一次函数与方程不等式关系-同步测试题
19-2-3 一次函数与方程、不等式同步训练 人教版数学八年级下册

19.2.3一次函数与方程、不等式同步训练一、单选题1.若直线y=﹣2x﹣4与直线y=4x+b的交点在第二象限,则b的取值范围是()A.﹣4<b<8B.﹣4<b<0C.b>8D.﹣2≤b≤82.一次函数的图象交x轴于(2,0),交y轴于(0,3),当函数值大于0时,x的取值范围是()A.x>2B.x<2C.x>3D.x<33.如图,在平面直角坐标系中,一次函数y=ax+b经过A,B两点,若点B的坐标为(3,0),则不等式ax+b>0的解是()A.x>0B.x>3C.x<0D.x<34.如图,在平面直角坐标系中,直线y=x−2与y=kx+b(k<0)相交于点M,点M的纵坐标为1,则关于x的不等式x−2≤kx+b的解集是()A.x≤1B.x<3C.x≤3D.x<15.用图象法解某二元一次方程组时,在同一平面直角坐标系中作出相应的两个一次函数图象,如图,则所解的二元一次方程组为().A .{y =−x +2y =2x −1B .{y =2x −1y =32x −12C .{y =2x −1y =−32x +52D .{y =−x +2y =32x −126.如图,直线y =kx +b 经过点A(−1,m)和点B(−2,0),直线y =2x 过点A ,则不等式2x <kx +b <0的解集为( )A .x <−2B .−2<x <−1C .−2<x <0D .−1<x <07.如图,直线y =k 1x +b 1与x 轴交于点(-4,0),直线y =k 2x +b 2与x 轴交于点(3,0),则不等式组{k 1x +b 1>0k 2x +b 2>0的解集是( )A .x >−4B .x <3C .-4<x <3D .x <−4或x >38.已知一次函数y =kx +b 的图象如图所示,当x <1时,y 的取值范围是( )A.-2<y<0B.-4<y<0C.y<-2D.y<-4二、填空题9.已知方程kx+b=0的解为x=3,那么直线y=kx+b与x轴的交点坐标为_____ 10.在平面直角坐标系中,如果点P的横坐标和纵坐标相等,则称点P为和谐点,请写出x−1图像上和谐点的坐标:__________.函数y=3411.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为________.12.一次函数y=mx-n(m,n为常数)的图象如图所示,则不等式mx-n≥0的解集是______________.x+b的图像交于点P.下面有四个结13.如图,已知正比例函数y1=ax与一次函数y2=12论:①a<0;①b<0;①当x>0时,y1>0;①当x<−2时,y1>y2.其中正确的是______.(填序号)14.如图,已知一次函数y=mx+n的图像经过点P(−2,3),则关于x的不等式mx−m+n< 3的解集为_______.三、解答题15.如图,在平面直角坐标系中,直线y=−2x+10与x轴交于点B,与y轴交于点C,与直x交于点A,点M是y轴上的一个动点,设M(0,m).线y=12(1)若MA+MB的值最小,求m的值;(2)若直线AM将△ACO分割成两个等腰三角形,请求出m的值,并说明理由.16.如图,一次函数y=kx+b的图象经过点A(﹣2,6),与x轴交于点B,与正比例函数y=3x的图象交于点C,点C的横坐标为1.(1)求AB的函数表达式;S△BOC,求点D的坐标.(2)若点D在y轴负半轴,且满足S△COD=1317.如图,直线l1的函数解析式为y=−2x+4,且l1与x轴交于点D,直线l2经过点A、B,直线l1、l2交于点C.(1)求直线l2的函数解析式;(2)求△ADC的面积;(3)在直线l2上是否存在点P,使得△ADP面积是△ADC面积的2倍?如果存在,请求出P坐标;如果不存在,请说明理由.18.已知直线y=kx+b经过点B(1,4),且与直线y=﹣x﹣11平行.(1)求直线AB的解析式并求出点C的坐标;(2)根据图象,写出关于x的不等式0<2x﹣4<kx+b的解集;(3)现有一点P在直线AB上,过点P作PQ①y轴交直线y=2x﹣4于点Q,若线段PQ的长为3,求P点坐标.。
2020-2021学年八年级数学人教版下册 19.2.3一次函数与方程、不等式同步习题练

人教版七年级数学下册2020-2021年第十九章19.2.3一次函数与方程、不等式同步习题练 一、单选题1.已知一次函数y =ax +a +2的图象与y 轴的正半轴相交,且y 随x 的增大而减小,则a 的值可以是( ) A .14B .﹣1C .﹣2D .122.已知一次函数y kx b =+(k b 、为常数,且0k ≠),x y 、的部分对应值如下表:x … 2-1-0 1 … y…2-4- 6-…当0y >时,x 的取值范围是( ) A .4x <-B .4x >-C .2x >-D .2x <-3.如图,函数y =ax +4和y =bx 的图象相交于点A ,则不等式bx ≥ax +4的解集为( )A .x ≥2B .x ≤2C .x <2D .x >24.如图,已知一次函数y =x +1和一次函数y =ax +3图象交于点P ,点P 的横坐标为1,那么方程y =x +1和方程y =ax +3的公共解为( )A .13x y =⎧⎨=⎩B .12x y =⎧⎨=⎩C .23x y =⎧⎨=⎩D .21x y =⎧⎨=⎩5.如图,直线1:12AB y x =+分别与x 轴、y 轴交于点A ,点B ,直线:CD y x b =+分别与x 轴,y 轴交于点C ,点D .直线AB 与CD 相交于点P ,已知4ABD S ∆=,则点P 的坐标是( )A .5(3,)2B .(8,5)C .(4,3)D .1(2,5)46.如图,直线y x m =-+与4y nx n =+的交点的横坐标为2-,则关于x 的不等式40nx n x m +>-+>的整数解可能是( )A .1-B .2-C .3-D .17.如图,直线y kx b =+与y mx n =+分别交x 轴于点(1,0),(4,0)A B -,则不等式()()0kx b mx n ++<的解集为( )A .2x >B .04x <<C .14x -<<D .1x <-或4x >8.已知直线()110y kx k =+<与直线()20y mx m =>的交点坐标为13,22⎛⎫⎪⎝⎭,则关于x 的不等式1kx mx <的解集为( ) A .12x >B .12x <C .32x >D .32x <9.如图所示,函数1y x =和21433y x =+的图像相交于()1,1-,()2,2两点,当12y y >时,x 的取值范围是( )A .1x <-B .12x -<<C .1x <-或2x >D .2x >10.如图所示,在平面直角坐标系中,直线124y x =+分别与x 轴,y 轴交于A ,B 两点,以线段OB 为一条边向右侧作矩形OCDB ,且点D 在直线2y x b =-+上,若矩形OCDB 的面积为20,直线124y x =+与直线2y x b =-+交于点P .则P 的坐标为( )A .522,33⎛⎫⎪⎝⎭B .1731,33⎛⎫⎪⎝⎭ C .()2,8 D .()4,1211.如图,直线1y x b =+与21y kx =-相交于点P ,点P 的横坐标为1-,则关于x 的不等式1x b kx +>-的解集在数轴上表示正确的是( )A .B .C .D12.已知一次函数y 1=kx+1(k <0)的图象与正比例函数y 2=mx (m >0)的图象交于点(12,12m ),则不等式组113kx mx kx mx +<⎧⎨+>-⎩的解集为( )A .122x << B .1322x << C .12x >D .0<x <2二、填空题13.已知一次函数y=ax+b(a、b是常数),x与y的部分对应值如下表:x ﹣2 ﹣1 0 1 2 3y 6 4 2 0 ﹣2 ﹣4不等式ax+b>0的解集是_____.14.一次函数y=﹣3x+b和y=kx+1的图象如图所示,其交点为P(3,4),则不等式kx+1≥﹣3x+b的解集是_______.15.已知一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③b<0;④关于x的方程kx+b=x+a的解为x=3;⑤x>3时,y1<y2,其中正确的结论是_____.(只填序号)16.如果方程组1(21)4y xy k x=+⎧⎨=-+⎩无解,那么直线(23) 1y k x=---不经过第_________象限.17.如图,在平面直角坐标系中,直线l 1:y =ax+b (a 、b 为常数且a≠0)和直线l 2:y =mx+n (m 、n 为常数且m≠0)相交于点A ,若点A 的坐标是(4,5),则关于x 、y 的二元一次方程组y ax by mx n=+⎧⎨=+⎩的解为_____.三、解答题18.请你用学习一次函数时积累的经验和方法研究函数y =∣2x -1∣的图像和性质,并解决问题.(1)根据函数表达式,填空m = ,n = ; x … -2 -1 0 121 2 3 … y…5m1n35…(2)利用(1)中表格画出函数y =∣2x -1∣的图像. (3)观察图像,当x 时,y 随x 的增大而减小; (4)利用图像,直接写出不等式∣2x -1∣<x +1的解集.19.已知直线y kx b =+经过点()2,0A -,且平行于直线2y x =-(1)求该函数的关系式;(2)如果直线y kx b =+经过点()3,P m -,求m 的值; (3)求经过P 点的直线13y x n =+与直线y kx b =+和y 轴所围成的三角形的面积. 20.在平面直角坐标系xOy 中,直线1:5l y kx =+与y 轴交于点A .直线2:1l y x =-+与直线1l 交于点B ,与y 轴交于点C . (1)当点B 的纵坐标为2时, ①写出点B 的坐标及k 的值;②求直线1l ,2l 与y 轴所围成的图形的面积;(2)当点B 的横坐标B x 满足31B x --时,求实数k 的取值范围.21.如图,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1,b ). (1)求b 的值;(2)不解关于x,y的方程组1y xy mx n=+⎧⎨=+⎩,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.(4)直接写出不等式x+1≥mx+n的解集.22.如图,在平面直角坐标系xOy中,直线y=-12x+32与y=x相交于点A,与x轴交于点B.(1)求点A,B的坐标;(2)在平面直角坐标系xOy中,是否存在一点C,使得以O,A,B,C为顶点的四边形是平行四边形?如果存在,试求出所有符合条件的点C的坐标;如果不存在,请说明理由;(3)在直线OA上,是否存在一点D,使得△DOB是等腰三角形?如果存在,试求出所有符合条件的点D的坐标,如果不存在,请说明理由.参考答案1.B解:∵一次函数y =ax +a +2,y 随x 的增大而减小, ∴a <0,又∵一次函数y =ax +a +2的图象与y 轴的正半轴相交, ∴a +2>0, ∴a >-2, ∴-2<a <0, 则a 的值可以是-1. 2.D解: 根据表可以知道函数值y 随x 的增大而减小,当x =−2时,y =0, ∴y >0时,x 的取值范围是x <−2. 故选D . 3.A解:根据函数图象,当x ≥2时,bx ≥ax +4. 故选:A . 4.B解:把x =1时,代入y =x +1,得出y =2,即两直线的交点坐标P 为(1,2),即x =1,y =2同时满足两个一次函数的解析式. 所以关于x ,y 的方程组13y x y ax =+⎧⎨=+⎩的解为12x y =⎧⎨=⎩ 故选B . 5.B解:∵直线AB :y =12x +1分别与x 轴、y 轴交于点A 、点B , 令0x =,则1y =;令0y =,则2x =-, ∴点A 的坐标为(-2,0),点B 的坐标为(0,1), ∴OA =2,OB =1, ∵S △ABD =12BD •OA =12×BD ×2=4, ∴BD =4,∴OD =BD -OB =4-1=3, ∴点D 的坐标为(0,-3), ∵点D 在直线y =x +b 上, ∴b =-3,∴直线CD 的解析式为:y =x -3, ∵直线AB 与CD 相交于点P ,联立可得:1123y x y x ⎧=+⎪⎨⎪=-⎩, 解得85x y =⎧⎨=⎩,即P 的坐标是(8,5). 故选:B . 6.A解:∵直线y =−x +m 与y =nx +4n 的交点的横坐标为−2, ∴关于x 的不等式nx +4n >−x +m 的解集为x >−2, ∵−x +m >0 ∴由图象可知,x <m 又∵−2<m <0, ∴−2<x <0, ∴整数解可能是−1. 故选:A . 7.D解: ∵直线y =kx +b 与直线y =mx +n 分别交x 轴于点A (−1,0),B (4,0), ∴1x <-或4x >时,0kx b +<且0mx n +>或者0kx b +>且0mx n +<, ∴不等式()()0kx b mx n ++<的解集为:1x <-或4x >. 