n项和。
这种方法有两种类型。
第一种类型是题目中给出的是Sn=f(n)的形式,要将n改成n-1,包括角标,这样加上题中给出的式子就得到两个式子,两式子做差,即可整理出通项公式。
但是需要注意的是,求出的通项公式一定要检验是否需要写成分段的形式,即验证一下a1和S1是否相等,若不相等,则需要写成分段的形式。
第二种类型是a(n-1),an和a(n+1)与S(n-1),Sn和S(n+1)同时存在于一个等式中,我们的思路是将n改写成n-1,又得到另一个式子,这两个式子做差,在做差相减的过程中,要将等式的一端通过移项等措施处理为零,这样整理,容易得出我们想要的关系式。
累加法(迭、叠加法)是在教材上推导等差数列通项公式和前n项和公式的时候使用的一种方法。
其实这个方法不仅仅适用于等差数列,它的使用范围是非常广泛的。
只要适合an=an-1+f(n)的形式,都可以使用累加法。
基本的书写步骤是将an-an-1=f(n)展开,然后累加,得到an-a1=f(2)+f(3)+f(4)+。
+f(n)。
因此重点就是会求后边这部分累加式子的和,而这部分累加的式子,绝大部分都是三种情况之一,要么是一个等差数列的前n-1项的和,要么是一个等比数列的前n-1项的和,要么就是能够在累加过程能够中消掉,比如使用裂项相消法等。
累乘法的使用条件是,凡是适合an=an-1*f(n)形式的求通项公式问题,都可以使用累乘法。
它的基本书写步骤格式是:an=a1*f(2)*f(3)*。
*f(n)。
以上是数列通项公式的三种求法。
2.改写每段话:首先,我们来看等式左右两边的乘积。
左边相乘得到的总是1,右边相乘得到的是f(2)乘以f(3)乘以f(4)一直到f(n)。
数列通项公式的求法(最全)
非等差等比数列通 项公式的求法
构造法
构造法是一种常用 的数列通项公式求 法
构造法通过观察数 列的规律找出通项 公式
构造法需要一定的 数学基础和逻辑思 维能力
构造法可以应用于 非等差等比数列的 通项公式求法
数学归纳法
添加标题
定义:一种证明数学命题的方法通过证明一个命题对某个初始值成立并且假设对某个值 成立时可以推出对下一个值也成立从而证明命题对所有值都成立。
. 计算数列相邻项之间的差值得到差数列。 b. 观察差数列的规律寻找通项公式。 c. 验证通项公式的正确性。
适用范围:逐差法适用于等比数列、等差数列等有规律的数列。
单击此处输入你的项正文文字是您思想的提炼言简意赅的阐述观点。
注意事项:在使用逐差法时需要注意差数列的规律避免遗漏或错误。
单击此处输入你的项正文文字是您思想的提炼言简意赅的阐述观点。
步骤: . 确定数列的通项公式的一般形式 b. 确定数列的起始项和公差或 公比 c. 代入通项公式建立方程组 d. 求解方程组得到待定系数的值
. 确定数列的通项公式的一般形式 b. 确定数列的起始项和公差或公比 c. 代入通项公式建立方程组 d. 求解方程组得到待定系数的值
应用:适用于求解非等差等比数列的通项公式 单击此处输入你的项正文文字是您思想的提炼,言简的阐述观点。
公式中的1表示首项d表示公差
公式法的适用范围:已知首项 和公差的等差数列
累加法
累加法原理:通过累加数列的前n项和得到通项公式 累加法公式:n=Sn-S(n-1)其中Sn为前n项和 累加法应用:适用于已知数列的前n项和求通项公式 累加法示例:例如已知数列{1,3,5,7,9}的前n项和为Sn=n^2则通项公式为n=2n-1
高中数学数列通项公式的求法技巧大全
数列通项公式的求法技巧大全一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二。
四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。
2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2)()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。
例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
求数列通项公式的11种方法
求数列通项公式的11种方法数列通项公式是数学中一种重要的概念,它通过确定数列中任意一项的值来描述数列的规律。
它与算法不同,可在一定程度上减少计算量。
本文将介绍求数列通项公式的11种方法,帮助读者更好地理解数列通项公式的意义。
第一种方法是利用数列中已知项,来求数列通项公式。
比如,一个数列已知前五项a1,a2,a3,a4,a5,那么数列的通项公式为a1+a2+ a3+ a4+a5,通过求和得出该数列的公式。
第二种方法是使用特征系数展开式求数列通项公式。
比如,一个数列已知前五项a1,a2,a3,a4,a5,那么可以使用特征系数展开式求出该数列的通项公式:a1+2a2+3a3+4a4+5a5。
第三种方法是倒数展开式求数列通项公式。
比如,一个数列已知前五项a1,a2,a3,a4,a5,那么可以使用倒数展开式求出该数列的通项公式:a1+a2/2+a3/3+a4/4+a5/5。
第四种方法是由观察法求数列通项公式。
比如,一个数列已知前五项a1,a2,a3,a4,a5,那么可以通过观察发现,这是一个等比数列,则该数列的通项公式为a1qn-1,其中q为公比。
第五种方法是由增量法求数列通项公式。
比如,一个数列已知前五项a1,a2,a3,a4,a5,增量法可以用来求出a2=a1+d1,a3=a2+d2,a4=a3+d3,a5=a4+d4,其中d1,d2,d3,d4为增量。
将这四式代入原式:a1+a2+a3+a4+a5,即可求出该数列的通项公式:a1+(n-1)(d1+d2+d3+d4)/2+nd5。
第六种方法是由公因式法求数列通项公式。
比如,一个数列已知前五项a1,a2,a3,a4,a5,那么可以将这五项分别除以共同的因子,求出最小因式,例如给定数列a1,a2,a3,a4,a5=2,4,8,16,32,其中32是最大因子,将其他四项都除以32,得到d1=1/2,d2=1/4,d3=1/8,d4=1/16,将d1,d2,d3,d4代入原式a1+a2+a3+a4+a5,即可求出该数列的公式。
求数列通项公式的十种办法
求数列通项公式的十种办法求数列的通项公式是数学中的一项重要工作。
下面列举了十种常用的求解数列通项公式的方法:1.递推法:这是最常见的一种方法。
通过观察数列中的规律,找出前一项与后一项之间的关系,并将其表达成递推公式,从而求得数列的通项。
