2018年江苏省徐州市中考二模数学试卷(含答案解析版)
2018年江苏省徐州巿中考数学试题及答案
徐州巿2018年初中毕业、升学考试数学试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷共120分,考试时间120分钟.第Ⅰ卷注意事项:1.答Ⅰ第卷前考生务必将自己的考试证号、考试科目用2B铅笔填涂在答题卡上.2.作答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案.不能答在第Ⅰ卷上.一、选择题(每小题2分,共20分.在每小题给出的四个选项中,有且只有....一个是正确的)1.4的平方根是A.2±B.2C.-2 D 162.一方有难、八方支援,截至5月26日12时,徐州巿累计为汶川地震灾区捐款约为11 180万元,该笔善款可用科学记数法表示为A.11.18×103万元B. 1.118×104万元C. 1.118×105万元D. 1.118×108万元3.函数11yx=+中自变量x的取值范围是A. x≥-1B. x≤-1C.x≠-1D.x=-14.下列运算中,正确的是A.x3+x3=x6B. x3·x9=x27C.(x2)3=x5D. x÷x2=x-15.如果点(3,-4)在反比例函数kyx=的图象上,那么下列各点中,在此图象上的是A.(3,4)B.(-2,-6)C.(-2,6)D.(-3,-4)6.下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能..折成无盖..小方盒的是A BC D7.⊙O 1和⊙O 2的半径分别为5和2,O 1O 2=3,则⊙O 1和⊙O 2的位置关系是A.内含B. 内切C.相交D.外切 8.下列图形中,是轴对称图形但不是中心对称图形的是A.正三角形B.菱形C.直角梯形D.正六边形 9.下列事件中,必然事件是A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角C.366人中至少有2人的生日相同D.实数的绝对值是非负数10.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为A.34 B. 13 C. 12 D. 14二、填空题(每小题3分,共18分.请将答案填写在第Ⅱ卷相应的位置上................) 11.因式分解:2x 2-8=______▲________12.徐州巿部分医保定点医院2018年第一季度的人均住院费用(单位:元)约为:12 320,11 880,10 370,8 570,10 640, 10240.这组数据的极差是_____▲_______元. 13.若12,x x 为方程210x x +-=的两个实数根,则12x x +=___▲___. 14.边长为a 的正三角形的面积等于______▲______.15.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D.若,若∠C =18°,则∠CDA =______▲_______.16.如图,Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于____▲_____cm.第Ⅱ卷三、解答题(每小题5分,共20分)(第10题图)(第15题图)(第16题图)17.计算:2008011(1)()3π--+-+18.已知21,23.x x x =--求的值19.解不等式组12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩,并写出它的所有整数解.20.如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m )1.4141.732四、解答题(本题有A 、B 两类题,A 类题4分,B 类题6分,你可以根据自己的学习情况,在两类题中任意选做一题......,如果两类题都做,则以A 类题计分) 21.(A 类)已知如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C.(B 类)已知如图,四边形ABCD 中,AB =BC ,∠A =∠C ,求证:AD =CD.五、解答题(每小题7分,共21分)22.从称许到南京可乘列车A 与列车B ,已知徐州至南京里程约为350km ,A 与B 车的平均速度之比为10∶7,A 车的行驶时间比B 车的少1h ,那么两车的平均速度分别为多少? 23.小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:DCBACB(第20题图)(第21题图)(1) 该月小王手机话费共有多少元?(2) 扇形统计图中,表示短信费的扇形的圆心角为多少度? (3) 请将表格补充完整; (4) 请将条形统计图补充完整.24.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点B 的坐标为(1,0) ①画出△ABC 关于x 轴对称的△A 1B 1C 1,②画出将△ABC 绕原点O 按逆时针旋转90°所得的△A 2B 2C 2,③△A 1B 1C 1与△A 2B 2C 2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A 1B 1C 1与△A 2B 2C 2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.短信费长途话费基本话费月功能费50403020100项目金额/元六、解答题(每小题8分,共16分)25.为缓解油价上涨给出租车待业带来的成本压力,某巿自2018年11月17日起,调整出租车运价,调整方案见下列表格及图像(其中a,b,c 为常数)设行驶路程xkm 时,调价前的运价y 1(元),调价后的运价为y 2(元)如图,折线ABCD 表示y 2与x 之间的函数关系式,线段EF 表示当0≤x ≤3时,y 1与x 的函数关系式,根据图表信息,完成下列各题: ①填空:a=______,b=______,c=_______.②写出当x >3时,y 1与x 的关系,并在上图中画出该函数的图象.③函数y 1与y 2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.26.已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断①OA=OC②AB=CD③∠BAD=∠DCB④AD∥BC请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:①构造一个真命题...,画图并给出证明;②构造一个假命题...,举反例加以说明.七、解答题(第27题8分,第28题10分,共18分)27.已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.28.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°【操作】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板....DEF...绕点..E.旋转..,并使边DE与边AB交于点P,边EF与边BC于点Q【探究一】在旋转过程中,(1)如图2,当CE1EA=时,EP与EQ满足怎样的数量关系?并给出证明.(2)如图3,当CE2EA=时EP与EQ满足怎样的数量关系?,并说明理由.(3)根据你对(1)、(2)的探究结果,试写出当CEEA=m时,EP与EQ满足的数量关系式为_________,其中m 的取值范围是_______(直接写出结论,不必证明)【探究二】若,AC =30cm ,连续PQ ,设△EPQ 的面积为S(cm 2),在旋转过程中: (1) S 是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.(2) 随着S 取不同的值,对应△EPQ 的个数有哪些变化?不出相应S 值的取值范围.F C(E)A(D)Q PDEFCBAQPDEFCBA(图1) (图2) (图3)徐州巿2018年初中毕业、升学考试数 学 试 题 参 考 答 案1.A2.B3.C4.D5.C6.B7.B8.C9.D 10.C 11. 2(2)(2)x x -+ 12. 3750元 13.-1 14.215.126° 16.m17.解:原式=1+1-3+2=118.解:223(3)(1)x x x x --=-+,将1x =+代入到上式,则可得223111)2)1x x --=-+==-19.解:12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩222221552x x x x x x >->-⎧⎧⇒⇒-<≤⎨⎨+≥-≤⎩⎩20.解:如图所示,过点A 、D 分别作BC 的垂线AE、DF 分别交BC 于点E 、F , 所以△ABE 、△CDF 均为Rt △,又因为CD =14,∠DCF =30°,所以DF =7=AE ,且FC =12.1所以BC =7+6+12.1=25.1m. 21.证明:(A )连结AC ,因为AB =AC ,所以∠BAC =∠BCA ,同理AD =CD 得∠DAC =∠DCA所以∠A =∠BAC +∠DAC =∠BCA +∠DCA =∠C(B )如(A )只须反过来即可.22.解方程的思想.A 车150km/h ,B 车125km/h. 23.解:(1)125元的总话费 (2)72° (3)BE FDCBA(4) 解:如下图所示,24.(4)对称中心是(0,0) 25.解:(1) a=7, b=1.4, c=2.1 (2)1 2.10.3y x =- (3)有交点为31(,9)7其意义为当317x <时是方案调价前合算,当317x >时方案调价后合算. 26.解:(1)②③为论断时,(2)②④为论断时,此时可以构成一梯形. 27.解:(1)223y x x =--+ (2) (0,3),(-3,0),(1,0) (3)略短信费长途话费基本话费月功能费50403020100项目金额/元。
江苏省徐州巿2018年中考数学真题试题(含答案)
江苏省徐州巿2018年中考数学真题试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷共120分,考试时间120分钟. 第Ⅰ卷 注意事项:1.答Ⅰ第卷前考生务必将自己的考试证号、考试科目用2B 铅笔填涂在答题卡上.2.作答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案.不能答在第Ⅰ卷上.一、选择题(每小题2分,共20分.在每小题给出的四个选项中,有且只有....一个是正确的)1.4的平方根是A.2±B.2C. -2 D 162.一方有难、八方支援,截至5月26日12时,徐州巿累计为汶川地震灾区捐款约为11 180万元,该笔善款可用科学记数法表示为A. 11.18×103万元B. 1.118×104万元C. 1.118×105万元D. 1.118×108万元 3.函数11y x =+中自变量x 的取值范围是 A. x ≥-1 B. x ≤-1 C. x ≠-1 D. x =-1 4.下列运算中,正确的是A.x 3+x 3=x 6B. x 3·x 9=x 27C.(x 2)3=x 5D. x ÷x 2=x -1 5.如果点(3,-4)在反比例函数ky x=的图象上,那么下列各点中,在此图象上的是 A.(3,4) B. (-2,-6) C.(-2,6) D.(-3,-4) 6.下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能..折成无盖..小方盒的是A B C D 7.⊙O 1和⊙O 2的半径分别为5和2,O 1O 2=3,则⊙O 1和⊙O 2的位置关系是A.内含B. 内切C.相交D.外切 8.下列图形中,是轴对称图形但不是中心对称图形的是A.正三角形B.菱形C.直角梯形D.正六边形 9.下列事件中,必然事件是A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角C.366人中至少有2人的生日相同D.实数的绝对值是非负数10.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为A.34 B. 13 C. 12 D. 14二、填空题(每小题3分,共18分.请将答案填写在第Ⅱ.........卷相应的位置上.......) 11.因式分解:2x 2-8=______▲________12.徐州巿部分医保定点医院2018年第一季度的人均住院费用(单位:元)约为:12 320,11 880,10 370,8 570,10 640, 10240.这组数据的极差是_____▲_______元. 13.若12,x x 为方程210x x +-=的两个实数根,则12x x +=___▲___. 14.边长为a 的正三角形的面积等于______▲______.15.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D.若,若∠C =18°,则∠CDA =______▲_______.16.如图,Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于____▲_____cm. 第Ⅱ卷三、解答题(每小题5分,共20分)17.计算:2008011(1)()3π--+-.18.已知21,23.x x x =+--求的值19.解不等式组12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩,并写出它的所有整数解.(第10题图)20.如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m )1.4141.732四、解答题(本题有A 、B 两类题,A 类题4分,B 类题6分,你可以根据自己的学习情况,在两类题中任意选做一题......,如果两类题都做,则以A 类题计分)21.(A 类)已知如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C. (B 类)已知如图,四边形ABCD 中,AB =BC ,∠A =∠C ,求证:AD =CD. 五、解答题(每小题7分,共21分)22.从称许到南京可乘列车A 与列车B ,已知徐州至南京里程约为350km ,A 与B 车的平均速度之比为10∶7,A 车的行驶时间比B 车的少1h ,那么两车的平均速度分别为多少? 23.小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:(1) (2) 扇形统计图中,表示短信费的扇形的圆心角为多少度? (3) 请将表格补充完整; (4)请将条形统计图补充完整.24.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点B 的坐标为(1,0) ①画出△ABC 关于x 轴对称的△A 1B 1C 1,②画出将△ABC 绕原点O 按逆时针旋转90°所得的△A 2B 2C 2,③△A1B 1C 1与△A 2B 2C 2成轴对称图形吗?若成轴对称图形,画出所有的对称轴; ④△A 1B 1C 1与△A 2B 2C 2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.六、解答题(每小题8分,共16分)25.为缓解油价上涨给出租车待业带来的成本压力,某巿自2018年11月17日起,调整出租车运价,调整方案见下列表格及图像(其中a,b,c 为常数)CB1y2(元)如图,折线ABCD表示y2与x之间的函数关系式,线段EF表示当0≤x≤3时,y1与x的函数关系式,根据图表信息,完成下列各题:①填空:a=______,b=______,c=_______.②写出当x>3时,y1与x的关系,并在上图中画出该函数的图象.③函数y1与y2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.26.已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断①OA=OC ②AB=CD ③∠BAD=∠DCB ④AD∥BC请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:①构造一个真命题...,画图并给出证明;②构造一个假命题...,举反例加以说明.七、解答题(第27题8分,第28题10分,共18分)27.已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.28.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°【操作】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板....DEF...绕.点.E.旋转..,并使边DE与边AB交于点P,边EF与边BC于点Q【探究一】在旋转过程中,(1)如图2,当CE1EA=时,EP与EQ满足怎样的数量关系?并给出证明.(2)如图3,当CE2EA=时E P与EQ满足怎样的数量关系?,并说明理由.(3)根据你对(1)、(2)的探究结果,试写出当CEEA=m时,EP与EQ满足的数量关系式为_________,其中m的取值范围是_______(直接写出结论,不必证明)【探究二】若,AC=30cm,连续PQ,设△EPQ的面积为S(cm2),在旋转过程中:(1)S是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.(2)随着S取不同的值,对应△EPQ的个数有哪些变化?不出相应S值的取值范围.参 考 答 案1.A2.B3.C4.D5.C6.B7.B8.C9.D 10.C 11. 2(2)(2)x x -+ 12. 3750元 13.-114. 215.126° 16.m17.解:原式=1+1-3+2=118.解:223(3)(1)x x x x --=-+,将1x =代入到上式,则可得223111)2)1x x --=-+==-19.解:12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩222221552x x x x x x >->-⎧⎧⇒⇒-<≤⎨⎨+≥-≤⎩⎩20.解:如图所示,过点A 、D 分别作BC 的垂线AE、DF 分别交BC 于点E 、F , 所以△ABE 、△CDF 均为Rt △,又因为CD =14,∠DCF =30°,所以DF =7=AE ,且FC =12.1所以BC =7+6+12.1=25.1m. 21.证明:(A ) 连结AC ,因为AB =AC , 所以∠BAC =∠BCA ,同理AD =CD 得∠DAC =∠DCA所以∠A =∠BAC +∠DAC =∠BCA +∠DCA =∠C (B )如(A )只须反过来即可.22.解方程的思想.A 车150km/h ,B 车125km/h. 23.解:(1)125元的总话费 (2)72° (3)25.解:(1) a=7, b=1.4, c=2.1CBE FDCBA(2)12.10.3y x =-(3)有交点为31(,9)7其意义为当317x<时是方案调价前合算,当317x>时方案调价后合算.26.解:(1)②③为论断时,(2)②④为论断时,此时可以构成一梯形.27.解:(1)223y x x=--+(2)(0,3),(-3,0),(1,0)(3)略。
2018年江苏省徐州巿中考数学试卷及参考答案
震灾区捐款约为 11 180 万元,该笔善款可用科学记数法表示为(
)
A. 11.18 ×103 万元 B.1.118 ×104 万元
C. 1.118 ×105 万元 D.1.118 ×108 万元
3.(2.00 分)函数 y= 中自变量 x 的取值范围是(
)
A. x≥﹣1 B.x≤﹣1 C.x≠﹣1 D.x=﹣1
4.(2.00 分)下列运算中,正确的是(
)
A. x3+x3=x6 B. x3?x9=x27 C.( x2)3=x5 D.x÷x2=x﹣1
5.(2.00 分)如果点( 3,﹣ 4)在反比例函数 y= 的图象上,那么下列各点中,
