16.1 《二次根式》测试题练习题常考题试卷及答案
《二次根式》专题练习(含答案)
初二数学专题练习《二次根式》一.选择题1.式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥12.若1<x<2,则的值为()A.2x﹣4 B.﹣2 C.4﹣2x D.2 3.下列计算正确的是()A.=2B.= C.=x D.=x4.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b5.化简+﹣的结果为()A.0 B.2 C.﹣2D.26.已知x<1,则化简的结果是()A.x﹣1 B.x+1 C.﹣x﹣1 D.1﹣x 7.下列式子运算正确的是()A.B.C.D.8.若,则x3﹣3x2+3x的值等于()A.B.C.D.二.填空题9.要使代数式有意义,则x的取值范围是.10.在数轴上表示实数a的点如图所示,化简+|a﹣2|的结果为.11.计算:=.12.化简:=.13.计算:(+)=.14.观察下列等式:第1个等式:a1==﹣1,第2个等式:a2==﹣,第3个等式:a3==2﹣,第4个等式:a4==﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:a n=;(2)a1+a2+a3+…+a n=.15.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b=.16.已知:a<0,化简=.17.设,,,…,.设,则S=(用含n的代数式表示,其中n为正整数).三.解答题18.计算或化简:﹣(3+);19.计算:(3﹣)(3+)+(2﹣)20.先化简,再求值:,其中x=﹣3﹣(π﹣3)0.21.计算:(+)×.22.计算:×(﹣)+|﹣2|+()﹣3.23.计算:(+1)(﹣1)+﹣()0.24.如图,实数a、b在数轴上的位置,化简:.25.阅读材料,解答下列问题.例:当a>0时,如a=6则|a|=|6|=6,故此时a的绝对值是它本身;当a=0时,|a|=0,故此时a的绝对值是零;当a<0时,如a=﹣6则|a|=|﹣6|=﹣(﹣6),故此时a的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:(1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;(2)猜想与|a|的大小关系.26.已知:a=,b=.求代数式的值.27.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得=;‚参照(四)式得=.(3)化简:+++…+.28.化简求值:,其中.参考答案与解析一.选择题1.(2016•贵港)式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥1【分析】被开方数是非负数,且分母不为零,由此得到:x﹣1>0,据此求得x的取值范围.【解答】解:依题意得:x﹣1>0,解得x>1.故选:C.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.注意:本题中的分母不能等于零.2.(2016•呼伦贝尔)若1<x<2,则的值为()A.2x﹣4 B.﹣2 C.4﹣2x D.2【分析】已知1<x<2,可判断x﹣3<0,x﹣1>0,根据绝对值,二次根式的性质解答.【解答】解:∵1<x<2,∴x﹣3<0,x﹣1>0,原式=|x﹣3|+=|x﹣3|+|x﹣1|=3﹣x+x﹣1=2.故选D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.当a>0时,表示a的算术平方根;当a=0时,=0;当a小于0时,非二次根式(若根号下为负数,则无实数根).2、性质:=|a|.3.(2016•南充)下列计算正确的是()A.=2B.= C.=x D.=x【分析】直接利用二次根式的性质分别化简求出答案.【解答】解:A、=2,正确;B、=,故此选项错误;C、=﹣x,故此选项错误;D、=|x|,故此选项错误;故选:A.【点评】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.4.(2016•潍坊)实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【分析】直接利用数轴上a,b的位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.【点评】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.5.(2016•营口)化简+﹣的结果为()A.0 B.2 C.﹣2D.2【分析】根据根式的开方,可化简二次根式,根据二次根式的加减,可得答案.【解答】解:+﹣=3+﹣2=2,故选:D.【点评】本题考查了二次根式的加减,先化简,再加减运算.6.已知x<1,则化简的结果是()A.x﹣1 B.x+1 C.﹣x﹣1 D.1﹣x【分析】先进行因式分解,x2﹣2x+1=(x﹣1)2,再根据二次根式的性质来解题即可.【解答】解:==|x﹣1|∵x<1,∴原式=﹣(x﹣1)=1﹣x,故选D.【点评】根据完全平方公式、绝对值的运算解答此题.7.下列式子运算正确的是()A.B.C.D.【分析】根据二次根式的性质化简二次根式:=|a|;根据二次根式分母有理化的方法“同乘分母的有理化因式”,进行分母有理化;二次根式的加减实质是合并同类二次根式.【解答】解:A、和不是同类二次根式,不能计算,故A错误;B、=2,故B错误;C、=,故C错误;D、=2﹣+2+=4,故D正确.故选:D.【点评】此题考查了根据二次根式的性质进行化简以及二次根式的加减乘除运算,能够熟练进行二次根式的分母有理化.8.若,则x3﹣3x2+3x的值等于()A.B.C.D.【分析】把x的值代入所求代数式求值即可.也可以由已知得(x﹣1)2=3,即x2﹣2x﹣2=0,则x3﹣3x2+3x=x(x2﹣2x﹣2)﹣(x2﹣2x﹣2)+3x﹣2=3x﹣2,代值即可.【解答】解:∵x3﹣3x2+3x=x(x2﹣3x+3),∴当时,原式=()[﹣3()+3]=3+1.故选C.【点评】代数式的三次方不好求,就先提取公因式,把它变成二次方后再代入化简合并求值.二.填空题9.(2016•贺州)要使代数式有意义,则x的取值范围是x≥﹣1且x≠0.【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,列不等式组求解.【解答】解:根据题意,得,解得x≥﹣1且x≠0.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值范围后,应排除不在取值范围内的值.10.(2016•乐山)在数轴上表示实数a的点如图所示,化简+|a﹣2|的结果为3.【分析】直接利用二次根式的性质以及绝对值的性质分别化简求出答案.【解答】解:由数轴可得:a﹣5<0,a﹣2>0,则+|a﹣2|=5﹣a+a﹣2=3.故答案为:3.【点评】此题主要考查了二次根式的性质以及绝对值的性质,正确掌握掌握相关性质是解题关键.11.(2016•聊城)计算:=12.【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3×÷=3=12.故答案为:12.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.12.(2016•威海)化简:=.【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式=3﹣2=.故答案为:.【点评】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.13.(2016•潍坊)计算:(+)=12.【分析】先把化简,再本括号内合并,然后进行二次根式的乘法运算.【解答】解:原式=•(+3)=×4=12.故答案为12.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.(2016•黄石)观察下列等式:第1个等式:a1==﹣1,第2个等式:a2==﹣,第3个等式:a3==2﹣,第4个等式:a4==﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:a n==﹣;;(2)a1+a2+a3+…+a n=﹣1.【分析】(1)根据题意可知,a1==﹣1,a2==﹣,a3==2﹣,a4==﹣2,…由此得出第n个等式:a n==﹣;(2)将每一个等式化简即可求得答案.【解答】解:(1)∵第1个等式:a1==﹣1,第2个等式:a2==﹣,第3个等式:a3==2﹣,第4个等式:a4==﹣2,∴第n个等式:a n==﹣;(2)a1+a2+a3+…+a n=(﹣1)+(﹣)+(2﹣)+(﹣2)+…+(﹣)=﹣1.故答案为=﹣;﹣1.【点评】此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.15.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5.【分析】只需首先对估算出大小,从而求出其整数部分a,其小数部分用﹣a表示.再分别代入amn+bn2=1进行计算.【解答】解:因为2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把m=2,n=3﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得(6a+16b)﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以2a+b=3﹣0.5=2.5.故答案为:2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.16.已知:a<0,化简=﹣2.【分析】根据二次根式的性质化简.【解答】解:∵原式=﹣=﹣又∵二次根式内的数为非负数∴a﹣=0∴a=1或﹣1∵a<0∴a=﹣1∴原式=0﹣2=﹣2.【点评】解决本题的关键是根据二次根式内的数为非负数得到a的值.17.设,,,…,.设,则S=(用含n的代数式表示,其中n为正整数).【分析】由S n=1++===,求,得出一般规律.【解答】解:∵S n=1++===,∴==1+=1+﹣,∴S=1+1﹣+1+﹣+…+1+﹣=n+1﹣==.故答案为:.【点评】本题考查了二次根式的化简求值.关键是由S n变形,得出一般规律,寻找抵消规律.三.解答题(共11小题)18.(2016•泰州)计算或化简:﹣(3+);【分析】先化成最简二次根式,再去括号、合并同类二次根式即可;【解答】解:(1)﹣(3+)=﹣(+)=﹣﹣=﹣;【点评】本题考查了二次根式的加减法以及分式的混合运算,正确化简是解题的关键.19.(2016•盐城)计算:(3﹣)(3+)+(2﹣)【分析】利用平方差公式和二次根式的乘法法则运算.