例如斐波那契数列:F(n)=F(n-1)+F(n-2),其中F(n)表示第n项,F(n-1)表示第n-1项,F(n-2)表示第n-2项。
2.数列差法:如果数列的前后两项之间的差值有规律可循,可以通过观察差的变化规律来得到通项公式。
例如等差数列:a(n)=a(1)+(n-1)d,其中a(n)表示第n项,a(1)表示首项,d表示公差。
3.数列比法:如果数列的前后两项之间的比值有规律可循,可以通过观察比的变化规律来得到通项公式。
例如等比数列:a(n)=a(1)*r^(n-1),其中a(n)表示第n项,a(1)表示首项,r表示公比。
4.代数方程法:数列中的数可以看作方程中的未知数,通过列方程组求解,得到方程的解即为数列的通项公式。
例如斐波那契数列可以通过矩阵的特征值和特征向量求得。
5.数列求和法:如果数列是由一个个项的和组成的,可以通过数列的求和公式求得通项公式。
例如等差数列的前n项和:S(n)=[n/2]*[2a(1)+(n-1)d],其中[n/2]表示n除以2的整数部分,a(1)表示首项,d表示公差。
6.数列积法:如果数列可以表达为一系列项的连乘积的形式,可以通过求取连乘积的对数,再利用对数运算得到通项公式。
例如等比数列的前n项积:P(n)=a(1)^n*(r^n-1)/(r-1),其中a(1)表示首项,r表示公比。
7.查表法:如果数列的部分项已知,可以通过列出表格的方式观察规律,推测出通项公式。
例如自然数列:1,2,3,...,通过观察可得到通项公式:a(n)=n。
8.数学归纳法:数学归纳法是一种证明方法,但也可以用来求数列的通项公式。
首先证明数列的通项公式对n=1成立,然后假设对n=k也成立,通过数学归纳法证明对n=k+1也成立,从而得到通项公式。
史上最全数列通项公式求法15种56879
最全的数列通项公式的求法数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。
而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。
本文给出了求数列通项公式的常用方法。
◆一、直接法根据数列的特征,使用作差法等直接写出通项公式。
例1. 根据下列数列的前几项,说出数列的通项公式: 1、1.3.7.15.31……… 2、1,2,5,8,12………3、21212,1,,,,3253………4、1,-1,1,-1………5、1、0、1、0………◆二、公式法①利用等差数列或等比数列的定义求通项②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n nn 求解.(注意:求完后一定要考虑合并通项)例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式.②已知数列{}n a 的前n 项和n S 满足21nS n n =+-,求数列{}n a 的通项公式.③ 已知等比数列{}n a 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n n a a b ,求数列{}n b 的通项公式。
③解读:由题意,321++++=n n n a a b ,又{}n a 是等比数列,公比为q ∴q a a a a b b n n n n n n =++=+++++21321,故数列{}n b 是等比数列,)1(211321+=+=+=q q q a q a a a b , ∴)1()1(1+=⋅+=-q q q q q b n n n◆三、归纳猜想法如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。
史上最全的数列通项公式的求法13种
最全的数列通项公式的求法数列是高考取的要点内容之一,每年的高考题都会观察到,小题一般较易,大题一般较难。
而作为给出数列的一种形式——通项公式,在求数列问题中特别重要。
本文给出了求数列通项公式的常用方法。
一、直接法依据数列的特点,使用作差法等直接写出通项公式。
二、公式法①利用等差数列或等比数列的定义求通项② 若 已 知 数 列 的 前 n项 和 S n 与 a n 的 关 系 , 求 数 列 a n的 通 项 a n 可 用 公 式a n S 1 n 1S nSn 1n 求解 .2(注意:求完后必定要考虑归并通项)( 1) n , n 1 .求数列 a n 的通项公式 .例 2.①已知数列 a n 的前 n 项和 S n 知足 S n 2a n②已知数列 a n 的前 n 项和 S n 知足 S nn2n 1,求数列 a n 的通项公式 .③ 已知等比数列 a n 的首项 a 1 1,公比 0 q 1,设数列 b n 的通项为 b na n 1 a n2,求数列b n 的通项公式。
③ 分析:由题意, b n 1 a n 2 a n 3 ,又 a n 是等比数列,公比为 q∴bn 1an 2an 3q ,故数列 b n 是等比数列, b 1 a 2 a 3a 1q a 1q 2 q(q 1) ,b na n 1 a n 2∴ b nq(q 1) q n 1 q n (q 1)三、概括猜想法假如给出了数列的前几项或能求出数列的前几项,我们能够依据前几项的规律,概括猜想出数列的通项公式,而后再用数学概括法证明之。
也能够猜想出规律,而后正面证明。
四、累加(乘)法关于形如 a n 1an f ( n) 型或形如 a n 1 f (n)a n 型的数列,我们能够依据递推公式,写出n取 1 到 n 时的全部的递推关系式,而后将它们分别相加(或相乘)即可获得通项公式。
例 4.若在数列 a n 中, a 1 3 , a n 1 a n n ,求通项 a n 。
数列通项公式的十种求法(非常经典)
数列通项公式的十种求法(1)公式法(构造公式法)例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。
评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。
(2)累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。
求数列通项公式的13种方法
求数列通项公式的13种方法在数学中,数列是一组按照一定规律依次排列的数字集合。
求数列的通项公式是对该数列的每一项都能找到一个通用的公式来描述。
这篇文档将介绍13种求解数列通项公式的方法。
1. 模式观察法通过观察数列中数字的变化模式,尝试找出递推关系,并通过推测整理出数列的通项公式。