故选:D .8.A 解:∵k <0,∴11y kx =+中1y 随x 的增大而减小, ∵m >0,∴2y mx =中2y 随x 的增大而增大, ∵两直线交点坐标为13,22⎛⎫ ⎪⎝⎭, ∴当x >12时,2y mx =的图像在11y kx =+上方, ∴不等式1kx mx <的解集为为x >12,故选A . 9.C解:∵当x≥0时,y 1=x ;当x <0时,y 1=−x , 两直线的交点为(2,2),(−1,1), ∴由图象可知:当y 1>y 2时x 的取值范围为:x <−1或x >2. 故选C . 10.A∵直线y 1=2x +4分别与x 轴,y 轴交于A ,B 两点, ∴B (0,4), ∴OB =4,∵矩形OCDB 的面积为20, ∴OB •OC =20, ∴OC =5, ∴D (5,4),∵D 在直线y 2=﹣x +b 上, ∴4=﹣5+b , ∴b =9,∴直线y 2=﹣x +9,解924y x y x =-+⎧⎨=+⎩,得53223x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴P (53,223), 故选:A .11.A解:当x >-1时,x +b >kx -1,即不等式x +b >kx -1的解集为x >-1.故选:A .12.A解:∵一次函数11y kx =+(k <0)的图象过点11,22m ⎛⎫ ⎪⎝⎭, ∴11122m k =+, ∴m =k+2, ∴不等式组113kx mx kx mx +⎧⎨+-⎩<>,即为()()12123kx k x kx k x ⎧++⎪⎨++-⎪⎩<>, 解得12<x <2. 故选:A .13.x <1解:由图表可得:当x =1时,y =0,∴方程ax +b =0的解是x =1,y 随x 的增大而减小,∴不等式ax +b >0的解是:x <1,故答案为:x <1.14.x≥3如图由图知当x ≥3时,一次函数y=kx+1的图象在y=﹣3x+b 上方,所以kx+1≥﹣3x+b 的解集是x ≥3 .故答案为:x ≥3 .15.①④⑤解:∵一次函数y 1=kx +b 的图象经过一、二、四象限,∴k <0,b >0,故①正确,③错误;∵一次函数y 2=x +a 的图象经过一、三、四象限,∴a <0,故②错误;∵一次函数y 1=kx +b 与y 2=x +a 的交点的横坐标为3,∴关于x 的方程kx +b =x +a 的解为x =3,故④正确;由图象可知,当x >3时,y 1<y 2,故⑤正确;故正确的结论是①④⑤.故答案为:①④⑤.16.二解:∵1(21)4y x y k x =+⎧⎨=-+⎩无解, ∴函数1y x =+和(21)4y k x =-+无交点(即平行),∴211k -=,解得1k =,∴1y x =-,k >0,b <0,经过第一、三、四象限,不经过第二象限.故答案为:二.17.45 xy=⎧⎨=⎩解:由题意及图像可得:关于x、y的二元一次方程组y ax by mx n=+⎧⎨=+⎩的解为直线l1与直线l2的交点坐标,即45xy=⎧⎨=⎩;故答案为45 xy=⎧⎨=⎩.18.(1)∵函数y=∣2x-1∣,∴当x=﹣1时,m=y=3,当x=1时,n=y=1,故答案为:3,1;(2)函数图象如图所示;(3)由题(2)图象所示,当x<12时,y随x的增大而减小;(4)如图所示,先画出y=x+1的图象,不等式∣2x-1∣<x+1的解集即为函数y=x+1在函数y=∣2x-1∣的图像上方部分,此时x的取值范围为:0<x<219.解:∵y kx b =+与2y x =-平行,∴2k =-,∴2y x b =-+.∵过点(2,0)A -∴()022b =-⨯-+,∴4b =-,∴该函数的关系式:24y x =--.(2)∵24y x =--经过点(3,)P m -∴()234m =-⨯--,∴2m =;(3)令直线24y x =--中0x =时,则4y =-,∴直线24y x =--与y 轴的交点是(0,4)-. 令直线13y x n =+中2y =,3x =-,可得:12(3)3n =⨯-+, ∴3n =,∴直线13y x n =+表达式为直线133y x =+∴直线13y x n =+与y 轴的交点坐标为(0,3), ∴所围成的三角形的面积1217322=⨯⨯=. 20.解:(1)①直线2:1l y x =-+过点B ,点B 的纵坐标为2,12x ∴-+=,解得1x =-,∴点B 的坐标为(1,2)-.直线1:5l y kx =+过点B ,25k ∴=-+,解得3k =;②3k =,∴直线1l 的解析式为:35y x =+,(0,5)A ∴.直线2l 的解析式为:1y x =-+,(0,1)C ∴.514AC ∴=-=,又点B 的坐标为(1,2)-∴直线1l ,2l 与y 轴所围成的图形的面积14122ABC S ∆=⨯⨯=;(2)解方程组51y kx y x =+⎧⎨=-+⎩, 两直线相交,不平行,则1,k ≠-∴ 4151x k k y k ⎧=-⎪⎪+⎨+⎪=⎪+⎩,∴点B 的坐标为4(1k -+,5)1k k ++. 点B 的横坐标B x 满足31B x --,∴当3B x =-时,431k -=-+,解得13k =, 经检验:13k =符合题意, 当1B x =-时,411k -=-+,解得3k =, 经检验:3k =符合题意,∴实数k 的取值范围是133k . 21. 解:(1)把P (1,b )代入y =x +1中得b =2.(2)方程组的解实际就是两个一次函数的交点P 的坐标,即解为:12x y =⎧⎨=⎩ (3)∵l 2:y =mx +n 经过P (1,2),∴m +n =2,把P (1,2)代入y =nx +m ,得m +n =2,故y =nx +m 也经过P 点.(4)x +1≥mx +n 的解集可理解为直线l 1:y =x +1的图像在直线l 2:y =mx +n 的图像上方部分,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1,2)观察图像可得:x ≥1. 22.(1)∵直线y =-12x +32与y =x 相交于点A , ∴联立得1322y x y x⎧=-+⎪⎨⎪=⎩,解得11x y =⎧⎨=⎩, ∴点A (1,1),∵直线y =-12x +32与x 轴交于点B ,∴令y=0,得-12x+32=0,解得x=3,∴B(3,0),(2)存在一点C,使得以O,A,B,C为顶点的四边形是平行四边形.①如图1,过点A作平行于x轴的直线,过点O作平行于AB的直线,两直线交于点C,∵AC∥x轴,OC∥AB,∴四边形CABO是平行四边形,∵A(1,1),B(3,0),∴AC=OB=3,∴C(-2,1),②如图2,过点A作平行于x轴的直线,过点B作平行于AO的直线,两直线交于点C,∵AC∥x轴,BC∥AO,∴四边形CAOB是平行四边形,∵A(1,1),B(3,0),∴AC=OB=3,∴C(4,1),③如图3,过点O作平行于AB的直线,过点B作平行于AO的直线,两直线交于点C,∵OC∥AB,BC∥AO,∴四边形CBAO是平行四边形,∵A(1,1),B(3,0),∴AO=BC,OC=AB,作AE⊥OB,CF⊥OB,易得OE=EF=FB=1,∴C(2,-1),(3)在直线OA上,存在一点D,使得△DOB是等腰三角形,①如图4,当OB=OD时,作DE⊥x轴,交x轴于点E∵OB=3,点D在OA上,∠DOE=45°∴DE=OE=322,∴D(-322,-322),②如图5,当OD=OB时,作DE⊥x轴,交x轴于点E∵OB=3,点D在OA上,∠DOE=45°∴DE=OE=322,∴D(322,322),③如图6,当OB=DB时,∵∠AOB=∠ODB=45°,∴DB⊥OB,∵OB=3,∴D(3,3),④如图7,当DO=DB时,作DE⊥x轴,交x轴于点E∵∠AOB=∠OBD=45°,∴OD⊥DB,∵OB=3,∴OE=32,AE=32,∴D(32,32).综上所述,在直线OA上,存在点D(-2,-2),D(2,2),D(3,3)或D(32,32),使得△DOB是等腰三角形.。
一次函数与方程、不等式练习题

19.2.3 一次函数与方程、不等式一、选择题。
1.若直线y=2x +n 与y=mx-1相交于点(1,-2),则( ). A .m=12,n=-52 B .m=12,n=-1; C .m=-1,n=-52 D .m=-3,n=-32 2.方程2x -3y+6=0可变形为 ( )A 232-=x yB 232+=x yC 232+-=x yD 232--=x y 3.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( )A . 012302=--=-+y x y xB . 0123012=--=--y x y x C . 0523012=-+=--y x y x D . 01202=--=-+y x y x 4.如图,一次函数21y x =+的图象与y kx b =+的图象相交于点A ,则方程组21y x y kx b=+⎧⎨=+⎩的解是( ) · · · ··1 2 3 1 2 xy0 -1 ·A .31x y =⎧⎨=⎩B .73x y =⎧⎨=⎩C .37x y =⎧⎨=⎩D .13x y =⎧⎨=⎩ 5.一次函数1y kx b =+与2y x a =+的图像如图,则下列结论:①k<0;②a<0;③b<0;④方程kx b x a +=+的解为x=3;⑤当x<3时,12y y <.正确的个数是( )A .0B .1C .2D .36.如图所示,一次图数y =-x +3与一次函数y =2x +m 图象交于点(2,n ),则关于x 的不等式组3023x x m x -+⎧⎨+-+⎩>>的解集为( )A .<2x -B .23x -<<C .3x >D .2x >-7.如图,一次函数y =kx +b (k ≠0),的图象经过A (2,0)、B (0,−2)两点,则关于x 的不等式kx +b <0的解集是( )A .x >2B .x <2C .−2<x <2D .−2≤x ≤28.如图所示,一次函数y kx b =+(k ,b 是常数,且0k ≠)与正比例函数y mx =(m 是常数,且0m ≠)的图象相交于点()1,2M ,下列判断不正确的是( )A .关于x 的方程mx kx b =+的解是1x =B .关于,x y 的方程组00mx y kx y b -=⎧⎨-+=⎩的解是12x y =⎧⎨=⎩ C .当0x <时,函数y kx b =+的值比函数y mx =的值大D .关于x 的不等式()m k x b ->的解集是1x <二、填空题。
《一次函数与方程、不等式》综合测试题(有答案)

《一次函数与方程、不等式》测试题 一、 填空题(每小题3分,共24分)1义,则函数1y kx =-的图象不经过第 象限。
2、一次函数22+=x y 的图象如图所示,则由图象可知,方程022=+x 的解为 。
4、一次函数b kx y+=的图象如图所示,由图象可知,当x 时,y 值为正数,当x 时,y 为负数。
5、已知方程组⎩⎨⎧=+=-82237y x y x 的解为⎩⎨⎧==42y x ,那么一次函数____=y 与一次函数____=y 的交点为(2,4)。
6、一次函数12+-=x y 与一次函数93--=x y 两图象有一个公共点,则这个公共点的坐标为 。
7、一次函数b ax y +=的图象过点(0,-2)和(3,0)两点,则方程0=+b ax 的解为 。
8、直线a x y +=21与直线1-=bx y 相交于点(1,-2),则a = ,b= 。
二、选择题(每小题3分,共24分) 1、如图,一次函数b kx y+=与x 轴的交点为(-4,0),当y >0时,x 的取值范围是( ) A 、4->x B 、0>x C 、4-<x D 、0<x2、一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( )A 、0B 、1C 、2D 、33、根据函数1036521+=+=x y x y 和的图象,当2>x 时,1y 与2y 的大小关系是( )A 、21y y <B 、21y y >C 、21y y =D 、不能确定4、一次函数b ax y +=,当32>x 时,0>y ,那么不等式0≥+b ax 的解集为( )A 、32>xB 、32<xC 、32≥xD 、32≤x5、若直线3+=kx y 与b x y 23-=的交点在x 轴上,当k =2时,b 等于( ) A 、9 B 、-3 C 、23-D 、49- 6、若直线221-=x y与直线a x y +-=41相交于x 轴上,则直线a x y +-=41不经过( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 7、已知一次函数b kx y+=的图象经过点(0,2)和(-3,0),则0<+b kx 的解集为( )A 、3->xB 、3-<xC 、2>xD 、23<<-x8、两个一次函数212-=x y 与32+-=x y 的图象交点坐标为( ) A 、)185,187( B 、)32,21( C 、)21,32(- D 、)65,67( 三、解答题(9+9+12+12=42分) 1、已知函数12,5421+=-=x y x y ,请回答下列问题:(1)求当x 取什么值时,函数1y 的值等于0? (2)当x 取什么值时,函数2y 的值恒小于0? (3)当x 取何值时函数2y 的值不小于1y 的值。