在此图象上的是(
)
A.(3,4) B.(﹣ 2,﹣ 6) C.(﹣ 2, 6) D.(﹣ 3,﹣ 4)
)
A.正三角形 B.菱形 C.直角梯形 D.正六边形
9.(2.00 分)下列事件中,必然事件是(
)
A.抛掷 1 个均匀的骰子,出现 6 点向上
B.两直线被第三条直线所截,同位角相等
C. 366 人中至少有 2 人的生日相同
D.实数的绝对值是非负数
10.( 2.00 分)如图,小明随意向水平放置的大正方形内部区域抛一个小球,则
11 月 17 日起,调整出租车运价,调整方案见下列表格及图象(其中 a,b,c 为
常数)
行驶路程
[来源 学科网 ][来源 :][ 来源:Z&xx&]
收费标准 [来源 学_科_网Z_X_X_K][ 来源 学科网 ]
调价前
调价后
不超过 3km 的部分
起步价 6 元
起步价 a 元
五、解答题(每小题 7 分,共 21 分)
江苏省徐州巿2018年中考数学真题试题(含答案)
江苏省徐州巿2018年中考数学试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷共120分,考试时间120分钟.第Ⅰ卷注意事项:1.答Ⅰ第卷前考生务必将自己的考试证号、考试科目用2B铅笔填涂在答题卡上.2.作答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案.不能答在第Ⅰ卷上.一、选择题(每小题2分,共20分.在每小题给出的四个选项中,有且只有....一个是正确的)1.4的平方根是A.2± B.2 C. -2 D 162.一方有难、八方支援,截至5月26日12时,徐州巿累计为汶川地震灾区捐款约为11 180万元,该笔善款可用科学记数法表示为A. 11.18×103万元B. 1.118×104万元C. 1.118×105万元D. 1.118×108万元3.函数11yx=+中自变量x的取值范围是A. x≥-1B. x≤-1C. x≠-1D. x=-14.下列运算中,正确的是A.x3+x3=x6B. x3·x9=x27C.(x2)3=x5D. x÷x2=x-15.如果点(3,-4)在反比例函数kyx=的图象上,那么下列各点中,在此图象上的是A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)6.下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能..折成无盖..小方盒的是A BC D7.⊙O1和⊙O2的半径分别为5和2,O1O2=3,则⊙O1和⊙O2的位置关系是A.内含B. 内切C.相交D.外切8.下列图形中,是轴对称图形但不是中心对称图形的是A.正三角形B.菱形C.直角梯形D.正六边形9.下列事件中,必然事件是A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角C.366人中至少有2人的生日相同D.实数的绝对值是非负数10.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为A.34 B. 13 C. 12 D. 14二、填空题(每小题3分,共18分.请将答案填写在第Ⅱ.........卷相应的位置上.......) 11.因式分解:2x 2-8=______▲________12.徐州巿部分医保定点医院2018年第一季度的人均住院费用(单位:元)约为:12 320,11 880,10 370,8 570,10 640, 10240.这组数据的极差是_____▲_______元.13.若12,x x 为方程210x x +-=的两个实数根,则12x x +=___▲___. 14.边长为a 的正三角形的面积等于______▲______.15.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D.若,若∠C =18°,则∠CDA =______▲_______.16.如图,Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于____▲_____cm.第Ⅱ卷三、解答题(每小题5分,共20分) 17.计算:2008011(1)()3π--+-+18.已知21,23.x x x =--求的值19.解不等式组12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩,并写出它的所有整数解.(第10题图)(第15题图)(第16题图)20.如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m )1.4141.732四、解答题(本题有A 、B 两类题,A 类题4分,B 类题6分,你可以根据自己的学习情况,在两类题中任意选做一题......,如果两类题都做,则以A 类题计分) 21.(A 类)已知如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C. (B 类)已知如图,四边形ABCD 中,AB =BC ,∠A =∠C ,求证:AD =CD.五、解答题(每小题7分,共21分)22.从称许到南京可乘列车A 与列车B ,已知徐州至南京里程约为350km ,A 与B 车的平均速度之比为10∶7,A 车的行驶时间比B 车的少1h ,那么两车的平均速度分别为多少?23.小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:(1) 该月小王手机话费共有多少元?短信费长途话费基本话费月功能费50403020100项目金额/元DCBAB(第20题图)(第21题图)(2)扇形统计图中,表示短信费的扇形的圆心角为多少度?(3)请将表格补充完整;(4)请将条形统计图补充完整.24.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1,②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.。
江苏省徐州巿2018年中考数学试题真题含答案Word版
徐州巿2018年初中毕业、升学考试数 学 试 题本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷共120分,考试时间120分钟.第Ⅰ卷注意事项:1.答Ⅰ第卷前考生务必将自己的考试证号、考试科目用2B 铅笔填涂在答题卡上.2.作答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案.不能答在第Ⅰ卷上.一、选择题(每小题2分,共20分.在每小题给出的四个选项中,有且只有....一个是正确的) 1.4的平方根是A.2±B.2C. -2 D 162.一方有难、八方支援,截至5月26日12时,徐州巿累计为汶川地震灾区捐款约为11 180万元,该笔善款可用科学记数法表示为A. 11.18×103万元B. 1.118×104万元C. 1.118×105万元D. 1.118×108万元 3.函数11yx =+中自变量x 的取值范围是A. x ≥-1B. x ≤-1C. x ≠-1D. x =-1 4.下列运算中,正确的是A.x 3+x 3=x 6B. x 3·x 9=x 27C.(x 2)3=x 5D. x ÷x 2=x -1 5.如果点(3,-4)在反比例函数k yx=的图象上,那么下列各点中,在此图象上的是A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)6.下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能..折成无盖..小方盒的是ABC D7.⊙O 1和⊙O 2的半径分别为5和2,O 1O 2=3,则⊙O 1和⊙O 2的位置关系是A.内含B. 内切C.相交D.外切 8.下列图形中,是轴对称图形但不是中心对称图形的是A.正三角形B.菱形C.直角梯形D.正六边形 9.下列事件中,必然事件是A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角C.366人中至少有2人的生日相同D.实数的绝对值是非负数10.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为A.34B.13C.12D.14二、填空题(每小题3分,共18分.请将答案填写在第Ⅱ.........卷相应的位置上.......) 11.因式分解:2x 2-8=______▲________12.徐州巿部分医保定点医院2018年第一季度的人均住院费用(单位:元)约为:12 320,11 880,10 370,8 570,10 640, 10240.这组数据的极差是_____▲_______元. 13.若12,x x 为方程210x x +-=的两个实数根,则12x x +=___▲___.14.边长为a 的正三角形的面积等于______▲______.15.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D.若,若∠C =18°,则∠CDA =______▲_______.16.如图,Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于____▲_____cm.第Ⅱ卷(第10题图)(第15题图)(第16题图)三、解答题(每小题5分,共20分) 17.计算:2008011(1)()3π--+-+.18.已知21,23.x xx =+--求的值19.解不等式组12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩,并写出它的所有整数解.20.如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m )1.4141.732四、解答题(本题有A 、B 两类题,A 类题4分,B 类题6分,你可以根据自己的学习情况,在两类题中任意选做一题......,如果两类题都做,则以A 类题计分) 21.(A 类)已知如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C.(B 类)已知如图,四边形ABCD 中,AB =BC ,∠A =∠C ,求证:AD =CD.五、解答题(每小题7分,共21分)22.从称许到南京可乘列车A 与列车B ,已知徐州至南京里程约为350km ,A 与B 车的平均速度之比为10∶7,A 车的行驶时间比B 车的少1h ,那么两车的平均速度分别为多少? 23.小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各DCBAB(第20题图)(第21题图)题:(1) 该月小王手机话费共有多少元?(2) 扇形统计图中,表示短信费的扇形的圆心角为多少度? (3) 请将表格补充完整; (4) 请将条形统计图补充完整.24.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点B 的坐标为(1,0) ①画出△ABC关于x 轴对称的△A 1B 1C 1,②画出将△ABC 绕原点O 按逆时针旋转90°所得的△A 2B 2C2,③△A 1B 1C 1与△A 2B 2C 2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;短信费长途话费基本话费月功能费50403020100项目金额/元④△A 1B 1C 1与△A 2B 2C 2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.六、解答题(每小题8分,共16分)25.为缓解油价上涨给出租车待业带来的成本压力,某巿自2018年11月17日起,调整出租车运价,调整方案见下列表格及图像(其中a,b,c 为常数)设行驶路程xkm 时,调价前的运价y 1(元),调价后的运价为y 2(元)如图,折线ABCD 表示y 2与x 之间的函数关系式,线段EF 表示当0≤x ≤3时,y 1与x 的函数关系式,根据图表信息,完成下列各题: ①填空:a=______,b=______,c=_______.②写出当x >3时,y 1与x 的关系,并在上图中画出该函数的图象.③函数y 1与y 2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.26.已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断①OA=OC②AB=CD③∠BAD=∠DCB④AD∥BC请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:①构造一个真命题...,画图并给出证明;②构造一个假命题...,举反例加以说明.七、解答题(第27题8分,第28题10分,共18分)27.已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.28.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°【操作】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板.......DEF绕点..,并使边DE与边AB交于点P,边EF与边BC于点Q..E.旋转【探究一】在旋转过程中,(1)如图2,当C E1=时,EP与EQ满足怎样的数量关系?并给出证明.E A(2) 如图3,当C E 2E A=时EP 与EQ 满足怎样的数量关系?,并说明理由.(3) 根据你对(1)、(2)的探究结果,试写出当C E E A=m时,EP 与EQ 满足的数量关系式为_________,其中m 的取值范围是_______(直接写出结论,不必证明)【探究二】若,AC =30cm ,连续PQ ,设△EPQ 的面积为S(cm 2),在旋转过程中: (1) S 是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.(2) 随着S 取不同的值,对应△EPQ 的个数有哪些变化?不出相应S 值的取值范围.F C(E)B A(D)Q PDEFCBAQPDEFCBA(图1) (图2) (图3)徐州巿2018年初中毕业、升学考试数 学 试 题 参 考 答 案1.A2.B3.C4.D5.C6.B7.B8.C9.D 10.C 11. 2(2)(2)x x -+ 12. 3750元 13.-1 14.2415.126°16.m17.解:原式=1+1-3+2=1 18.解:223(3)(1)x x x x --=-+,将1x=+代入到上式,则可得2231311)22)1x x --=-+==-19.解:12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩222221552x x x x x x >->-⎧⎧⇒⇒-<≤⎨⎨+≥-≤⎩⎩20.解:如图所示,过点A 、D 分别作BC 的垂线AE、DF 分别交BC 于点E 、F , 所以△ABE 、△CDF 均为Rt △,又因为CD =14,∠DCF =30°,所以DF =7=AE ,且FC =12.1所以BC =7+6+12.1=25.1m. 21.证明:(A )连结AC ,因为AB =AC ,所以∠BAC =∠BCA ,同理AD =CD 得∠DAC =∠DCA所以∠A =∠BAC +∠DAC =∠BCA +∠DCA =∠C(B )如(A )只须反过来即可.22.解方程的思想.A 车150km/h ,B 车125km/h. 23.解:(1)125元的总话费 (2)72° (3)BE FDCBA(4) 解:如下图所示,24.(4)对称中心是(0,0) 25.解:(1) a=7, b=1.4, c=2.1 (2)12.10.3y x =-(3)有交点为31(,9)7其意义为当317x<时是方案调价前合算,当317x>时方案调价后合算.26.解:(1)②③为论断时,(2)②④为论断时,此时可以构成一梯形. 27.解:(1)223yx x =--+(2) (0,3),(-3,0),(1,0) (3)略短信费长途话费基本话费月功能费50403020100项目金额/元。
2018年江苏省徐州市中考数学试卷(含答案解析版)
2018年江苏省徐州市中考数学试卷(含答案解析版)为cm2.15.(3分)(2018•徐州)如图,Rt△ABC中,∠ABC=90°,D为AC的中点,若∠C=55°,则∠ABD= °.16.(3分)(2018•徐州)如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为.17.(3分)(2018•徐州)如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n个图案中白色正方形比黑色正方形多个.(用含n的代数式表示)18.(3分)(2018•徐州)如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,̂上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q P为AC运动的路径长为.三、解答题(本大题共有10小题,共86分.解答时应写出文字说明、证明过程或演算步骤)19.(10分)(2018•徐州)计算:(1)﹣12+20180﹣(12)﹣1+√83;(2)a 2−b 2a−b ÷a+b 2a−2b.20.(10分)(2018•徐州)(1)解方程:2x 2﹣x ﹣1=0;(2)解不等式组:{4x >2x −8x−13≤x+1621.(7分)(2018•徐州)不透明的袋中装有1个红球与2个白球,这些球除颜色外都相同,将其搅匀.(1)从中摸出1个球,恰为红球的概率等于 ;(2)从中同时摸出2个球,摸到红球的概率是多少?(用画树状图或列表的方法写出分析过程)22.(7分)(2018•徐州)在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:根据以上信息,解答下列问题:(1)该调查的样本容量为 ,a= ;(2)在扇形统计图中,“A”对应扇形的圆心角为 °;(3)若该校有2000名学生,请估计全校学生中家庭藏书200本以上的人数.23.(8分)(2018•徐州)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?24.(8分)(2018•徐州)徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?25.(8分)(2018•徐州)如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.(1)CD与⊙O有怎样的位置关系?请说明理由;̂的长.(2)若∠CDB=60°,AB=6,求AD26.(8分)(2018•徐州)如图,1号楼在2号楼的南侧,两楼高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42m.(1)求楼间距AB;(2)若2号楼共30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)27.(10分)(2018•徐州)如图,在平面直角坐标系中,二次函数y=﹣x2+6x﹣5的图象与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l.(1)求点P,C的坐标;(2)直线l上是否存在点Q,使△PBQ的面积等于△PAC的面积的2倍?若存在,求出点Q的坐标;若不存在,请说明理由.28.(10分)(2018•徐州)如图,将等腰直角三角形纸片ABC对折,折痕为CD.展平后,再将点B折叠在边AC上(不与A、C重合),折痕为EF,点B在AC上的对应点为M,设CD与EM交于点P,连接PF.已知BC=4.(1)若M为AC的中点,求CF的长;(2)随着点M在边AC上取不同的位置,①△PFM的形状是否发生变化?请说明理由;②求△PFM的周长的取值范围.2018年江苏省徐州市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)(2018•徐州)4的相反数是( )A .14B .