【解答】解:原式=9﹣7+2﹣2=2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(2016•锦州)先化简,再求值:,其中x=﹣3﹣(π﹣3)0.【分析】先根据分式混合运算的法则把原式进行化简,再把化简后x的值代入进行计算即可.【解答】解:,=÷,=×,=.x=﹣3﹣(π﹣3)0,=×4﹣﹣1,=2﹣﹣1,=﹣1.把x=﹣1代入得到:==.即=.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.21.计算:(+)×.【分析】首先应用乘法分配律,可得(+)×=×+×;然后根据二次根式的混合运算顺序,先计算乘法,再计算加法,求出算式(+)×的值是多少即可.【解答】解:(+)×=×+×=1+9=10【点评】此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”.22.计算:×(﹣)+|﹣2|+()﹣3.【分析】根据二次根式的乘法法则和负整数整数幂的意义得到原式=﹣+2+8,然后化简后合并即可.【解答】解:原式=﹣+2+8=﹣3+2+8=8﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数整数幂、23.计算:(+1)(﹣1)+﹣()0.【分析】先根据平方差公式和零指数幂的意义得到原式=3﹣1+2﹣1,然后进行加减运算.【解答】解:原式=3﹣1+2﹣1=1+2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.24.如图,实数a、b在数轴上的位置,化简:.【分析】本题综合性较强,不仅要结合图形,还需要熟悉算术平方根的定义.【解答】解:由数轴知,a<0,且b>0,∴a﹣b<0,∴,=|a|﹣|b|﹣[﹣(a﹣b)],=(﹣a)﹣b+a﹣b,=﹣2b.【点评】本小题主要考查利用数轴表示实数取值范围、二次根式的化简、代数式的恒等变形等基础知识,考查基本的代数运算能力.观察数轴确定a、b及a﹣b的符号是解答本题的关键,本题巧用数轴给出了每个数的符号,渗透了数形结合的思想,这也是中考时常考的知识点.本题考查算术平方根的化简,应先确定a、b及a﹣b的符号,再分别化简,最后计算.25.阅读材料,解答下列问题.例:当a>0时,如a=6则|a|=|6|=6,故此时a的绝对值是它本身;当a=0时,|a|=0,故此时a的绝对值是零;当a<0时,如a=﹣6则|a|=|﹣6|=﹣(﹣6),故此时a的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:(1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;(2)猜想与|a|的大小关系.【分析】应用二次根式的化简,首先应注意被开方数的范围,再进行化简.【解答】解:(1)由题意可得=;(2)由(1)可得:=|a|.【点评】本题主要考查二次根式的化简方法与运用:①当a>0时,=a;②当a<0时,=﹣a;③当a=0时,=0.26.已知:a=,b=.求代数式的值.【分析】先求得a+b=10,ab=1,再把求值的式子化为a与b的和与积的形式,将整体代入求值即可.【解答】解:由已知,得a+b=10,ab=1,∴===.【点评】本题关键是先求出a+b、ab的值,再将被开方数变形,整体代值.27.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得=;‚参照(四)式得=.(3)化简:+++…+.【分析】(1)中,通过观察,发现:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到约分的目的;(2)中,注意找规律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出现抵消的情况.【解答】解:(1)=,=;(2)原式=+…+=++…+=.【点评】学会分母有理化的两种方法.28.化简求值:,其中.【分析】由a=2+,b=2﹣,得到a+b=4,ab=1,且a>0,b>0,再把代数式利用因式分解的方法得到原式=+,约分后得+,接着分母有理化和通分得到原式=,然后根据整体思想进行计算.【解答】解:∵a=2+>0,b=2﹣>0,∴a+b=4,ab=1,∴原式=+=+=+=,当a+b=4,ab=1,原式=×=4.【点评】本题考查了二次根式的化简求值:先把各二次根式化为最简二次根式,再合并同类二次根式,然后把字母的值代入(或整体代入)进行计算.。
二次根式章测试题含参考答案
二次根式测试题(时限:100分钟总分:100分)一、选择题:将下列各题正确答案的代号的选项填在下表中。
每小题2分,共24分。
1.下列各式中,不属于二次根式的是(x≤0)C.D.2.有意义,则x的取值范围是A. x=1B. x≥1C. x≤1D. 0<x<13.A. a>B. a<0C. a≥0D. a≤04.有意义,则点P(a,b)在A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.下列计算正确的是A.B. D.6.已知a<0的结果是A.B.C.-D.7.若A. 2a-1B. 1-2aC. -1D. 18.已知点P(x,yA. 2xyB. -2xyC. 2D. -29.下列各式中是最简二次根式的是10.0的整数,则实数a的最小值是A. 12B. 3C. 6D. 211.A.1到2B. 2到3C. 3到4D. 4到512.设4a,小数部分为b,则a-的值为A. C. D.二、填空题:(本大题共8小题,每小题2分,共16分)13.要使代数式有意义,则x的取值范围是.14. a b≠0,则点P(a,b)在第象限.15.若,则a=,b=.16.在实数范围内分解因式:x3-3x=.17.已知x-1的值是.18.已知a、b、c是△ABC的值为.19.观察下列各式的规律:①;②;③a=.20.cm,则周长为 .21.实数a、b的结果是22.在面积为80cm2的正方形正中间挖掉一个面积为45cm2的小正方形,则剩余的边框的宽度是cm.-6-=-(29-=16=?(23--=-a a0+=1b2-22+22-2xa2=+-====-1a二、解答题:(本大题共60分)23.计算:(每小题2分,计8分)⑴⑵. ⑶.b >0)⑷.24.x 为何值时,下面各式的意义:(每小题2分,计8分) ⑴⑵ ⑶.⑷.25.化简求值:(每小题3分,计12分)⑴.已知x,y ,求的值.⑵.已知,求的值.⑶.当x 时,求的值.⑷.若a 、b 为实数,且的值.26.(6分)如图,已知长方形ABCD 中,E 为CD 上一点,∠DAE =∠CEB =60°,AB =,求DE 的长.27.(5分)已知a =3+,b =3-. 求的值.28.(5分)已知一块长方形木板,长为7.5dm ,宽为5dm ,能否采用如图的方式,在这块木板上截出两个面积分别是8dm 2和18dm 2的正方形木板?-¸22-x 2-1-1+22x y -1a a +1a a-1-2x 2x 2++a 2=+22a b ab -EDCBA参考答案: 一、选择题:1.D ;2.A ;3.C ;4.C ;5.A ;6.C ;7.B ;8.B ;9.B ;10.B ;11.C ;12.A ; 二、填空题:13.x ≥-且x ≠0;14.一、三;15.a =2,b =1;16.;17.2;18.-2a ;19.63;;21.-2a ;22.三、解答题:23.⑴.⑶;⑷.1. 24.⑴.0≤x ≤1;⑵.全体实数;⑶.x ≥1且x ≠2;⑷.x ≤-1或x ≥1.25. ⑴.-.±1;⑶.25;⑷.3; 26. 4;28.解:从长、宽两个方面考虑:, 5,∴小木板的宽够截取.<7.5. ∴两个小正方形的边长和小于木板的长.即可以用这块木板截出两个面积为8dm 2和18dm 2的正方形木板.12(x x x -23b +=。
《16.1 二次根式 》同步训练卷(1)
《16.1 二次根式》同步训练卷(2)一、选择题(共10小题)1.若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠1 2.已知是正整数,则实数n的最小值是()A.3B.2C.1D.3.下列二次根式中,无论x取什么值都有意义的是()A.B.C.D.4.若二次根式有意义,则x的取值范围是()A.x<2B.x≠2C.x≤2D.x≥25.若代数式有意义,则x的取值范围是()A.x>2且x≠3B.x≥2C.x≠3D.x≥2且x≠3 6.二次根式在实数范围内有意义,x的取值范围是()A.x≠﹣3B.x≥3C.x≤﹣3D.x≥﹣37.若a,b为两个有理数,且b=+4,则a+b的值为()A.±6B.3C.3或5D.58.使二次根式有意义的x的取值范围是()A.x>2B.x≥2C.x=2D.x≠29.式子在实数范围内有意义的条件是()A.x≥1B.x>1C.x<0D.x≤010.若为二次根式,则m的取值范围是()A.m<3B.m≤3C.m≥3D.m>3二、填空题(共5小题)11.式子有意义的x的取值范围是.12.当x=3时,二次根式的值是.13.式子在实数范围内有意义,则x的取值范围是.14.要使二次根式有意义,则a的取值范围是.15.当x=时,的值最小.三、解答题(共5小题)16.已知x、y都是实数,且,求y x的平方根.17.解答下列各题.(1)已知:y=﹣﹣2019,求x+y的平方根.(2)已知一个正数x的两个平方根分别是a+2和a+5,求这个数x.18.如果实数x、y满足y=++2,求x+3y的平方根.19.计算:(1)已知a、b满足(a+3b+1)2+=0,且=5,求3a2+7b﹣c的平方根.(2)已知实数a,b,c在数轴上的对应点如图所示,化简+|c﹣a|+;(3)已知x、y满足y=,求5x+6y的值.20.已知y=﹣+9x,求的平方根.。
二次根式测试题及答案
二次根式测试题及答案
一、选择题
1. 以下哪个选项不是二次根式?
A. √3
B. √x
C. √x^2
D. √x^3
答案:D
2. 计算√(4×9)的结果是什么?
A. 6
B. 12
C. √36
D. √4×√9
答案:B
3. 以下哪个表达式等于√(2x)?
A. √2x
B. √x×√2
C. √2×√x
D. √2+√x
答案:C
二、填空题
1. 计算√(25)的结果是______。
答案:5
2. 如果√(a+b) = √a + √b,那么a和b的值分别是______。
答案:0
三、解答题
1. 化简下列二次根式:
√(32) = ______。
答案:4√2
2. 解方程:
√x + 3 = 7。
答案:x = 16
四、证明题
1. 证明√2是一个无理数。
答案:略
五、应用题
1. 一个正方形的面积是50平方厘米,求这个正方形的边长。
答案:边长为√50厘米,即5√2厘米。
六、综合题
1. 一个直角三角形的两条直角边分别为3厘米和4厘米,求斜边的长度。
答案:斜边长度为5厘米,根据勾股定理,√(3^2 + 4^2) = √(9
+ 16) = √25 = 5。
七、附加题
1. 如果一个数的平方根等于这个数本身,这个数是多少?