人教版八年级数学下册同步练习题一次函数与方程、不等式

k 1 k 2 x m n 的解是()《一次函数与方程不等式》同步练习◆ ◆ 基础题一、单选题1. 如图所示,已知此一次函数 y =kx +b (k ,b 是常数, k ≠0)的图象,求不等式 kx +b >0 的解集是( )集应为(A .x >-2.x <02. 如图,直线 y =kx +b 经过点 A ( -1 , -2 )和点 B ( -2 , 0),直线 y =2x 过点 A ,则不等式2x < kx +b <0 的解集为( A .x <-2.-2 <x <-1 .-2 <x <0 D . -1<x < 03. 一次函数 y =ax + b A .x ≤m.x ≤-m .x ≥mD.x ≥-m4.如图,已知直线 y 1 k 1x m 和直线 y 2 k 2x n 交于点 P 1, 2 ,则关于 x 的不等式a >0)元一次不等式 ax +b ≤0的解解为 ( )是(二、填空题7. 一次函数 y =-2 x +4,当函数值为正时, x 的取值范围是 =8. 已知一次函数 y =ax +b ( a 、b 为常数), x 与 y 的部分对应值如右表:A. x 2B. x 1C. 1 x 2D. x 15.如图,两个一次函数图象的交点坐标为( y k 1x b 12,4),则关于 x ,y 的方程组 { 1 1 的 y k 2x b 2x2 A. {x y 24D.x3{x y 306. 如图,直线 y=kx+b 经过 A ( 2, 1),B ( -1 , -2)两点,则不等式 kx b 2 的解集A. x < 2B. x > - 1C. x< 1 或 x > 2 D. -1 < x <2C.B.{y 2{y 0那么方程ax+b=0 的解是,不等式ax+b> 0 的解是9. 已知一次函数的图象过点3,5 与4,9 ,那么这个函数的解析式是____________ ,则该函数的图象与y 轴交点的坐标为_____________ .10. 一次函数y1=kx+b 与y 2=x+a 的图象如图,则下列结论:① k< 0;②a>0;③当x<3 时,y1<y2;④方程kx+b=x+a 的解是x-3 ,其中正确的是__________ . (填写序号)◆ 能力题11. 在平面直角坐标系中有两条直线l1:y3x9和l2: y3x 6,它们的交点为P,直1 5 5 22线l1与x 轴交于点A,直线l2与x轴交于B点.(1) 求A、 B 两点的坐标;(2) 用图象法解方程组:3x 5y 9, 3x 2y 12;(3) 求△ PAB的面积.12.画出函数y=2x- 4 的图象,并回答下列问题:(1) 当x 取何值时,y> 0?(2) 若函数值满足-6≤y≤6,求相应的x 的取值范围.13.在平面直角坐标系xoy 中,已知一次函数y1 mx m 0 与y2 kx b k 0 相交于点A 1,2 ,且y2 kx b k 0 与y 轴交于点B 0,3 .(1)求一次函数y1 和y2 的解析式;2)当y1 y2 0时,求出x 的取值范围.◆ 提升题14. 如图,直线l 是一次函数y=kx+b的图象,点A、B在直线l 上.根据图象回答下列问题:(1)写出方程kx+b=0 的解;(2)写出不等式kx+b> 1 的解集;(3)若直线l 上的点P(m,n)在线段AB上移动,则m、n 应如何取值.15. 已知:如图,已知直线AB的函数解析式为y=-2 x+8,与x 轴交于点A,与y 轴交于点B.(1)求A、B 两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥ x轴于点E,PF⊥y 轴于点F,连接EF,问:①若△ PAO的面积为S,求S 关于m的函数关系式,并写出m的取值范围;②是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.答案与解析◆ 基础题1.A【解析】从图象得知一次函数y=kx+b(k,b 是常数,k≠0)的图象经过点(-2,0),并且函数值y 随x 的增大而增大,因而则不等式kx+b>0的解集是x>-2 .2.B【解析】不等式2x< kx +b< 0 体现的几何意义就是直线y=kx+b 上,位于直线y=2x 上方,x 轴下方的那部分点,显然,这些点在点 A 与点 B 的横坐标之间.3.A【解析】∵一次函数y=ax+b(a>0)与x 轴的交点坐标为(m,0),∴一元一次不等式ax+b≤0的解集是x≤m.4.B【解析】根据图形,找出直线y1在直线y2上方部分的x 的取值范围即可.解:由图形可,当x>-1 时,k1x+m>k2x+n,即(k1-k2)x>- m+n,所以,关于x 的不等式(k1- k2)x>- m+n的解集是x>- 1.y k 1x b 1x 2 5.A 【解析】因为两函数的图象的交点坐标是 ( 2,4),所以方程组 { 1 1 的解为 { .y k 2x b 2y 4本题考查了一次函数与二元一次方程组: 满足函数解析式的点就在函数的图象上, 在函数的 图象上的点, 就一定满足函数解析式 .函数图象交点坐标为两函数解析式组成的方程组的解 .116.D 【解析】画出函数 y=kx+b 及 y x 的图象如图,根据题意可知,函数 y x 过点 A221 (2,1).结合函数的图象可知,x kx b 2 所对应的自变量的取值范围是 -1<x<2.27.x <28.x =1, x < 1. 【解析】方程 ax +b =0的解为 y =0时函数 y =ax +b 的 x 的值,根据图表即可得出此方程的解. 不等式 ax +b >0的解集为函数 y =ax +b 中y >0时自变量 x 的取值范围, 由图 表可知, y 随 x 的增大而减小, 因此 x <1 时,函数值 y >0;即不等式 ax +b >0 的解为 x < 1. 9.y=2x-1 (0,-1)10. ①④ 【解析】 根据图象及数据可知: ①k<0 ,②a<0;③当 x<3 时,y 1>y 2;④方程 kx+b=x+a 的解是 x-3. 故说法正确的是①④ .◆ 能力题3911. 【解析】 (1) 由 y x知,当 y=0 时, x=-3 ,55当 y=0 时, x=4,∴ B(4 , 0) .∴A (-3,0 ).由 y3x 6知,239 (2) 由 3x-5y= -9 可得 y x , 55由 3x+2y=12 可得 y3x 6 .在同一直角坐标系 2中作出一次函数 y 3x 9和 y553x 6的图象 2图略) ,观察图象可得 l 1、 l 2的交点为 P (2 ,3) ,∴方程组3x 5y 9,的解是3x 2y 12x 2, y 3.(3)S△PAB = OA OB 3 10.5 .12.(1) x >2 (2) -1≤ x ≤5 【解析】 试题分析求出函数图象与两坐标轴的交点,利用两 点法作出图象即可; ( 1)求出直线与 x 轴的交点,再根据 y >0 确定 x 的取值范围; (2)分别求出 y=6 和 y=-6 时 x 的值,根据- 6≤ y ≤6,求相应的 x 的取值范围.13. (1) y 2 x 3 (2) 1<x<3 【解析】 (1) ∵一次函数 y 1 mx m 0 过点 A 1,2 ∴2 m∴y 1 2x ;又∵一次函数 y 2 kx b k 0 经过点A 1,2 , B 0,3(2) 1<x<3 . ◆ 提升题14. x =-2 ;x > 0; - 2≤ m ≤2时, 0≤ n ≤2. 【解析】 函数与 x 轴的交点 A 坐标为( -2, 0),与 y 轴的交点的坐标为( 0, 1),且 y 随 x 的增大而增大.(1)函数经过点( -2 , 0),则方程 kx +b =0 的根是 x =-2; (2)函数经过点( 0, 1),则当 x > 0 时,有 kx +b > 1, 即不等式 kx +b > 1 的解集是 x > 0;(3)线段 AB 的自变量的取值范围是: -2≤x ≤2,当- 2≤ m ≤2时,函数值 y 的范围是 0≤y ≤2, 则 0≤ n ≤2.15. 【解析】( 1)令 x =0,则 y =8, ∴ B ( 0,8),令 y =0,则 -2 x +8=0, ∴x =4, ∴A ( 4,0),(2)∵点 P (m ,n )为线段 AB 上的一个动点, ∴-2 m +8=n ,∵ A (4,0), ∴OA =4, ∴0<m <4 ∴ S △PAO = OA × PE = ×4× n =2( -2 m +8) =-4 m +16,( 0< m <4); (3)存在,理由如下:∵ PE ⊥x 轴于点 E , PF ⊥y 轴于点 F , OA ⊥OB , ∴四边形 OEPF 是矩形, ∴EF =OP ,当 OP ⊥AB 时,此时 EF 最小, ∵ A ( 4, 0), B (0,8), ∴AB =4∴EF 最小 =OP = .k1解得:{∴y 2x 3 ;b3∵S △ AOB = OA × OB = AB ×OP ,。
一次函数与一元一次方程及不等式的关系同步练习

一次函数与一元一次房车及不等式的关系同步练习一.选择题(共23小题)1.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3).有下列结论:①关于x的方程kx+b=0的解为x=2;②关于x的方程kx+b=3的解为x=0;③当x>2时,y<0;④当x<0时,y<3.其中正确的是()A.①②③B.①③④C.②③④D.①②④2.如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为()A.x>﹣2 B.x<﹣2 C.x>4 D.x<43.如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是A.x>2 B.x<2 C.x≥2 D.x≤24.已知一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③关于x的方程kx+b=x+a的解为x=3;④x>3时,y1<y2.正确的个数是()A.1 B.2 C.3 D.45.若函数y=kx+b的图象如图所示,那么当y>0时,x的取值范围是()A.x>1 B.x>2 C.x<1 D.x<26.一次函数y=﹣3x+b和y=kx+1的图象如图所示,其交点为P(3,4),则不等式kx+1≥﹣3x+b的解集在数轴上表示正确的是()A. B.C.D.7.如图,一次函数y=kx+3(k≠0)的图象与正比例函数y=mx(m≠0)的图象相交于点P,已知点P的横坐标为1,则关于x的不等式(k﹣m)x>﹣3的解集为()A.x<1 B.1<x<2 C.2<x<3 D.x>38.如图,一次函数y=kx+b(k、b为常数,且k≠0)与正比例函数y=ax(a为常数,且a≠0)相交于点P,则不等式kx+b<ax的解集是()A.x>1 B.x<1 C.x>2 D.x<29.如图,已知直线y1=x+a与y2=kx+b相交于点P(﹣1,2),则关于x的不等式x+a>kx+b的解集正确的是()A.x>﹣1 B.x>1 C.x<1 D.x<﹣110.直线l1:y=ax+b与直线l2:y=mx+n在同一平面直角坐标系中的图象如图所示,则关于x的不等式ax+b<mx+n的解集为()A.x>﹣2 B.x<﹣2 C.x>1 D.x<111.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于的不等式x+b<kx+4的解集是()A.x>2 B.x>0 C.x>1 D.x<112.如图,直线y=﹣x+m与y=x+3的交点的横坐标为﹣2,则关于x的不等式﹣x+m>x+3>0的取值范围为()A.x>﹣2 B.x<﹣2 C.﹣3<x<﹣2 D.﹣3<x<﹣113.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b<kx﹣1的解集在数轴上表示正确的是()A.B.C.D.14.如图,已知一次函数y=kx+b的图象经过A、B两点,那么不等式kx+b>0的解集是()A.x>3 B.x<3 C.x>5 D.x<515.如图,已知正比例函数y1=ax与一次函数y2=x+b的图象交于点P.下面有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2.其中正确的是()A.①②B.②③C.①③D.①④16.如图,直线y=kx+b交坐标轴于A、B两点,则不等式kx+4<0的解集是()A.x<﹣3 B.x>﹣3 C.x<﹣6 D.x>﹣617.如图,已知一次函数y=kx+b(k,b为常数,且k≠0)的图象与x轴交于点A(3,0),若正比例函数y=mx(m为常数,且m≠0)的图象与一次函数的图象相交于点P,且点P的横坐标为1,则关于x的不等式(k﹣m)x+b<0的解集为()A.x<1 B.x>1 C.x<3 D.x>318.如图,在平面直角坐标系中,一次函数y=ax+b经过A(0,2),B(3,0)两点,则不等式ax+b>0的解是()A.x>0 B.x>3 C.x<0 D.x<319.如图,已知正比例函数y1=ax与一次函数y2=﹣x+b的图象交于点P.下面有四个结论:①a>0;②b<0;③当x<0时,y1<0;④当x>2时,y1<y2.其中正确的是()A.①②B.②④C.③④D.①③20.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x<4时,y1<y2;④b<0.其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个21.如图所示,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),则不等式k1x>k2x+b的解集为()A.x>2 B.x<2 C.x>1 D.x<122.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组的解为()A.B.C.D.23.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组的解为()A.B.C.D.二.填空题(共5小题)24.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.25.如图,一次函数y=ax+b和y=kx+c交于点P(2,4),则关于x的一元一次方程ax+b=kx+c的解是.26.如图,函数y=2x+b与函数y=kx﹣1的图象交于点P,则关于x的方程kx﹣1=2x+b的解是.27.已知方程2x+1=﹣x+4的解是x=1,则在同一直角坐标系中直线y=2x+1与y=﹣x+4的交点坐标是.28.一次函数y=kx+3的图象如图所示,则方程kx+3=0的解为.。