﹣14C .4D .﹣4【考点】14:相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:4的相反数是﹣4,故选:D .【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)(2018•徐州)下列计算正确的是( )A .2a 2﹣a 2=1B .(ab )2=ab 2C .a 2+a 3=a 5D .(a 2)3=a 6【考点】35:合并同类项;47:幂的乘方与积的乘方. 【专题】1:常规题型.【分析】根据合并同类项法则判断A 、C ;根据积的乘方法则判断B ;根据幂的乘方法则判断D .【解答】解:A 、2a 2﹣a 2=a 2,故A 错误;B 、(ab )2=a 2b 2,故B 错误;C 、a 2与a 3不是同类项,不能合并,故C 错误;D 、(a 2)3=a 6,故D 正确.故选:D .【点评】本题考查幂的乘方与积的乘方,合并同类项,熟练掌握运算性质和法则是解题的关键.3.(3分)(2018•徐州)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B. C.D.【考点】P3:轴对称图形;R5:中心对称图形.【专题】1:常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:A.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)(2018•徐州)如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】1:常规题型.【分析】根据三视图的定义即可判断.【解答】解:根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选:A.【点评】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.5.(3分)(2018•徐州)抛掷一枚质地均匀的硬币,若前3次都是正面朝上,则第4次正面朝上的概率()A.小于12B.等于12C.大于12D.无法确定【考点】X3:概率的意义.【专题】1:常规题型;543:概率及其应用.【分析】利用概率的意义直接得出答案.【解答】解:连续抛掷一枚质地均匀的硬币4次,前3次的结果都是正面朝上,他第4次抛掷这枚硬币,正面朝上的概率为:1 2,故选:B.【点评】此题主要考查了概率的意义,正确把握概率的定义是解题关键.6.(3分)(2018•徐州)某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:结果如下:关于这组数据,下列说法正确的是()A.众数是2册 B.中位数是2册C.极差是2册 D.平均数是2册【考点】W2:加权平均数;W4:中位数;W5:众数;W6:极差.【专题】54:统计与概率.【分析】根据极差、众数、中位数及平均数的定义,依次计算各选项即可作出判断.【解答】解:A、众数是1册,结论错误,故A不符合题意;B、中位数是2册,结论正确,故B符合题意;C、极差=3﹣0=3册,结论错误,故C不符合题意;D、平均数是(0×13+1×35+2×29+3×23)÷100=1.62册,结论错误,故D不符合题意.故选:B.【点评】本题考查了极差、平均数、中位数及众数的知识,属于基础题,掌握各部分的定义及计算方法是解题关键.7.(3分)(2018•徐州)如图,在平面直角坐标系中,函数y=kx与y=﹣2x的图象交于A,B两点,过A作y轴的垂线,交函数y=4x的图象于点C,连接BC,则△ABC的面积为()A.2 B.4 C.6 D.8【考点】G8:反比例函数与一次函数的交点问题.【专题】33:函数思想.【分析】根据正比例函数y=kx与反比例函数y=﹣2x的图象关于原点对称,可得出A、B两点坐标的关系,根据垂直于y轴的直线上任意两点纵坐标相同,可得出A、C两点坐标的关系,设A点坐标为(x,﹣2x),表示出B、C两点的坐标,再根据三角形的面积公式即可解答.【解答】解:∵正比例函数y=kx与反比例函数y=﹣2x的图象关于原点对称,∴设A点坐标为(x,﹣2x),则B点坐标为(﹣x,2x),C(﹣2x,﹣2x),∴S△ABC =12×(﹣2x﹣x)•(﹣2x﹣2x)=12×(﹣3x)•(﹣4x)=6.故选:C.【点评】本题考查了反比例函数与正比例函数图象的特点,垂直于y轴的直线上任意两点的坐标特点,三角形的面积,解答此题的关键是找出A、B两点与A、C两点坐标的关系.8.(3分)(2018•徐州)若函数y=kx+b的图象如图所示,则关于x的不等式kx+2b <0的解集为()A.x<3 B.x>3 C.x<6 D.x>6【考点】F3:一次函数的图象;FD:一次函数与一元一次不等式.【专题】11:计算题;533:一次函数及其应用.【分析】由一次函数图象过(3,0)且过第二、四象限知b=﹣3k、k<0,代入不等式求解可得.【解答】解:∵一次函数y=kx+b经过点(3,0),∴3k+b=0,且k<0,则b=﹣3k,∴不等式为kx﹣6k<0,解得:x>6,故选:D.【点评】本题主要考查一次函数与一元一次不等式,解题的关键是掌握一次函数的图象与性质及解一元一次不等式的能力.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程)9.(3分)(2018•徐州)五边形的内角和是540 °.【考点】L3:多边形内角与外角.【分析】根据多边形的内角和是(n﹣2)•180°,代入计算即可.【解答】解:(5﹣2)•180°=540°,故答案为:540°.【点评】本题考查的是多边形的内角和的计算,掌握多边形的内角和可以表示成(n﹣2)•180°是解题的关键.10.(3分)(2018•徐州)我国自主研发的某型号手机处理器采用10nm工艺,已知1nm=0.000000001m,则10nm用科学记数法可表示为1×10﹣8m.【考点】1J:科学记数法—表示较小的数.【专题】511:实数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:10nm用科学记数法可表示为1×10﹣8m,故答案为:1×10﹣8.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.(3分)(2018•徐州)化简:|√3−2|= 2−√3.【考点】28:实数的性质.【专题】11:计算题.【分析】要先判断出√3−2<0,再根据绝对值的定义即可求解.【解答】解:∵√3−2<0∴|√3−2|=2﹣√3.故答案为:2﹣√3.【点评】此题主要考查了绝对值的性质.要注意负数的绝对值是它的相反数.12.(3分)(2018•徐州)若√x−2在实数范围内有意义,则x的取值范围为x ≥2 .【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件可得x﹣2≥0,再解即可.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.13.(3分)(2018•徐州)若2m+n=4,则代数式6﹣2m﹣n的值为 2 .【考点】33:代数式求值.【专题】11:计算题.【分析】将6﹣2m﹣n化成6﹣(2m+n)代值即可得出结论.【解答】解:∵2m+n=4,∴6﹣2m﹣n=6﹣(2m+n)=6﹣4=2,故答案为2.【点评】此题是代数式求值问题,利用整体代入是解本题的关键.14.(3分)(2018•徐州)若菱形两条对角线的长分别是6cm和8cm,则其面积为24 cm2.【考点】L8:菱形的性质.【分析】直接利用菱形面积等于对角线乘积的一半进而得出答案.【解答】解:∵菱形的两条对角线分别是6cm和8cm,∴这个菱形的面积是:12×6×8=24(cm2).故答案为:24.【点评】此题主要考查了菱形的性质,正确记忆菱形面积求法是解题关键.15.(3分)(2018•徐州)如图,Rt△ABC中,∠ABC=90°,D为AC的中点,若∠C=55°,则∠ABD= 35 °.【考点】KP:直角三角形斜边上的中线.【专题】552:三角形.【分析】由直角三角形斜边上的中线的性质得到△BCD为等腰三角形,由等腰三角形的性质和角的互余求得答案.【解答】解:在Rt△ABC中,∠ABC=90°,D为AC的中点,∴BD是中线,∴AD=BD=CD,∴∠BDC=∠C=55°,∴∠ABD=90°﹣55°=35°.故答案是:35.【点评】本题考查了直角三角形斜边上的中线,等腰三角形的性质.在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点).16.(3分)(2018•徐州)如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为 2 .【考点】MP:圆锥的计算.【分析】易得扇形的弧长,除以2π即为圆锥的底面半径.【解答】解:扇形的弧长=120π×6180=4π,∴圆锥的底面半径为4π÷2π=2.故答案为:2.【点评】考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.17.(3分)(2018•徐州)如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n个图案中白色正方形比黑色正方形多4n+3 个.(用含n的代数式表示)【考点】38:规律型:图形的变化类.【专题】2A:规律型.【分析】利用给出的三个图形寻找规律,发现白色正方形个数=总的正方形个数﹣黑色正方形个数,而黑色正方形个数第1个为1,第二个为2,由此寻找规律,总个数只要找到边与黑色正方形个数之间关系即可,依此类推,寻找规律.【解答】解:第1个图形黑、白两色正方形共3×3个,其中黑色1个,白色3×3﹣1个,第2个图形黑、白两色正方形共3×5个,其中黑色2个,白色3×5﹣2个,第3个图形黑、白两色正方形共3×7个,其中黑色3个,白色3×7﹣3个,依此类推,第n个图形黑、白两色正方形共3×(2n+1)个,其中黑色n个,白色3×(2n+1)﹣n个,即:白色正方形5n+3个,黑色正方形n个,故第n个图案中白色正方形比黑色正方形多4n+3个.【点评】本题考查了几何图形的变化规律,是探索型问题,图中的变化规律是解题的关键.18.(3分)(2018•徐州)如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P为AĈ上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q 运动的路径长为 4 .【考点】KQ:勾股定理;M5:圆周角定理;O4:轨迹;S9:相似三角形的判定与性质.【专题】1:常规题型.【分析】连接AQ,首先证明△ABP∽△QBA,则∠APB=∠QAB=90°,然后求得点P与点C重合时,AQ的长度即可.【解答】解:如图所示:连接AQ.∵BP•BQ=AB2,∴BPAB =AB BQ.又∵∠ABP=∠QBA,∴△ABP∽△QBA,∴∠APB=∠QAB=90°,∴QA始终与AB垂直.当点P在A点时,Q与A重合,当点P在C点时,AQ=2OC=4,此时,Q运动到最远处,∴点Q运动路径长为4.故答案为:4.【点评】本题主要考查的是相似三角形的判定和性质,证得△ABP ∽△QBA 是解题的关键.三、解答题(本大题共有10小题,共86分.解答时应写出文字说明、证明过程或演算步骤)19.(10分)(2018•徐州)计算:(1)﹣12+20180﹣(12)﹣1+√83;(2)a 2−b 2a−b ÷a+b 2a−2b.【考点】2C :实数的运算;6B :分式的加减法;6E :零指数幂;6F :负整数指数幂.【专题】11:计算题.【分析】(1)先计算有理数的乘方、零指数幂、立方根,再进行计算;(2)先将分子和分母分解因式,约分后再计算.【解答】解:(1)﹣12+20180﹣(12)﹣1+√83;=﹣1+1﹣2+2,=0;(2)a 2−b 2a−b ÷a+b2a−2b . =(a+b)(a−b)a−b ÷a+b 2a−2b ,=2a ﹣2b .【点评】本题考查的是有理数的混合计算和分式的除法,在解答此类问题时要注意有整数的运算法则和及约分的灵活应用.20.(10分)(2018•徐州)(1)解方程:2x 2﹣x ﹣1=0;(2)解不等式组:{4x >2x −8x−13≤x+16【考点】A8:解一元二次方程﹣因式分解法;CB :解一元一次不等式组. 【专题】1:常规题型.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)2x 2﹣x ﹣1=0,(2x+1)(x ﹣1)=0,2x+1=0,x ﹣1=0,x 1=﹣12,x 2=1;(2){4x >2x −8①x−13≤x+16② ∵解不等式①得:x >﹣4,解不等式②得:x ≤3,∴不等式组的解集为﹣4<x ≤3.【点评】本题考查了解一元二次方程和解一元一次不等式组,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集求出不等式组的解集是解(2)的关键.21.(7分)(2018•徐州)不透明的袋中装有1个红球与2个白球,这些球除颜色外都相同,将其搅匀.(1)从中摸出1个球,恰为红球的概率等于 13;(2)从中同时摸出2个球,摸到红球的概率是多少?(用画树状图或列表的方法写出分析过程)【考点】X4:概率公式;X6:列表法与树状图法.【专题】1:常规题型.【分析】(1)根据题意求出即可;(2)先画出树状图,再求即可.【解答】解:(1)从中摸出1个球,恰为红球的概率等于13,故答案为:13;(2)画树状图:所以共有6种情况,含红球的有4种情况,所以p=46=23,答:从中同时摸出2个球,摸到红球的概率是23.【点评】本题考查了列表法与画树状图,概率公式等知识点,能够正确画出树状图是解此题的关键.22.(7分)(2018•徐州)在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:根据以上信息,解答下列问题:(1)该调查的样本容量为 200 ,a= 64 ;(2)在扇形统计图中,“A”对应扇形的圆心角为 36 °;(3)若该校有2000名学生,请估计全校学生中家庭藏书200本以上的人数.【考点】V3:总体、个体、样本、样本容量;V5:用样本估计总体;V7:频数(率)分布表;VB:扇形统计图.【专题】1:常规题型.【分析】(1)根据“C”的人数和在扇形图中所占的百分比,先求出样本容量,再根据“B”的百分比计算出a的值;(2)利用圆心角计算公式,即可得到“A”对应的扇形的圆心角;(3)依据家庭藏书200本以上的人数所占的比例,即可估计该校家庭藏书200本以上的人数.【解答】解:(1)因为“C”有50人,占样本的25%,所以样本=50÷25%=200(人)因为“B”占样本的32%,所以a=200×32%=64(人)故答案为:200,64;(2)“A”对应的扇形的圆心角=20200×360°=36°,故答案为:36°;(3)全校学生中家庭藏书200本以上的人数为:2000×66200=660(人)答:全校学生中家庭藏书200本以上的人数为660人.【点评】本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.23.(8分)(2018•徐州)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE ,以CE 为边向右上方作正方形CEFG ,作FH ⊥AD ,垂足为H ,连接AF .(1)求证:FH=ED ;(2)当AE 为何值时,△AEF 的面积最大?【考点】H7:二次函数的最值;KD :全等三角形的判定与性质;LB :矩形的性质;LE :正方形的性质.【专题】1:常规题型.【分析】(1)根据正方形的性质,可得EF=CE ,再根据∠CEF=∠90°,进而可得∠FEH=∠DCE ,结合已知条件∠FHE=∠D=90°,利用“AAS”即可证明△FEH ≌△ECD ,由全等三角形的性质可得FH=ED ;(2)设AE=a ,用含a 的函数表示△AEF 的面积,再利用函数的最值求面积最大值即可.【解答】解:(1)证明:∵四边形CEFG 是正方形, ∴CE=EF ,∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,∴∠FEH=∠DCE ,在△FEH 和△ECD 中{EF =CE∠FEH =∠DCE ∠FHE =∠D ,∴△FEH ≌△ECD ,∴FH=ED ;(2)设AE=a ,则ED=FH=4﹣a ,∴S △AEF =12AE•FH=12a (4﹣a ),=﹣12(a ﹣2)2+2,∴当AE=2时,△AEF 的面积最大.【点评】本题考查了正方形性质、矩形性质以及全等三角形的判断和性质和三角形面积有关的知识点,熟记全等三角形的各种判断方法是解题的关键.24.(8分)(2018•徐州)徐州至北京的高铁里程约为700km ,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A 与“复兴号”高铁B 前往北京.已知A 车的平均速度比B 车的平均速度慢80km/h ,A 车的行驶时间比B 车的行驶时间多40%,两车的行驶时间分别为多少?【考点】B7:分式方程的应用.【专题】34:方程思想;522:分式方程及应用.【分析】设B 车行驶的时间为t 小时,则A 车行驶的时间为1.4t 小时,根据平均速度=路程÷时间结合A 车的平均速度比B 车的平均速度慢80km/h ,即可得出关于t 的分式方程,解之经检验后即可得出结论.【解答】解:设B 车行驶的时间为t 小时,则A 车行驶的时间为1.4t 小时,根据题意得:700t ﹣7001.4t=80,解得:t=2.5,经检验,t=2.5是原分式方程的解,且符合题意,∴1.4t=2.5.答:A 车行驶的时间为2.5小时,B 车行驶的时间为2.5小时.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.25.(8分)(2018•徐州)如图,AB 为⊙O 的直径,点C 在⊙O 外,∠ABC 的平分线与⊙O 交于点D ,∠C=90°.(1)CD 与⊙O 有怎样的位置关系?请说明理由;(2)若∠CDB=60°,AB=6,求AD ̂的长.【考点】M5:圆周角定理;MB :直线与圆的位置关系;MN :弧长的计算.【专题】55A :与圆有关的位置关系.【分析】(1)连接OD ,只需证明∠ODC=90°即可;(2)由(1)中的结论可得∠ODB=30°,可求得弧AD 的圆心角度数,再利用弧长公式求得结果即可.【解答】解:(1)相切.理由如下:连接OD ,∵BD 是∠ABC 的平分线, ∴∠CBD=∠ABD ,又∵OD=OB ,∴∠ODB=∠ABD , ∴∠ODB=∠CBD , ∴OD ∥CB ,∴∠ODC=∠C=90°,∴CD 与⊙O 相切;(2)若∠CDB=60°,可得∠ODB=30°,∴∠AOD=60°,又∵AB=6,∴AO=3,∴AD ̂=60×π×3180=π.【点评】此题主要考查圆的切线的判定、等腰三角形的性质及圆周角定理的运用.一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.26.(8分)(2018•徐州)如图,1号楼在2号楼的南侧,两楼高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42m.(1)求楼间距AB;(2)若2号楼共30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)【考点】T8:解直角三角形的应用.【专题】12:应用题.【分析】(1)构造出两个直角三角形,利用两个角的正切值即可求出答案.(2)只需计算出CA的高度即可求出楼层数.【解答】解:(1)过点C作CE⊥PB,垂足为E,过点D作DF⊥PB,垂足为F,则∠CEP=∠PFD=90°,由题意可知:设AB=x,在Rt△PCE中,tan32.3°=PE x,∴PE=x•tan32.3°,同理可得:在Rt△PDF中,tan55.7°=PF x,∴PF=x•tan55.7°,由PF﹣PE=EF=CD=42,可得x•tan55.7°﹣x•tan32.3°=42,解得:x=50∴楼间距AB=50m,(2)由(1)可得:PE=50•tan32.3°=31.5m,∴CA=EB=90﹣31.5=58.5m由于2号楼每层3米,可知点C位于20层【点评】本题考查解直角三角形的应用,解题的关键是正确运用锐角三角函数来求出相应的线段,本题属于中等题型.27.