答案:0或1(因为√0 = 0,√1 = 1)
请注意,以上测试题及答案仅供参考,具体题目和答案应根据实际教学大纲和教材内容进行调整。
2020届人教版八年级数学下册 16.1二次根式(2)同步练习(含解析)
16.1 二次根式(2)同步练习姓名:__________班级:__________学号:__________本节应掌握和应用的知识点 1.二次根式的性质及应用 (1))2=a( a≥0 ),反过来可得到a =)2(a≥0).(2)=|a|= ,2.用基本的运算符号将数或表示数的字母连接起来的式子,叫做代数式 基础知识和能力拓展训练 一、选择题 1()23-的结果是()A.9B.3C.-3D.±3 238() 2436322316( ) A.8B.﹣8C.﹣4D.44.下列运算正确的是( )163-8﹣2(-2)﹣19+4=3+125.下列式子正确的是()2(9)9-=-255=±2(1)1-= D.2(2)2-=-6.化简(1-x 11x - ) 1x --1x -1x -1x -7.在数轴上实数a ,b 的位置如上图所示,化简|a+b|+2a-b ()的结果是( )A.﹣2a ﹣bB.﹣2a+bC.﹣2bD.﹣2a8.若5n +是整数,则正整数n 的最小值是( ) A.2B.3C.4D.59.实数32-的绝对值是( ) A.32- B.23- C.32+ D.1 10.若()424A a =+,则A =()A.24a + B.22a + C.()222a + D.()224a + 二、填空题 11.若a <1,化简()211a --=_________.12.已知xy <0,化简二次根式x 2yx -的正确结果为 . 13.能够说明“2x =x 不成立”的x 的值是__(写出一个即可). 14.当__________x 时,()21x -是二次根式.15.化简:a= .16.()22130,a b c a b c ++-+-=++=则_______________。
三、解答题 17.计算:18.阅读下面的文字后,回答问题.小军和小红在解答题目“先化简,再求值:a +,其中a =9”时给出了不同的解答,你知道小军和小红的解答谁的是错误的吗?错在哪里?19.已知实数在数轴上如图,化简()22a ab ac b c -++-+-的值20.(1)当15a =,求211a a a ⎛⎫+- ⎪⎝⎭的值.(2)当0<x<3时,化简()()223211x x x --+++.21.计算:= ,= ,= ,= ,= ,(1)根据计算结果,回答:一定等于a 吗?你发现其中的规律了吗?请你用自己的语言描述出来.(2)利用你总结的规律,计算:.22.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2=(1+)2,善于思考的小明进行了以下探索: 设a +b=(m +n)2(其中a 、b 、m 、n 均为整数),则有a +b=m 2+2n 2+2mn.∴a =m 2+2n 2,b =2mn .这样小明就找到了一种把部分a +b 的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题: (1)当a 、b 、m 、n 均为正整数时,若a +b =(m +n)2,用含m 、n 的式子分别表示a 、b ,得a =________,b =________; (2)试着把7+4化成一个完全平方式.(3)请化简:.23.选取二次三项式()20ax bx c a ++≠中的两项,配成完全平方式的过程叫配方.例如:①选取二次项和一次项配方:()224925x x x -+=-+;②选取二次项和常数项配方:()224932x x x x -+=-+,或()2249310x x x x -+=+-③选取一次项和常数项配方:2222549339x x x x ⎛⎫-+=-+ ⎪⎝⎭根据上述材料,解决下面问题:(1)写出2616x x ++的两种不同形式的配方;(2)已知2245-4-840x y xy y ++=,求参考答案 1.B3==,故选B .2.C=故选:C.点睛:此题主要考查了二次根式的化简,解题关键是明确最简二次根式的条件,被开方数中不含有开方开不尽的数,分母中不含有二次根号,根号中不含有分母. 3.D4=,故选D. 4.B【解析】试题解析:=4,故原选项错误;﹣2,故该选项正确;,故原选项错误;,故原选项错误. 故选B. 5.C【解析】9=,故A 选项错误;5=,故B 选项错误;1=,正确;D.2(2=,故D 选项错误,故选C. 6.B【解析】解:(1﹣x B . 点睛:此题主要考查了二次根式的性质与化简,正确得出二次根式整体的符号是解题关键.7.D【解析】如图所示:可得,a+b<0,a −b<0, 故原式=−(a+b)−(a −b)=−2a. 故选:D.点睛:此题考查了二次根式的性质与化简以及实数与数轴,正确得出各项符号是解题的关键. 8.Cn 为正整数,∴n ≥0,∴n+5≥5,5+n 为9,16等等,即n 的值为4,11等等,∴正整数n 的最小值是4,故选C .点睛:本题考查了二次根式的定义和性质,注意:n 是正整数可以得出n ≥0,n +5是一个完全平方数. 9.B【解析】2|2=选B. 10.A【解析】()224A a ==+24a ==+.故选A .11.-a【解析】∵a <1, ∴a -1<0,1=-(a -1)-1=-a +1-1=-a12.【解析】∵xy <0, ∴y <0,x >0,∴原式.. 13.-1x =,∴x x =不成立,则x ≤0.故答案不唯一,只要x ≤0即可,如:-1.故答案为:答案不唯一,只要x ≤0即可,如:-1. 14.为任意实数【解析】解:﹙1-x ﹚2是恒大于等于0的,不论x 的取值,都恒大于等于0,所以x 为任意实数.故答案为:为任意实数. 15.-a -【解析】试题解析:由题意可得:0.a <211.a a a a a ⎛⎫∴-=-⨯-=-- ⎪⎝⎭故答案为:.a -- 16.2【解析】试题分析:几个非负数的和为零,则每一个非负数都为零.根据题意可得:a+2=0,b-1=0,3-c=0,解得:a=-2,b=1,c=3,则a+b+c=-2+1+3=2.点睛:本题主要考查的就是非负数的性质的应用,几个非负数的和为零,则每一个非负数都是零.在初中阶段我们所学的运算结果为非负数有以下几种:①、平方;②、绝对值;③、算术平方根.非负数性质的应用我们也经常会运用在判定三角形形状的题目中,我们都会采用完全平方公式进行配方转化为非负数的和的形式,然后进行解答.17.(1)解:原式=4-3+3×-6=-4(2)解:原式=×5-×-4=118. 解:小军的解答错误. ∵a =9,1-a <0, ∴=a -119.2c-a.【解析】试题分析:由图可知:0b a c <<<,从而可得:000a b a c b c +<-<-<,,,然后根据“绝对值的意义”化简即可. 试题解析:∵从数轴可知:0b a c <<<,∴000a b a c b c +<-<-<,,, ∴()22a ab ac b c -++-+-=()()()a a b a c b c ⎡⎤⎡⎤⎡⎤---++--+--⎣⎦⎣⎦⎣⎦ =a a b c a c b -+++-+- =2c a -.点睛:解这类时,首先要从数轴上获取所涉及的数的大小和正、负信息;若绝对值符号里(或被开方数中)涉及到异号两数和的还要从数轴上获取两数绝对值的大小关系;然后根据所获取的信息确定好绝对值符号里各个式子的符号,再根据绝对值的代数意义去掉绝对值符号化简. 20.(1)495; (2)-2x+3.【解析】试题分析:(1)先根据二次根式的性质进行化简,然后再代入求值即可; (2)根据二次根式的性质得出|x-3|-|2x+1|+|x+1|,去掉绝对值符号,合并即可. 试题解析:(1)当15a =时,11454055a a -=-=>. 所以21111112a a a a a a a a a a a ⎛⎫+-=+-=+-=- ⎪⎝⎭.当15a =时,原式=1449109555-==. (2)当0<x<3时,x-3<0,2x+1>0,x+1>0,()()223211x x x --+++=|x-3|-|2x+1|+|x+1| =-(x-3)-(2x+1)+(x+1) =-2x+3.21.3;0.7;0;6;,(1)|a|(2)-3.14 【解析】原式各项计算得到结果;(1)不一定等于a ,=|a|;(2)原式利用得出规律计算即可得到结果.解:=3,=0.7,=0,=6,=,(1)=|a|;(2)原式=|3.14-π|=π-3.14.故答案为:3;0.7;0;6;.“点睛”此题考查了算术平方根,熟练掌握二次根式的性质是解本题的关键. 22.(1)m 2+3n 2;2mn ;(2)(2+)2;(3)3+【解析】试题分析:(1)利用已知直接去括号进而得出a ,b 的值; (2)直接利用完全平方公式,变形得出答案; (3)直接利用完全平方公式,变形化简即可. 试题解析: (1)∵a+b =(m+n)2,∴a+b=(m+n)2=m 2+3n 2+2mn ,∴a=m 2+3n 2,b=2mn ; 故答案为:m 2+3n 2;2mn ; (2)7+4=(2+)2;故答案为:(2+)2; (3)∵12+6=(3+)2,∴==3+.【点睛】此题主要考查了二次根式的性质与化简,正确利用完全平方公式化简是解题关键.23.(1)23)7x ++((22【解析】试题分析:(1)根据配方法的步骤根据二次项系数为1,常数项是一次项系数的一半的平方进行配方和二次项和常数项在一起进行配方即可.(2)根据配方法的步骤把2245-4-840x y xy y ++=变形为()222)410x y y -+-=(,再根据2x-y=0,y-1=0,求出x ,y 化简后代入求值即可. (1)答案不唯一.如23)7x ++(,24)2x x +-(,()2414x x -+,22374416x x ⎛⎫++ ⎪⎝⎭. (2)∵2245-4-840x y xy y ++=,∴()222)410x y y -+-=(.∴1,12x y ==.∴. 点睛:本题考查了配方法的应用,根据配方法的步骤和完全平方公式:a 2±2ab+b 2=(a±b)2进行配方是解题的关键,是一道基础题.。
二次根式测试题及答案
二次根式测试题及答案一、选择题(每题 3 分,共 30 分)1、下列式子一定是二次根式的是()A √xB √x²+1C √x² 1D √1 / x答案:B解析:二次根式的被开方数必须是非负数。
选项 A 中,当 x < 0 时,√x 无意义;选项 C 中,当-1 < x < 1 时,x² 1 < 0 ,√x² 1 无意义;选项 D 中,当 x < 0 时,√1 / x 无意义。
而对于选项 B,因为x² ≥ 0 ,所以 x²+1 ≥ 1 ,√x² + 1 一定有意义。
2、若√(2 a)²= a 2 ,则 a 的取值范围是()A a < 2B a >2C a ≤ 2D a ≥ 2答案:D解析:因为√(2 a)²=|2 a| ,而√(2 a)²= a 2 ,所以|2 a|= a 2 ,即2 a ≤ 0 ,解得a ≥ 2 。
3、下列计算正确的是()A √2 +√3 =√5B 2 +√2 =2√2C 3√2 √2 =3D √2 × √3 =√6答案:D解析:选项 A,√2 与√3 不是同类二次根式,不能合并;选项 B,2 与√2 不是同类二次根式,不能合并;选项 C,3√2 √2 =2√2 。
4、化简√( 5)²的结果是()A 5B 5C ± 5D 25答案:A解析:√( 5)²=| 5| = 5 。
5、若√x 1 +√1 x = 0 ,则 x 的值为()A 0B 1C 1D 2答案:B解析:因为二次根式有意义的条件是被开方数为非负数,所以 x 1 ≥ 0 且1 x ≥ 0 ,解得 x = 1 。
6、下列二次根式中,最简二次根式是()A √1 /2B √02C √2D √20答案:C解析:选项 A,√1 / 2 =√2 / 2 ;选项 B,√02 =√1 / 5 =√5 / 5 ;选项 D,√20 =2√5 。
人教版数学八年级下册第16章 二次根式 随堂测试题含答案