(常考题)人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》检测卷(包含答案解析)

一、选择题1.已知a >0,b >0,a +b =1,则下列等式可能成立的是( ) A .221a b += B .1ab = C .212a b +=D .2212a b -=2.若正数a ,b 满足1a >,1b >,且3a b +=,则1411a b +--的最小值为( ) A .4B .6C .9D .163.设正实数x ,y ,z 满足22340x xy y z -+-=,则当xyz取得最大值时,212x y z +-的最大值为( ) A .0B .3C .94D .14.若正实数,x y 满足x y 1+=,则41x 1y++的最小值为( ) A .447B .275 C .143D .925.已知正实数,a b 满足1a b +=,则11b a b ⎛⎫+ ⎪⎝⎭的最小值是( ) A .112B .5C .222+D .32+6.当4x >时,不等式44x m x +≥-恒成立,则m 的取值范围是( ) A .8m ≤B .8m <C .8m ≥D .8m >7.已知AB AC ⊥,1AB t=,AC t =,若P 点是ABC 所在平面内一点,且4AB AC AP ABAC=+,则·PB PC 的最大值等于( ). A .13B .15C .19D .218.若实数,x y 满足0xy >,则的最大值为( ) A .22B .22+C .422+D .422- 9.已知1x >,则41x x +-的最小值为 A .3B .4C .5D .610.若a ,b 为正实数,直线2(23)20x a y +-+=与直线210bx y +-=互相垂直,则ab 的最大值为( )A .32B .98C .94D .411.已知关于x 的不等式()()224210a x a x -+--≥的解集为空集,则实数a 的取值范围是( ) A .62,5⎡⎤-⎢⎥⎣⎦B .62,5⎡⎫-⎪⎢⎣⎭C .6,25⎛⎤-⎥⎝⎦D .(][),22,-∞+∞12.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知6B π=且1ABC S =△,则2a c ac a c+-+的最小值( ) A .12B .2C .14D .4二、填空题13.对于实数m ,若两函数()f x ,()g x 满足:①[,)x m ∀∈+∞,()0f x <或()0<g x ;②(,]x m ∃∈-∞,()()0f x g x <,则称函数()f x 和()g x 互为“m 相异”函数.若2()1f x ax ax =+-和()1g x x =-互为“1相异”函数,则实数a 的取值范围是___________.14.已知正数,x y 满足10xy y -+=,则4y x+的最小值为___________. 15.已知函数()f x =的定义域为R ,则实数m 的取值范围是________. 16.设函数4()f x x x=-对任意[2,)x ∈+∞,()()0f ax af x +<恒成立,则实数a 的取值范围是____________.17.若1a 2-<<,21b -<<,则-a b 的取值范围是 .18.若关于x 的不等式2410x x m -+->的区间[]1,4内有解,则实数m 的取值范围为______.19.设2020a b +=,0b >,则当a =____________时,12020a a b+取得最小值.20.已知函数3()3f x x x =-,若对任意的实数x ,不等式()()(0)f x t f x t t +>+≠恒成立,则实数t 的取值范围__________.三、解答题21.已知二次函数()f x 满足(1)8f -=且(0)(4)3f f == (1)求()f x 的解析式;(2)若[],1x t t ∈+,试求()y f x =的最小值.22.已知a 、b 都是正实数,且.bb a a=- (1)求证:a >1; (2)求b 的最小值.23.已知命题p :方程240x mx ++=无实数根:命题q :不等式()2310x m x +-+>在x ∈R 上恒成立.(1)如果命题p 是假命题,请求出实数m 的取值范围;(2)如果命题p q ∨为真命题,且命题p q ∧为假命题,请求出实数m 的取值范围.24.解下列不等式: (1)2340x x -->; (2)122x x -≤+.25.已知二次函数()f x 满足()01f =,()()125f x f x x +-=+. (1)求()f x 的解析式;(2)若[]3,1x ∈-,若()25f x m m ≤-恒成立,求实数m 的取值范围.26.若关于x 的不等式(1-a )x 2-4x +6<0的解集是x| x<-3或x> 1}. (1)求实数a 的值;(2)解关于x 的不等式2x 2+(2-a )x -a>0.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据已知条件由2()2a b ab +≤可求出2212a b +≥,又由完全平方公式可得221a b +<,即可判断A 、B ;由已知条件可知01b <<,则2b b >,因此22212a b a b +>+≥,可判断C ;由平方差公式可得12a b -=,与1a b +=联立可求出满足条件的a 、b ,故D 可能成立.001a b a b >>+=,,2222211()21212()12()222a b a b a b ab ab +∴+=+-=-≥-⋅=-⨯=, 当且仅当12a b ==时等号成立, 又0ab >,222()2121b a b a ab a b +=+-=-<∴,22112a b ≤+<∴,则221a b +=不可能成立; 2211()()224a b ab ≤==+,当且仅当12a b ==时等号成立,故1ab =不可能成立;001a b a b >>+=,,,01b ∴<<,2b b ∴>,22212b a b a +>+≥∴(由A 可知),则212a b +=不可能成立; ()()2212a b a b a b a b -=+-=-=,联立112a b a b +=⎧⎪⎨-=⎪⎩,解得31,44a b ==,满足条件,D 成立. 故选:D2.C解析:C 【分析】由等式3a b +=可以得到111a b -+-=,由1411a b +--乘以111a b -+-=所求得式子和基本不等式进行求解即可. 【详解】由3a b +=,可得111a b -+-=,10,10a b ->->, 所以()141414(1)511111111a b a a b b a b a b --⎛⎫+=+=++ ⎪------⎝⎭-+-59≥+= 当且仅当12(1)b a -=-,即54,33b a ==时等号成立. 故选:C 【点睛】关键点点睛:本题注意观察待求式的分母,1,1a b --,结合已知条件,可变形为关于分母的式子111a b -+-=,这样就转化为“1”的常规技巧的应用.3.D【分析】利用22340x xy y z -+-=可得143xy x y z y x =+-,根据基本不等式最值成立的条件可得22,2x y z y ==,代入212x y z++可得关于y 的二次函数,利用单调性求最值即可.【详解】由正实数x ,y ,z 满足22340x xy y z -+-=,2234z x xy y ∴=-+.∴2211434432?xy xy x y zx xy y x y y x===-++-, 当且仅当20x y =>时取等号,此时22z y =.∴222122121(1)1122x y z y y y y+-=+-=--+,当且仅当1y =时取等号, 即212x y z+-的最大值是1. 故选:D 【点睛】本题主要考查了基本不等式的性质和二次函数的单调性,考查了最值取得时等号成立的条件,属于中档题.4.D解析:D 【分析】将1x y +=变成12x y ++=,可得41141121x y x y x y ⎛⎫+++=⋅+ ⎪++⎝⎭,展开后利用基本不等式求解即可. 【详解】0x ,0y >,1x y +=,12x y ∴++=,(41141141191451212122x y y x x y x y x y ⎛⎫⎛⎫++++=⋅+=+++≥+= ⎪ ⎪+++⎝⎭⎝⎭(当且仅当13x =,23y =取等号),故选D . 【点睛】本题主要考查利用基本不等式求最值,属于中档题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).5.C解析:C 【分析】将原式变形为()2211b a b b a b ab++⎛⎫+= ⎪⎝⎭,再利用基本不等式计算可得; 【详解】解:()222111b a b b b a b ab ab+++⎛⎫+== ⎪⎝⎭)()222222222a abab b a ab ababab++++==≥=,当且仅当a =时取等号,即2a =1b =时等号成立,故选:C . 【点睛】本题考查基本不等式的应用,属于中档题.6.A解析:A 【分析】 由题可得444444x x x x +=-++--,且40x ->,利用基本不等式解答即可. 【详解】解:∵4x >,∴40x ->,∴44444844x x x x +=-++≥=-- 当且仅当444x x -=-,即6x =时取等号, ∵当4x >时,不等式44x m x +≥-恒成立, ∴只需min484m x x ⎛⎫≤+= ⎪-⎝⎭. ∴m 的取值范围为:(8],-∞. 故选A . 【点睛】本题主要考查基本不等式,解题的关键是得出444444x x x x +=-++--,属于一般题.7.A解析:A 【详解】以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t,(0,)C t ,1AP =(,0)+4(0,1)=(1,4),即1P (,4),所以114)PB t=--(,,14)PC t =--(,,因此PB PC ⋅11416t t =--+117(4)t t =-+,因为114244t t t t+≥⋅=,所以PB PC ⋅的最大值等于13,当14t t =,即12t =时取等号.考点:1、平面向量数量积;2、基本不等式.8.D解析:D 【解析】试题分析:由实数,x y 满足0xy >,,设{2m x y n x y=+=+,解得2{x m ny n m =-=-,则2222224()424222x y m n n m n m n mx y x y m n m n m n--+=+=-+≤-⋅=-++,当且仅当2n mm n=,及2n m =时等号成立,所以的最大值为422-,故选D.考点:基本不等式的应用.9.C解析:C 【分析】由1x >,得10x ->,则441111x x x x +=-++--,利用基本不等式,即可求解. 【详解】由题意,因为1x >,则10x ->,所以44111511x x x x +=-++≥=--, 当且仅当411x x -=-时,即3x =时取等号,所以41x x +-的最小值为5,故选C . 【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了推理与运算能力,属于基础题.10.B解析:B 【分析】由两直线垂直求出23a b +=,再利用基本不等式求出ab 的最大值. 【详解】解:由直线2(23)20x a y +-+=与直线210bx y +-=互相垂直 所以22(23)0b a +-= 即23a b +=又a 、b 为正实数,所以2a b +≥即229224a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当a 34=,b 32=时取“=”;所以ab 的最大值为98. 