(10分)(2018•徐州)如图,在平面直角坐标系中,二次函数y=﹣x2+6x﹣5的图象与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l.(1)求点P,C的坐标;(2)直线l上是否存在点Q,使△PBQ的面积等于△PAC的面积的2倍?若存在,求出点Q的坐标;若不存在,请说明理由.【考点】H3:二次函数的性质;HA :抛物线与x 轴的交点.【专题】535:二次函数图象及其性质.【分析】(1)利用配方法求出顶点坐标,令x=0,可得y=﹣5,推出C (0,﹣5);(2)直线PC 的解析式为y=3x ﹣5,设直线交x 轴于D ,则D (53,0),设直线PQ 交x 轴于E ,当BE=2AD 时,△PBQ 的面积等于△PAC 的面积的2倍,分两种情形分别求解即可解决问题;【解答】解:(1)∵y=﹣x 2+6x ﹣5=﹣(x ﹣3)2+4,∴顶点P (3,4),令x=0得到y=﹣5, ∴C (0.﹣5).(2)令y=0,x 2﹣6x+5=0,解得x=1或5,∴A (1,0),B (5,0),设直线PC 的解析式为y=kx+b ,则有{b =−53k +b =4,解得{k =3b =−5,∴直线PC 的解析式为y=3x ﹣5,设直线交x 轴于D ,则D (53,0),设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,∵AD=2 3,∴BE=4 3,∴E(113,0)或E′(193,0),则直线PE的解析式为y=﹣6x+22,∴Q(92,﹣5),直线PE′的解析式为y=﹣65x+385,∴Q′(212,﹣5),综上所述,满足条件的点Q(92,﹣5),Q′(212,﹣5).【点评】本题考查抛物线与x轴的交点、二次函数的性质等知识,解题的关键是熟练掌握待定系数法,学会用转化的思想思考问题,属于中考常考题型.28.(10分)(2018•徐州)如图,将等腰直角三角形纸片ABC对折,折痕为CD.展平后,再将点B折叠在边AC上(不与A、C重合),折痕为EF,点B在AC上的对应点为M,设CD与EM交于点P,连接PF.已知BC=4.(1)若M为AC的中点,求CF的长;(2)随着点M在边AC上取不同的位置,①△PFM的形状是否发生变化?请说明理由;②求△PFM的周长的取值范围.【考点】KY:三角形综合题.【专题】152:几何综合题.【分析】(1)由折叠的性质可知,FB=FM ,设CF=x ,则FB=FM=4﹣x ,在Rt △CFM 中,根据FM 2=CF 2+CM 2,构建方程即可解决问题;(2)①△PFM 的形状是等腰直角三角形,想办法证明△POF ∽△MOC ,可得∠PFO=∠MCO=45°,延长即可解决问题;②设FM=y ,由勾股定理可知:PF=PM=√22y ,可得△PFM 的周长=(1+√2)y ,由2<y <4,可得结论;【解答】解:(1)∵M 为AC 的中点, ∴CM=12AC=12BC=2, 由折叠的性质可知,FB=FM ,设CF=x ,则FB=FM=4﹣x , 在Rt △CFM 中,FM 2=CF 2+CM 2,即(4﹣x )2=x 2+22,解得,x=32,即CF=32;(2)①△PFM 的形状是等腰直角三角形,不会发生变化,理由如下:由折叠的性质可知,∠PMF=∠B=45°,∵CD 是中垂线,∴∠ACD=∠DCF=45°,∵∠MPC=∠OPM ,∴△POM ∽△PMC ,∴PO PM =OM MC , ∴MC PM =OM PO ∵∠EMC=∠AEM+∠A=∠CMF+∠EMF ,∴∠AEM=∠CMF ,∵∠DPE+∠AEM=90°,∠CMF+∠MFC=90°,∠DPE=∠MPC ,∴∠DPE=∠MFC ,∠MPC=∠MFC ,∵∠PCM=∠OCF=45°,∴△MPC ∽△OFC ,∴MP OF =MC OC ,∴MC PM =OC OF, ∴OM PO =OC OF ,∵∠POF=∠MOC ,∴△POF ∽△MOC ,∴∠PFO=∠MCO=45°,∴△PFM 是等腰直角三角形.②∵△PFM 是等腰直角三角形,设FM=y ,由勾股定理可知:PF=PM=√22y , ∴△PFM 的周长=(1+√2)y ,∵2<y <4, ∴△PFM 的周长满足:2+2√2<(1+√2)y <4+4√2.【点评】本题考查三角形综合题、等腰直角三角形的性质和判定、翻折变换、相似三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题,属于中考常考题型.。
2018年江苏省徐州市中考数学试卷含答案解析版
2018年江苏省徐州市中考数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)(2018•徐州)4的相反数是( )A .14B .﹣14C .4D .﹣42.(3分)(2018•徐州)下列计算正确的是( )A .2a 2﹣a 2=1B .(ab )2=ab 2C .a 2+a 3=a 5D .(a 2)3=a 63.(3分)(2018•徐州)下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .4.(3分)(2018•徐州)如图是由5个相同的正方体搭成的几何体,其左视图是( )A .B .C .D .5.(3分)(2018•徐州)抛掷一枚质地均匀的硬币,若前3次都是正面朝上,则第4次正面朝上的概率( )A .小于12B .等于12C .大于12D .无法确定 6.(3分)(2018•徐州)某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:结果如下:册数0 1 2 3 人数 13 35 29 23关于这组数据,下列说法正确的是()A.众数是2册B.中位数是2册C.极差是2册D.平均数是2册7.(3分)(2018•徐州)如图,在平面直角坐标系中,函数y=kx与y=﹣2x的图象交于A,B两点,过A作y轴的垂线,交函数y=4x的图象于点C,连接BC,则△ABC的面积为()A.2 B.4 C.6 D.88.(3分)(2018•徐州)若函数y=kx+b的图象如图所示,则关于x的不等式kx+2b <0的解集为()A.x<3 B.x>3 C.x<6 D.x>6二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程)9.(3分)(2018•徐州)五边形的内角和是°.10.(3分)(2018•徐州)我国自主研发的某型号手机处理器采用10nm工艺,已知1nm=0.000000001m,则10nm用科学记数法可表示为m.11.(3分)(2018•徐州)化简:|√3−2|=.12.(3分)(2018•徐州)若√x−2在实数范围内有意义,则x的取值范围为.13.(3分)(2018•徐州)若2m+n=4,则代数式6﹣2m﹣n的值为.14.(3分)(2018•徐州)若菱形两条对角线的长分别是6cm和8cm,则其面积为cm2.15.(3分)(2018•徐州)如图,Rt△ABC中,∠ABC=90°,D为AC的中点,若∠C=55°,则∠ABD= °.16.(3分)(2018•徐州)如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为 .17.(3分)(2018•徐州)如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n 个图案中白色正方形比黑色正方形多 个.(用含n 的代数式表示)18.(3分)(2018•徐州)如图,AB 为⊙O 的直径,AB=4,C 为半圆AB 的中点,P 为AĈ上一动点,延长BP 至点Q ,使BP•BQ=AB 2.若点P 由A 运动到C ,则点Q 运动的路径长为 .三、解答题(本大题共有10小题,共86分.解答时应写出文字说明、证明过程或演算步骤)19.(10分)(2018•徐州)计算:(1)﹣12+20180﹣(12)﹣1+√83;(2)a 2−b 2a−b ÷a+b 2a−2b. 20.(10分)(2018•徐州)(1)解方程:2x 2﹣x ﹣1=0;(2)解不等式组:{4x >2x −8x−13≤x+16 21.(7分)(2018•徐州)不透明的袋中装有1个红球与2个白球,这些球除颜色外都相同,将其搅匀.(1)从中摸出1个球,恰为红球的概率等于 ;(2)从中同时摸出2个球,摸到红球的概率是多少?(用画树状图或列表的方法写出分析过程)22.(7分)(2018•徐州)在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:类别家庭藏书m 本 学生人数 A0≤m ≤25 20 B26≤m ≤100 a C101≤m ≤200 50 D m ≥201 66 根据以上信息,解答下列问题:(1)该调查的样本容量为 ,a= ;(2)在扇形统计图中,“A”对应扇形的圆心角为 °;(3)若该校有2000名学生,请估计全校学生中家庭藏书200本以上的人数.23.(8分)(2018•徐州)如图,在矩形ABCD 中,AD=4,点E 在边AD 上,连接CE ,以CE 为边向右上方作正方形CEFG ,作FH ⊥AD ,垂足为H ,连接AF .(1)求证:FH=ED ;(2)当AE 为何值时,△AEF 的面积最大?24.(8分)(2018•徐州)徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?25.(8分)(2018•徐州)如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.(1)CD与⊙O有怎样的位置关系?请说明理由;̂的长.(2)若∠CDB=60°,AB=6,求AD26.(8分)(2018•徐州)如图,1号楼在2号楼的南侧,两楼高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42m.(1)求楼间距AB;(2)若2号楼共30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)27.(10分)(2018•徐州)如图,在平面直角坐标系中,二次函数y=﹣x2+6x﹣5的图象与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l.(1)求点P,C的坐标;(2)直线l上是否存在点Q,使△PBQ的面积等于△PAC的面积的2倍?若存在,求出点Q的坐标;若不存在,请说明理由.28.(10分)(2018•徐州)如图,将等腰直角三角形纸片ABC对折,折痕为CD.展平后,再将点B折叠在边AC上(不与A、C重合),折痕为EF,点B在AC上的对应点为M,设CD与EM交于点P,连接PF.已知BC=4.(1)若M为AC的中点,求CF的长;(2)随着点M在边AC上取不同的位置,①△PFM的形状是否发生变化?请说明理由;②求△PFM的周长的取值范围.2018年江苏省徐州市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)(2018•徐州)4的相反数是( )A .14B .﹣14C .4D .﹣4【考点】14:相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:4的相反数是﹣4,故选:D .【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)(2018•徐州)下列计算正确的是( )A .2a 2﹣a 2=1B .(ab )2=ab 2C .a 2+a 3=a 5D .(a 2)3=a 6【考点】35:合并同类项;47:幂的乘方与积的乘方.【专题】1:常规题型.【分析】根据合并同类项法则判断A 、C ;根据积的乘方法则判断B ;根据幂的乘方法则判断D .【解答】解:A 、2a 2﹣a 2=a 2,故A 错误;B 、(ab )2=a 2b 2,故B 错误;C 、a 2与a 3不是同类项,不能合并,故C 错误;D 、(a 2)3=a 6,故D 正确.故选:D .【点评】本题考查幂的乘方与积的乘方,合并同类项,熟练掌握运算性质和法则是解题的关键.3.(3分)(2018•徐州)下列图形中,既是轴对称图形,又是中心对称图形的是。
2018年江苏省徐州市中考数学二模试卷及解析
第1页(共24页)页) **==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==** **==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==** 2018年江苏省徐州市中考数学二模试卷一、选择题(本大题共有8小题,每小题3分,共24分。
在每小题所给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣的相反数是( )A .﹣B .4C .﹣4D .2.(3分)下列图形中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .3.(3分)下列运算中,正确的是( )A .(﹣3a 3)2=9a 6B .a •a 4=a 4C .a 6÷a 3=a 2D .3a +2a 2=5a 34.(3分)下列说法正确的是( )A .检测某批次灯泡的使用寿命,适宜用全面调查B .“367人中有2人同月同日生”为必然事件C .可能性是1%的事件在一次试验中一定不会犮生D .数据3,5,4,1,﹣2的中位数是45.(3分)若正多边形的一个内角是150°,则该正多边形的边数是( )A .6B .12C .16D .186.(3分)如图,BC 是⊙O 的弦,OA ⊥BC ,∠AOB =70°,则∠ADC 的度数是()A.70° B.35° C.45° D.60°7.(3分)已知点 A(﹣1,1),B(1,1),C(2,4)在同一个函数图象上,这个函数图象可能是( )A. B.C. D.8.(3分)已知一次函数y=kx+b的图象如图所示,则关于x的不等式k(x﹣4)﹣2b≥0的解集为( )A.x≥﹣2 B.x≤3 C.x≤﹣2 D.x≥3二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程)9.(3分)若分式有意义,则x的取值范围为 .10.(3分)因式分解:ax2﹣ay2= .11.(3分)如图所示的圆形纸板被等分成10个扇形挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是 .12.(3分)某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为 . 13.(3分)若反比例函数y=﹣的图象经过点A(m,3),则m的值是 . 14.(3分)已知2a﹣3b=7,则8+6b﹣4a= .15.(3分)如图,⊙O的直径垂直于弦CD,垂足为E,∠A=15°,半径为2,则CD的长为 .16.(3分)若某一圆锥的母线长为5cm,高为4cm,则此圆锥的侧面积是 cm2. 17.(3分)如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD 上,则∠AEB= 度.18.(3分)观察下列的“蜂窝图”则第n个图案中的“”的个数是 .(用含有n的代数式表示)三、解答题(本大题共有10小题,共86分。
2018年江苏省徐州市西苑中学中考数学二模试卷 解析版
2018年江苏省徐州市西苑中学中考数学二模试卷一、选择题(本大题共8道小题,每小题3分,共24分)1.(3分)的相反数是()A.2B.﹣2C.D.﹣2.(3分)下列计算正确的是()A.3a+2a=6a B.a2+a3=a5C.a6÷a2=a4D.(a2)3=a5 3.(3分)由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.4.(3分)式子在实数范围内有意义,则x的取值范围是()A.x>1B.x≥1C.x<1D.x≤15.(3分)下列图形中,不是中心对称图形的是()A.圆B.正方形C.正六边形D.等边三角形6.(3分)将0.00007用科学记数法表示为()A.7×10﹣6B.70×10﹣5C.7×10﹣5D.0.7×10﹣6 7.(3分)如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为()A.15°B.18°C.20°D.28°8.(3分)已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如图,则该封闭图形可能是()A.B.C.D.二、填空题(本大题共10道小题,每小题3分,共30分)9.(3分)一个角的度数为20°,则它的补角的度数为.10.(3分)徐州市6月份某周内每天的最高气温数据如下(单位:℃):24,26,29,26,29,32,29,则这组数据的众数是.11.(3分)若反比例函数y=﹣的图象经过点A(m,3),则m的值是.12.(3分)六边形的内角和是°.13.(3分)关于x的一元二次方程x2﹣x+m=0没有实数根,则m的取值范围是.14.(3分)下列四个命题中:①对顶角相等;②同位角相等;③全等三角形对应边相等;④菱形的对角线相等.其中,真命题的有(填序号).15.(3分)在Rt△ABC中,∠ABC=90°,AB=6,BC=8,则这个三角形的外接圆的直径长为.16.(3分)如图,在△ABC中,∠C=90°,∠B=30°,AD是∠BAC的角平分线,DE ⊥AB,垂足为E,DE=1,则BC=.17.(3分)将一些相同的圆点按如图所示的规律摆放:第1个图形有3个圆点,第2个图形有7个圆点,第3个图形有13个圆点,第4个图形有21个圆点,第n个图有个圆点.18.(3分)如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为.三、解答题(共86分)19.(10分)计算:(1)(2)20.(10分)(1)解方程:x2﹣4x+2=0(2)解不等式组:21.(6分)为了深化改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“科学实验”、“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团.为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):某校被调查学生选择社团意向统计表选择意向所占百分比文学鉴赏a科学实验35%音乐舞蹈b手工编织10%其他c根据统计图表中的信息,解答下列问题:(1)求本次调查的学生总人数及a,b,c的值;(2)将条形统计图补充完整;(3)若该校共有1200名学生,试估计全校选择“科学实验”社团的人数.22.(8分)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表或树状图等方法求出两次摸到的球是1个红球和1个白球的概率.23.(8分)如图,▱ABCD的对角线AC、BD相交于点O,AE=CF.(1)求证:△BOE≌△DOF;(2)若BD=EF,连接DE、BF,判断四边形EBFD的形状,并证明你的结论.24.(8分)某学校为鼓励学生积极参加体育锻炼,派王老师和李老师去购买一些篮球和排球.回校后,王老师和李老师编写了一道题:同学们,请求出篮球和排球的单价各是多少元?25.(8分)如图,某渔船在海面上朝正西方向以20海里/时匀速航行,在A处观测到灯塔C在北偏西60°方向上,航行1小时到达B处,此时观察到灯塔C在北偏西30°方向上,若该船继续向西航行至离灯塔距离最近的位置,求此时渔船到灯塔的距离(结果精确到1海里,参考数据:≈1.732)26.(8分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地相距多远?(2)求快车和慢车的速度分别是多少?(3)求出两车相遇后y与x之间的函数关系式;(4)何时两车相距300千米.27.(10分)如图,在四边形ABCD中,∠D=90°,BC∥AD,AD=CD=4,BC=3.