word 版 学初中数16.1《二次根式》一、选择题1.已知 是二次根式,则 x、y 应满足的条件是()A.x≥0 且 y≥0B.C.x≥0 且 y>0D.2.当 a<3 时,化简的结果是( )A.-1B.1C.2a-7D.7-2a3.化简的结果是( )A.y-2xB.yC.2x-y4.下列根式中属最简二次根式的是( )D.-yA.B.C.D.5.在下列各式中,m 的取值范围不是全体实数的是( )A.B.C.D.6.给出下列各式:;其中成立的是( )A.①③④B.①②④7.下列式子中,二次根式的个数是(C.②③④ )D.①②③⑴ ;⑵ ;⑶;⑷ ;⑸;⑹;⑺.A.2B.3C.4D.58.在根式①,② ,③,④中最简二次根式是( )A.①②B.③④C.①③D.①④9.若 a<0,则的值为( )A.3B.﹣3C.3﹣2aD.2a﹣310.若代数式有意义,则实数 x 的取值范围是( )A.x≥1B.x≥2C.x>1D.x>211.已知, 则 2xy 的值为( )A.-15 12.若 y2+4y+4+A.﹣6B.15C.-7.5=0,则 yx 的值为(B.﹣8C.6D.7.5 )D.81 / 14word 版 学二、填空题 13.若是二次根式,则点 A(x,6)的坐标为_____.14.要使等式成立,则 x=________.15.当____时,式子有意义.16.已知 n 是正整数, 189 n 是整数,则 n 的最小值是.17.如图,数轴上点 A 表示的数为 a,化简:.初中数18.已知,当分别取 1,2,3,……,2020 时,所对应 y 值总和是_______.三、解答题 19.比较大小:与.20.已知互为相反数,求 ab 的值.21.已知:实数 a,b 在数轴上的位置如图所示,化简:﹣|a﹣b|.22.已知:=0,求实数 a,b 的值. 2 / 14word 版 学23.已知 a、b 满足等式.(1)求出 a、b 的值分别是多少?(2)试求的值.初中数24.已知 x,y 为实数,且满足,求 x -y 2020 2020 的值.3 / 14word 版 学初中数1.答案为:D 2.答案为:D 3.答案为:B 4.答案为:A 5.答案为:B 6.答案为:A 7.答案为:C 8.答案为:C 9.答案为:A. 10.答案为:B. 11.答案为:A 12.答案为:B 13.答案为(-3,6). 14.答案为:4. 15.答案为:3≤x<5. 16.答案为:21. 17.答案为:2. 18.答案为:2032.19.解:参考答案.因为所以,所以.20.原式=7 21.解:由数轴上点的位置关系,得﹣1<a<0<b<1.﹣|a﹣b|=a+1+2(1﹣b)﹣(b﹣a) =a+1+2﹣2b﹣b+a =2a﹣3b+3. 22.解:由题意得,3a﹣b=0,a2﹣49=0,a+7≠0,解得,a=7,b=21. 23.解:(1)由题意得,2a﹣6≥0 且 9﹣3a≥0, 解得 a≥3 且 a≤3,所以,a=3,b=﹣9;(2) ﹣ + =﹣+=6﹣9﹣3=﹣6.24.解:∵∴+=0∴1+x=0,1-y=0,解得 x=-1,y=1, X2018-y2018=(-1)2018-12018=1-1=0.人教版八年级下册 16.2 《二次根式的乘除》一.选择题1.将 化简后的结果是( )4 / 14word 版 学A.2B.C.22.计算(﹣ )2 的结果是( )A.﹣6B.6C.±63.下列二次根式中,属于最简二次根式的是( )A.B.C.4.+()2 的值为( )A.0B.2a﹣4C.4﹣2a5.实数 a,b 在数轴上对应点的位置如图所示,则化简D.4 D.36 D.初中数D.2a﹣4 或 4﹣2a 的结果为( )A.b﹣aB.a+bC.ab6.已知 x= +1,y= ﹣1,则 xy 的值为( )A.8B.48C.27.化简的结果是( )A.B.C.二.填空题8.计算:的结果是.9.化简 =.10.将 化成最简二次根式为.11.化简:=.12.计算:• (x>0)=.三.解答题(共 6 小题) 13.把下列二次根式化成最简二次根式(1)(2)D.2a﹣b D.6 D.(3)5 / 14word 版 学14.计算: ×4 ÷ .15.计算:•.16.计算:•(﹣)÷(a>0).17.化简:.18.实数在数轴上的位置如图所示,化简:|a﹣b|﹣ .参考答案 一.选择题 1.解: =故选:C.=2 ,6 / 14初中数word 版 学2.解:(﹣ )2=6,故选:B 3.解:A、. =5,故此选项错误;B、 是最简二次根式,故此选项正确;C、 = ,故此选项错误;D、 =2 故选:B.,故此选项错误;4.解:要使有意义,必须 2﹣a≥0,解得,a≤2,则原式=2﹣a+2﹣a=4﹣2a,故选:C.5.解:由数轴得 a<﹣1,b>0,所以原式=|a|+|b|=﹣a+b.故选:A.6.解:当 x= +1,y= ﹣1 时,xy=( +1)( ﹣1)=( )2﹣12=7﹣1 =6, 故选:D.7.解:∵ >0,∴b<0, b =﹣=﹣ .故选:D. 二.填空题 8.解:原式= × =6 .故答案为:6 .7 / 14初中数word 版 学9.解:原式== =2 ,故答案为:2 . 10.解: = ,故答案为: .11.解:因为 >1,所以= ﹣1故答案为: ﹣1.12.解:•(x>0)===4xy2. 故答案为:4xy2. 三.解答题(共 6 小题)13.解:(1)=;(2) =4 ;(3)==.14.解:原式=2 ×4× ÷4 =8 ÷4 =2.15.解:原式= × ×2= =x2. 16.解:原式==8 / 14初中数word 版 学==.初中数17.解:原式==+.18.解:由数轴可知:a<0,b>0,a﹣b<0 所以|a﹣b|﹣ =|a﹣b|﹣|b|=b﹣a﹣b=﹣a.16.3 二次根式的加减一.选择题1.下列二次根式与 2 可以合并的是(A.3B.2.下列计算中,正确的是( )) C.A. + =B.=﹣3 C. =3.计算: ﹣ =( )D.12 D.3 ﹣ =2A.﹣B.0C.D.4.已知 是整数,则 n 的值不可能是( )A.2B.8C.32D.405.如图,从一个大正方形中裁去面积为 16cm2 和 24cm2 的两个小正方形,则余下的面积为( )A.16 cm2 6.计算 ÷ •B.40 cm2C.8 cm2(a>0,b>0)的结果是( )A.B.C.7.已知 a=2+ A.12,b=2﹣ ,则 a2+b2 的值为( )B.14C.16 9 / 14D.(2 +4)cm2 D.b D.18word 版 学8.计算的结果是( )A.0B.C.9.如果与A.0二.填空题10.化简:11.计算:的和等于 3 ,那么 a 的值是( )B.1C.2的结果为.=.12.计算(5 )( 2)=.三.解答题13.(1)2 ﹣6 ;(2)()﹣( ﹣ ).14.计算. (1) ﹣ + . (2) × ﹣ +( ﹣1)0.(3) ÷ ﹣4 +.(4)( ﹣2)2+( )﹣1﹣( )2.15.已知 a= ﹣ ,b= + ,求值:(1) + ;(2)a2b+ab2.16.已知长方形的长为 a,宽为 b,且 a=,b=.(1)求长方形的周长; (2)当 S 长方形=S 正方形时,求正方形的周长.D. D.3初中数10 / 14word 版 学初中数参考答案一.选择题1.解:A、3 与 2 被开方数不相等,不是同类二次根式,故本选项不符合题意; B、 =2 与 2 被开方数不相等,不是同类二次根式,故本选项不符合题意; C、 与 2 被开方数不相等,不是同类二次根式,故本选项不符合题意; D、12 与 2 被开方数相等,是同类二次根式,故本选项符合题意; 故选:D.2.解:A、 + = +2,无法合并,故此选项错误;B、=3,故此选项错误;C、 =1,故此选项错误;D、3 ﹣ =2 ,正确.故选:D.3.解:原式= ﹣ =0.故选:B.4.解:A、当 n=2 时, =2,是整数;B、当 n=8 时, =4,是整数;C、当 n=32 时, =8,是整数;D、当 n=40 时, = =4 ,不是整数;故选:D.5.解:从一个大正方形中裁去面积为 16cm2 和 24cm2 的两个小正方形,大正方形的边长是 + =4+2 , 留下部分(即阴影部分)的面积是(4+2 )2﹣16﹣24=16+16+24﹣16﹣24=16 (cm2).故选:A .6.解:原式=×=11 / 14word 版 学=.故选:A. 7.解:∵a=2+ ,b=2﹣ ,∴a+b=4,ab=4﹣3=1, ∴a2+b2=(a+b)2﹣2ab=42﹣2×1=14. 故选:B. 8.解:原式===.故选:B.9.解:∵与 =2 的和等于 3 ,∴=3 ﹣2 = ,故 a+1=3,则 a=2.故选:C.二.填空题10.解:原式=3 ﹣4 + =0.故答案为:0.11.解:原式=[( +2)( ﹣2)]2020•( =(3﹣4)2020•( ﹣2)﹣2)= ﹣2.故答案为 ﹣2.12.解:原式=5 +10﹣3﹣2 =7+3 ,故答案为:7+3 . 三.解答题13.解:(1)原式=﹣4 ;12 / 14初中数word 版 学初中数(2)原式=2 + ﹣ +=3 + .14.解:(1)原式= ﹣2 +3=2 ;(2)原式=﹣ +1=2 ﹣ +1 = +1; (3)原式=﹣2 +2=2 ﹣2 +2 =2;(4)原式=5﹣4 +4+5﹣5 =9﹣4 . 15.解:∵a= ﹣ ,b= + , ∴a+b=( ﹣ )+( + )=2 ,ab=( ﹣ )( + )=2,(1) +=====12; (2)a2b+ab2 =ab(a+b) =2×2 =4 .13 / 14word 版 学16.解:(1)∵a== ,b==2 ,∴长方形的周长是:2(a+b)=2( +2 )=;(2)设正方形的边长为 x,则有 x2=ab,∴x= === ,∴正方形的周长是 4x=12 .初中数14 / 14。
二次根式单元测试题(含答案)
九年级上学期数学测试题(二次根式)一、选择题1.已知233x x +=-x 3+x ,则………………………………………………()A .x ≤0B .x ≤-3C .x ≥-3D .-3≤x ≤0 2.化简aa3-(a <0)得……………………………………………………………()A .a - B .-a C .-a - D .a3.当a <0,b <0时,-a +2ab -b 可变形为…………………………………( )A .2)(b a +B .-2)(b a -C .2)(b a -+- D .2)(b a ---4.在根式①22b a + ②5x ③xy x -2④ abc 27中,最简二次根式是(中,最简二次根式是( )A .①②.①②B .③④.③④C .①③.①③D .①④.①④5.下列二次根式中,可以合并的是…………………………………………………()A .23aa a 和 B .232a a 和 C .aaa a 132和 D .2423a a 和6.如果1122=+-+a a a ,那么a 的取值范围是……………………………()A .0=aB .1=aC .1£aD .10==a a 或 7.能使22-=-x x x x 成立的x 的取值范围是…………………………………())A .2¹xB B..0³xC C..2³xD D..x >2 8.若化简|1-x|x|--2x -8x+162x-5的结果是,则x 的取值范围是………………()A .x 为任意实数为任意实数B .1≤x ≤4 C .x ≥1 D .x <4 9.已知三角形三边为a 、b 、c ,其中a 、b 两边满足0836122=-++-b a a ,那,那么这个三角形的最大边c 的取值范围是……………………………………………()A .8>cB .148<<cC .86<<cD .142<<c 10.小明的作业本上有以下四题①24416a a =;②25105a a a =×;③③a aa a a=×=112; ④a a a =-23。
八年级数学下册二次根式(全章)习题及答案(含答案)
二次根式16.1 二次根式:1. 使式子4x -有意义的条件是有意义的条件是 。
2. 当__________时,212x x ++-有意义。
有意义。
3. 若11m m -++有意义,则m 的取值范围是的取值范围是 。
4. 当__________x 时,()21x -是二次根式。
是二次根式。
5. 在实数范围内分解因式:429__________,222__________x x x -=-+=。
6. 若242x x =,则x 的取值范围是的取值范围是 。
7. 已知()222x x -=-,则x 的取值范围是的取值范围是 。
8. 化简:()2211x x x -+p 的结果是的结果是。
9. 当15x ≤p 时,()215_____________x x -+-=。
10. 把1a a-的根号外的因式移到根号内等于的根号外的因式移到根号内等于 。
11. 使等式()()1111x x x x +-=-+g 成立的条件是成立的条件是。
12. 若1a b -+与24a b ++互为相反数,则()2005_____________a b -=。