故选:B 【点睛】本题主要考查了由直线垂直求参数,基本不等式求最值的应用,属于中档题.11.C解析:C 【分析】由题意得出关于x 的不等式()()224210a x a x -+--<的解集为R ,由此得出240a -=或2400a ⎧-<⎨∆<⎩,在240a -=成立时求出实数a 的值代入不等式进行验证,由此解不等式可得出实数a 的取值范围. 【详解】由题意知,关于x 的不等式()()224210a x a x -+--<的解集为R .(1)当240a -=,即2a =±.当2a =时,不等式()()224210a x a x -+--<化为10-<,合乎题意;当2a =-时,不等式()()224210a x a x -+--<化为410x --<,即14x >-,其解集不为R ,不合乎题意;(2)当240a -≠,即2a ≠±时.关于x 的不等式()()224210a x a x -+--<的解集为R .2400a ⎧-<∴⎨∆<⎩,解得265a -<<.综上可得,实数a 的取值范围是6,25⎛⎤- ⎥⎝⎦.故选C .【点睛】本题考查二次不等式在R 上恒成立问题,求解时根据二次函数图象转化为二次项系数和判别式的符号列不等式组进行求解,考查化归与转化思想,属于中等题.12.A解析:A 【分析】由已知条件和三角形的面积公式得4ac =,再根据基本不等式可得+4a c ≥,令24a c y a c +=-+,+a c t =,24t y t =-(4t ≥),由此函数的单调性可得选项. 【详解】 由已知6B π=且1ABC S =△,得1sin 126ac π=,解得4ac =, 所以2+42a c ac ⎛⎫=≤ ⎪⎝⎭,即+4a c ≥,当且仅当a c =时取等号, 所以224a c a c ac a c a c ++-=-++,令24a c y a c +=-+,+a c t =,则24t y t =-(4t ≥),而24t y t =-在[)4+∞,单调递增,所以24214442t y t =-≥-=,所以2a c ac a c+-+的最小值为12. 故选:A. 【点睛】本题考查三角形的面积公式,基本不等式的应用,以及运用函数的单调性求最值的问题,属于中档题.二、填空题13.【分析】根据两个函数互为相异函数可得有恒成立且在上有解利用参变分离先讨论前者再结合二次函数的图象和性质可得所求的取值范围【详解】因为当时当时当时结合互为相异函数故有恒成立且在上有解先考虑有恒成立则在 解析:(),4-∞-【分析】根据两个函数互为“1相异”函数可得[1,)x ∀∈+∞,有()0f x <恒成立,且()0f x >在(),1-∞上有解,利用参变分离先讨论前者,再结合二次函数的图象和性质可得所求的取值范围. 【详解】因为当1x >时,()0g x >,当1x =时,()0g x =,当1x <时,()0g x <, 结合()(),f x g x 互为“1相异”函数,故[1,)x ∀∈+∞,有()0f x <恒成立,且()0f x >在(),1-∞上有解. 先考虑[1,)x ∀∈+∞,有()0f x <恒成立,则210ax ax 在[1,)+∞上恒成立,故2+1a x x<在[1,)+∞上恒成立, 因为22+x x ≥,故2+1102x x <≤,故0a ≤. 再考虑()0f x >在(),1-∞上有解,若0a =,则()10f x =-<,故()0f x >在(),1-∞上无解, 若0a <,()f x 的对称轴为12x =-,且开口向下,由()0f x >在(),1-∞上有解可得240a a ∆=+>, 故4a或0a >(舍).故实数a 的取值范围是(),4-∞-, 故答案为:(),4-∞-. 【点睛】方法点睛:对于新定义背景下的函数性质的讨论,一般是先根据定义得到含参数的函数的性质,对于不等式的恒成立或有解问题,可优先考虑参变分离的方法,也可以结合函数图象的性质处理.14.9【分析】由已知条件得出将代数式与相乘展开后利用基本不等式可求得的最小值【详解】因为正数满足所以即所以当且仅当即时等号成立故答案为:9【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条解析:9【分析】 由已知条件得出11x y +=,将代数式1x y +与4y x+相乘,展开后利用基本不等式可求得4y x+的最小值. 【详解】因为正数,x y 满足10xy y -+=, 所以1xy y +=,即11x y+=,所以4144()()559y x y xy x y x xy +=++=++≥+=, 当且仅当2xy =,即3y =,23x =时,等号成立. 故答案为:9【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.【分析】因为函数的定义域为即不等式恒成立需按二次项系数:为零与不为零分类讨论当系数不为零时只需让系数大于零且根的判别式小于零解此不等式组即可求出的取值范围【详解】∵函数的定义域为∴对于任意恒有①若则 解析:2(,)[2,)3-∞⋃+∞ 【分析】因为函数的定义域为R ,即不等式22(32)(2)10m m x m x -++-+>恒成立,需按二次项系数:232m m -+为零与不为零,分类讨论,当系数不为零时,只需让系数大于零且根的判别式小于零,解此不等式组,即可求出m 的取值范围.【详解】∵ 函数()f x 的定义域为R ,∴ 对于任意x ∈R ,恒有22(32)(2)10m m x m x -++-+>,① 若2320m m -+=,则2m =或1,当1m =时,不等式即为101x x -+>⇒<,不符合题意,当2m =时,不等式即为10>,符合题意,∴ 2m =符合题意;② 若2320m m -+≠,由题意得()22232024(32)0m m m m m ⎧-+>⎪⎨∆=---+<⎪⎩, 解得:2m >或23m <; 综上可得,m 的取值范围是2m ≥或23m <. 故答案为:2(,)[2,)3-∞⋃+∞.【点睛】关键点睛:本题主要考查二次不等式的恒成立问题.讨论二次项系数为零与不为零,当系数不为零时,只需让系数大于零且根的判别式小于零是解决本题的关键. 16.【分析】由题意可得在恒成立运用参数分离和讨论结合恒成立思想和不等式的解法即可得到所求范围【详解】函数对任意恒成立即有即有在恒成立当时由于不满足题意;当时由于可得解得或即有成立则的取值范围是故答案为: 解析:(,1)-∞-【分析】 由题意可得212ax a a<+在[2,)+∞恒成立,运用参数分离和讨论0a >,0a <,结合恒成立思想和不等式的解法,即可得到所求范围.【详解】 函数4()f x x x =-,对任意[2x ∈,)+∞,()()0f ax af x +<恒成立, 即有440a ax ax ax x-+-<, 即有212ax a a ⎛⎫<+ ⎪⎝⎭在[2,)+∞恒成立, 当0a >时,22121x a ⎛⎫<+ ⎪⎝⎭,由于2[4x ∈,)+∞,不满足题意; 当0a <时,22121x a ⎛⎫>+ ⎪⎝⎭,由于2[4x ∈,)+∞,可得21214a ⎛⎫+< ⎪⎝⎭, 解得1a >或1a <-,即有1a <-成立.则a 的取值范围是(,1)-∞-.故答案为:(,1)-∞-.【点睛】本题考查不等式恒成立问题的解法,注意运用参数分离和单调性,考查分类讨论思想方法,以及运算能力,属于中档题.17.(-24)【分析】根据条件得到的范围然后与的范围相加得到的取值范围【详解】因为所以而所以故答案为【点睛】本题考查不等式的基本性质属于简单题 解析:(-2,4)【分析】根据条件,得到b -的范围,然后与a 的范围相加,得到-a b 的取值范围.【详解】因为21b -<<,所以12b -<-<而1a 2-<<所以24a b -<-<故答案为()2,4-.【点睛】本题考查不等式的基本性质,属于简单题.18.【分析】不等式在区间内有解等价于然后求出的值域即可【详解】不等式在区间内有解等价于因为函数在上单调递减在单调递增所以的值域为所以故答案为:【点睛】本题考查的是不等式存在性问题考查了学生对基本方法的掌 解析:(],1-∞【分析】不等式2410x x m -+->在区间[]1,4内有解等价于()2max 4+1x x m ≤-,然后求出()24+1f x x x =-的值域即可.【详解】不等式2410x x m -+->在区间[]1,4内有解等价于()2max 4+1x x m ≤-,因为函数()24+1f x x x =-在()1,2上单调递减,在()2,4单调递增,()()()12,23,41f f f =-=-=,所以()f x 的值域为[]31-,,所以1m ≤, 故答案为:(],1-∞.【点睛】本题考查的是不等式存在性问题,考查了学生对基本方法的掌握情况,属于中档题. 19.【分析】根据题中所给的式子结合已知条件将式子进行整理结合绝对值的意义以及基本不等式求得结果【详解】由已知有:当且仅当时等号成立即故答案为:【点睛】该题考查的是有关求最值的问题涉及到的知识点有基本不等解析:20202019-【分析】 根据题中所给的式子,结合已知条件,将式子进行整理,结合绝对值的意义以及基本不等式求得结果.【详解】由已知有:22212020202020202020a a a a b a b a b a b a a b++=+=++212020≥-+ 221140392202020202020=-+⨯=, 当且仅当0a <,22020a b a b=时,等号成立. 即222202020192020a a b ⇒=-=. 故答案为:20202019-. 【点睛】该题考查的是有关求最值的问题,涉及到的知识点有基本不等式,属于简单题目. 20.【分析】代入函数解析式可得不等式等价于任意的实数恒成立利用判别式小于0即可求解【详解】不等式恒成立即恒成立整理得恒成立可知则任意的实数恒成立解得(舍去)或实数的取值范围是故答案为:【点睛】本题考查一 解析:()4,+∞【分析】代入函数解析式可得不等式等价于223340x tx t 任意的实数x 恒成立,利用判别式小于0即可求解.【详解】 3()3f x x x =-,不等式()()(0)f x t f x t t +>+≠恒成立,即()()3333x t x t x x t +-+>-+恒成立,整理得2233340tx t x t t 恒成立,可知0t >,则223340x tx t 任意的实数x 恒成立,2234340t t ,解得4t <-(舍去)或4t >, ∴实数t 的取值范围是()4,+∞.故答案为:()4,+∞.【点睛】本题考查一元二次不等式的恒成立,属于基础题.三、解答题21.(1)2()43f x x x =-+;(2)2min243,2()1,122,1t t t f x t t t t ⎧-+≥⎪=-<<⎨⎪-≤⎩. 【分析】(1)设二次函数()f x 的解析式为:2()(0)f x ax bx c a =++≠,由(1)8f -=、(0)(4)3f f ==列方程组即可求出,,a b c 得值进而可得()f x 的解析式;(2)由(1)知2()43f x x x =-+,对称轴为2x =,分情况讨论对称轴和区间的关系即可求解.【详解】(1)设二次函数()f x 的解析式为:2()(0)f x ax bx c a =++≠,因为(1)8f -=,且(0)(4)3f f ==,则有813416433a b c a c b a b c c -+==⎧⎧⎪⎪=⇒=-⎨⎨⎪⎪++==⎩⎩, 于是二次函数解析式为:2()43f x x x =-+(2)由(1)知2()43f x x x =-+,对称轴为2x =,若2t ≥,则()f x 在[],1t t +上单调递增,所以2min ()()43f x f t t t ==-+; 若12t +≤,即1t ≤时,()f x 在[],1t t +上单调递减,所以22min ()(1)(1)4(1)32f x f t t t t t =+=+-++=-; 若21t t <<+,即12t <<时,2min ()(2)24231f x f ==-⨯+=-综上,2min243,2()1,122,1t t t f x t t t t ⎧-+≥⎪=-<<⎨⎪-≤⎩【点睛】 方法点睛:求函数解析式的方法(1)待定系数法:已知函数类型,可用待定系数法求解,先设出()f x ,再利用题目中给的已知条件,列出关于待定系数的方程组,进而求出待定的系数;(2)换元法:主要用于解决已知复合函数()f g x ⎡⎤⎣⎦的表达式求()f x 的解析式的问题,令()g x t =,解出x ,然后代入()f g x ⎡⎤⎣⎦中即可求得()f t ,从而求得()f x ,要注意新元的取值范围;(3)配凑法:配凑法是将()f g x ⎡⎤⎣⎦右端的代数式配凑成关于()g x 的形式,进而求出()f x 的解析式;(4)构造方程组法(消元法):主要解决已知抽象函数关系式求解函数解析式的问题.方法是根据不同的变量之间的关系,利用变换形式构造不同的等式,通过解方程组求解. 22.无23.无24.无25.无26.无。
一次函数与一次方程及不等式之间的关系的练习测验题()

(A) 2
二、填空题
(B) 1 2
(C) 2
(D) 1 2
11.一次函数 y kx 1地图象经过点(3,7) ,则 k =.