2. 公式转化法通过对数列进行一系列数学运算,如加减乘除、取幂次等,将数列转化成已知的常见数列,再推导出通项公式。
3. 递推法通过已知的前几项数值,推导出当前项和下一项之间的关系,进而获得数列的通项公式。
4. 二项展开法借助二项展开公式,将数列展开成多项式形式,从而得到数列的通项公式。
5. 求解差分方程法将数列转化为差分方程,通过求解差分方程得到数列的通项公式。
6. 系数法利用多项式系数之间的关系,通过观察系数之间的规律,推导出数列的通项公式。
7. 利用等差数列和等比数列性质对于满足等差数列或等比数列性质的部分数列,可以直接应用等差数列或等比数列的通项公式。
8. 利用级数展开对于部分数列,可以将其展开成级数形式,从而得到数列的通项公式。
9. 奇偶性分析法通过分析数列中数字的奇偶性规律,推导出数列的通项公式。
10. 利用生成函数通过构造数列的生成函数,将数列转化成幂级数形式,再求解得到数列的通项公式。
11. 递归关系法对于一些特殊的数列,可以通过递归关系推导出数列的通项公式。
12. 利用数学归纳法利用数学归纳法证明数列的通项公式的正确性。
13. 利用数值计算方法拟合通过计算机软件等数值计算方法,根据数列的前几项数值进行拟合,得到数列的通项公式。
以上是13种常用的求解数列通项公式的方法。
根据具体的数列情况和求解需要,选择合适的方法进行计算和推导。
> 注意:此文档中的内容仅供参考。
在确定数列的通项公式时,请务必进行独立决策,不要直接引用未经验证的内容。
---以上是对「求数列通项公式的13种方法」的介绍文档。
求数列通项公式的十种方法
求数列通项公式的十种方法求解数列通项公式是数学中的一个重要问题,对于一些特殊的数列,我们可以通过观察规律来找到通项公式,但对于一般的数列来说,我们需要使用一些数学工具和技巧来解决这个问题。
在下面,我将介绍十种常用的方法来求解数列的通项公式。
方法一:递推法递推法是一种常见的求解数列的方法,通过观察数列中相邻项之间的关系,可以找到递推公式。
常见的递推公式有线性递推和非线性递推两种形式。
方法二:列元法列元法是一种将数列元素列出来,然后通过观察数列元素之间的关系,找到通项公式的方法。
常见的列元法包括列出常数项和差项、连加项、平方项和立方项等。
方法三:指数递推法指数递推法是一种将数列元素进行指数递推,然后通过观察递推结果找到通项公式的方法。
常见的指数递推法包括指数增长、指数递减和二阶指数递增等。
方法四:利用级数对于一些复杂的数列,可以使用级数的方法来求解通项公式。
通过构造级数和求导积分等操作,可以得到数列的通项公式。
方法五:利用生成函数生成函数是一种将数列转化为多项式的方法,通过多项式的操作,可以得到数列的通项公式。
常见的生成函数包括普通生成函数和指数型生成函数。
方法六:利用逼近方法逼近方法是通过找到数列与一些函数逼近的关系,然后通过求解该函数的表达式来求解数列的通项公式。
常见的逼近方法包括泰勒级数逼近和拉格朗日插值等。
方法七:利用矩阵运算对于一些特殊的数列,可以使用矩阵运算的方法来求解通项公式。
通过构造矩阵和矩阵的运算,可以得到数列的通项公式。
方法八:利用线性代数利用线性代数的方法,可以将数列看作向量空间中的向量,通过线性变换和线性方程组的解来求解数列的通项公式。
方法九:利用特殊函数对于一些特殊的数列,可以使用特殊函数的方法来求解通项公式。
常见的特殊函数有二次函数、指数函数、对数函数、三角函数和双曲函数等。
方法十:利用离散数学离散数学是一种研究离散结构和离散规律的数学分支,通过利用离散数学的方法,可以求解数列的通项公式。
数列通项公式的求法(较全)【范本模板】
常见数列通项公式的求法公式:1、 定义法若数列是等差数列或等比数列,求通公式项时,只需求出1a 与d 或1a 与q ,再代入公式()d n a a n 11-+=或11-=n n q a a 中即可.例1、成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 的345,,b b b ,求数列{}n b 的的通项公式.练习:数列{}n a 是等差数列,数列{}n b 是等比数列,数列{}n c 中对于任何*n N ∈都有1234127,0,,,,6954n n n c a b c c c c =-====分别求出此三个数列的通项公式。
2、 累加法形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式. (1) 当()f n d =为常数时,{}n a 为等差数列,则()11n a a n d =+-; (2) 当()f n 为n 的函数时,用累加法。
方法如下:由()n f a a n n =-+1得 当2n ≥时,()11n n a a f n --=-,()122n n a a f n ---=-,()322a a f -=,()211a a f -=,以上()1n -个等式累加得()()()()11+221n a a f n f n f f -=--+++ 1n a a ∴=+()()()()1+221f n f n f f --+++(3)已知1a ,()n f a a n n =-+1,其中()f n 可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项。
①若()f n 可以是关于n 的一次函数,累加后可转化为等差数列求和; ②若()f n 可以是关于n 的二次函数,累加后可分组求和;③若()f n 可以是关于n 的指数函数,累加后可转化为等比数列求和; ④若()f n 可以是关于n 的分式函数,累加后可裂项求和求和。
数列通项公式的12种求法(进阶)