13. 在式子()()()230,2,12,20,3,1,2x x y y x x x x y +=--++f p 中,二次根式有(根式有() A. 2个 B. 3个 C. 4个 D. 5个 14. 下列各式一定是二次根式的是(下列各式一定是二次根式的是( ) A. 7- B. 32m C. 21a + D.ab15. 若23a p p ,则()()2223a a ---等于(等于() A. 52a - B. 12a - C. 25a - D. 21a - 16. 若()424A a =+,则A =() A. 24a + B. 22a + C. ()222a + D. ()224a +17. 若1a ≤,则()31a -化简后为(化简后为() A. ()11a a -- B. ()11a a -- C. ()11a a -- D. ()11a a -- 18. 能使等式22x x x x =--成立的x 的取值范围是(的取值范围是() A. 2x ≠ B. 0x ≥ C. 2x f D. 2x ≥ 19. 计算:()()222112a a -+-的值是(的值是() A. 0 B. 42a - C. 24a - D. 24a -或42a -20. 下面的推导中开始出错的步骤是(下面的推导中开始出错的步骤是() ()()()()()222323121232312223233224=⨯=⋅⋅⋅⋅⋅⋅-=-⨯=∴=-∴=-Q L L L L L L L L L L L L L L LA. ()1B. ()2C. ()3D. ()4 21. 若2440x y y y -+-+=,求xy 的值。
二次根式测试题及答案
二次根式测试题及答案一、选择题(每题3分,共15分)1. 计算下列二次根式的结果:\(\sqrt{4}\) 的值是()A. 2B. -2C. 4D. 02. 对于二次根式 \(\sqrt{9+x}\),若 \(x\) 的值为负数,则下列哪个选项是正确的?A. \(x\) 必须小于 -9B. \(x\) 必须大于 -9C. \(x\) 可以是任何实数D. \(x\) 必须等于 -93. 将下列二次根式化简为最简形式:\(\sqrt{64x^2}\) 可以化简为()A. \(8x\)B. \(8|x|\)C. \(-8x\)D. \(16x\)4. 若 \(\sqrt{a}\) 是有理数,那么 \(a\) 必须满足的条件是()A. \(a\) 必须大于0B. \(a\) 必须等于0C. \(a\) 必须小于0D. \(a\) 可以是任何实数5. 计算下列二次根式的加法:\(\sqrt{7} + \sqrt{7}\) 的结果是()A. \(2\sqrt{7}\)B. \(7\)C. \(14\)D. \(\sqrt{14}\)二、填空题(每题2分,共10分)1. 计算 \(\sqrt{25}\) 的结果是______。
2. 若 \(\sqrt{x} = 5\),则 \(x\) 的值是______。
3. 化简 \(\sqrt{121}\) 的结果是______。
4. 若 \(\sqrt{y} = -4\),那么 \(y\) 是______(填“有理数”或“无理数”)。
5. 计算 \(\sqrt{8} - \sqrt{18}\) 的结果是______。
三、解答题(每题7分,共28分)1. 计算并化简下列二次根式:\(\sqrt{50} - \sqrt{32}\)2. 解下列方程:\(2\sqrt{x} + 5 = 13\)3. 证明:\(\sqrt{2}\) 是无理数。
四、综合题(每题8分,共16分)1. 若 \(\sqrt{3a+1} + 4 = 9\),求 \(a\) 的值。
二次根式经典测试题附答案
二次根式经典测试题附答案一、选择题1.下列计算正确的是( )A .4333-=B .235+=C .1212=D .822÷= 【答案】D【解析】【分析】根据合并同类二次根式的法则及二次根式的乘除运算法则计算可得.【详解】A 、43333-=,错误;B 、2、3不是同类二次根式,不能合并,错误;C 、1222222=⨯=,错误; D 、8242÷==,正确; 故选:D .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握合并同类二次根式的法则及二次根式的乘除运算法则.2.实数a ,b 在数轴上对应点的位置如图所示,化简|a |+2(a b )-的结果是( )A .2a+bB .-2a+bC .bD .2a-b 【答案】B【解析】【分析】根据数轴得出0a <,0a b -<,然后利用绝对值的性质和二次根式的性质化简.【详解】解:由数轴可知:0a <,0b >,∴0a b -<,∴22a a b a b a a b ,故选:B .【点睛】本题考查了数轴、绝对值的性质和二次根式的性质,根据数轴得出0a <,0a b -<是解题的关键.3.x 的取值范围是( ) A .x≥76 B .x >76 C .x ≤76 D . x <76【答案】B【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】∵67x -是被开方数,∴670x -≥,又∵分母不能为零,∴670x ->,解得,x >76; 故答案为:B.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,解题的关键是熟练掌握其意义的条件.4.m 的值不可以是( )A .18m =B .4m =C .32m =D .627m = 【答案】B【解析】【分析】【详解】A. 18m =4,是同类二次根式,故此选项不符合题意;B. 4m = ,此选项符合题意C. 32m =,是同类二次根式,故此选项不符合题意;D. 627m =3,是同类二次根式,故此选项不符合题意 故选:B【点睛】本题考查二次根式的化简和同类二次根式的定义,掌握二次根式的化简法则是本题的解题关键.5.如果•6(6)x x x x -=-,那么( ) A .0x ≥B .6x ≥C .06x ≤≤D .x 为一切实数 【答案】B【解析】∵()x ?x 6x x 6-=-,∴x ≥0,x-6≥0,∴x 6≥.故选B.6.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】 2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】2a .7.下列计算或运算中,正确的是()A .2a a =B 1882=C .61523345=D .3327-=【答案】B【解析】【分析】根据二次根性质和运算法则逐一判断即可得.【详解】A 、=BC 、=D 、-=,此选项错误;故选B .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则及二次根式的性质.8.下列各式中,运算正确的是( )A .632a a a ÷=B .325()a a =C .=D =【答案】D【解析】【分析】利用同底数幂的除法、幂的乘方、二次根式的加法和二次根式的除法法则计算.【详解】解:A 、a 6÷a 3=a 3,故不对;B 、(a 3)2=a 6,故不对;C 、和不是同类二次根式,因而不能合并;D 、符合二次根式的除法法则,正确.故选D .9.下列式子正确的是( )A 6=±B C 3=- D 5=-【答案】C【解析】【分析】根据算术平方根、立方根的定义和性质求解即可.【详解】解:6=,故A 错误.B 错误.3=-,故C 正确.D. 5=,故D 错误.故选:C【点睛】 此题主要考查算术平方根和立方根的定义及性质,熟练掌握概念是解题的关键.10.如果一个三角形的三边长分别为12、k 、72|2k ﹣5|的结果是( )A .﹣k ﹣1B .k +1C .3k ﹣11D .11﹣3k 【答案】D【解析】【分析】求出k 的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.【详解】 ∵一个三角形的三边长分别为12、k 、72, ∴72-12<k <12+72, ∴3<k <4,,=-|2k-5|,=6-k-(2k-5),=-3k+11,=11-3k ,故选D .【点睛】本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.11.下列二次根式中的最简二次根式是( )AB C D 【答案】A【解析】【分析】根据最简二次根式的概念判断即可.【详解】ABC,不是最简二次根式;D故选:A.【点睛】此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.12.下列各式中,是最简二次根式的是( )A B C D【答案】B【解析】【分析】判断一个二次根式是不是最简二次根式的方法,是逐个检查定义中的两个条件①被开方数不含分母②被开方数不含能开的尽方的因数或因式,据此可解答.【详解】(1)A被开方数含分母,错误.(2)B满足条件,正确.(3) C被开方数含能开的尽方的因数或因式,错误.(4) D被开方数含能开的尽方的因数或因式,错误.所以答案选B.【点睛】本题考查最简二次根式的定义,掌握相关知识是解题关键.13.下列计算或化简正确的是()A.=BC3==-D3【答案】D【解析】解:A.不是同类二次根式,不能合并,故A错误;B=,故B错误;C 3=,故C 错误;D 3===,正确.故选D .14.下列各式成立的是( )A .2-= B -=3C .223⎛=- ⎝D 3【答案】D【解析】 分析:各项分别计算得到结果,即可做出判断.详解:A .原式B .原式不能合并,不符合题意;C .原式=23,不符合题意; D .原式=|﹣3|=3,符合题意.故选D .点睛:本题考查了二次根式的加减法,以及二次根式的性质与化简,熟练掌握运算法则是解答本题的关键.15.计算÷的结果是( )A B C .23 D .34【答案】A【解析】【分析】根据二次根式的运算法则,按照运算顺序进行计算即可.【详解】解:÷ 1(24=⨯÷=16=⨯2=. 故选:A .【点睛】此题主要考查二次根式的运算,根据运算顺序准确求解是解题的关键.16.下列计算正确的是( )A.=B=C.=D-=【答案】B【解析】【分析】根据二次根式的加减乘除运算法则逐一计算可得.【详解】A、- B 、,此选项正确; C、=(D 、= 故选B【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.17.2a =-,那么( )A .2x <B .2x ≤C .2x >D .2x ≥【答案】B【解析】(0)0(0)(0)a a a a a a ><⎧⎪===⎨⎪-⎩,由此可知2-a≥0,解得a≤2.故选B点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质(0)0(0)(0)a aa aa a><⎧⎪===⎨⎪-⎩可求解.18.下列二次根式是最简二次根式的是()ABCD【答案】D【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、被开方数含分母,故A不符合题意;B、被开方数含开的尽的因数,故B不符合题意;C、被开方数是小数,故C不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意.故选:D.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.19.当实数x41y x=+中y的取值范围是() A.7y≥-B.9y≥C.9y<-D.7y<-【答案】B【解析】【分析】根据二次根式有意义易得x的取值范围,代入所给函数可得y的取值范围.【详解】解:由题意得20x-≥,解得2x≥,419x∴+≥,即9y≥.故选:B.【点睛】本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到x的取值是解决本题的关键.20.如图,数轴上的点可近似表示(4630-)6÷的值是()A.点A B.点B C.点C D.点D【答案】A【解析】【分析】-55先化简原式得4545【详解】-原式=45<<3,由于25-<2.∴1<45故选:A.【点睛】本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.。
初中数学人教版八年级下册第十六章 二次根式16.1 二次根式-章节测试习题(1)
章节测试题1.【答题】若与互为相反数,则x+y的值=______。