点M从D出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP垂直AD于点P,连结AC交NP于Q,连结MQ.(1)点(填M或N)能到达终点;(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t 为何值时,S的值最大;(3)是否存在点M,使得△AQM为直角三角形?若存在,求出线段DM的值,若不存在,请说明理由.28.(10分)如图(1),抛物线y=﹣x2+x+c与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣2,0);(1)求此抛物线的解析式;(2)若点D是第一象限内抛物线上的一个动点,过点D作DE⊥x轴于点E,连接CD,以OE为直径作⊙M,如图(2),试求当CD与⊙M相切时E点的坐标;(3)若点F是x轴上的动点;①在抛物线上是否存在一点G,使以A、C、G、F四点为顶点的四边形是平行四边形?若存在,求出点G的坐标;若不存在,请说明理由.②连接CF,点A关于直线CF的对称点记为A′,点H坐标为(3,0),直接写出当点F从原点O移动到H点过程中A′移动路线长度.2018年江苏省徐州市西苑中学中考数学二模试卷参考答案与试题解析一、选择题(本大题共8道小题,每小题3分,共24分)1.(3分)的相反数是()A.2B.﹣2C.D.﹣【分析】根据相反数的概念和绝对值的性质进行解答.【解答】解:的相反数是﹣.故选:D.【点评】解答本题的关键是弄清绝对值的性质和相反数的概念.相反数:只有符号不同而绝对值相等的两个数互为相反数.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)下列计算正确的是()A.3a+2a=6a B.a2+a3=a5C.a6÷a2=a4D.(a2)3=a5【分析】根据幂的乘方、同底数幂的乘法、同类项和同底数幂的除法计算即可.【解答】解:A、3a+2a=5a,错误;B、a2与a3不能合并,错误;C、a6÷a2=a4,正确;D、(a2)3=a6,错误;故选:C.【点评】此题考查幂的乘方、同底数幂的乘法、同类项和同底数幂的除法,关键是根据法则进行计算.3.(3分)由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【分析】主视图有2列,每列小正方形数目分别为2,1.【解答】解:几何体的主视图有2列,每列小正方形数目分别为2,1,故选:A.【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.4.(3分)式子在实数范围内有意义,则x的取值范围是()A.x>1B.x≥1C.x<1D.x≤1【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0,解得x≥1.故选:B.【点评】本题考查的知识点为:二次根式的被开方数是非负数.5.(3分)下列图形中,不是中心对称图形的是()A.圆B.正方形C.正六边形D.等边三角形【分析】根据中心对称图形的概念结合选项所给的图形即可得出答案.【解答】解:A、圆是中心对称图形,故本选项错误;B、正方形是中心对称图形,故本选项错误;C、正六边形形是中心对称图形,故本选项错误;D、等边三角形不是中心对称图形,故本选项正确;故选:D.【点评】本题考查了中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.6.(3分)将0.00007用科学记数法表示为()A.7×10﹣6B.70×10﹣5C.7×10﹣5D.0.7×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00007=7×10﹣5.故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.(3分)如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为()A.15°B.18°C.20°D.28°【分析】连结OB,如图,先根据圆周角定理得到∠BOC=2∠A=144°,然后根据等腰三角形的性质和三角形内角和定理计算∠BCO的度数.【解答】解:连结OB,如图,∠BOC=2∠A=2×72°=144°,∵OB=OC,∴∠CBO=∠BCO,∴∠BCO=(180°﹣∠BOC)=×(180°﹣144°)=18°.故选:B.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰三角形的性质.8.(3分)已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如图,则该封闭图形可能是()A.B.C.D.【分析】根据等边三角形,菱形,正方形,圆的性质,分析得到y随x的增大的变化关系,然后选择答案即可.【解答】解:A、等边三角形,点P在开始与结束的两边上直线变化,在点A的对边上时,设等边三角形的边长为a,则y=(a<x<2a),符合题干图象;B、菱形,点P在开始与结束的两边上直线变化,在另两边上时,都是先变速减小,再变速增加,题干图象不符合;C、正方形,点P在开始与结束的两边上直线变化,在另两边上,先变速增加至∠A的对角顶点,再变速减小至另一顶点,题干图象不符合;D、圆,AP的长度,先变速增加至AP为直径,然后再变速减小至点P回到点A,题干图象不符合.故选:A.【点评】本题考查了动点问题函数图象,熟练掌握等边三角形,菱形,正方形以及圆的性质,理清点P在各边时AP的长度的变化情况是解题的关键.二、填空题(本大题共10道小题,每小题3分,共30分)9.(3分)一个角的度数为20°,则它的补角的度数为160°.【分析】根据互为补角的两个角的和等于180°列式进行计算即可得解.【解答】解:180°﹣20°=160°.故答案为:160°.【点评】本题考查了余角和补角,解决本题的关键是熟记互为补角的和等于180°.10.(3分)徐州市6月份某周内每天的最高气温数据如下(单位:℃):24,26,29,26,29,32,29,则这组数据的众数是29.【分析】众数是一组数据中出现次数最多的数据,依此求解即可.【解答】解:数据29出现了3次,次数最多,所以这组数据的众数是29.故答案为:29.【点评】本题属于基础题,考查了确定一组数据的众数的能力.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.11.(3分)若反比例函数y=﹣的图象经过点A(m,3),则m的值是﹣2.【分析】直接把A(m,3)代入反比例函数y=﹣,求出m的值即可.【解答】解:∵反比例函数y=﹣的图象经过点A(m,3),∴3=﹣,解得m=﹣2.故答案为:﹣2.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12.(3分)六边形的内角和是720°.【分析】根据多边形的内角和公式(n﹣2)•180°列式计算即可得解.【解答】解:(6﹣2)•180°=720°.故答案为:720.【点评】本题考查了多边形的内角和外角,熟记内角和公式是解题的关键.13.(3分)关于x的一元二次方程x2﹣x+m=0没有实数根,则m的取值范围是m>.【分析】根据方程没有实数根,得到根的判别式小于0列出关于m的不等式,求出不等式的解集即可得到m的范围.【解答】解:根据方程没有实数根,得到△=b2﹣4ac=1﹣4m<0,解得:m>.故答案为:m>.【点评】此题考查了根的判别式,根的判别式大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程没有实数根.14.(3分)下列四个命题中:①对顶角相等;②同位角相等;③全等三角形对应边相等;④菱形的对角线相等.其中,真命题的有①③(填序号).【分析】要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.【解答】解:①对顶角相等是真命题;②两直线平行,同位角相等,是假命题;③全等三角形对应边相等是真命题;④菱形的对角线垂直,是假命题;故答案为:①③【点评】本题主要考查了命题与定理的运用,解题时注意:命题的“真”“假”是就命题的内容而言,任何一个命题非真即假.15.(3分)在Rt△ABC中,∠ABC=90°,AB=6,BC=8,则这个三角形的外接圆的直径长为10.【分析】根据这个三角形的外接圆直径是斜边长即可得到结论.【解答】解:根据题意得:斜边是AC,即外接圆直径===10,这个三角形的外接圆的直径长为10,故答案为:10.【点评】本题考查的是直角三角形的外接圆半径,重点在于理解直角三角形的外接圆是以斜边中点为圆心,斜边长的一半为半径的圆.16.(3分)如图,在△ABC中,∠C=90°,∠B=30°,AD是∠BAC的角平分线,DE ⊥AB,垂足为E,DE=1,则BC=3.【分析】根据角平分线的性质即可求得CD的长,然后在直角△BDE中,根据30°的锐角所对的直角边等于斜边的一半,即可求得BD长,则BC即可求得.【解答】解:∵AD是△ABC的角平分线,DE⊥AB,∠C=90°,∴CD=DE=1,又∵直角△BDE中,∠B=30°,∴BD=2DE=2,∴BC=CD+BD=1+2=3.故答案为:3.【点评】本题考查了角的平分线的性质以及直角三角形的性质,30°的锐角所对的直角边等于斜边的一半,理解性质定理是关键.17.(3分)将一些相同的圆点按如图所示的规律摆放:第1个图形有3个圆点,第2个图形有7个圆点,第3个图形有13个圆点,第4个图形有21个圆点,第n个图有(n2+n+1)个圆点.【分析】观察图形可知,每个图形中圆点的个数为序号数的平方加上序号数+1,依此可求第n个图有多少个圆点.【解答】解:由图形可知,第1个图形有12+1+1=3个圆点,第2个图形有22+2+1=7个圆点,第3个图形有32+3+1=13个圆点,第4个图形有42+4+1=21个圆点,则第n个图有(n2+n+1)个圆点.故答案为:(n2+n+1).【点评】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.18.(3分)如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为2﹣2.【分析】由AE⊥BE知点E在以AB为直径的半⊙O上,连接CO交⊙O于点E′,当点E位于点E′位置时,线段CE取得最小值,利用勾股定理可得答案.【解答】解:如图,∵AE⊥BE,∴点E在以AB为直径的半⊙O上,连接CO交⊙O于点E′,∴当点E位于点E′位置时,线段CE取得最小值,∵AB=4,∴OA=OB=OE′=2,∵BC=6,∴OC===2,则CE′=OC﹣OE′=2﹣2,故答案为:2﹣2.【点评】本题主要考查圆周角定理、圆的基本性质及矩形的性质、勾股定理,根据AE⊥BE知点E在以AB为直径的半⊙O上是解题的关键.三、解答题(共86分)19.(10分)计算:(1)(2)【分析】(1)根据零指数幂、负整数指数幂和特殊角的三角函数值可以解答本题;(2)根据分式的加法和除法可以解答本题.【解答】解:(1)=1﹣2+3﹣2×=1﹣2+3﹣1=1;(2)===x+1.【点评】本题考查分式的混合运算、零指数幂、负整数指数幂和特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.20.(10分)(1)解方程:x2﹣4x+2=0(2)解不等式组:【分析】(1)方程利用配方法求出解即可;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:(1)方程整理得:x2﹣4x=﹣2,平方得:x2﹣4x+4=2,即(x﹣2)2=2,开方得:x﹣2=±,解得:x=2+或x=2﹣;(2),由①得:x>,由②得:x<,则不等式组的解集为<x<.【点评】此题考查了解一元二次方程﹣配方法,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.21.(6分)为了深化改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“科学实验”、“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团.为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):某校被调查学生选择社团意向统计表选择意向所占百分比文学鉴赏a科学实验35%音乐舞蹈b手工编织10%其他c根据统计图表中的信息,解答下列问题:(1)求本次调查的学生总人数及a,b,c的值;(2)将条形统计图补充完整;(3)若该校共有1200名学生,试估计全校选择“科学实验”社团的人数.【分析】(1)根据选择科学实验的人数是70人,所占的百分比是35%,即可求得调查的总人数,进而根据百分比的意义求解;(2)根据百分比的意义求得选择文学欣赏和手工纺织的人数,即可补全直方图;(3)利用总人数乘以对应的百分比即可求解.【解答】解:(1)本次调查的学生总人数是70÷35%=200(人),b==20%,c==5%,a=1﹣35%﹣20%﹣10%﹣5%=30%;(2)选择文学欣赏的人数是:200×30%=60(人),选择手工纺织的人数是:200×10%=20(人),;(3)该校共有1200名学生,估计全校选择“科学实验”社团的人数是1200×35%=420(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表或树状图等方法求出两次摸到的球是1个红球和1个白球的概率.【分析】(1)设红球的个数为x个,根据概率公式得到=,然后解方程即可;(2)先画树状图展示所有12种等可能结果,再找出两次摸到的球是1个红球1个白球的结果数,然后根据概率公式计算.【解答】解:(1)设红球的个数为x个,根据题意得=,解得x=1(检验合适),所以布袋里红球有1个;(2)画树状图如下:共有12种等可能结果,其中两次摸到的球是1个红球1个白球的结果数为4种,所以两次摸到的球都是白球的概率==.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B 的概率.23.(8分)如图,▱ABCD的对角线AC、BD相交于点O,AE=CF.(1)求证:△BOE≌△DOF;(2)若BD=EF,连接DE、BF,判断四边形EBFD的形状,并证明你的结论.【分析】(1)根据平行四边形的性质得出BO=DO,AO=OC,求出OE=OF,根据全等三角形的判定定理推出即可;(2)根先推出四边形EBFD是平行四边形,再根据矩形的判定得出即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴BO=DO,AO=OC,∵AE=CF,∴AO﹣AE=OC﹣CF,即:OE=OF,在△BOE和△DOF中,∴△BOE≌△DOF(SAS);(2)矩形,证明:∵BO=DO,OE=OF,∴四边形BEDF是平行四边形,∵BD=EF,∴平行四边形BEDF是矩形.【点评】本题考查了平行四边形的性质和判定,全等三角形的判定和矩形的判定,能灵活运用定理进行推理是解此题的关键.24.(8分)某学校为鼓励学生积极参加体育锻炼,派王老师和李老师去购买一些篮球和排球.回校后,王老师和李老师编写了一道题:同学们,请求出篮球和排球的单价各是多少元?【分析】设排球的单价为x元,则篮球的单价为(x+30)元,根据总价÷单价=数量的关系建立方程求出其解即可.【解答】解:设排球的单价为x元,则篮球的单价为(x+30)元,根据题意,列方程得:.解得:x=50.经检验,x=50是原方程的根,当x=50时,x+30=80.答:排球的单价为50元,则篮球的单价为80元.【点评】本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,总价÷单价=数量的数量关系的运用,解答时根据排球和篮球的数量相等建立方程是关键.25.(8分)如图,某渔船在海面上朝正西方向以20海里/时匀速航行,在A处观测到灯塔C在北偏西60°方向上,航行1小时到达B处,此时观察到灯塔C在北偏西30°方向上,若该船继续向西航行至离灯塔距离最近的位置,求此时渔船到灯塔的距离(结果精确到1海里,参考数据:≈1.732)【分析】过点C作CD⊥AB于点D,则若该船继续向西航行至离灯塔距离最近的位置为CD的长度,利用锐角三角函数关系进行求解即可.【解答】解:如图,过点C作CD⊥AB于点D,AB=20×1=20(海里),∵∠CAF=60°,∠CBE=30°,∴∠CBA=∠CBE+∠EBA=120°,∠CAB=90°﹣∠CAF=30°,∴∠C=180°﹣∠CBA﹣∠CAB=30°,∴∠C=∠CAB,∴BC=BA=20(海里),∠CBD=90°﹣∠CBE=60°,∴CD=BC•sin∠CBD=≈17(海里).【点评】此题主要考查了方向角问题,熟练应用锐角三角函数关系是解题关键.26.(8分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地相距多远?(2)求快车和慢车的速度分别是多少?(3)求出两车相遇后y与x之间的函数关系式;(4)何时两车相距300千米.【分析】(1)由图象容易得出答案;(2)由题意得出慢车速度为=60(千米/小时);设快车速度为x千米/小时,由图象得出方程,解方程即可;(3)求出相遇的时间和慢车行驶的路程,即可得出答案;(4)分两种情况,由题意得出方程,解方程即可.【解答】解:(1)由图象得:甲乙两地相距600千米;(2)由题意得:慢车总用时10小时,∴慢车速度为=60(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时,慢车速度为60千米/小时;(3)由图象得:=(小时),60×=400(千米),时间为小时时快车已到达甲地,此时慢车走了400千米,∴两车相遇后y与x的函数关系式为y=;(4)设出发x小时后,两车相距300千米.①当两车没有相遇时,由题意得:60x+90x=600﹣300,解得:x=2;②当两车相遇后,由题意得:60x+90x=600+300,解得:x=6;即两车2小时或6小时时,两车相距300千米.【点评】此题主要考查了一次函数的应用,解题的关键是正确理解题意,求出两车的速度.27.(10分)如图,在四边形ABCD中,∠D=90°,BC∥AD,AD=CD=4,BC=3.点M从D出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP垂直AD于点P,连结AC交NP于Q,连结MQ.(1)点M(填M或N)能到达终点;(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t 为何值时,S的值最大;(3)是否存在点M,使得△AQM为直角三角形?若存在,求出线段DM的值,若不存在,请说明理由.【分析】(1)根据题意分别求出点M从D到A所需要的时间,点N从B到C所需要的时间,比较得到答案;(2)根据等腰直角三角形的性质,结合图形用t表示出PQ,AM,根据三角形的面积公式得到S与t的函数关系式,根据二次函数的性质解答;(3)分QM⊥DA和MQ⊥AQ两种情况,根据等腰直角三角形三角形的性质列式计算.【解答】解:(1)∵点M从D到A所需要的时间为:4÷2=2(秒),点N从B到C所需要的时间为:3÷1=3(秒),则点M能到达终点,故答案为:M;(2)当运动时间为t秒时,DA=DC=4,∠ADC=90°,∴∠DAC=45°,∵DA∥BC,∴∠BCA=∠DAC=45°,∵NP⊥DA,∴CN=NQ,PQ=AP,当运动t秒时,BN=t,DM=2t,∴CN=NQ=BC﹣BN=3﹣t,AP=PQ=PN﹣NQ=4﹣(3﹣t)=t+1,AM=DA﹣DM=4﹣2t,PQ=t+1,AM=4﹣2t,∴S=AM•PQ=(t+1)(4﹣2t)=﹣(t﹣)2+,∵OA=4,∴M点的运动时间最大为2秒,∴0≤t≤2,∴当t=时,S的值最大值为,综上可知S=﹣(t﹣)2+(0≤t≤2),当t=时S有最大值;(3)∵∠OAC=45°∴当△AQM为直角三角形只能有QM⊥DA和MQ⊥AQ两种情况,①当QM⊥DA时,则M、P重合,AM=PQ,即t+1=4﹣2t,解得t=1,则DM=2;②当MQ⊥AQ时,则MP=PQ,∵AM=4﹣2t,AP=t+1,∴PM=AM﹣AP=(4﹣2t)﹣(t+1)=3﹣3t,∴3﹣3t=t+1,解得t=,此时DM=1,综上所述,△AQM为直角三角形,DM的长为2或1.【点评】本题考查的是矩形的性质,二次函数解析式的确定和二次函数的性质,掌握二次函数的性质,灵活运用分情况讨论思想是解题的关键.28.(10分)如图(1),抛物线y=﹣x2+x+c与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣2,0);(1)求此抛物线的解析式;(2)若点D是第一象限内抛物线上的一个动点,过点D作DE⊥x轴于点E,连接CD,以OE为直径作⊙M,如图(2),试求当CD与⊙M相切时E点的坐标;(3)若点F是x轴上的动点;①在抛物线上是否存在一点G,使以A、C、G、F四点为顶点的四边形是平行四边形?若存在,求出点G的坐标;若不存在,请说明理由.②连接CF,点A关于直线CF的对称点记为A′,点H坐标为(3,0),直接写出当点F从原点O移动到H点过程中A′移动路线长度.【分析】(1)利用待定系数法,将A的坐标代入解析式即可求得抛物线的解析式;(2)连接MC、MD,利用切线的性质证明△COM与△MED相似,设出点D的坐标,通过相似三角形对应边的比即可求出点D的横坐标,进一步得到点E的横坐标;(3)①利用平行四边形的性质及平移的规律,用分类讨论的思想分别讨论当AC作为平行四边形的一边及平行四边行的对角线时点G的坐标;②要根据题意画出A'移动路线的轨迹,得出弧线的结论,通过弧长公式即可求出结果.【解答】解:(1)把(﹣2,0)代入y=﹣x2+x+c,得﹣(﹣2)2+(﹣2)+c=0,解得c=3,∴抛物线的解析式是:y=﹣x2+x+3,(2)①设D(x,﹣x2+x+3),则E(x,0),M(,0),由(1)知C(0,3),如图1,连接MC、MD,∵DE、CD与⊙O相切,∴∠OCM=∠MCD,∠CDM=∠EDM,∴∠CMD=90°,∴∠CMO+∠DME=90°,∵∠CMO+∠OCM=90°,∴∠DME=∠OCM,∵∠COM=∠MED,∴△COM∽△MED,。