数列通项公式的十二种求法一、公式法例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式. 【解析】1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=, ∴ 数列2n na ⎧⎫⎨⎬⎩⎭是以1112a =为首项,以23为公差的等差数列,∴ 31222n n a n =-,∴ 31()222n n a n =-. 评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n na a ++-=,说明数列2n n a ⎧⎫⎨⎬⎩⎭是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式. 变式1 已知数列{n a },其中913,3421==a a ,且当n ≥3时,)(31211----=-n n n n a a a a ,求通项公式n a (1986年高考文科第八题改编).二、累加法例2.1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式. 【解析】由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以2n a n =.评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+, 进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式.例2.2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式. 【解析】由1231nn n a a +=+⨯+得1231nn n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.nn a n =+-评注:本题解题的关键是把递推关系式1231n n n a a +=+⨯+转化为1231nn n a a +-=⨯+, 进而求出11232211()()()()n n n n n a a a a a a a a a a ---=-+-++-+-+,即得数列{}n a 的通项公式。
数列通项公式的求法(较全)
欢迎阅读常见数列通项公式的求法公式:1、 定义法若数列是等差数列或等比数列,求通公式项时,只需求出1a 与d 或1a 与q ,再代入公式()d n a a n 11-+=或11-=n n q a a 中即可.例1、成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 的345,,b b b ,求数列{}n b 的的通项公式.练习:数列{}n a 是等差数列,数列{}n b 是等比数列,数列{}n c 中对于任何*n N ∈都有1234127,0,,,,6954n n n c a b c c c c =-====分别求出此三个数列的通项公式.2、 累加法形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式. (1) 当()f n d =为常数时,{}n a 为等差数列,则()11n a a n d =+-; (2) 当()f n 为n 的函数时,用累加法. 方法如下:由()n f a a n n =-+1得 当2n ≥时,()11n n a a f n --=-,()122n n a a f n ---=-,()322a a f -=,()211a a f -=,以上()1n -个等式累加得(3)已知1a ,()n f a a n n =-+1,其中()f n 可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项.①若()f n 可以是关于n 的一次函数,累加后可转化为等差数列求和; ②若()f n 可以是关于n 的二次函数,累加后可分组求和;③若()f n 可以是关于n 的指数函数,累加后可转化为等比数列求和;④若()f n 可以是关于n 的分式函数,累加后可裂项求和求和. 例2、数列{}n a 中已知111,23n n a a a n +=-=-, 求{}n a 的通项公式. 练习1:已知数列{}n a 满足11322,.n n n a a n a a +=++=且求练习2:已知数列{}n a 中,111,32n n n a a a n +=-=-, 求{}n a 的通项公式.练习3:已知数列{}n a 满足11211,,2n n a a a n n+==++求求{}n a 的通项公式.3、 累乘法形如()1n n a f n a +=()1a 已知型的的递推公式均可用累乘法求通项公式.给递推公式()()1,n na f n n N a ++=∈中的n 依次取1,2,3,……,1n -,可得到下面1n -个式子: 利用公式()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈可得: 例3、已知数列{}n a 满足11,2,31n n n na a a a n +==+求.练习1:数列{}n a 中已知1121,n n a n a a n++==, 求{}n a 的通项公式. 练习2:设{}n a 是首项为1的正项数列,且2211(1)0n n n n n a na a a +++-+=,求{}n a 的通项公式.4、 奇偶分析法(1)对于形如()1n n a a f n ++=型的递推公式求通项公式①当()1n n a a d d ++=为常数时,则数列为“等和数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论.②当()f n 为n 的函数时,由()1n n a a f n ++=,()11n n a a f n -+=-两式相减,得到()()+111n n a a f n f n --=--,分奇偶项来求通项.例4、数列{}n a 满足111,4n n a a a +=+=,求{}n a 的通项公式. 练习:数列{}n a 满足116,6n n a a a +=+=-,求{}n a 的通项公式. 例5、数列{}n a 满足110,2n n a a a n +=+=,求{}n a 的通项公式. 练习1: 数列{}n a 满足111,1n n a a a n +=-+=-,求{}n a 的通项公式. 练习2:数列{}n a 满足112,31n n a a a n +=+=-,求{}n a 的通项公式.(2)对于形如()1n n a a f n +⋅=型的递推公式求通项公式①当()1n n a a d d +⋅=为常数时,则数列为“等积数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论.②当()f n 为n 的函数时,由()1n n a a f n +⋅=,()11n n a a f n -⋅=-两式相除,得到()()+111n n f n a a f n -=-,分奇偶项来求通项.例6、已知数列{}n a 满足112,4n n a a a +=⋅=,求{}n a 的通项公式.练习:已知数列{}n a 满足112,23n n a a a +=⋅=-,求{}n a 的通项公式.例7、已知数列{}n a 满足1113,2nn n a a a +⎛⎫=⋅= ⎪⎝⎭,求{}n a 的通项公式.