【答案】27【分析】互为相反数的两个数之和等于0.【解答】根据题意得+=0,∵≥0 且≥0∴=0 且=0∴且解得∴x+y=15+12=272.【答题】实数a在数轴上的位置如图,化简+a=______.【答案】1【分析】根据二次根式的性质,可化简二次根式,根据整式的加法,可得答案.【解答】解:+a=1﹣a+a=1,3.【答题】函数中自变量的取值范围______.【答案】x≥2【分析】根据被开方数非负来解.【解答】根据被开方数非负,得到关于x的不等式,x-2≥0求解即可.4.【答题】若在实数范围内有意义,则x的取值范围是______.【答案】x≥3【分析】被开方数或被开方式是非负数【解答】由于被开方数或被开方式是非负数得x﹣3≥0,即x≥35.【答题】要使有意义,则x的取值范围是______.【答案】x≥4【分析】根据算术平方根的意义,可知其被开方数为非负数.【解答】根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为:x≥4.方法总结:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然后列不等式求解即可,是一个中考常考的简单题.6.【题文】想一想:将等式=3和=7反过来的等式3=和7=还成立吗?式子:9==和4==成立吗?仿照上面的方法,化简下列各式:(1)2(2)11(3)6【答案】成立,、、【分析】当a≥0时,a=,所以对于有理数与二次根式相乘的形式的化简,可以将根号外的非负数通过这样的变形后,再用二次根式的乘法法则化简.【解答】解:等式3=和7=成立,9==和4==成立.(1);(2);(3).方法总结:本题主要考查了二次根式的非负性,二次根式有双重非负性,即二次根式的被开方数是非负数,二次根式的值是非负数,所以每一个非负数都可以根据二次根式的双重非负性写成二次根式的形式.7.【题文】若y=++3,求xy的值。
二次根式练习10套(附答案)讲解学习
精品文档二次根式练习01一、填空题1、下列和数1415926.3)1( .3.0)2(722)3( 2)4( 38)5(-2)6(π...3030030003.0)7(其中无理数有________,有理数有________(填序号) 2、94的平方根________,216.0的立方根________。
3、16的平方根________,64的立方根________。
4、算术平方根等于它本身的数有________,立方根等于本身的数有________。
5、若2562=x ,则=x ________,若2163-=x ,则=x ________。
6、已知ABC Rt ∆两边为3,4,则第三边长________。
7、若三角形三边之比为3:4:5,周长为24,则三角形面积________。
8、已知三角形三边长n n n n n n ,122,22,1222++++为正整数,则此三角形是________三角形。
9、如果0)6(42=++-y x ,则=+y x ________。
10、如果12-a 和a -5是一个数m 的平方根,则.__________,==m a11、三角形三边分别为8,15,17,那么最长边上的高为________。
12、直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________。
二、选择题 13、下列几组数中不能作为直角三角形三边长度的是( )A. 25,24,6===c b aB.5.2,2,5.1===c b aC.45,2,32===c b a D. 17,8,15===c b a14、小强量得家里彩电荧屏的长为cm 58,宽为cm 46,则这台电视机尺寸是( )A. 9英寸(cm 23)B. 21英寸(cm 54)C. 29英寸(cm 74)D .34英寸(cm 87)15、等腰三角形腰长cm 10,底边cm 16,则面积( )A.296cmB.248cmC.224cmD.232cm16、三角形三边c b a ,,满足ab c b a 2)(22+=+,则这个三角形是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形17、2)6(-的平方根是( )A .6-B .36C. ±6D. 6±18、下列命题正确的个数有:a a a a ==233)2(,)1((3)无限小数都是无理数(4)有限小数都是有理数(5)实数分为正实数和岁实数两类( ) A .1个B. 2个C .3个D.4个19、x 是2)9(-的平方根,y 是64的立方根,则=+y x ( )A. 3B. 7C.3,7D. 1,720、直角三角形边长度为5,12,则斜边上的高( ) A. 6B. 8C.1318 D.1360 21、直角三角形边长为b a ,,斜边上高为h ,则下列各式总能成立的是( )精品文档A. 2h ab =B.2222h b a =+C.h b a 111=+ D.222111hb a =+ 22、如图一直角三角形纸片,两直角边cm BC cm AC 8,6==,现将直角边AC沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A.cm 2B.cm 3C.cm 4D.cm 5三、计算题23、求下列各式中x 的值:04916)1(2=-x25)1)(2(2=-x8)2)(3(3-=x27)3()4(3=--x24、用计算器计算:(结果保留3个有效数字)15)1(315)2(π-6)3( 2332)4(-四、作图题25、在数轴上画出8-的点。
二次根式经典测试题(附答案解析)
二次根式经典测试题(附答案解析)1. 问题:求下列二次根式的值并化简:$$\sqrt{9}$$解析:根据定义,$\sqrt{9}$表示求一个数的平方根,而9的平方根等于3,因此$\sqrt{9}=3$。
2. 问题:计算下列二次根式的值:$$\sqrt{16}+\sqrt{25}$$解析:根据定义,$\sqrt{16}$表示求一个数的平方根,而16的平方根等于4;同样,$\sqrt{25}$表示求一个数的平方根,而25的平方根等于5。
将两个平方根相加得到$$\sqrt{16}+\sqrt{25}=4+5=9$$3. 问题:化简下列二次根式:$$\sqrt{18}$$解析:18可以分解为$2\times9$,而$\sqrt{16}=\sqrt{2\times9}=\sqrt{2}\times\sqrt{9}=\sqrt{2}\times3=\sq rt{18}=3\sqrt{2}$4. 问题:将下列二次根式化为最简形式:$$\sqrt{48}$$解析:48可以分解为$16\times3$,而$\sqrt{48}=\sqrt{16\times3}=\sqrt{16}\times\sqrt{3}=4\sqrt{3}$5. 问题:计算下列二次根式的值:$$\sqrt{64}+\sqrt{81}-2\sqrt{36}$$解析:根据定义,$\sqrt{64}=8$,$\sqrt{81}=9$,$\sqrt{36}=6$。
将这三个值代入原式得到 $$\sqrt{64}+\sqrt{81}-2\sqrt{36}=8+9-2\times6=8+9-12=5$$6. 问题:对于一个正实数x,求下列表达式的值:$$(\sqrt{x}+2)(\sqrt{x}-2)$$解析:根据乘法公式$$(a+b)(a-b)=a^2-b^2$$,将表达式$(\sqrt{x}+2)(\sqrt{x}-2)$代入公式得到 $$(\sqrt{x}+2)(\sqrt{x}-2)=\sqrt{x}^2-(2)^2=x-4$$7. 问题:求下列方程的解集:$$\sqrt{x^2+6x+9}=3$$解析:根据定义,$\sqrt{a}=b$可以转化为$a=b^2$,将方程$\sqrt{x^2+6x+9}=3$转化为$x^2+6x+9=(3)^2=9$。
二次根式经典测试题含答案
⼆次根式经典测试题含答案⼆次根式经典测试题含答案⼀、选择题1.在下列各组根式中,是同类⼆次根式的是()A .2,12B .2,12C .4ab ,4abD .1a -,1a + 【答案】B【解析】【分析】根据⼆次根式的性质化简,根据同类⼆次根式的概念判断即可.【详解】A 、1223=,2与12不是同类⼆次根式;B 、122=,2与12是同类⼆次根式; C 、4242,ab ab ab b a ==,4ab 与4ab 不是同类⼆次根式;D 、1a -与1a +不是同类⼆次根式;故选:B .【点睛】本题考查的是同类⼆次根式的概念、⼆次根式的化简,把⼏个⼆次根式化为最简⼆次根式后,如果它们的被开⽅数相同,就把这⼏个⼆次根式叫做同类⼆次根式.2.实数a ,b 在数轴上对应点的位置如图所⽰,化简|a |+2(a b )-的结果是()A .2a+bB .-2a+bC .bD .2a-b 【答案】B【解析】【分析】根据数轴得出0a <,0a b -<,然后利⽤绝对值的性质和⼆次根式的性质化简.【详解】解:由数轴可知:0a <,0b >,∴0a b -<,∴()()22a a b a b a a b -=-+-=-+,故选:B .【点睛】本题考查了数轴、绝对值的性质和⼆次根式的性质,根据数轴得出0a <,0a b -<是解题的关键.3.已知实数a 满⾜2006a a -=,那么22006a -的值是()A .2005B .2006C .2007D .2008【答案】C【解析】【分析】先根据⼆次根式有意义的条件求出a 的取值范围,然后去绝对值符号化简,再两边平⽅求出22006a -的值.【详解】∵a-2007≥0,∴a ≥2007,∴2006a a -=可化为a 2006a -+=,2006=,∴a-2007=20062,∴22006a -=2007.故选C .【点睛】本题考查了绝对值的意义、⼆次根式有意义的条件,求出a 的取值范围是解答本题的关键.4.在下列算式中:=②=;4==;=,其中正确的是() A .①③B .②④C .③④D .①④【答案】B【解析】【分析】根据⼆次根式的性质和⼆次根式的加法运算,分别进⾏判断,即可得到答案.【详解】①错误;=②正确;222==,故③错误;==④正确;故选:B.【点睛】本题考查了⼆次根式的加法运算,⼆次根式的性质,解题的关键是熟练掌握运算法则进⾏解题. 5.x 的取值范围是() A .x≥76 B .x >76 C .x≤76 D . x <76【答案】B【解析】【分析】根据被开⽅数⼤于等于0,分母不等于0列式计算即可得解.【详解】∵67x -是被开⽅数,∴670x -≥,⼜∵分母不能为零,∴670x ->,解得,x >76;故答案为:B.【点睛】本题考查的知识点为:分式有意义,分母不为0;⼆次根式的被开⽅数是⾮负数,解题的关键是熟练掌握其意义的条件. 6.若代数式1y x =-有意义,则实数x 的取值范围是() A .0x ≥B .0x ≥且1x ≠C .0x >D .0x >且1x ≠【答案】B【解析】【分析】根据⼆次根式的性质和分式的意义,被开⽅数⼤于或等于0,分母不等于0,可以求出x 的范围.【详解】根据题意得:010x x ≥??-≠?,解得:x≥0且x≠1.故选:B .【点睛】此题考查分式有意义的条件,⼆次根式有意义的条件,解题关键在于掌握分母不为0;⼆次根式的被开⽅数是⾮负数.7.下列运算正确的是()A B.1)2=3-1 C D5-3【答案】C【解析】【分析】根据⼆次根式的加减及乘除的法则分别计算各选项,然后与所给结果进⾏⽐较,从⽽可得出结果.【详解】解:≠,故本选项错误;1)2=3-,故本选项正确;= =4,故本选项错误.故选C.【点睛】本题考查了⼆次根式的混合运算,熟练化简⼆次根式后,在加减的过程中,有同类⼆次根式的要合并;相乘的时候,被开⽅数简单的直接让被开⽅数相乘,再化简;较⼤的也可先化简,再相乘,灵活对待.8.+在实数范围内有意义的整数x有()A.5个B.3个C.4个D.2个【答案】C【解析】∴30430xx+>-≥,解得:433x-<≤,⼜∵x要取整数值,∴x的值为:-2、-1、0、1.即符合条件的x的值有4个.故选C.9.下列各式计算正确的是()A1082==-=B.()()236==-?-=C 115236==+=D .54==- 【答案】D【解析】【分析】根据⼆次根式的性质对A 、C 、D 进⾏判断;根据⼆次根式的乘法法则对B 进⾏判断.【详解】解:A 、原式,所以A 选项错误;B 、原式,所以B 选项错误;C 、原式C 选项错误;D 、原式54==-,所以D 选项正确.故选:D .【点睛】本题考查了⼆次根式的混合运算:先把⼆次根式化为最简⼆次根式,然后进⾏⼆次根式的乘除运算,再合并即可.