2018年江苏省徐州市第36中学中考数学二模试卷
2018年江苏省徐州市第36中学中考数学二模试卷一、选择题:<本大题共8题,每题3分,满分24分)2.<3分)<2018•松江区模拟)六个数6、2、3、3、5、10的中位数为3.<3分)<2018•包头)在Rt△ABC中,∠C=90°,若AB=2AC,则B CsinA=.4.<3分)已知⊙O的直径为8,直线l上有一点M,满足OM=4,则直5.<3分)<2005•扬州)在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是< )OB46airKVC6.<3分)<2018•松江区模拟)不等式组的解集是< )7.<3分)如图,⊙O1、⊙O2内切于点A,其半径分别是6和3,将⊙O2沿直线O1O2平移至两圆外切时,则点O2移动的长度是< )OB46airKVC8.<3分)如图,△ABC顶点坐标分别为A<1,0)、B<4,0)、C<1,4),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为< )OB46airKVC二、填空题:<本大题共10题,每题3分,满分30分)9.<3分)计算:||+=+ . .12.<3分)<2007•北京)若关于x 的一元二次方程x2+2x ﹣k=0没有实13.<3分)<2018•沛县一模)已知反比例函数的图象经过点<m,3)和14.<3分)<2018•松江区模拟)已知二次函数y=3x2的图象不动,把x轴向上平移2个单位长度,那么在新的坐标系下此抛物线的解读式是15.<3分)<2018•邗江区一模)已知圆锥的底面半径为3cm,侧面积OA==16.<3分)<2018•苏州)某初中学校的男生、女生以及教师人数的扇形统计图如图所示,若该校男生、女生以及教师的总人数为1200人,则根据图中信息,可知该校教师共有108 人.OB46airKVC17.<3分)<2018•松江区模拟)在等腰Rt △ABC 中,∠C=90°,AC=BC ,点D 在AC 边上,DE ⊥AB ,垂足为E ,AD=2DC ,则S △ADE :S 四边形DCBE 的值为 .OB46airKVC AB=318.<3分)<2018•德州)长为1,宽为a 的矩形纸片<),如图那样折一下,剪下一个边长等于矩形宽度的正方形<称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形<称为第二次操作);如此反复操作下去.若在第n 此操作后,剩下的矩形为正方形,则操作终止.当n=3时,a 的值为 或 .OB46airKVCa=a=.三、解答题:<本大题共7题,满分20分)19.<10分)计算:<1)<2).<2)根据分式混合运算的法则进行计算即可.)÷=<x+1)×20.<10分)<1)解方程:;<2)解方程组:.考点:解分式方程;解二元一次方程组.专题:计算题.分析:<1)分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;<2)方程组两方程变形后相加消去y求出x的值,进而求出y的值,即可得到方程组的解.解答:解:<1)去分母得:1=x﹣1﹣3x+6,解得:x=2,经检验x=2是增根,原分式方程无解;<2),①×2+②×3得:11x=22,即x=2,将x=2代入①得:2+3y=﹣1,即y=﹣1,则方程组的解为.点评:此题考查了解分式方程,以及解二元一次方程组,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.<2009•无锡一模)如图,在梯形ABCD中,AD∥BC,∠D=90°,BE⊥AC,E为垂足,AC=BC.OB46airKVC<1)求证:CD=BE;<2)若AD=3,DC=4,求AE.考点:梯形;全等三角形的判定与性质.专题:计算题;证明题.分析:<1)根据平行线的性质可以得到∠DAC=∠BCE,再根据已知就可以证明△BCE≌△CAD,然后根据其对应边相等就可以得到;<2)首先根据勾股定理的AC的长,再根据<1)的结论就可以求出AE.解<1)证明:∵AD∥BC,AC=22.<2018•宿迁)省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表<单位:环):9 环,乙的平均成绩是 9 环;<2)分别计算甲、乙六次测试成绩的方差;<3)根据<1)、<2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.<计算方差的公式:s2=[]) ;;23.<2018•无锡)在1,2,3,4,5这五个数中,先任意选出一个数a ,然后在余下的数中任意取出一个数b ,组成一个点<a ,b ),求组成的点OB46airKVC <a ,b )恰好横坐标为偶数且纵坐标为奇数的概率.<请用“画树状24.一种拉杆式旅行箱的示意图如图所示,箱体长AB=50cm ,拉杆最大伸长距离BC=30cm ,点A 到地面的距离AD=8cm ,旅行箱与水平面AE 成60°角,求拉杆把手处C 到地面的距离<精确到1cm ).<参考数据:)OB46airKVCCAD=∠CAD=80×=40≈25.<2009•达州)如图,直线y=kx+b 与反比例函数y=<x <0)的图象相交于点A 、点B ,与x 轴交于点C ,其中点A 的坐标为<﹣2,4),点B 的横坐标为﹣4.OB46airKVC <1)试确定反比例函数的关系式;<2)求△AOC 的面积.。
江苏省徐州市2018中考第二次模拟试卷数学
数学试题
(全卷共 140 分,考试时间 120 分钟) 一、选择题(本大题共有 8 小题,每小题 3 分,共 24 分.在每小题所给出的四个选项中,
只有一项是符合题目要求的,请将正确选项前的代号填在答题卷的相应位置上.)
1. 1 的相反数是 4
A. 1
B. 4
4
第 23 题
第 25 题
25.(本题 8 分)如图,某数学兴趣小组要测量一栋五层居民楼 CD 的高度.该楼底层为车库, 高 2.5 米;上面五层居住,每层高度相等.测角仪支架离地 1.5 米,在 A 处测得五楼顶部
点 D 的仰角为 60°,在 B 处测得四楼顶部点 E 的仰角为 30°,AB=14 米.求居民楼的高度
5.若正多边形的一个内角是 150°,则该正多边形的边数是(
A.6
B. 16
C. 12
) D.18
第6题
6.已知:如图,在⊙O 中,OA⊥BC,∠AOB=70°,则∠ADC 的度数为
A.35°
B.30°
C.45°
D.70°
7. 已知点 A(-1,1),B(1,1),C(2,4)在同一个函数图像上,这个函数图像可能是
19.(本题 10 分)
(1)计算: 3 (1)1 ( 1)0 4 . (2)化简:(a+ 1 )÷(1+ 1 ).
3
a-2
a-2
20.(本题 10 分)
y 2x 3
(1)解方程组: 3x
2y
8
;
3x 1 x 5,
(2)解不等式组: x
2
3
x
1,
21.(本题 7 分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根
【2018中考数学真题】江苏徐州巿试题(含答案)【2018数学中考真题解析系列】
江苏省徐州巿2018年中考数学真题试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷共120分,考试时间120分钟.第Ⅰ卷注意事项:1.答Ⅰ第卷前考生务必将自己的考试证号、考试科目用2B铅笔填涂在答题卡上.2.作答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案.不能答在第Ⅰ卷上.一、选择题(每小题2分,共20分.在每小题给出的四个选项中,有且只有....一个是正确的)1.4的平方根是A.2± B.2 C. -2 D 162.一方有难、八方支援,截至5月26日12时,徐州巿累计为汶川地震灾区捐款约为11 180万元,该笔善款可用科学记数法表示为A. 11.18×103万元B. 1.118×104万元C. 1.118×105万元D. 1.118×108万元3.函数11yx=+中自变量x的取值范围是A. x≥-1B. x≤-1C. x≠-1D. x=-14.下列运算中,正确的是A.x3+x3=x6B. x3·x9=x27C.(x2)3=x5D. x÷x2=x-15.如果点(3,-4)在反比例函数kyx=的图象上,那么下列各点中,在此图象上的是A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)6.下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能..折成无盖..小方盒的是A BC D7.⊙O1和⊙O2的半径分别为5和2,O1O2=3,则⊙O1和⊙O2的位置关系是A.内含B. 内切C.相交D.外切8.下列图形中,是轴对称图形但不是中心对称图形的是A.正三角形B.菱形C.直角梯形D.正六边形9.下列事件中,必然事件是A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角C.366人中至少有2人的生日相同D.实数的绝对值是非负数10.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为A.34 B. 13 C. 12 D. 14二、填空题(每小题3分,共18分.请将答案填写在第Ⅱ.........卷相应的位置上.......) 11.因式分解:2x 2-8=______▲________12.徐州巿部分医保定点医院2018年第一季度的人均住院费用(单位:元)约为:12 320,11 880,10 370,8 570,10 640, 10240.这组数据的极差是_____▲_______元.13.若12,x x 为方程210x x +-=的两个实数根,则12x x +=___▲___.14.边长为a 的正三角形的面积等于______▲______.15.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D.若,若∠C =18°,则∠CDA =______▲_______.16.如图,Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于____▲_____cm.第Ⅱ卷三、解答题(每小题5分,共20分) 17.计算:2008011(1)()3π--+-+18.已知21,23.x x x =--求的值19.解不等式组12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩,并写出它的所有整数解.(第10题图)(第15题图)(第16题图)20.如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m )1.4141.732四、解答题(本题有A 、B 两类题,A 类题4分,B 类题6分,你可以根据自己的学习情况,在两类题中任意选做一题......,如果两类题都做,则以A 类题计分) 21.(A 类)已知如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C. (B 类)已知如图,四边形ABCD 中,AB =BC ,∠A =∠C ,求证:AD =CD.五、解答题(每小题7分,共21分)22.从称许到南京可乘列车A 与列车B ,已知徐州至南京里程约为350km ,A 与B 车的平均速度之比为10∶7,A 车的行驶时间比B 车的少1h ,那么两车的平均速度分别为多少?23.小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:(1) 该月小王手机话费共有多少元?短信费长途话费基本话费月功能费50403020100项目金额/元DCBAB(第20题图)(第21题图)(2)扇形统计图中,表示短信费的扇形的圆心角为多少度?(3)请将表格补充完整;(4)请将条形统计图补充完整.24.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1,②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.六、解答题(每小题8分,共16分)25.为缓解油价上涨给出租车待业带来的成本压力,某巿自2018年11月17日起,调整出租车运价,调整方案见下列表格及图像(其中a,b,c 为常数)设行驶路程xkm 时,调价前的运价y 1(元),调价后的运价为y 2(元)如图,折线ABCD 表示y 2与x 之间的函数关系式,线段EF 表示当0≤x ≤3时,y 1与x 的函数关系式,根据图表信息,完成下列各题: ①填空:a=______,b=______,c=_______.②写出当x >3时,y 1与x 的关系,并在上图中画出该函数的图象.③函数y 1与y 2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.26.已知四边形ABCD 的对角线AC 与BD 交于点O,给出下列四个论断 ① OA =OC② AB =CD ③ ∠BAD =∠DCB ④ AD ∥BC请你从中选择两个论断作为条件,以“四边形ABCD 为平行四边形”作为结论,完成下列各题: ①构造一个真命题...,画图并给出证明; ②构造一个假命题...,举反例加以说明.七、解答题(第27题8分,第28题10分,共18分)27.已知二次函数的图象以A (-1,4)为顶点,且过点B (2,-5) ①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A 、B 两点随图象移至A ′、B ′, 求△O A ′B ′的面积.28.如图1,一副直角三角板满足AB =BC ,AC =DE ,∠ABC =∠DEF =90°,∠EDF =30°【操作】将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板....DEF ...绕点..E .旋转..,并使边DE 与边AB 交于点P ,边EF 与边BC 于点Q 【探究一】在旋转过程中, (1) 如图2,当CE1EA=时,EP 与EQ 满足怎样的数量关系?并给出证明. (2) 如图3,当CE2EA=时E P 与EQ 满足怎样的数量关系?,并说明理由. (3) 根据你对(1)、(2)的探究结果,试写出当CEEA=m 时,EP 与EQ 满足的数量关系式 为_________,其中m 的取值范围是_______(直接写出结论,不必证明)【探究二】若,AC =30cm ,连续PQ ,设△EPQ 的面积为S(cm 2),在旋转过程中:(1) S 是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由. (2) 随着S 取不同的值,对应△EPQ 的个数有哪些变化?不出相应S 值的取值范围.F C(E)A(D)Q PDEFCBAQPDEFCBA(图1) (图2) (图3)参 考 答 案1.A2.B3.C4.D5.C6.B7.B8.C9.D 10.C 11. 2(2)(2)x x -+ 12. 3750元 13.-114. 24a 15.126° 16.m17.解:原式=1+1-3+2=118.解:223(3)(1)x x x x --=-+,将1x =代入到上式,则可得223111)2)1x x --=-+==-19.解:12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩222221552x x x x x x >->-⎧⎧⇒⇒-<≤⎨⎨+≥-≤⎩⎩20.解:如图所示,过点A 、D 分别作BC 的垂线AE、DF 分别交BC 于点E 、F , 所以△ABE 、△CDF 均为Rt △,又因为CD =14,∠DCF =30°,所以DF =7=AE ,且FC =12.1所以BC =7+6+12.1=25.1m. 21.证明:(A ) 连结AC ,因为AB =AC , 所以∠BAC =∠BCA ,同理AD =CD 得∠DAC =∠DCA所以∠A =∠BAC +∠DAC =∠BCA +∠DCA =∠C (B )如(A )只须反过来即可.22.解方程的思想.A 车150km/h ,B 车125km/h. 23.解:(1)125元的总话费 (2)72° (3)24. 25.解:(1) a=7, b=1.4, c=2.1 (2)1 2.10.3y x =- (3)有交点为31(,9)7其意义为当317x <时是方案调价前合算,当317x >时方案调价后合算. 26.解:(1)②③为论断时,(2)②④为论断时,此时可以构成一梯形. 27.解:(1)223y x x =--+ CBE FDCBA(3)略。
2018年江苏省徐州市中考数学试卷(含答案解析版)
【解答】解:∵正比例函数 y=kx 与反比例函数 y=﹣ 的图象关于原点对称, ∴设 A 点坐标为(x,﹣ ),则 B 点坐标为(﹣x, ),C(﹣2x,﹣ ), ∴S△ABC= ×(﹣2x﹣x)•(﹣ ﹣ )= ×(﹣3x)•(﹣ )=6. 故选:C. 【点评】本题考查了反比例函数与正比例函数图象的特点,垂直于 y 轴的直线上 任意两点的坐标特点,三角形的面积,解答此题的关键是找出 A、B 两点与 A、C 两点坐标的关系.
2018 年江苏省徐州市中考数学试卷
一、选择题(共 8 小题,每小题 3 分,满分 24 分) 1.(3 分)(2018•徐州)4 的相反数是( ) A. B.﹣ C.4 D.﹣4 2.(3 分)(2018•徐州)下列计算正确的是( ) A.2a2﹣a2=1 B.(ab)2=ab2 C.a2+a3=a5 D.(a2)3=a6 3.(3 分)(2018•徐州)下列图形中,既是轴对称图形,又是中心对称图形的是 ()
使用数学教辅用书的册数”进行调查,统计结果如下:结果如下:
册数 0
1
2
3
~
13 35 29 23
人数
关于这组数据,下列说法正确的是( )
A.众数是 2 册 B.中位数是 2 册 C.极差是 2 册 D.平均数是 2 册
7.(3 分)(2018•徐州)如图,在平面直角坐标系中,函数 y=kx 与 y=﹣ 的图象
中心对称图形是要寻找对称中心,旋转 180 度后两部分重合.