12. 在一次函数 y 1 x b 中,当 x 6 时, y 2 ;当 y 6 时, x =. 3
13. 当 m =时,直线 y 2x m 与 x 轴地交点恰为直线 y 3x 4 与 x 轴地交点.
m 地值为( ) (A) 3 (B) 3
(C)1
(D) 1
7.已知一次函数 y (2n 1)x 2 地图象, y 随 x 地增大而减小,则 n 地取值范围是( )
(A) n 1(B) n 1
(C)n 1 2
(D)n 1 2
8.对于一次函数 y 2x 3 ,使得函数值 y 3地自变量 x 地取值范围是( )
: .
三、解答题
21.利用函数地图象解出 x : 2x 1 3x 1
22.利用函数地图象解出 x : 4x 3 6x 7
23.利用函数图象解方程组:
x 2y 4 2x y 8
个人收集整理 仅供参考学习
24.十一前夕,某校师生要印刷宣传材料,甲印刷厂提出:每份材料收 0.5 元地印刷费,另 收 200 元地制版费;乙印刷厂提出:每份材料收 0.9 元地印刷费,不收制版费.
下方.
17.函数 y mx (4m 1) 地图象经过一、二、三象限,那么 m 地取值范围是.
18.把 3x 5y 8 化成 y kx b 地形式为.
19.一次函数 y 5x m 与 y kx 5 地图象地交点坐标为(2,9) ,则 k =, m =.
20.写出两个一次函数地解析式,使得它们地图象都经过点(3,2)
4
)
一次函数与方程不等式专项练习60题(有答案)

一次函数与方程、不等式专项练习60题〔有答案〕1.一次函数y=kx+b的图象如下图,那么方程kx+b=0的解为〔〕A .x=2 B.y=2 C.x=﹣1 D.y=﹣12.如图,函数y=2x和y=ax+4的图象相交于点A〔m,3〕,那么不等式2x<ax+4的解集为〔〕A .x<B.x<3 C.x>D.x>33.如图,一次函数y=kx+b的图象与y轴交于点〔0,1〕,那么关于x的不等式kx+b>1的解集是〔〕A .x>0 B.x<0 C.x>1 D.x<14.一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点〔2,0〕,那么关于x的不等式a〔x﹣1〕﹣b >0的解集为〔〕A .x<﹣1 B.x>﹣1 C.x>1 D.x<15.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为〔1,2〕,那么使y1<y2的x的取值范围为〔〕A .x>1 B.x>2 C.x<1 D.x<26.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如下图,那么关于x的不等式k2x<k1x+b的解集为〔〕A .x<﹣1 B.x>﹣1 C.x>2 D.x<27.如图,直线y=kx+b经过点A〔﹣1,﹣2〕和点B〔﹣2,0〕,直线y=2x过点A,那么不等式2x<kx+b<0的解集为〔〕A .x<﹣2 B.﹣2<x<﹣1 C.﹣2<x<0 D.﹣1<x<08.整数x满足﹣5≤x≤5,y1=x+1,y2=﹣2x+4,对任意一个x,m都取y1,y2中的较小值,那么m的最大值是〔〕A .1 B.2 C.24 D.﹣99.如图,直线y1=与y2=﹣x+3相交于点A,假设y1<y2,那么〔〕A .x>2 B.x<2 C.x>1 D.x<110.一次函数y=3x+9的图象经过〔﹣,1〕,那么方程3x+9=1的解为x= _________ .11.如图,直线y=ax+b,那么方程ax+b=1的解x= _________ .12.如图,一次函数y=ax+b的图象经过A,B两点,那么关于x的方程ax+b=0的解是_________ .13.直线与x轴、y轴交于不同的两点A和B,S△AOB≤4,那么b的取值范围是_________ .14.关于x的方程mx+n=0的解是x=﹣2,那么直线y=mx+n与x轴的交点坐标是_________ .15.ax+b=0的解为x=﹣2,那么函数y=ax+b与x轴的交点坐标为_________ .16.一次函数y=kx+b的图象如下图,那么关于x的方程kx+b=0的解为______ ,当x ______ 时,kx+b<0.17.如图,函数y=2x+b和y=ax﹣3的图象交于点P〔﹣2,﹣5〕,根据图象可得方程2x+b=ax﹣3的解是_________ .18.一元一次方程0.5x+1=0的解是一次函数y=0.5x+1的图象与_________ 的横坐标.19.如图,直线y=ax﹣b,那么关于x的方程ax﹣1=b的解x= _________ .20.一次函数y1=kx+b与y2=x+a的图象如图,那么方程kx+b=x+a的解是_________ .21.一次函数y=2x+2的图象如下图,那么由图象可知,方程2x+2=0的解为_________ .22.一次函数y=ax+b的图象过点〔0,﹣2〕和〔3,0〕两点,那么方程ax+b=0的解为_________ .23.方程3x+2=8的解是x= _________ ,那么函数y=3x+2在自变量x等于_________ 时的函数值是8.24.一次函数y=ax+b的图象如下图,那么一元一次方程ax+b=0的解是x= _________ .25.观察下表,估算方程1700+150x=2450的解是_________ .x的值 1 2 3 4 5 6 7 …1700+150x的值1850 2000 2150 2300 2450 2600 2750 …26.y1=3x+1,y2=21-3x,当x取何值时,y1比21y2小2.27.计算:〔4a﹣3b〕•〔a﹣2b〕28.我们知道多项式的乘法可以利用图形的面积进展解释,如〔2a+b〕〔a+b〕=2a2+3ab+b2就能用图1或图2等图形的面积表示:〔1〕请你写出图3所表示的一个等式:_________ .〔2〕试画出一个图形,使它的面积能表示:〔a+b〕〔a+3b〕=a2+4ab+3b2.29.如图,直线l是一次函数y=kx+b的图象,点A、B在直线l上.根据图象答复以下问题:〔1〕写出方程kx+b=0的解;〔2〕写出不等式kx+b>1的解集;〔3〕假设直线l上的点P〔m,n〕在线段AB上移动,那么m、n应如何取值.30.当自变量x的取值满足什么条件时,函数y=﹣2x+7的值为﹣2.31.如图,过A点的一次函数y=kx+b的图象与正比例函数y=2x的图象相交于点B,那么不等式0<2x<kx+b的解集是〔〕A .x<1 B.x<0或x>1 C.0<x<1 D.x>132.关于x的一次函数y=kx+b〔k≠0〕的图象过点〔2,0〕,〔0,﹣1〕,那么不等式kx+b≥0的解集是〔〕A .x≥2B.x≤2C.0≤x≤2D.﹣1≤x≤233.当自变量x的取值满足什么条件时,函数y=3x﹣8的值满足y>0〔〕A .x=B.x≤C.x>D.x≥﹣34.函数y=8x﹣11,要使y>0,那么x应取〔〕A .x>B.x<C.x>0 D.x<035.如图,直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有以下3个结论:①a>0;②b>0;③x>﹣2是不等式3x+b>ax﹣2的解集.其中正确的个数是〔〕A .0 B.1 C.2 D.336.如图,直线y=ax+b经过点〔﹣4,0〕,那么不等式ax+b≥0的解集为_________ .37.如图,直线y=kx+b经过A〔﹣2,﹣1〕和B〔﹣3,0〕两点,那么不等式﹣3≤﹣2x﹣5<kx+b的解集是_________ .38.如下图,函数y=ax+b和a〔x﹣1〕﹣b>0的图象相交于〔﹣1,1〕,〔2,2〕两点.当y1>y2时,x的取值范围是_________ .39.如图,直线y=ax+b与直线y=cx+d相交于点〔2,1〕,直线y=cx+d交y轴于点〔0,2〕,那么不等式组ax+b<cx+d<2的解集为_________ .40.如图,直线y=kx+b经过点〔2,1〕,那么不等式0≤x<2kx+2b的解集为_________ .41.一次函数y=kx+b的图象如下图,由图象可知,当x _________ 时,y值为正数,当x _________ 时,y 为负数.42.如图,直线y=kx+b经过A〔1,2〕,B〔﹣2,﹣1〕两点,那么不等式x<kx+b<2的解集为_________ .43.如果直线y=kx+b经过A〔2,1〕,B〔﹣1,﹣2〕两点,那么不等式x≥kx+b≥﹣2的解集为:_________ .44.如图,直线y=kx+b与x轴交于点〔﹣3,0〕,且过P〔2,﹣3〕,那么2x﹣7<kx+b≤0的解集_________ .45.一次函数y=ax﹣b的图象经过一、二、三象限,且与x轴交于点〔﹣2,0〕,那么不等式ax>b的解集为_________ .46.一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点〔2,O〕,那么关于x的不等式a〔x﹣l〕﹣b>0的解集为_________ .47.如图,直线y=ax+b经过A〔﹣2,﹣5〕、B〔3,0〕两点,那么,不等式组2〔ax+b〕<5x<0的解集是_________ .48.函数y1=2x+b与y2=ax﹣3的图象交于点P〔﹣2,5〕,那么不等式y1>y2的解集是_________ .49.如图,直线y=kx+b经过A〔2,0〕,B〔﹣2,﹣4〕两点,那么不等式y>0的解集为_________ .50.点P〔x,y〕位于第二象限,并且y≤x+4,x、y为整数,符合上述条件的点P共有6个.51.作出函数y=2x﹣4的图象,并根据图象答复以下问题:〔1〕当﹣2≤x≤4时,求函数y的取值范围;〔2〕当x取什么值时,y<0,y=0,y>0;〔3〕当x取何值时,﹣4<y<2.52.画出函数y=2x+1的图象,利用图象求:〔1〕方程2x+1=0的根;〔2〕不等式2x+1≥0的解;〔3〕求图象与坐标轴的两个交点之间的距离.53.用画函数图象的方法解不等式5x+4<2x+10.54.画出函数y=3x+12的图象,并答复以下问题:〔1〕当x为什么值时,y>0;〔2〕如果这个函数y的值满足﹣6≤y≤6,求相应的x的取值范围.55.如图,直线y=x+1和y=﹣3x+b交于点A〔2,m〕.〔1〕求m、b的值;〔2〕在所给的平面直角坐标系中画出直线y=﹣3x+b;〔3〕结合图象写出不等式﹣3x+b<x+1的解集是_________ .56.如图,图中是y=a1x+b1和y=a2x+b2的图象,根据图象填空.的解集是_________ ;的解集是_________ ;的解集是_________ .57.在平面直角坐标系x0y中,直线y=kx+b〔k≠0〕过〔1,3〕和〔3,1〕两点,且与x轴、y轴分别交于A、B 两点,求不等式kx+b≤0的解.58.