练习1: 数列{}n a 满足112,3n n n a a a +=⋅=,求{}n a 的通项公式. 练习2:数列{}n a 满足111,2n n n a a a +=⋅=,求{}n a 的通项公式. 5、 待定系数法(构造法)若给出条件直接求n a 较难,可通过整理变形等从中构造出一个等差或等比数列,从而根据等差或者等比数列的定义求出通项.常见的有:(1)()1,n n a pa q p q +=+为常数(){}1,n n n a t p a t a t +⇒+=++构造为等比数列.(2)()11111,n pn n nn n n na a a pa tp t p tp p +++++=+−−−−−−→=+两边同时除以为常数 (3)()()11111,,,1n pn n nn n n na a p a pa tq t p q t q q q +++++=+−−−−−−→=+两边同时除以为常数再参考类型(4)()1,,n n a pa qn r p q r +=++是常数⇒ ()()11n n a n p a n λμλμ++++=++(5)21+n n n a pa qa ++=(){}2111t ,t n n n n n n a ta p a a a a ++++⇒-=--构造等比数列 例8、已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 练习:已数列{}n a 中,11a =且111,____.2n n n a a a +=+=则 例9、已知数列{}n a 中,1113,33n n n a a a ++==+, 求{}n a 的通项公式. 练习1:已知数列{}n a 中,113,22n n n a a a -=-=+,则=n a ________.练习2:已知数列{}n a 中,112,3433n n n a a a +==+⋅, 求{}n a 的通项公式.例10、已知数列{}n a 满足11162,1,n n n a a a ++=+=求.n a练习1:设数列{n a }满足n n n a a a 23,111+==+,则=n a ________.练习2:已知数列{}n a 中,111511,632n n n a a a ++⎛⎫==+ ⎪⎝⎭,求n a .练习3:已知数列{}n a ()n N *∈的满足:111113,432,,7n n n a k a a n k k R --⎛⎫=-=-≥≠∈ ⎪⎝⎭(1)判断数列47n n a ⎧⎫-⎨⎬⎩⎭是否成等比数列;(2)求数列{}n a 的通项公式.例11、数列{}n a 中已知111,23n n a a a n +==+, 求{}n a 的通项公式. 练习1:数列{}n a 中已知112,32n n a a a n +==-+, 求{}n a 的通项公式. 练习2:数列{}n a 中已知2112,322n n a a a n n +==+-+, 求{}n a 的通项公式.例12、已知数列{}n a 中,()12125,2,2+33n n n a a a a a n --===≥,求求{}n a 的通项公式. 练习1:已知数列{}n a 中,12+2+1211,2,+33n n n a a a a a ===,求求{}n a 的通项公式. 练习2:在数列{}n a 中,11a =,235a =,2n a +=135n a ++23n a ,令1n n n b a a +=- 。
史上最全的数列通项公式的求法13种
最全的数列通项公式的求法创作:欧阳数数列是高考中的重点内容之一,每年的高考题都会考察 到,小题一般较易,大题一般较难。
而作为给出数列的一种 形式——通项公式,在求数列问题中尤其重要。
本文给出了 求数列通项公式的常用方法。
一、直接法根据数列的特征,使用作差法等直接写出通项公式。
二公式法① 利用等差数列或等比数列的定义求通项② 若已知数列的前"项和S”与“”的关系,求数列仏啲通项〜(注意:求完后一定要考虑合并通项) 例2 •①已知数列{a n }的前n 项和S n 满足S” = 2a n + (-1)" N1 .求 数列仏}的通项公式.②已知数列仏啲前〃项和凡满足归+_1 ,求数列僦}的通项公式.③ 已知等比数列{“”}的首项公比0 < X 1 ,设数列血啲通项为咕⑺+⑺,求数列他}的通项公式。
③解析:由题意/ 一+― 5+3,又{"“}是等比数列/ 时间:2021.03.02 蔦求解.可用公式勺公比为Q.・.字=3也勺,故数列{b…}是等比数列,b n心4 + %2b{ =a2+a3 =a}q + a}q2 =q{q + \),「•加=q(q + l)严=/'(g + l)三、归纳猜想法如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。
也可以猜想出规律,然后正面证明。
四、累加(乘)法对于形如%广+ /⑷型或形如% = /(叭型的数列,我们可以根据递推公式,写出n取1到n时的所有的递推关系式”然后将它们分别相加(或相乘)即可得到通项公式。
例4・若在数列{"“}中/山=3 z= a n + n ,求通项心。
例5.在数歹U {"“}中,畑=25“ ( neN* ),求通项〜。
五、取倒(对)数法a、这种类型一般是等式两边取对数后转化为,再利用待定系数法求解b、数列有形如o的关系,可在等式两边同乘以丄,先求出丄,再求得%a n a n-l a nc、"―1叫-解法:这种类型一般是等式两边取倒数后换兀转化为+ q o例6・・设数列{心}满足⑷=2, G = -(n e N),求心.+3例7设正项数列仏}满足® “,J =2<. (n>2) •求数列仏}的通项公式.解:两边取对数得:log? = 1 + 2log, log? +1 = 2(log严 + 1), 设®=log? + l /贝U讥叽您}是以2为公比的等比数列,b、= log; + l = l・亿=lx2"“=2"J, Iog? + 1 = 2"-* z log?=2"T-l z・・・心宀变式:1•已知数列{ an }满足:al = | ,且an =3nan-' (n>2, neN*)2a n_1+n-l求数列{ an }的通项公式;2、若数列的递推公式为勺=3,丄=丄-2("N),则求«n+l这个数列的通项公式。
史上最全的数列通项公式的求法15种
史上最全的数列通项公式的求法15种一、等差数列(Arithmetic sequence)1.基本公式:一个等差数列的通项公式为:an = a1 + (n-1)d其中an代表数列的第n项,a1代表数列的首项,d代表数列的公差。