在⼆次根式的混合运算中,如能结合题⽬特点,灵活运⽤⼆次根式的性质,选择恰当的解题途径,往往能事半功倍.10.1x =-,那么x 的取值范围是()A .x≥1B .x>1C .x≤1D .x<16【答案】A【解析】【分析】根据等式的左边为算术平⽅根,结果为⾮负数,即x-1≥0求解即可.【详解】由于⼆次根式的结果为⾮负数可知:x-1≥0,解得,x≥1,故选A.【点睛】本题利⽤了⼆次根式的结果为⾮负数求x 的取值范围.11.下列运算正确的是()A +=B )﹣1C.2(32)-=3﹣2 D.9=±3【答案】B【解析】【分析】直接利⽤⼆次根式的性质分别化简得出答案.【详解】解:A、23+,⽆法合并,故此选项错误;B、12(2)2-=,正确;C、2(32)23-=-,故此选项错误;D、9=3,故此选项错误;故选:B.【点睛】此题主要考查了⼆次根式的加减以及⼆次根式的性质,正确掌握⼆次根式的性质是解题关键.12.如果,则a的取值范围是()A. B. C. D.【答案】B【解析】试题分析:根据⼆次根式的性质1可知:,即故答案为B..考点:⼆次根式的性质.13.下列各式成⽴的是()A.332-=B63-=3C.22233=-D2(3)-3【答案】D【解析】分析:各项分别计算得到结果,即可做出判断.详解:A.原式3B.原式不能合并,不符合题意;C .原式=23,不符合题意; D .原式=|﹣3|=3,符合题意.故选D .点睛:本题考查了⼆次根式的加减法,以及⼆次根式的性质与化简,熟练掌握运算法则是解答本题的关键.14.下列根式中是最简⼆次根式的是()A .B .C .D .【答案】D【解析】【分析】A 、B 、C 三项均可化简.【详解】解:,,,故A 、B 、C 均不是最简⼆次根式,为最简⼆次根式,故选择D.【点睛】本题考查了最简⼆次根式的概念.15.下列各式中,运算正确的是()A 222()-=-B 284=C 2810=D .222=【答案】B【解析】【分析】2a a b ab =a≥0,b≥0),被开数相同的⼆次根式可以合并进⾏计算即可.【详解】A ()222-=,故原题计算错误;B 2816=,故原题计算正确;C 2832=D 、22不能合并,故原题计算错误;故选B .【点睛】此题主要考查了⼆次根式的混合运算,关键是掌握⼆次根式乘法、性质及加减法运算法则.16.如图,矩形内三个相邻的正⽅形⾯积分别为4,3和2,则图中阴影部分的⾯积为A .2B .6C .236223+--D .23225+-【答案】D【解析】【分析】将⾯积为2和3的正⽅形向下平移⾄下⽅边长和长⽅形的长边重合,可得两个阴影部分的图形的长和宽,计算可得答案.【详解】将⾯积为2和3的正⽅形向下平移⾄下⽅边长和长⽅形的长边重合,如下图所⽰:则阴影⾯积((222323=222233+=23225故选:D【点睛】本题考查算术平⽅根,解答本题的关键是明确题意,求出⼤⼩正⽅形的边长,利⽤数形结合的思想解答.17.当实数x 2x -41y x =+中y 的取值范围是( ) A .7y ≥-B .9y ≥C .9y <-D .7y <-【答案】B【解析】【分析】根据⼆次根式有意义易得x 的取值范围,代⼊所给函数可得y 的取值范围.【详解】解:由题意得20x -≥,解得2x ≥, 419x ∴+≥,即9y ≥.故选:B .本题考查了函数值的取值的求法;根据⼆次根式被开⽅数为⾮负数得到x 的取值是解决本题的关键.18.下列运算正确的是()A =B 2÷=C .3=D .142=【答案】B【解析】【分析】根据⼆次根式的混合运算的相关知识即可解答.【详解】=,故错误;2÷=,正确;C. =D. 142故选B.【点睛】此题考查⼆次根式的性质与化简,解题关键在于掌握运算法则. 19.下列⼆次根式中的最简⼆次根式是()AB C D 【答案】A【解析】【分析】根据最简⼆次根式的概念判断即可.【详解】ABC ,不是最简⼆次根式;D 2,不是最简⼆次根式;故选:A .【点睛】此题考查最简⼆次根式的概念,解题关键在于掌握(1)被开⽅数不含分母;(2)被开⽅数中不含能开得尽⽅的因数或因式的⼆次根式,叫做最简⼆次根式.20.如果⼀个三⾓形的三边长分别为12、k 、72|2k ﹣5|的结果是( )A .﹣k ﹣1B .k +1C .3k ﹣11D .11﹣3k 【答案】D【解析】【分析】求出k 的范围,化简⼆次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.【详解】∵⼀个三⾓形的三边长分别为12、k 、72,∴72-12<k <12+72,∴3<k <4,,=-|2k-5|,=6-k-(2k-5),=-3k+11,=11-3k ,故选D .【点睛】本题考查了绝对值,⼆次根式的性质,三⾓形的三边关系定理的应⽤,解此题的关键是去绝对值符号,题⽬⽐较典型,但是⼀道⽐较容易出错的题⽬.。
二次根式练习题及答案
二次根式练习题及答案二次根式练题及答案(一)一、选择题(每小题2分,共24分)1.若在实数范围内有意义,则 $\sqrt{x-3}$ 的取值范围是()A。
$x\geq 3$ B。
$x>3$ C。
$x\leq 3$ D。
$x<3$2.在下列二次根式中。
$\sqrt{x-2}$ 的取值范围是 $x\geq2$ 的是() A。
$\sqrt{x-2}$ B。
$\sqrt{2-x}$ C。
$\sqrt{2+x}$ D。
$\sqrt{4-x^2}$3.如果 $x\geq 1$,那么 $\sqrt{x^2-2x+1}$ 的值是()A。
$1$ D。
无法确定4.下列二次根式,不能与$\sqrt{2}+\sqrt{3}$ 合并的是()A。
$\sqrt{2}+\sqrt{3}$ B。
$\sqrt{2}-\sqrt{3}$ C。
$\sqrt{3}-\sqrt{2}$ D。
$\sqrt{3}+\sqrt{2}$5.如果最简二次根式 $\sqrt{a}+\sqrt{b}$ 与 $\sqrt{a}-\sqrt{b}$ 能够合并,那么 $a$ 的值为()A。
2 B。
3 C。
4 D。
56.已知 $\sqrt{a}+\sqrt{b}=\sqrt{3}+\sqrt{2}$,则 $\sqrt{a}-\sqrt{b}$ 的值为()A。
$\sqrt{3}-\sqrt{2}$ B。
$\sqrt{2}-\sqrt{3}$ C。
$\sqrt{3}+\sqrt{2}$ D。
$\sqrt{2}+\sqrt{3}$7.下列各式计算正确的是()A。
$\sqrt{8}+\sqrt{12}=4\sqrt{2}+2\sqrt{3}$ B。
$\sqrt{5}+\sqrt{20}=3\sqrt{5}$ C。
$\sqrt{3}+\sqrt{2}=\sqrt{5}$ D。
$\sqrt{6}+\sqrt{3}=\sqrt{18}$8.等式 $\sqrt{x+3}-\sqrt{x-1}=2$ 成立的条件是()A。
《二次根式》单元测试题含答案
《二次根式》单元测试题含答案《二次根式》单元测试题(一)判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .…………………( )【提示】2)2(-=|-2|=2.【答案】×. 2.3-2的倒数是3+2.( )【提示】231-=4323-+=-(3+2).【答案】×.3.2)1(-x =2)1(-x .…( )【提示】2)1(-x =|x -1|,2)1(-x =x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×. 4.ab 、31b a 3、bax 2-是同类二次根式.…( )【提示】31b a 3、bax 2-化成最简二次根式后再判断.【答案】√. 5.x 8,31,29x +都不是最简二次根式.( )29x +是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分) 6.当x __________时,式子31-x 有意义.【提示】x 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9. 7.化简-81527102÷31225a =_.【答案】-2a a .【点评】注意除法法则和积的算术平方根性质的运用.8.a -12-a 的有理化因式是____________.【提示】(a -12-a )(________)=a 2-22)1(-a .a +12-a .【答案】a +12-a . 9.当1<x <4时,|x -4|+122+-x x =________________.【提示】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数还是负数?x -4是负数,x -1是正数.【答案】3.10.方程2(x -1)=x +1的解是____________.【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少?12-,12+.【答案】x =3+22.11.已知a 、b 、c 为正数,d 为负数,化简2222dc abd c ab +-=______.【提示】22d c =|cd |=-cd . 【答案】ab +cd .【点评】∵ ab =2)(ab (ab >0),∴ ab -c 2d 2=(cd ab +)(cd ab -).12.比较大小:-721_________-341.【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小. 13.化简:(7-52)2000·(-7-52)2001=______________.【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.](7-52)·(-7-52)=?[1.]【答案】-7-52. 【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.【答案】40.【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________. 【提示】∵ 3<11<4,∴ _______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x =?小数部分y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. (三)选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0【答案】D .【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义.17.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y 【提示】∵ x <y <0,∴ x -y <0,x +y <0. ∴ 222y xy x +-=2)(y x -=|x -y |=y -x .222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C .【点评】本题考查二次根式的性质2a =|a |.18.若0<x <1,则4)1(2+-x x -4)1(2-+xx 等于………………………( )(A )x2 (B )-x2 (C )-2x (D )2x【提示】(x -x 1)2+4=(x +x 1)2,(x +x 1)2-4=(x -x1)2.又∵ 0<x <1,∴ x +x1>0,x -x1<0.【答案】D .【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当0<x <1时,x -x1<0. 19.化简aa 3-(a <0)得………………………………………………………………( ) (A )a - (B )-a (C )-a - (D )a 【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.【答案】C .20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --. 【答案】C .【点评】本题考查逆向运用公式2)(a =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为a <0,b <0时,a 、b 都没有意义.(四)在实数范围内因式分解:(每小题3分,共6分) 21.9x 2-5y 2;【提示】用平方差公式分解,并注意到5y 2=2)5(y .