用图象法解不等式5x﹣1>2x+5.59.〔1〕在同一坐标系中,作出函数y1=﹣x与y2=x﹣2的图象;〔2〕根据图象可知:方程组的解为_________ ;〔3〕当x _________ 时,y2<0.〔4〕当x _________ 时,y2<﹣2〔5〕当x _________ 时,y1>y2.60.做一做,画出函数y=﹣2x+2的图象,结合图象答复以下问题.函数y=﹣2x+2的图象中:〔1〕随着x的增大,y将_________ 填“增大〞或“减小〞〕〔2〕它的图象从左到右_________ 〔填“上升〞或“下降〞〕〔3〕图象与x轴的交点坐标是_________ ,与y轴的交点坐标是_________〔4〕这个函数中,随着x的增大,y将增大还是减小?它的图象从左到右怎样变化?〔5〕当x取何值时,y=0?〔6〕当x取何值时,y>0?一次函数与方程不等式60题参考答案:1.∵一次函数y=kx+b的图象与x轴的交点为〔﹣1,0〕,∴当kx+b=0时,x=﹣1.应选C.2.∵函数y=2x和y=ax+4的图象相交于点A〔m,3〕,∴3=2m,m=,∴点A的坐标是〔,3〕,∴不等式2x<ax+4的解集为x<;应选A3.由一次函数的图象可知,此函数是减函数,∵一次函数y=kx+b的图象与y轴交于点〔0,1〕,∴当x<0时,关于x的不等式kx+b>1.应选B.4.∵一次函数y=ax+b的图象过第一、二、四象限,∴b>0,a<0,把〔2,0〕代入解析式y=ax+b得:0=2a+b,解得:2a=﹣b =﹣2,∵a〔x﹣1〕﹣b>0,∴a〔x﹣1〕>b,∵a<0,∴x﹣1<,∴x<﹣1,应选A5.由图象可知,当x<1时,直线y1落在直线y2的下方,故使y1<y2的x的取值范围是:x<1.应选C.6.两条直线的交点坐标为〔﹣1,2〕,且当x>﹣1时,直线l2在直线l1的下方,故不等式k2x<k1x+b的解集为x>﹣1.应选B7.不等式2x<kx+b<0表达的几何意义就是直线y=kx+b上,位于直线y=2x上方,x轴下方的那局部点,显然,这些点在点A与点B之间.应选B8.联立两函数的解析式,得:,解得;即两函数图象交点为〔1,2〕,在﹣5≤x≤5的范围内;由于y1的函数值随x的增大而增大,y2的函数值随x的增大而减小;因此当x=1时,m值最大,即m=2.应选B9.从图象上得出,当y1<y2时,x<2.应选B.10.方程3x+9=1的解,即函数y=3x+9中函数值y=1时,x的值.∵一次函数y=3x+9的图象经过〔﹣,1〕,即函数值是1时,自变量x=﹣.因而方程3x+9=1的解为x=﹣11.根据图形知,当y=1时,x=4,即ax+b=1时,x=4.∴方程ax+b=1的解x=412.由图可知:当x=2时,函数值为0;因此当x=0时,ax+b=0,即方程ax+b=0的解为:x=213.由直线与x轴、y轴交于不同的两点A和B,令x=0,那么y=b,令y=0,那么x=﹣2b,∴S△AOB=×2b2=b2≤4,解得:﹣2≤b≤2且b≠0,故答案为:﹣2≤b≤2且b≠014.∵方程的解为x=﹣2,∴当x=﹣2时mx+n=0;又∵直线y=mx+n与x轴的交点的纵坐标是0,∴当y=0时,那么有mx+n=0,∴x=﹣2时,y=0.∴直线y=mx+n与x轴的交点坐标是〔﹣2,0〕15.∵ax+b=0的解为x=﹣2,∴函数y=ax+b与x轴的交点坐标为〔﹣2,0〕,故答案为:〔﹣2,0〕16.从图象上可知那么关于x的方程kx+b=0的解为的解是x=﹣3,当x<﹣3时,kx+b<0.故答案为:x=﹣3,x<﹣317.根据题意,知 点P 〔﹣2,﹣5〕在函数y=2x+b 的图象上,∴﹣5=﹣4+b ,解得,b=﹣1;又点P 〔﹣2,﹣5〕在函数y=ax ﹣3的图象上,∴﹣5=﹣2a ﹣3,解得,a=1;∴由方程2x+b=ax ﹣3,得2x ﹣1=x ﹣3,解得,x=﹣2;故答案是:x=﹣218. ∵0.5x+1=0,∴0.5x=﹣1,∴x=﹣2,∴一次函数y=0.5x+1的图象与x 轴交点的横坐标为:x=﹣2,故答案为:x 轴交点.19.根据图形知,当y=1时,x=4,即ax ﹣b=1时,x=4.故方程ax+b=1的解x=4.故答案为:420.一次函数y 1=kx+b 与y 2=x+a 的图象的交点的横坐标是3,故方程的解是:x=3.故答案是:x=321.由一次函数y=2x+2的图象知:y=2x+2经过点〔﹣1,0〕,∴方程2x+2=0的解为:x=﹣1,故答案为:x=﹣1.22.一次函数y=ax+b 的图象过点〔0,﹣2〕和〔3,0〕两点,∴b=﹣2,3a+b=0,解得:a=,∴方程ax+b=0可化为:x ﹣2=0,∴x=3.23.解方程3x+2=8得到:x=2,函数y=3x+2的函数值是8.即3x+2=8,解得x=2,因而方程3x+2=8的解是x=2 即函数y=3x+2在自变量x 等于2时的函数值是8.故填2、824.∵一次函数y=ax+b 的图象与x 轴交点的横坐标是﹣2,∴一元一次方程ax+b=0的解是:x=﹣2.故填﹣225.设y=1700+150x ,由图中所给的表可知:当x=5时,y=1700+150x=2450,∴方程1700+150x=2450的解是5. 故答案为:526.∵y 1比21 y 2小2.,y 1=3x +1, y 2=21-3x ∴3x +1= 21〔21-3x 〕-2=41-23x-2 两边都乘12得,4x+12=3-18x-24,移项及合并得22x=-33,解得x=-1.5,当x=-1.5时,y 1比21 y 2小2. 27.原式=4a•a﹣8ab ﹣3ab+6b•b=4a 2﹣11ab+6b 228.〔1〕∵长方形的面积=长×宽,∴图3的面积=〔a+2b 〕〔2a+b 〕=2a 2+5ab+2b 2,故图3所表示的一个等式:〔a+2b 〕〔2a+b 〕=2a 2+5ab+2b 2,故答案为:〔a+2b 〕〔2a+b 〕=2a 2+5ab+2b 2;〔2〕∵图形面积为:〔a+b 〕〔a+3b 〕=a 2+4ab+3b 2,∴长方形的面积=长×宽=〔a+b 〕〔a+3b 〕,由此可画出的图形为:29.函数与x 轴的交点A 坐标为〔﹣2,0〕,与y 轴的交点的坐标为〔0,1〕,且y 随x 的增大而增大.〔1〕函数经过点〔﹣2,0〕,那么方程kx+b=0的根是x=﹣2;〔2〕函数经过点〔0,1〕,那么当x >0时,有kx+b >1,即不等式kx+b >1的解集是x >0;〔3〕线段AB 的自变量的取值范围是:﹣2≤x≤2,当﹣2≤m≤2时,函数值y 的范围是0≤y≤2, 那么0≤n≤2.30. 函数y=﹣2x+7中,令y=﹣2,那么﹣2x+7=﹣2,解得:x=4.5.31.一次函数y=kx+b 经过A 、B 两点,∴,解得:k=﹣,b=3.故:y=﹣,∵0<2x<﹣,解得:0<x<1.应选C32.由于x的一次函数y=kx+b〔k≠0〕的图象过点〔2,0〕,且函数值y随x的增大而增大,∴不等式kx+b≥0的解集是x≥2.应选A33.函数y=3x﹣8的值满足y>0,即3x﹣8>0,解得:x>.应选C34.函数y=8x﹣11,要使y>0,那么8x﹣11>0,解得:x>.应选A.35.由图象可知,a>0,故①正确;b>0,故②正确;当x>﹣2是直线y=3x+b在直线y=ax﹣2的上方,即x>﹣2是不等式3x+b>ax﹣2,故③正确.应选D.36.由图象可以看出:当x≥﹣4时,y≥0,∴不等式ax+b≥0的解集为x≥﹣4,故答案为:x≥﹣437.∵直线y=kx+b经过A〔﹣2,﹣1〕和B〔﹣3,0〕两点,∴,解得,∴不等式变为﹣3≤﹣2x﹣5<﹣x﹣3,解得﹣2<x≤﹣1,故答案为﹣2<x≤﹣138.∵函数y=ax+b和a〔x﹣1〕﹣b>0的图象相交于〔﹣1,1〕,〔2,2〕两点,∴根据图象可以看出,当y1>y2时,x的取值范围是x>2或x<﹣1,故答案为:x<﹣1或x>239. 如图,直线y=ax+b与直线y=cx+d相交于点〔2,1〕,直线y=cx+d交y轴于点〔0,2〕,那么不等式组ax+b<cx+d<2的解集为〔0,2〕.40.由直线y=ax+b与直线y=cx+d相交于点〔2,1〕,直线y=cx+d交y轴于点〔0,2〕,根据图象即可知不等式组ax+b<cx+d<2的解集为〔0,2〕,故答案为:〔0,2〕.41. 一次函数y=kx+b的图象如下图,由图象可知,当x x>﹣3 时,y值为正数,当x x<﹣3 时,y为负数.42.由图形知,一次函数y=kx+b经过点〔﹣3,0〕,〔0,2〕故函数解析式为:y=x+2,令y>0,解得:x>﹣3,令y<0,解得:x<﹣3.故答案为:x>﹣3,x<﹣343.直线y=kx+b经过A〔2,1〕和B〔﹣1,﹣2〕两点,可得:,解得;那么不等式组x≥kx+b≥﹣2可化为x≥x﹣1≥﹣2,解得:﹣1≤x≤244.直线y=kx+b与x轴交于点〔﹣3,0〕,且过P〔2,﹣3〕,∴结合图象得:kx+b≤0的解集是:x≥﹣3,∵2x﹣7<﹣3,∴x<2,∴2x﹣7<kx+b≤0的解集是:﹣3≤x<2,故答案为:﹣3≤x<2 45.如右图所示:不等式ax>b的解集就是求函数y=ax﹣b>0,当y>0时,图象在x轴上方,那么不等式ax>b的解集为x>﹣2.故答案为:x>﹣2.46.∵一次函数y=ax+b的图象过第一、二、四象限,∴b>0,a<0,把〔2,0〕代入解析式y=ax+b得:0=2a+b,解得:2a=﹣b,=﹣2,∵a〔x﹣1〕﹣b>0,∴a〔x﹣1〕>b,∵a<0,∴x﹣1<,∴x<﹣147.把A〔﹣2,﹣5〕、B〔3,0〕两点的坐标代入y=ax+b,得﹣2a+b=﹣5,3a+b=0,解得:a=1,b=﹣3.解不等式组:2〔x﹣3〕<5x<0,得:﹣2<x<0.故答案为:﹣2<x<048.由图象可知x>﹣2时,y1>y2;故答案为x>﹣249.∵一次函数y=kx+b的图象经过A、B两点,由图象可知:直线从左往右逐渐上升,即y随x的增大而增大,又A〔2,0〕,所以不等式y>0的解集是x>2.故答案为x>250.∵点P〔x,y〕位于第二象限,∴x<0,y>0,又∵y≤x+4,∴0<y<4,x<0,又∵x、y为整数,∴当y=1时,x可取﹣3,﹣2,﹣1,当y=2时,x可取﹣1,﹣2,当y=3时,x可取﹣1.那么P坐标为〔﹣1,1〕,〔﹣1,2〕,〔﹣1,3〕,〔﹣2,1〕,〔﹣2,2〕,〔﹣3,1〕共6个.故答案为:651.当x=0时,y=﹣4,当y=0时,x=2,即y=2x﹣4过点〔0,﹣4〕和点〔2,0〕,过这两点作直线即为y=2x﹣4的图象,从图象得出函数值随x的增大而增大;〔1〕当x=﹣2时,y=﹣8,当x=4,y=4,∴当﹣2≤x≤4时,函数y的取值范围为:﹣8≤y≤4;〔2〕由于当y=0时,x=2,∴当x<2时,y<0,当x=2时,y=0,当x>2时,y>0;〔3〕∵当y=﹣4时,x=0;当y=2时,x=3,∴当x的取值范围为:0<x<3时,有﹣4<y<2.52.