—
4.(3 分)(2018•徐州)如图是由 5 个相同的正方体搭成的几何体,其左视图是 ()
A.
B.
C.
D.
【考点】U2:简单组合体的三视图.
【专题】1:常规题型.
2018年江苏省徐州巿中考数学试题及答案
徐州巿2018年初中毕业、升学考试数学试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷共120分,考试时间120分钟.第Ⅰ卷注意事项:1.答Ⅰ第卷前考生务必将自己的考试证号、考试科目用2B铅笔填涂在答题卡上.2.作答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案.不能答在第Ⅰ卷上.一、选择题(每小题2分,共20分.在每小题给出的四个选项中,有且只有....一个是正确的)1.4的平方根是A.2±B.2C.-2 D 162.一方有难、八方支援,截至5月26日12时,徐州巿累计为汶川地震灾区捐款约为11 180万元,该笔善款可用科学记数法表示为A.11.18×103万元B. 1.118×104万元C. 1.118×105万元D. 1.118×108万元3.函数11yx=+中自变量x的取值范围是A. x≥-1B. x≤-1C.x≠-1D.x=-14.下列运算中,正确的是A.x3+x3=x6B. x3·x9=x27C.(x2)3=x5D. x÷x2=x-15.如果点(3,-4)在反比例函数kyx=的图象上,那么下列各点中,在此图象上的是A.(3,4)B.(-2,-6)C.(-2,6)D.(-3,-4)6.下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能..折成无盖..小方盒的是A B C D7.⊙O 1和⊙O 2的半径分别为5和2,O 1O 2=3,则⊙O 1和⊙O 2的位置关系是A.内含B. 内切C.相交D.外切 8.下列图形中,是轴对称图形但不是中心对称图形的是A.正三角形B.菱形C.直角梯形D.正六边形 9.下列事件中,必然事件是A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角C.366人中至少有2人的生日相同D.实数的绝对值是非负数10.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为A.34 B. 13 C. 12 D. 14二、填空题(每小题3分,共18分.请将答案填写在第Ⅱ卷相应的位置上................) 11.因式分解:2x 2-8=______▲________12.徐州巿部分医保定点医院2018年第一季度的人均住院费用(单位:元)约为:12 320,11 880,10 370,8 570,10 640, 10240.这组数据的极差是_____▲_______元. 13.若12,x x 为方程210x x +-=的两个实数根,则12x x +=___▲___. 14.边长为a 的正三角形的面积等于______▲______.15.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D.若,若∠C =18°,则∠CDA =______▲_______.16.如图,Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于____▲_____cm.第Ⅱ卷三、解答题(每小题5分,共20分)17.计算:2008011(1)()3π--+-+(第10题图)(第15题图)(第16题图)18.已知21,23.x x x =--求的值19.解不等式组12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩,并写出它的所有整数解.20.如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m )1.4141.732四、解答题(本题有A 、B 两类题,A 类题4分,B 类题6分,你可以根据自己的学习情况,在两类题中任意选做一题......,如果两类题都做,则以A 类题计分) 21.(A 类)已知如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C.(B 类)已知如图,四边形ABCD 中,AB =BC ,∠A =∠C ,求证:AD =CD.五、解答题(每小题7分,共21分)22.从称许到南京可乘列车A 与列车B ,已知徐州至南京里程约为350km ,A 与B 车的平均速度之比为10∶7,A 车的行驶时间比B 车的少1h ,那么两车的平均速度分别为多少? 23.小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:DCBAB(第20题图)(第21题图)(1) 该月小王手机话费共有多少元?(2) 扇形统计图中,表示短信费的扇形的圆心角为多少度? (3) 请将表格补充完整; (4) 请将条形统计图补充完整.24.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点B 的坐标为(1,0)①画出△ABC 关于x 轴对称的△A 1B 1C 1, ②画出将△ABC 绕原点O 按逆时针旋转90°所得的△A 2B 2C 2,③△A 1B 1C 1与△A 2B 2C 2成轴对称图形吗?若成轴对称图形,画出所有的对称轴; ④△A 1B 1C 1与△A 2B 2C 2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.短信费长途话费基本话费月功能费50403020100项目金额/元六、解答题(每小题8分,共16分)25.为缓解油价上涨给出租车待业带来的成本压力,某巿自2018年11月17日起,调整出租车运价,调整方案见下列表格及图像(其中a,b,c 为常数)设行驶路程xkm 时,调价前的运价y 1(元),调价后的运价为y 2(元)如图,折线ABCD 表示y 2与x 之间的函数关系式,线段EF 表示当0≤x ≤3时,y 1与x 的函数关系式,根据图表信息,完成下列各题: ①填空:a=______,b=______,c=_______.②写出当x >3时,y 1与x 的关系,并在上图中画出该函数的图象.③函数y 1与y 2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.26.已知四边形ABCD 的对角线AC 与BD 交于点O,给出下列四个论断① OA =OC ② AB =CD ③ ∠BAD =∠DCB ④ AD ∥BC请你从中选择两个论断作为条件,以“四边形ABCD 为平行四边形”作为结论,完成下列各题:①构造一个真命题...,画图并给出证明; ②构造一个假命题...,举反例加以说明.27.已知二次函数的图象以A (-1,4)为顶点,且过点B (2,-5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A 、B 两点随图象移至A ′、B ′, 求△O A ′B ′的面积.28.如图1,一副直角三角板满足AB =BC ,AC =DE ,∠ABC =∠DEF =90°,∠EDF =30° 【操作】将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板....DEF ...绕点..E .旋转..,并使边DE 与边AB 交于点P ,边EF 与边BC 于点Q 【探究一】在旋转过程中, (1) 如图2,当CE1EA=时,EP 与EQ 满足怎样的数量关系?并给出证明. (2) 如图3,当CE2EA=时EP 与EQ 满足怎样的数量关系?,并说明理由. (3) 根据你对(1)、(2)的探究结果,试写出当CEEA=m 时,EP 与EQ 满足的数量关系式为_________,其中m 的取值范围是_______(直接写出结论,不必证明)【探究二】若,AC =30cm ,连续PQ ,设△EPQ 的面积为S(cm 2),在旋转过程中: (1) S 是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.(2) 随着S 取不同的值,对应△EPQ 的个数有哪些变化?不出相应S 值的取值范围.F C(E)A(D)Q PDEFCBAQPDEFCBA(图1) (图2) (图3)徐州巿2018年初中毕业、升学考试数 学 试 题 参 考 答 案1.A2.B3.C4.D5.C6.B7.B8.C9.D 10.C 11. 2(2)(2)x x -+ 12. 3750元 13.-1 14.215.126° 16.m17.解:原式=1+1-3+2=118.解:223(3)(1)x x x x --=-+,将1x =+代入到上式,则可得223111)2)1x x --=-+==-19.解:12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩222221552x x x x x x >->-⎧⎧⇒⇒-<≤⎨⎨+≥-≤⎩⎩20.解:如图所示,过点A 、D 分别作BC 的垂线AE、DF 分别交BC 于点E 、F , 所以△ABE 、△CDF 均为Rt △,又因为CD =14,∠DCF =30°,所以DF =7=AE ,且FC =12.1所以BC =7+6+12.1=25.1m. 21.证明:(A )连结AC ,因为AB =AC ,所以∠BAC =∠BCA ,同理AD =CD 得∠DAC =∠DCA所以∠A =∠BAC +∠DAC =∠BCA +∠DCA =∠C(B )如(A )只须反过来即可.22.解方程的思想.A 车150km/h ,B 车125km/h. 23.解:(1)125元的总话费 (2)72° (3)BE FDCBA(4) 解:如下图所示,24.(4)对称中心是(0,0) 25.解:(1) a=7, b=1.4, c=2.1 (2)1 2.10.3y x =- (3)有交点为31(,9)7其意义为当317x <时是方案调价前合算,当317x >时方案调价后合算. 26.解:(1)②③为论断时,(2)②④为论断时,此时可以构成一梯形. 27.解:(1)223y x x =--+ (2) (0,3),(-3,0),(1,0) 短信费长途话费基本话费月功能费50403020100项目金额/元。
江苏徐州巿2018年中考数学试题(word版含答案)
徐州巿2018年初中毕业、升学考试数学试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷共120分,考试时间120分钟.第Ⅰ卷注意事项:1.答Ⅰ第卷前考生务必将自己的考试证号、考试科目用2B铅笔填涂在答题卡上.2.作答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案.不能答在第Ⅰ卷上.一、选择题(每小题2分,共20分.在每小题给出的四个选项中,有且只有....一个是正确的)1.4的平方根是A.2±B.2C.-2 D 162.一方有难、八方支援,截至5月26日12时,徐州巿累计为汶川地震灾区捐款约为11 180万元,该笔善款可用科学记数法表示为A.11.18×103万元B. 1.118×104万元C. 1.118×105万元D. 1.118×108万元3.函数11yx=+中自变量x的取值范围是A. x≥-1B. x≤-1C.x≠-1D.x=-14.下列运算中,正确的是A.x3+x3=x6B. x3·x9=x27C.(x2)3=x5D. x÷x2=x-15.如果点(3,-4)在反比例函数kyx=的图象上,那么下列各点中,在此图象上的是A.(3,4)B.(-2,-6)C.(-2,6)D.(-3,-4)6.下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能..折成无盖..小方盒的是A B C D 7.⊙O 1和⊙O 2的半径分别为5和2,O 1O 2=3,则⊙O 1和⊙O 2的位置关系是A.内含B. 内切C.相交D.外切 8.下列图形中,是轴对称图形但不是中心对称图形的是A.正三角形B.菱形C.直角梯形D.正六边形 9.下列事件中,必然事件是A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角C.366人中至少有2人的生日相同D.实数的绝对值是非负数10.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为A.34 B. 13 C. 12 D. 14二、填空题(每小题3分,共18分.请将答案填写在第Ⅱ卷相应的位置上................) 11.因式分解:2x 2-8=______▲________12.徐州巿部分医保定点医院2018年第一季度的人均住院费用(单位:元)约为:12 320,11 880,10 370,8 570,10 640, 10240.这组数据的极差是_____▲_______元. 13.若12,x x 为方程210x x +-=的两个实数根,则12x x +=___▲___. 14.边长为a 的正三角形的面积等于______▲______.15.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D.若,若∠C =18°,则∠CDA =______▲_______.(第10题图)16.如图,Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于____▲_____cm.第Ⅱ卷三、解答题(每小题5分,共20分)17.计算:2008011(1)()3π--+-+18.已知21,23.x x x =--求的值19.解不等式组12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩,并写出它的所有整数解.20.如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m )1.4141.732四、解答题(本题有A 、B 两类题,A 类题4分,B 类题6分,你可以根据自己的学习情况,在两类题中任意选做一题......,如果两类题都做,则以A 类题计分) 21.(A 类)已知如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C.(B 类)已知如图,四边形ABCD 中,AB =BC ,∠A =∠C ,求证:AD =CD.B(第20题图)五、解答题(每小题7分,共21分)22.从称许到南京可乘列车A 与列车B ,已知徐州至南京里程约为350km ,A 与B 车的平均速度之比为10∶7,A 车的行驶时间比B 车的少1h ,那么两车的平均速度分别为多少?23.小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:(1) 该月小王手机话费共有多少元?(2) 扇形统计图中,表示短信费的扇形的圆心角为多少度? (3) 请将表格补充完整; (4) 请将条形统计图补充完整.DCBA(第21题图)24.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点B的坐标为(1,0) ①画出△ABC 关于x 轴对称的△A 1B 1C 1,②画出将△ABC 绕原点O 按逆时针旋转90°所得的△A 2B 2C 2,③△A 1B 1C 1与△A 2B 2C 2成轴对称图形吗?若成轴对称图形,画出所有的对称轴; ④△A 1B 1C 1与△A 2B 2C 2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.六、解答题(每小题8分,共16分)25.为缓解油价上涨给出租车待业带来的成本压力,某巿自2018年11月17日起,调整出租车运价,调整方案见下列表格及图像(其中a, b,c 为常数)设行驶路程xkm时,调价前的运价y1(元),调价后的运价为y2(元)如图,折线ABCD表示y2与x之间的函数关系式,线段EF表示当0≤x≤3时,y1与x 的函数关系式,根据图表信息,完成下列各题:①填空:a=______,b=______,c=_______.②写出当x>3时,y1与x的关系,并在上图中画出该函数的图象.③函数y1与y2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.26.已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断①OA=OC②AB=CD③∠BAD=∠DCB④AD∥BC 请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:①构造一个真命题...,画图并给出证明;②构造一个假命题...,举反例加以说明.七、解答题(第27题8分,第28题10分,共18分)27.已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.28.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°【操作】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三..角板..DEF...绕点..E.旋转..,并使边DE与边AB交于点P,边EF与边BC于点Q 【探究一】在旋转过程中,(1)如图2,当CE1EA=时,EP与EQ满足怎样的数量关系?并给出证明.(2)如图3,当CE2EA=时EP与EQ满足怎样的数量关系?,并说明理由.(3)根据你对(1)、(2)的探究结果,试写出当CEEA=m时,EP与EQ满足的数量关系式为_________,其中m的取值范围是_______(直接写出结论,不必证明)【探究二】若,AC=30cm,连续PQ,设△EPQ的面积为S(cm2),在旋转过程中:(1)S是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.(2)随着S取不同的值,对应△EPQ的个数有哪些变化?不出相应S值的取值范围.徐州巿2018年初中毕业、升学考试数 学 试 题 参 考 答 案1.A2.B3.C4.D5.C6.B7.B8.C9.D 10.C 11. 2(2)(2)x x -+ 12. 3750元 13.-1 14.215.126° 16.m17.解:原式=1+1-3+2=118.解:223(3)(1)x x x x --=-+,将1x =代入到上式,则可得223111)2)1x x --=-+==-19.解:12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩222221552x x x x x x >->-⎧⎧⇒⇒-<≤⎨⎨+≥-≤⎩⎩20.解:如图所示,过点A 、D 分别作BC 的垂线AE、DF 分别交BC 于点E 、F , 所以△ABE 、△CDF 均为Rt △,又因为CD =14,∠DCF =30°,所以DF =7=AE ,且FC =12.1所以BC =7+6+12.1=25.1m. 21.证明:(A )连结AC ,因为AB =AC ,所以∠BAC =∠BCA ,同理AD =CD 得∠DAC =∠DCA所以∠A =∠BAC +∠DAC =∠BCA +∠DCA =∠C(B )如(A )只须反过来即可.22.解方程的思想.A 车150km/h ,B 车125km/h. 23.解:(1)125元的总话费 (2)72° (3)BE FDCBA(4) 解:如下图所24. 示,(4)对称中心是(0,0) 25.解:(1) a=7, b=1.4, c=2.1 (2)1 2.10.3y x =- (3)有交点为31(,9)7其意义为当317x <时是方案调价前合算,当317x >时方案调价后合算.26.解:(1)②③为论断时,(2)②④为论断时,此时可以构成一梯形.短信费长途话费基本话费月功能费50403020100项目金额/元27.解:(1)223=--+y x x(2)(0,3),(-3,0),(1,0)(3)略11 / 11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年江苏省徐州市中考数学二模试卷一、选择题(本大题共有8小题,每小题3分,共24分。