2.另一种形式:等差数列的通项公式还可以表示为:an = a + (n-1) * (a2-a1)/2其中an代表数列的第n项,a代表数列的首项,a1代表数列的第二项,a2代表数列的前两项。
二、等比数列(Geometric sequence)1.基本公式:一个等比数列的通项公式为:an = a1 * r^(n-1)其中an代表数列的第n项,a1代表数列的首项,r代表数列的公比。
2.另一种形式:等比数列的通项公式也可以表示为:an = a * q^n其中an代表数列的第n项,a代表数列的首项,q代表数列的公比。
三、斐波那契数列(Fibonacci sequence)1.基本公式:一个斐波那契数列的通项公式为:Fn=(φ^n-(1-φ)^n)/√5其中Fn代表数列的第n项,φ代表黄金分割比(约1.618)。
2.矩阵法:斐波那契数列的通项公式还可以通过矩阵的形式表示:Fn=(A^n*F0),其中An是一个特定的矩阵,F0是初始向量。
四、调和数列(Harmonic sequence)1.基本公式:一个调和数列的通项公式为:an = 1/n其中an代表数列的第n项。
五、多项式数列(Polynomial sequence)一个多项式数列的通项公式为:an = an-1 + an-2 + ... + an-m其中an代表数列的第n项,an-1为前一项,an-2为前两项,an-m为前m项。
六、余弦数列(Cosine sequence)1.基本公式:一个余弦数列的通项公式为:an = a + b * cos(cn)其中an代表数列的第n项,a、b为常数,c为常数。
2.幂函数法:余弦数列的通项公式还可以表示为:an = a + b * cos(nθ)其中an代表数列的第n项,a、b为常数,θ为角度。
数列通项公式的求法(史上最全)
2.{an}的前项和Sn=2n2-1,求通项an
解:当n≥2时,an=Sn-Sn-1=(2n2-1) -[2(n-1)2-1] =4n-2
当n=1时, a1=1 不满足上式
因此 an=
1 (n=1) 4n -2(n≥2,
n N*)
不要遗漏n=1的情形哦!
3.已知{an}中,a1+2a2+3a3+ •••+nan=3n+1,求通项an
• 数 a1·列a2{·aan}3·中…,·aan=1=n12,,数对列所{有an的}的n≥通2,项都公有式 为________.
• 解析:由题意,当n≥2时, • a1·a2·a3·…·an=n2,① • 故当n=2时,有a1·a2=22=4, • 又因为a1=1,所以a2=4.
故当 n≥3 时,
Sn2 Sn1 an2 4an1 4an
即 an2 2an1 2(an1 2an)
bn an1 2an bn1 2 bn
数列 {bn}是公比为 2 的等比数列 .
(2)
设Cn
an 2n
,求证:数列{Cn}是等差数列.
证明:
cn
an 2n
cn 1
cn
an1 2n1
an 2n
解: ∵ an= 3n-1+an-1 (n≥2)
∴ an= 3n-1+an-1 = 3n-1 +3n-2+ an-2
解: ∵(n+1)an+12 +an+1an-nan2=0 ∴( an+1+ an)[(n+1) an+1 - nan]=0
∵ an+1+ an>0
史上最全的数列通项公式的求法15种
史上最全的数列通项公式的求法15种数列是数学中很重要的一种数学对象,它是由一系列的数按照一定的顺序排列而成。
数列通项公式是数列中的每一项与项号之间的关系式,可以通过该公式来求出数列的任意一项。
下面将介绍15种常见的数列通项公式的求法。
1.等差数列:等差数列是一种公差为常数的数列,通项公式为an = a1 + (n - 1)d,其中a1为首项,d为公差。
2.等比数列:等比数列是一种比值为常数的数列,通项公式为an = a1 * r^(n - 1),其中a1为首项,r为公比。
3. 斐波那契数列:斐波那契数列是一种特殊的数列,每一项是其前两项之和,通项公式为an = an-1 + an-2,其中a1 = 1,a2 = 14. 平方数列:平方数列是由平方数所组成的数列,通项公式为an = n^25. 立方数列:立方数列是由立方数所组成的数列,通项公式为an = n^36.等差立方数列:等差立方数列是一种公差为常数的立方数列,通项公式为an = a1 + (n - 1)^3,其中a1为首项。
7.等比立方数列:等比立方数列是一种比值为常数的立方数列,通项公式为an = a1 * r^(n - 1)^3,其中a1为首项,r为公比。
8. 焦比数列:焦比数列是一种特殊的数列,每一项是其前一项的反数,通项公式为an = -1 / an-1,其中a1为首项。
9. 调和数列:调和数列是一种特殊的数列,每一项是其前一项的倒数与项号之和的倒数,通项公式为an = 1 / (1 / a1 + n - 1),其中a1为首项。
10. 初等数列:初等数列是一种特殊的数列,每一项是其前一项与项号之和的和,通项公式为an = an-1 + n,其中a1为首项。
11.等差等比数列:等差等比数列是一种既是等差数列又是等比数列的数列,通项公式为an = a1 * (1 + (n - 1)d),其中a1为首项,d为公差。
12. 菲波拿契数列:菲波拿契数列是一种特殊的数列,每一项是其前一项与项号之和的差,通项公式为an = an-1 - n,其中a1为首项。
(完整版)求数列通项公式的十种方法
求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11 种方法:累加法、累乘法、待定系数法、阶差法(逐差法) 、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号) 、数学归纳法、不动点法(递推式是一个数列通项的分式表达式) 、特征根法二。
四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
、累加法1.适用于:a n 1 a n f (n) ------------------ 这是广义的等差数列累加法是最基本的二个方法之一。
2.若a n 1 a n f (n) (n 2) ,a2 a1 f (1)a3 a2 f (2) LLa n 1 a n f ( n)n两边分别相加得a n 1 a1 f (n )k1例1已知数列{a n }满足a n 1a n 2n 1, a i 1,求数列{a n }的通项公式。