【答案】(3x +5y )(3x -5y ). 22.4x 4-4x 2+1.【提示】先用完全平方公式,再用平方差公式分解.【答案】(2x +1)2(2x -1)2. (五)计算题:(每小题6分,共24分) 23.(235+-)(235--);【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215.24.1145--7114--732+;【提示】先分别分母有理化,再合并同类二次根式. 【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.25.(a 2mn -m ab mn +m nn m )÷a 2b 2mn ; 【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a 2m n -m ab mn +m n n m )·221b a nm =21b n m m n ⋅-mab 1n m m n ⋅+22b ma n nm n m ⋅ =21b -ab 1+221b a =2221b a ab a +-.26.(a +ba abb +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ).【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=ba abb ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=ba ba ++÷))((2222b a b a ab b a b ab b ab a a -++----=ba ba ++·)())((b a ab b a b a ab +-+-=-b a +.【点评】本题如果先分母有理化,那么计算较烦琐.(六)求值:(每小题7分,共14分)27.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值. 【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.【解】∵ x =2323-+=2)23(+=5+26, y =2323+-=2)23(-=5-26.∴ x +y =10,x -y =46,xy =52-(26)2=1.32234232y x y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652. 【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 28.当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x 22a x +=22a x +(22a x +-x ),x 2-x 22a x +=-x (22a x +-x ). 【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+- =)()(22222222222222x a x a x x x a x x a x a x x x -++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222a x xa x +--+-)11(22x x a x --++221a x +=x1.七、解答题:(每小题8分,共16分) 29.计算(25+1)(211++321++431++…+100991+).【提示】先将每个部分分母有理化后,再计算. 【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--)=(25+1)[(12-)+(23-)+(34-)+…+(99100-)]=(25+1)(1100-) =9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法. 30.若x ,y 为实数,且y =x 41-+14-x +21.求xy y x ++2-xyy x +-2的值. 【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x=41时,y =21. 又∵xyy x ++2-xyy x +-2=2)(xy y x+-2)(xy y x -=|xy y x +|-|xyy x -|∵ x =41,y =21,∴y x<x y .∴ 原式=x y y x +-y x x y +=2yx 当x =41,y =21时,原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.1 二次根式
一、单选题(共20题;共40分)
1.下列各式中是二次根式的是()
A. √8
3 B. √−1 C. √2 D. √x(x<0)
2.使二次根式√x+2有意义的x的取值范围为()
A. x≤2
B. x≠-2
C. x≥-2
D. x<2
3.如果√4−x在实数范围内有意义,则x的取值范围是()
A. x≠4
B. x≤4
C. x≥4
D. x<4
4.要使√x−3有意义,x的取值范围是()
A. x≤3
B. x<3
C. x≥3
D. x>3
5.要使√2x+5有意义,x必须满足()
A. x≥−5
2B. x≤−5
2
C. x为任何实数
D. x为非负数
6.下列计算中正确的是()
A. 2 √2﹣√2 =1
B. √(−13)2 =±13
C. √(1−√3)2 = √3﹣1
D. √52−42 = √52﹣√42 =5﹣4=1
7.下列式子一定是二次根式的是()
A. √a
B. √6
3 C. √5 D. √2x
8.二次根式√x−3中x的取值范围是()
A. x≥0
B. 3
C. x≥3
D. x≤−3
9.若
√2x−1
在实数范围内有意义,则x≥0的取值范围是()
A. x≥0
B. x≥1
2C. x≠1
2
D. x>1
2
10.下列式子成立的是()
A. 1
√3
=√3 B. 2√3−√3=2
C. √(−3)2=3
D. (√3)2=6
11.函数
中自变量x 的取值范围在数轴上表示正确的是( ) A.
B. C. D.
12.已知 y =√2x −5+√5−2x −3,则2xy 的值为 ( )
A. -15
B. 15
C. - 152
D.
152 13.函数y= 1−√x+1x−2 中,自变量x 的取值范围是( )
A. x ≥﹣1
B. x >2
C. x >﹣1且x ≠2
D. x ≥﹣1且x ≠2
14.下列各式有意义的条件下不一定成立的是( )
A.(√a)2 =a
B.√a 2 =a
C.√a 33 =a
D.√−a 33 =﹣a
15.当实数x 的取值使得 √x +2 有意义时,函数y=x+1中y 的取值范围是( )
A. y >-1
B. y ≥-1
C. y ≥-3
D. y ≤-3
16.下列各组数中互为相反数的一组是( )。
A. -2与√−83
B. -2与√(−2)2
C. -2与−1
2 D. |−2|与2
17.要使二次根式 √2x +6 在实数范围内有意义,则实数x 的取值范围在数轴上表示正确是( )
A.
B. C. D. 18.估算 √15 在下列哪两个整数之间( )
A. 1,2
B. 2,3
C. 3,4
D. 4,5
19.若代数式 √x−2√x−1 有意义则实数x 的取值范围是( )
A. x ≥1
B. x ≥2
C. x >0
D. x >2
20.下列各式中,不属于二次根式的是( )
A.√−x(x≤0)
B.√1+b2
C.√(a−b)2
D.√−1−x2
二、填空题(共15题;共16分)
有意义.
21.当________ 时,二次根式√1
x−3
22.若√4−2x在实数范围内有意义,则实数x的取值范围是________.
有意义时,x应满足的条件是________.
23.代数式
√2m−3
24.化简:√(π−4)2= ________.
25.已知√5的整数部分是x,小数部分是y,则y2+4y= ________.
26.若x<2,化简√(x−2)2= ________
27.实数a、b、c在数轴上的位置如图所示,化简√(a+b)2−|b−c|+
√(a−b)2的结果为________.
有意义,则x的取值范围是________.
28.代数式√3−2x
x−2
29.若a≤1,则√(1−a)3化简后为________.
根号外的因式移入根号内,得________
30.把a√−1
a3
31.已知函数y=√x−2020,那么自变量x的取值范围是________.
32.已知√2.36=1.536,√23.6=4.858.则√0.00236=________ .若
√x=0.4858,则x=________
33.若
有意义,则x的取值范围是________.
√2x−1
34.化简(√3−a)2+ √(a−3)2 =________.
35.已知√2a−1+√b+1=0,则a2−b2020= ________.
三、计算题(共11题;共65分)
36.计算:(√3)2﹣|﹣2|+20180﹣√9
37.计算:|−4|+(√2+1)0−√12
38.√24×√1
8-4×√1
8
×(1-√2 )0.
39.计算√12−3×√1
3
+√27 +(π+1)0
40.若√x−3﹣√3−x=(x﹣y)2,求x﹣y的值.
41.计算:√18−(√2+1)2+(√3+1)(√3−1)
42.计算:|−3|+√27
3−√(−4)2+(−1)2019
43.计算:√(−3)2 - √−1
3 +| √3−1 |+ √3
44.计算:
(1)2√12+3√11
3
−√2×√6
(2)√12÷√3+|2−√5|−√8−√6
√2
45. (1)若√x−8+√8−x+y=16,求√x
3−√y的值
(2)若a,b互为相反数,c,d互为倒数,m的绝对值为2,求a+b
m
+m−cd的值
46.已知x= √3
2−√3,y= √3
2+√3
,求值:2x2﹣3xy+2y2.
答案解析部分
一、单选题
1. C
2. C
3. B
4. C
5. A
6. C
7. C
8. C
9. D
10. C
11. A
12. A
13. D
14. B
15. B
16. B
17. C
18. C
19. B
20. D
二、填空题
21. x>3
22. x≤2
23. m>3
2
24. 4−π
25.1
26. 2-x
27. − c − b
28. x ≤3
2
29.(1﹣a)√1−a
30. √−a
a
31. x≥2020
32.0.04858;0.236
33. x>1
2
34.6-2a
35. −3
4
三、计算题
36.解:(√3)2﹣|﹣2|+20180﹣√9=3﹣2+1﹣3 =﹣1.
37.解:原式= 4+1-2√3
= 5−2√3
38.解:原式=√24×1
8-4×√1×2
8×2
×1
=√3-4×1
4
×√2=√3-√2
39. 解:√12−3×√1
3
+√27 +(π+1)0=2 √3﹣√3 +3 √3 +1
=4 √3 +1
40. 解:由题意得:{x−3≥0
3−x≥0,
解得:x=3,
∴(x﹣y)2=0,
∴x﹣y=0.
41. 解:原式=3√2-(2+1+2√2)+(3-1)=3√2-3-2√2+2
=√2-1
42. 解:原式=3+3-4-1=1.
43. 解:√(−3)2 - √−1
3 +| √3−1 |+ √3
=3-(-1)+ √3−1 + √3
=3+2 √3
44. (1)2√12+3√11
3
−√2×√6
= 4√3+3×√4
3
−√2×√6
= 4√3+2√3−2√3
= 4√3
(2)√12÷√3+|2−√5|−√8−√6
√2 = 2+√5−2−(2−√3)
= 2+√5−2−2+√3
= √5−2+√3
45. (1)解:(1)由题意,得{8−x⩾0 x−8⩾0
解得x=8.
所以y=16
所以原式=√8
3−√16=2−4=−2.
(2)解:∵a,b互为相反数,c,d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2,
∴a+b
m +m−cd=0
m
+m−1=m−1.
当m=2时,原式=1.
当m=−2时,原式=−2−1=−3.综上所述,a+b
m
+m−cd的值是1或−3
46.解:∵x= √3)2(2−√3)(2+√3) =7+4 √3 ,y= √3)2(2+√3)(2−√3) =7﹣4 √3 , ∴x ﹣y=8 √3 ,xy=1,
∴原式=2(x ﹣y )2+xy=385。