在每小题所给出的四个选项中,只有一项是符合题目要求的)1.(3 分)﹣的相反数是()A.﹣B.4 C.﹣4D.【解答】解:﹣的相反数是.故选:D.2.(3 分)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、不是轴对称图形,也不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.3.(3 分)下列运算中,正确的是()A.(﹣3a3)2=9a6 B.a•a4=a4 C.a6÷a3=a2 D.3a+2a2=5a3【解答】解:A、(﹣3a3)2=9a6,故此选项正确;B、a•a4=a5,故此选项错误;C、a6÷a3=a3,故此选项错误;D、3a+2a2,无法计算,故此选项错误.故选:A.4.(3 分)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.“367人中有2 人同月同日生”为必然事件C.可能性是1%的事件在一次试验中一定不会犮生D.数据3,5,4,1,﹣2 的中位数是4【解答】解:A、检测某批次灯泡的使用寿命,适宜用抽样调查,故此选项错误;B、“367人中有2 人同月同日生”为必然事件,正确;C、可能性是1%的事件在一次试验中一定不会犮生,发生的概率小,也有可能发生,故此选项错误;D、数据3,5,4,1,﹣2 的中位数是3,故此选项错误.故选:B.5.(3 分)若正多边形的一个内角是150°,则该正多边形的边数是()A.6 B.12 C.16 D.18【解答】解:设多边形为n 边形,由题意,得(n﹣2)•180°=150n,解得n=12,故选:B.6.(3 分)如图,BC 是⊙O 的弦,OA⊥BC,∠AOB=70°,则∠ADC 的度数是()A.70°B.35°C.45°D.60°【解答】解:∵A、B、C、D 是⊙O 上的四点,OA⊥BC,∴弧AC=弧AB (垂径定理),∴∠ADC= ∠AOB(等弧所对的圆周角是圆心角的一半);又∠AOB=70°,∴∠ADC=35°.故选:B.7.(3 分)已知点A(﹣1,1),B(1,1),C(2,4)在同一个函数图象上,这个函数图象可能是()A.B.C.D.【解答】解:∵A(﹣1,1),B(1,1),∴A 与B 关于y 轴对称,故C,D 错误;∵B(1,1),C(2,4),当x>0 时,y 随x 的增大而增大,而B(1,1)在直线y=x 上,C(2 ,4)不在直线y=x 上,所以图象不会是直线,故A 错误;故B 正确.故选:B.8.(3 分)已知一次函数y=kx+b 的图象如图所示,则关于x 的不等式k(x﹣4)﹣2b ≥0 的解集为()A.x≥﹣2B.x≤3C.x≤﹣2D.x≥3【解答】解:把(3,0)代入y=kx+b 得3k+b=0,则b=﹣3k,所以k(x﹣4)﹣2b≥0 化为k(x﹣4)+6k≥0,因为k<0,所以x﹣4+6≤0,所以x≤﹣2.故选:C.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程)9.(3 分)若分式有意义,则x 的取值范围为x≠1.【解答】解:依题意得x﹣1≠0,即x≠1 时,分式有意义.故答案是:x≠1.10.(3 分)因式分解:ax2﹣ay2=a(x+y)(x﹣y).【解答】解:ax2﹣ay2=a(x2﹣y2)=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).11.(3 分)如图所示的圆形纸板被等分成10 个扇形挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是.【解答】解:由题意可得:阴影部分有4 个小扇形,总的有10 个小扇形,故飞镖落在阴影区域的概率是:= .故答案为:.12.(3 分)某颗粒物的直径是0.0000025,把0.0000025 用科学记数法表示为2.5×10﹣6.,【解答】解:0.0000025 用科学记数法表示为2.5×10﹣6故答案为:2.5×10.﹣613.(3 分)若反比例函数y=﹣的图象经过点A(m,3),则m 的值是﹣2.【解答】解:∵反比例函数y=﹣的图象经过点A(m,3),∴3=﹣,解得m=﹣2.故答案为:﹣2.14.(3 分)已知2a﹣3b=7,则8+6b﹣4a=﹣6.【解答】解:∵2a﹣3b=7,∴8+6b﹣4a=8﹣2(2a﹣3b)=8﹣2×7=﹣6,故答案为:﹣6.15.(3 分)如图,⊙O 的直径垂直于弦CD,垂足为E,∠A=15 °,半径为2,则CD 的长为2.【解答】解:∵⊙O 的直径AB 垂直于弦CD,∴CE=DE,∠CEO=90°,∵∠A=15°,∴∠COE=30°,在Rt△OCE 中,OC=2,∠COE=30°,∴CE= OC=1,(直角三角形中,30 度角所对的直角边是斜边的一半)∴CD=2CE=2,故答案为:216.(3 分)若某一圆锥的母线长为5cm,高为4cm,则此圆锥的侧面积是15πcm2.【解答】解:∵母线长为5cm ,高为4cm,∴底面圆的半径为3cm,圆锥的侧面积=2π×3×5÷2=15π.故答案为:15π.17.(3 分)如图,在正方形ABCD 中,等边三角形AEF 的顶点E、F 分别在边BC 和CD 上,则∠AEB=75度.【解答】解:∵四边形ABCD 是正方形,∴AB=AD,∠B=∠D=∠BAD=90°,在Rt△ABE 和Rt△ADF 中,,∴△ABE≌△ADF,∴∠BAE=∠DAF=(90°﹣60°)÷2=15°,∴∠AEB =75°,故答案为75.18.(3 分)观察下列的“蜂窝图”则第n 个图案中的“”的个数是3n+1.(用含有n 的代数式表示)【解答】解:由题意可知:每1 个都比前一个多出了3 个“”,∴第n 个图案中共有“”为:4+3(n﹣1)=3n+1故答案为:3n+1三、解答题(本大题共有10小题,共86分。
解答时应写出文字说明、证明过程或演算步骤)19.(10 分)(1)计算:|﹣3|+()﹣1﹣(π﹣1)0+.(2)化简:(a+)÷(l+).【解答】解:(1)原式=3+3﹣1+2=7;(2)原式=(+)÷(+)= ÷= •=a﹣1.20.(10 分)(1)解方程组:;(2)解不等式组【解答】解:(1),把①代入②得3x+4x﹣6=8,解得x=2,把x=2 代入①得y=1,所以方程组的解为;(2)解①得x<3,解②得x>﹣1,所以不等式组的解集为﹣1<x<3.21.(7 分)为了了解市民“获取新闻的最主要途径”某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)这次接受调查的市民总人数是1000;(2)扇形统计图中,“电视”所对应的圆心角的度数是54°;(3)请补全条形统计图;(4)若该市约有80 万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.【解答】解:(1)这次接受调查的市民总人数是:260÷26%=1000;(2)扇形统计图中,“电视”所对应的圆心角的度数为:(1﹣40%﹣26%﹣9%﹣10%)×360°=54°;(3)“报纸”的人数为:1000×10%=100.补全图形如图所示:(4)估计将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数为:80×(26%+40%)=80×66%=52.8(万人).22.(7 分)有三张正面分别标有数字﹣3,1,3 的不透明卡片.它们除数字外都相同,现将它们背面朝上,洗匀后从三张卡片中随机地抽取一张,放回卡片洗匀后,再从三张十片中随机地抽取一张.试用列表或画树状图的方法,求两次抽取的卡片上的数字之积为负数的概率.【解答】解:画树状图如下:由树状图可知,共有9 种等可能结果,其中数字之积为负数的有4 种结果,所以两次抽取的卡片上的数字之积为负数的概率为.23.(8 分)如图.在△ABC 中,AD 是边BC 上的中线,过点A 作AE∥BC,过点D 作与DE∥AB,DE 与AC、AE 分别交于点O、E,连接EC.(1)求证:AD=EC;(2)当△ABC 满足∠BAC=90°时,四边形ADCE 是菱形.【解答】证明:(1)∵DE∥AB,AE∥BC,∴四边形ABDE 是平行四边形,∴AE∥BD,且AE=BD又∵AD 是BC 边的中线,∴BD=CD,∴AE=CD,∵AE∥CD,∴四边形ADCE 是平行四边形,∴AD=EC;(2)∵∠BAC=90°,AD 是斜边BC 上的中线,∴AD=BD=CD,又∵四边形ADCE 是平行四边形,∴四边形ADCE 是菱形.故答案为∠BAC=90°.24.(8 分)某校九(1)、九(2)两班的班长交流了为四川雅安地震灾区捐款的情况:(Ⅰ)九(1)班班长说:“我们班捐款总数为1200 元,我们班人数比你们班多8 人.”(Ⅱ)九(2)班班长说:“我们班捐款总数也为1200 元,我们班人均捐款比你们班人均捐款多20%.”请根据两个班长的对话,求这两个班级每班的人均捐款数.【解答】解:设九(1)班的人均捐款数为x 元,则九(2)班的人均捐款数为(1+20%)x 元,则:﹣=8,解得:x=25,经检验,x=25 是原分式方程的解.九(2)班的人均捐款数为:(1+20%)x=30(元)答:九(1)班人均捐款为25 元,九(2)班人均捐款为30 元.25.(8 分)如图,某数学兴趣小组要测量一栋五层居民楼CD 的高度.该楼底层为车库,高2.5 米;上面五层居住,每层高度相等.测角仪支架离地1.5 米,在A 处测得五楼顶部点D 的仰角为60°,在B 处测得四楼顶部点E 的仰角为30°,AB=14 米.求居民楼的高度(精确到0.1 米,参考数据:≈1.73)【解答】解:设每层楼高为x 米,由题意得:MC′=MC﹣CC′=2.5﹣1.5=1 米,∴DC′=5x+1,EC′=4x+1,在Rt△DC′A′中,∠DA′C′=60°,∴C′A′== (5x+1),在Rt△EC′B′中,∠EB′C′=30°,∴C′B′== (4x+1),∵A′B′=C′B′﹣C′A′=AB,∴(4x+1)﹣(5x+1)=14,解得:x≈3.17,则居民楼高为5×3.17+2.5≈18.4 米.26.(9 分)矩形ABCD 中,AB=3,BC=4.点P 在线段AB 或线段AD 上,点Q 中线段BC 上,沿直线PQ 将矩形折叠,点B 的对应点是点E.(1)如图1,点P、点E 在线段AD 上,点Q 在线段BC 上,连接BP、EQ.①求证:四边形PBQE 是菱形.②四边形PBQE 是菱形时,AP 的取值范围是0≤AP≤.(2)如图2,点P 在线段AB 上,点Q 在线段AD 上,点E 在线段AD 上,若AE= ,求折痕PQ 的长.(3)点P 在线段AB,AP=2,点Q 在线段BC 上,连AE、CE.请直接写出四边形AECD 的面积的最小值是7.5.【解答】解(1)①由折叠知,PB=PE,PQ 垂直平分BE,∴OB=OE,∵∠POE=∠BOQ,∠EPO=∠OQB,∴△POE≌△QOB,∴PE=BQ,∵AD∥BC,∴四边形PBQE 是平行四边形,∵PB=PE,∴▱PBQE 是菱形;②当点P 与点A 重合时,AP=0,当点E 和点D 重合时,DP=BP=4﹣AP,在Rt△ABP 中,BP2﹣AP2=AB2,∴(4﹣AP)2﹣AP2=9,∴AP= ,∴0≤AP≤,故答案为:0≤AP≤;(2)如图2,连接PE,EQ,过点Q 作QF⊥AD 于F,由折叠知,PB=PE,∠PEQ=∠B =90°,设AP=x,∴PB=PE=3﹣x,根据勾股定理得,x2+5=(3﹣x)2,∴x= ,∴AP= ,PE= ,∵∠AEP+∠PEQ=90°,∠AEP+∠APE=90°,∴∠FEQ=∠APE,∵∠EFQ=∠A=90°,∴△APE∽△FEQ,∴,∴,∴EQ= ,∴PQ= = ;(3)如图3,连接AC,在Rt△ACD 中,AD=4,CD=3,∴AC=5,连接PE,过点E 作EG⊥AC 于G,∴S 四边形AECD=S△ACD+S△ACE= AD•CD+AC•EG= ×4×3+×5EG=6+EG,∴EG 最小时,四边形AECD 的面积最小,由折叠知,PB=PE,∴点E 是以点P 为圆心,PB=1 为半径的一段弧上,∴点P,E,G 在同一条线上时,EG 最小,∵∠AGP=∠ABC=90°,∠PAG=∠CAB,∴△PAG∽△CAB,∴,∴PG= = = ,∴EG 最小=PG﹣PE=﹣1=,∴S 四边形AECD 最小=6+EG 最小=6+×=7.5,故答案为:7.5.27.(9 分)某加油站五月份营销一种油品的销售利润y(万元)与销售量x(万升)之间函数关系的图象如图中折线所示,该加油站截止到13 日调价时的销售利润为4 万元,截止至15 日进油时的销售利润为5.5 万元.(销售利润=(售价﹣成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量x 为多少时,销售利润为4 万元;(2)分别求出线段AB 与BC 所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在OA、AB、BC 三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)【解答】解:解法一:(1)根据题意,当销售利润为4 万元,销售量为4÷(5﹣4)=4(万升).答:销售量x 为4 万升时销售利润为4 万元;(2)点A 的坐标为(4,4),从13 日到15 日销售利润为5.5﹣4=1.5(万元),所以销售量为1.5÷(5.5﹣4)=1(万升),所以点B 的坐标为(5,5.5).设线段AB 所对应的函数关系式为y=kx+b,则解得∴线段AB 所对应的函数关系式为y=1.5x﹣2(4≤x≤5).从15 日到31 日销售5 万升,利润为1×1.5+4×(5.5﹣4.5)=5.5(万元).∴本月销售该油品的利润为5.5+5.5=11(万元),所以点C 的坐标为(10,11).设线段BC 所对应的函数关系式为y=mx+n,则解得所以线段BC 所对应的函数关系式为y=1.1x(5≤x≤10);(3)线段AB 倾斜度最大,所以利润率最高.解法二:(1)根据题意,线段OA 所对应的函数关系式为y=(5﹣4)x,即y=x(0≤x≤4).当y=4 时,x=4.答:销售量为4 万升时,销售利润为4 万元.(2)设线段AB 所对应的函数关系式为y=kx+b(k≠0),则解得∴线段AB 所对应的函数关系式为y=1.5x﹣2(4≤x≤5).设BC 所对应的函数关系式为y=kx+b(k≠0),∵截止至15 日进油时的销售利润为5.5 万元,且13 日油价调整为5.5 元/升,∴5.5=4+(5.5﹣4)x,x=1(万升).∴B 点坐标为(5,5.5).∵15 日进油4 万升,进价4.5 元/升,又∵本月共销售10 万升,∴本月总利润为:y=5.5+(5. 5﹣4)×(6﹣4﹣1)+4×(5.5﹣4.5)=5.5+1.5+4=11(万元).∴C 点坐标为(10,11).将B 点和C 点坐标代入y=kx+b 得方程组为:,解得:.故线段BC 所对应的函数关系式为:y=1.1x.(5≤x≤10).(3)线段AB 倾斜度最大,所以利润率最高.28.(10 分)如图,二次函数y= x2﹣6x+5 的图象交x 轴于A、B 两点,交y 轴于点C,连接BC.(1)直接写出点B、C 的坐标,B(0,5 );C(5,0).(2)点P 是y 轴右侧拋物线上的一点,连接PB、PC.若△PBC 的面积15 ,求点P 的坐标.(3)设E 为线段BC 上一点(不含端点),连接AE,一动点M 从点A 出发,沿线段AE 以每秒一个单位速度运动到E 点,再沿线段EC 以每秒2 个单位的速度运动到C 后停止,当点E 的坐标是(4,)时,点M 在整个运动中用时最少,最少用时是(2 )秒.(4)若点Q 在y 轴上,当∠AQB 取得最大值时,直接写出点Q 的坐标(3,).【解答】解:(1)当x=0 时,y=5当y=0 时,x2﹣6x+5 =0解得x1=1,x2=5故答案为:(0,5 );(5,0)(2)设x 轴上点D,使得△DBC 的面积15∴解得BD=6∵C(0,5 );B(5,0)则可求直线BC 解析式为:y=﹣故点D 坐标为(﹣1,0)或(11,0)当D 坐标为(﹣1,0)时,过点D 平行于BC 的直线l 与抛物线交点为满足条件的P则可求得直线l 的解析式为:y=﹣求直线l 与抛物线交点得:x2﹣6x+5 =﹣解得x1=2,x2=3则P 点坐标为(2,﹣3)或(3,﹣4)同理当点D 坐标为(11,0)时,直线l 的解析式为y=﹣求直线l 与抛物线交点得:x2﹣6x+5 =﹣解得x1=﹣1,x2=6则点P 坐标为(﹣1,10 ),(6,5 )综上满足条件P 点坐标为:(2,﹣3)、(3,﹣4)、(﹣1,10 )或(6,5 )(3)由已知,当AE 最短时,M 用时最少则AE⊥BC 于点E,由已知,∠ABC=60°,AB=4∴AE=2 ,EB=2∴点E 坐标为(4,),点M 在整个运动中用时最少为(2 )秒故答案为:(4,),(2 )(4)以AB 边为弦作圆,圆心F 在x 轴上方,当圆半径越大,x 轴上方的点与AB两点连线夹角越大当圆F 与y 轴切于点Q 时,∠AQB 取得最大值.如图:连FA、FB、FQ,作FH⊥AB 于点H则可知AH=2∴QF=OH=3∴点Q 坐标为(3,)故答案为:(3,)。