解:由 a n 1 a n 2n 1 得 a n 1 a n 2n 1 则a n (a n a n 1) (a n 1 a n 2) L @3a 2) (a 2 aja 1 [2( n 1) 1] [2( n 2) 1]L (2 21) (2 11) 12[(n 1) (n 2) L 2 1] (n 1) 1 (n 1)n 2 (n 1) 12(n 1)( n 1) 1 2n2所以数列{a n }的通项公式为a n n 。
例2已知数列{a n }满足a n 1 a n 2 3n 1,印3,求数列 佝}的通项公式。
解法一:由a n 1 a n n 2 31 得 a n 1a n n2 31则a n (a * an 1)(a n 1 a n 2) L(a 3 a 2) (a 2 a 1) a 1n (2 3 1 1) (2 3n 21)L (2 32 31 1) (2 31) 312(33n2L 32 ;31)(n 1)3「(1 3n1)2(n 1) 31 3n3 3 n 133 n1所以a n 3n n 1.解法二:时3an 2 3 1两边除以3n1,得鄴J 3 3a n 2 n3 32132)3 32 3a3na n 3a n 1)a n 1(an 1a n 1a n 2) (a n 2(尹z a2 q 色(3231)33n )1)12门22(n 1)313n 3n13n2Lan 13n22答案:n数、分式函数,求通项 an .① 若f(n)是关于n 的一次函数,累加后可转化为等差数列求和 ② 若f(n)是关于n 的二次函数,累加后可分组求和 ; ③ 若f(n)是关于n 的指数函数,累加后可转化为等比数列求和 ④ 若f(n)是关于n 的分式函数,累加后可裂项求和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最全的数列通项公式的求法数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。
而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。
本文给出了求数列通项公式的常用方法。
一、直接法根据数列的特征,使用作差法等直接写出通项公式。
二、公式法①利用等差数列或等比数列的定义求通项②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n n n 求解. (注意:求完后一定要考虑合并通项)例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式.②已知数列{}n a 的前n 项和n S 满足21n S n n =+-,求数列{}n a 的通项公式.③ 已知等比数列{}n a 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n n a a b ,求数列{}n b 的通项公式。
③解析:由题意,321++++=n n n a a b ,又{}n a 是等比数列,公比为q ∴q a a a a b b n n n n n n =++=+++++21321,故数列{}n b 是等比数列,)1(211321+=+=+=q q q a q a a a b , ∴ )1()1(1+=⋅+=-q q q q q b n n n三、归纳猜想法如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。
也可以猜想出规律,然后正面证明。
四、累加(乘)法对于形如)(1n f a a n n +=+型或形如n n a n f a )(1=+型的数列,我们可以根据递推公式,写出n 取1到n 时的所有的递推关系式,然后将它们分别相加(或相乘)即可得到通项公式。
例4. 若在数列{}n a 中,31=a ,n a a n n +=+1,求通项n a 。
例5.在数列{}n a 中,11=a ,n n n a a 21=+(*N n ∈),求通项n a 。
五、取倒(对)数法a 、rn n pa a =+1这种类型一般是等式两边取对数后转化为q pa a n n +=+1,再利用待定系数法求解b 、数列有形如0),,(11=--n n n n a a a a f 的关系,可在等式两边同乘以,11-n n a a 先求出.,1n na a 再求得 c 、)()()(1n h a n g a n f a n nn +=+解法:这种类型一般是等式两边取倒数后换元转化为q pa a n n +=+1。
例6..设数列}{n a 满足,21=a ),N (31∈+=+n a a a n nn 求.n a 例7 设正项数列{}n a 满足11=a ,212-=n n a a (n ≥2).求数列{}n a 的通项公式.解:两边取对数得:122log 21log -+=n n a a ,)1(log 21log 122+=+-n na a ,设1log 2+=n a nb ,则12-=n n b b {}n b 是以2为公比的等比数列,11log 121=+=b .11221--=⨯=n n n b ,1221log -=+n a n ,12log 12-=-n a n , ∴1212--=n n a变式:1.已知数列{a n }满足:a 1=32,且a n =n 1n 13na n 2n N 2a n 1*≥∈--(,)+-求数列{a n }的通项公式; 2、若数列的递推公式为11113,2()n na n a a +==-∈¥,则求这个数列的通项公式。
3、已知数列{n a }满足2,11≥=n a 时,n n n n a a a a 112--=-,求通项公式。
4、已知数列{a n }满足:1,13111=+⋅=--a a a a n n n ,求数列{a n }的通项公式。
5、若数列{a n }中,a 1=1,a 1+n =22+n na a n ∈N +,求通项a n . 六、迭代法迭代法就是根据递推式,采用循环代入计算. 七、待定系数法:1、通过分解常数,可转化为特殊数列{a n +k}的形式求解。
一般地,形如a 1+n =p a n +q (p ≠1,pq ≠0)型的递推式均可通过待定系数法对常数q 分解法:设a 1+n +k=p (a n +k )与原式比较系数可得pk -k=q ,即k=1-p q,从而得等比数列{a n +k}。
例9、数列{a n }满足a 1=1,a n =21a 1-n +1(n ≥2),求数列{a n }的通项公式。
说明:通过对常数1的分解,进行适当组合,可得等比数列{ a n -2},从而达到解决问题的目的。
练习、1数列{a n }满足a 1=1,0731=-++n n a a ,求数列{a n }的通项公式。
2、已知数列{}n a 满足11=a ,且132n n a a +=+,求n a .2、递推式为11+++=n n n q pa a (p 、q 为常数)时,可同除1+n q ,得111+⋅=++nnn n q a q p q a ,令n n nq a b =从而化归为q pa a n n +=+1(p 、q 为常数)型.、例10.已知数列{}n a 满足11=a ,123-+=n n n a a )2(≥n ,求n a .解:将123-+=n n n a a 两边同除n 3,得n n n n a a 32131-+=⇒1133213--+=n n nn a a 设n n n a b 3=,则1321-+=n n b b .令)(321t b t b n n -=--⇒t b b n n 31321+=-⇒3=t .条件可化成)3(3231-=--n n b b ,数列{}3-n b 是以3833311-=-=-a b 为首项,32为公比的等比数列.1)32(383-⨯-=-n n b .因n n n a b 3=, )3)32(38(331+⨯-==∴-n n n n n b a ⇒2123++-=n n n a .3、形如b an pa a n n ++=+1)001(≠≠,a 、p解法:这种类型一般利用待定系数法构造等比数列,即令)()1(1y xn a p y n x a n n ++=++++,与已知递推式比较,解出y x ,,从而转化为{}y xn a n ++是公比为p 的等比数列。
例11:设数列{}n a :)2(,123,411≥-+==-n n a a a n n ,求n a . 解:令1(1)3()n n a x n y a xn y ++++=++ 化简得:1322n n a a xn y x +=++-所以2221x y x =⎧⎨-=-⎩解得10x y =⎧⎨=⎩,所以1(1)3()n n a n a n +++=+ 又因为115a +=,所以数列{}n a n +是以5为首项,3为公比的等比数列。
从而可得1153,53-n n nn a n a n --+=⨯=⨯所以 4、形如21n n a pa an bn c +=+++)001(≠≠,a 、p解法:这种类型一般利用待定系数法构造等比数列,即令221(1)(1)()n n a x n y n c p a xn yn c ++++++=+++,与已知递推式比较,解出y x ,,z.从而转化为{}2n a xn yn c +++是公比为p 的等比数列。
例12:设数列{}n a :2114,321,(2)n n a a a n n -==+-≥,求n a .八:不动点法,形如 hra qpa a n n n ++=+1解法:如果数列}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有hra qpa a n n n ++=+1(其中p 、q 、r 、h 均为常数,且r h a r qr ph -≠≠≠1,0,),那么,可作特征方程hrx qpx x ++=,当特征方程有且仅有一根0x 时,则01n a x ⎧⎫⎨⎬-⎩⎭是等差数列;当特征方程有两个相异的根1x 、2x 时,则12n n a x a x ⎧⎫-⎨⎬-⎩⎭是等比数列。
例15:已知数列}{n a 满足性质:对于,324,N 1++=∈-n n n a a a n 且,31=a 求}{n a 的通项公式.九:换元法:类比函数的值域的求法有三角代换和代数代换两种,目的是代换后出现的整体数列具有规律性。
例16 已知数列{}n a满足111(14116n n a a a +=++=,,求数列{}n a 的通项公式。
解:令n b =21(1)24n n a b =- 故2111(1)24n n a b ++=-,代入11(1416n n a a +=+得 221111(1)[14(1)]241624n n n b b b +-=+-+ 即2214(3)n n b b +=+因为0n b =,故10n b +=≥则123n n b b +=+,即11322n n b b +=+,可化为113(3)2n n b b +-=-,所以{3}n b -是以13332b -===为首项,以21为公比的等比数列,因此121132()()22n n n b ---==,则21()32n n b -=+21()32n -=+,得2111()()3423n n n a =++。
评注:本题解题的关键是通过将的换元为n b ,使得所给递推关系式转化11322n n b b +=+形式,从而可知数列{3}n b -为等比数列,进而求出数列{3}n b -的通项公式,最后再求出数列{}n a 的通项公式。
例18. 已知数列{}n a 满足211=a ,211n n a a +=+,求n a 。
解析:设3cos 211π==a ,∵ 211n n a a +=+,∴ 6cos2π=a ,32cos23⋅=πa ,…,32cos1⋅=-n n a π总之,求数列的通项公式,就是将已知数列转化成等差(或等比)数列,从而利用等差(或等比)数列的通项公式求其通项。
十、双数列解法:根据所给两个数列递推公式的关系,灵活采用累加、累乘、化归等方法求解。
例19. 已知数列{}n a 中,11=a ;数列{}n b 中,01=b 。
当2≥n 时,)2(3111--+=n n n b a a ,)2(3111--+=n n n b a b ,求n a ,n b .解:因=+n n b a ++--)2(3111n n b a )2(3111--+n n b a 11--+=n n b a所以=+n n b a 11--+n n b a 1112222=+=+=•••=+=--b a b a b a n n 即1=+n n b a (1)又因为=-n n b a -+--)2(3111n n b a )2(3111--+n n b a )(3111---=n n b a所以=-n n b a )(3111---n n b a =-=--))31(222n n b a ……)()31(111b a n -=-1)31(-=n .即=-n n b a 1)31(-=n ………………………(2) 由(1)、(2)得:])31(1[211-+=n n a , ])31(1[211--=n n b十一、周期型 解法:由递推式计算出前几项,寻找周期。