列表:描点,过〔0,1〕和〔﹣,0〕两点作直线即可得函数y=2x+1的图象,如图:〔1〕由图象看出当x=﹣时,y=0,即2x+1=0,所以x=﹣是方程2x+1=0的解;〔2〕不等式2x+1≥0的解应为函数图象上不在x轴下方的点的横坐标,所以x≥﹣是不等式2x+1≥0的解;〔3〕由勾股定理得它们之间的距离为53.令y1=5x+4,y2=2x+10,对于y1=5x+4,当x=0时,y=4;当y=0时,x=﹣,即y1=5x+4过点〔0,4〕和点〔﹣,0〕,过这两点作直线即为y1=5x+4的图象;对于y2=2x+10,当x=0时,y=10;当y=0时,x=﹣5,即y2=2x+10过点〔0,10〕和点〔﹣5,0〕,过这两点作直线即为y2=2x+10的图象.图象如图:由图可知当x<2时,不等式5x+4<2x+10成立.54. 当x=0时,y=12;当y=0时,x=﹣4,即y=3x+12过点〔0,12〕和点〔﹣4,0〕,过这两点作直线即为y=3x+12的图象,从图象得出函数值随x的增大而增大;〔1〕函数图象经过点〔﹣4,0〕,并且函数值y随x的增大而增大,因而当x>﹣4时y>0;〔2〕函数经过点〔﹣6,﹣6〕和点〔﹣2,6〕并且函数值y随x的增大而增大,因而函数y的值满足﹣6≤y≤6时,相应的x的取值范围是:﹣6≤x≤﹣2.55.〔1〕根据题意得:解得:〔2〕画出直线如图:〔3〕自变量的取值范围是:x>2.56.由题意知:由图象知y=a1x+b1>0时有x>﹣3,函数y=a2x+b2>0时有x<1,∴不等式组的解集的解集为:﹣3<x<1;故答案为:﹣3<x<1;由题知:由图象知y=a1x+b1<0时有x<﹣3,根据函数图象知y=a2x+b2<0时有x<1,∴不等式组的解集为:x<﹣3;故答案为:x<﹣3;由题意知:根据函数图象知y=a1x+b1<0时有x<﹣3,根据函数图象知y=a2x+b2<0时有x>1,∴不等式组的解集是空集;故答案为:空集57.∵直线y=kx+b〔k≠0〕过〔1,3〕和〔3,1〕两点,∴,解得:,∴直线AB的解析式为:y=﹣x+4,∵当y=0时,x=4,∴A〔4,0〕,∴不等式kx+b≤0的解集为:x<4.58.5x﹣1>2x+5可变形为x﹣2>0,画一次函数y=x﹣2的图象,如下图:根据图象可得:当y>0时,图象在x轴的上方,故x>2.59.〔1〕解:如下图:.〔2〕解:由图象可知:方程组的解为,故答案为:.〔3〕解:根据题意得:x﹣2<0,解得:x<2,故答案为:<2.〔4〕解:根据题意得:x﹣2<﹣2,解得:x<0,故答案为:<0.〔5〕解:根据题意得:﹣x>x﹣2,解得:x<1,故答案为:x<1.60.函数y=﹣2x+2的图象为:〔1〕由图象知:随着x的增大,y将减小.〔2〕由图象知:图象从左向右下降.〔3〕由图象知:与x轴的交点坐标是〔1,0〕,与y轴的交点坐标是〔0,2〕.〔4〕由图象知:这个函数中,随着x的增大,y将减小,图象从左向右下降.〔5〕由图象知:当x=1时,y=0.〔6〕由图象知:当x<1时,y>0.。
一次函数与一元一次方程和不等式同步辅导(含答案)--绝对经典

11.3.1 -11.3.2 一次函数与一元一次方程和不等式重点知识讲解1.一元一次方程ax+b=0(a≠0)与一次函数y=ax+b(a≠0)的关系(1)一元一次方程ax+b=0(a≠0)是一次函数y=ax+b(a≠0)的函数值为0时的特殊情形.(2)直线y=ax+b与x轴交点的横坐标就是一元一次方程ax+b=0的解x=-ba。
2.一元一次不等式与一次函数的关系(1)一元一次不等式ax+b>0或ax+b<0(a≠0)是一次函数y=ax+b(a≠0)•的函数值不等于0的情形.(2)直线y=ax+b上使函数值y>0(x轴上方的图像)的x的取值范围是ax+b>0的解集;使函数值y<0(x 轴下方的图像)的x的取值范围是ax+b<0的解集.经验与方法技巧1.利用一次函数求一元一次方程的解题步骤(1)将一元一次方程化成ax+b=0的形式.(2)画出y=ax+b的图像,确定其与x轴交点的横坐标.2.利用一次函数求一元一次不等式的解集的技巧根据不等式的特点,灵活采用求解方法:(1)利用一个一次函数;(2)•利用两个一次函数.典型例题例1画出y=-3x+5的图象,利用图像求方程-3x+5=0的解.解析取点(0,5),(53,0),图像如图所示.∵直线y=-3x+5与x轴交点的横坐标为53,∴方程-3x+5=0的解为x=53。
评注画函数图像时要准确,求出直线y=-3x+5与x•轴交点的横坐标即为方程的解.例2画出函数y=-3x+12的图像,利用图像求:(1)不等式-3x+12>0的解集.(2)不等式-3x+12≤0的解集.(3)如果y的值在-6≤y≤6的范围内,那么相应的x的值在什么范围内?解析取点(0,12),(4,0),作出函数图像,如图所示,由图像可以看出:(1)当y>0时,x的取值范围为x<4,∴不等式-3x+12>0的解集为x<4.(2)当y≤0时,x的取值范围为x≥4.∴不等式-3x+12≤0的解集为x≥4.(3)当-6≤y≤6时,x的取值范围为2≤x≤6.评注借助图像求不等式的解集,关键是要清楚以下几点:①y>0时,x•的取值范围就是x轴上方的图像所对应的x的取值范围.②y<0时,x的取值范围就是x•轴下方的图像所对应的x的取值范围.③y=0时,x的值就是图像与x轴交点的横坐标.④当y>a或y<a(a≠0)时,应先确定当y=a时对应的x值,然后再进一步确定x的取值范围.例3若y1=-x+3,y2=3x-4,当x取何值时,y1<y2?解析∵y1<y2,∴-x+3<3x-4,解得x>74,∴当x>74时,y1<y2.评注此题是两个一次函数之间的关系,可以直接借助一元一次不等式求出x的取值范围.教材例题习题的变形题例(P41例2)用画图像的方法解下列各题:- 1 -(1)解不等式:5x+4>2x+10.(2)解方程:5x+4=2x+10.解析(1)如图,原不等式可化为3x-6>0,画出直线y=3x-6,由图像可以看出,当x>2时,这条直线上的点在x轴的上方,即这时y=3x-6>0,所以不等式的解集为x>2.(2)原方程可化为3x-6=0.由图像可以看出,y=3x-6与x轴交点的横坐标为2,所以原方程的解为x=2.评注①从函数的角度看问题,能发现一次函数与一元一次不等式、•一元一次方程之间的联系,体现了数形结合的思想.②本题求不等式的解集时,还可将不等式的两边分别看作两个一次函数,画出两条直线,比较直线上点的位置的高度,也可求得不等式的解集.学科内综合题例1甲、乙两辆摩托车分别从相距20km的A,B两地出发,相向而行,图中的L1,L2分别表示甲、乙两辆摩托车离开A地的距离s(km)与行驶时间t(h)•之间的函数关系.(1)哪辆摩托车的速度较快?(2)经过多长时间,甲摩托车行驶到A,B两地的中点?解析(1)由图像可以看出,甲摩托用了0.6h行驶了20km,而乙摩托车用了0.•5h行驶了20km,所以乙摩托车的速度较快.(2)设L1的关系式为y=kx,把x=0.6,y=20代入,得20=0.6k,解得k=1003,∴y=1003x.当y=10时,10=1003x.所以经过0.3h,甲摩托车行驶到A,B两地的中点.评注本题第(1)题是比较速度的大小,这一点可以通过图像提供的数量直接分析出来.第(2)题的关键是要分析出甲摩托车行驶到中点时所行驶的路程为10km.例2已知y=12x-2.(1)x取何值时,y>0?(2)x取何值时,y<0?(3)当x>4时,求y的取值范围.解析作出y=12x-2的图像,如图所示.(1)当x>4时,y>0.(2)当x<4时,y<0.(3)当x>4时,y的取值范围是y>0.评注本题可以通过图像直观地得出结论.综合应用题例1某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10~20人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,•甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用,再给其余游客八折优惠.该单位选择哪一家旅行社支付的旅游费用较少?解析设该单位参加这次旅游的人数是x人,选择甲旅行社时所需的费用为y1元,选择乙旅行社时所需的费用为y2元,则y1=200×0.75x,即y1=150x;y2=200×0.8(x-1),即y2=160x-160.由y1=y2,得150x=160x-160,解得x=16;- 2 -由y1>y2,得150x>160x-160,解得x<16;由y1<y2,得150x<160x-160,解得x>16.因为参加旅游的人数估计为10~20人,所以,当x=16时,甲、•乙两家旅行社的收费相同;当17≤x≤20时,选择甲旅行社费用较少;当10≤x≤15时,选择乙旅行社费用较少.评注已知前提条件,设计方案是解决实际问题的一种常见形式.明确每一种收费方式占优势时对应的自变量的取值范围是解决此类问题的关键,•借助不等式就可确定自变量的取值范围.例2兄弟俩赛距,哥哥先让弟弟跑9m,然后自己才开始跑.已知弟弟每秒跑3m,•哥哥每秒跑4m.列出函数关系式,作出函数图像,观察图像回答下列问题:(1)何时弟弟跑在哥哥前面?(2)何时哥哥跑在弟弟前面?(3)谁先跑过20m?谁先跑过100m?解析设哥哥跑了ts,则哥哥所跑的路程与时间的关系式为s1=4t;弟弟所跑的路程与时间的关系为s2=3t+9.图像如图所示.当s1=s2时,4t=3t+9,t=9.(1)当0≤t<9时,弟弟跑在哥哥的前面.(2)当t>9时,哥哥跑在弟弟的前面.(3)∵20<36,∴弟弟先跑过20m.∵100>36,∴哥哥先跑过100m.评注本题可以从时间或路程两个角度进行分析.在同一时间内,谁跑的路程远,谁就在前面,谁就先跑过20m,100m.也可比较他们各自所用的时间,谁用的时间短,•谁就先跑过.本题既可以通过计算来进行比较,也可通过图像直观地进行判断.创新题例(探究题)我边防局接到情报,在离海岸5海里处有一可疑船只A•正向公海方向行驶,边防局迅速派出快艇B追赶.图中L1,L2分别表示两船相对于海岸的距离s(海里)与追赶时间t(min)之间的关系.(1)A,B哪一个的速度快?(2)至少要用多长时间才能追上可疑船只A?解析由图像可确定L表示快艇B的图像,L表示可疑船只A的图像.(1)快艇10min行驶了5海里,所以其速度为5÷10=0.5(海里/min).可疑船只10min行驶了7-5=2(海里),所以其速度为2÷10=0.2(海里/min).所以快艇B的速度快.(2)设L1的关系式为y1=kx,把(10,5)代入,得5=10k,解得k=0.5,∴y1=0.5x.设L2的关系式为y2=kx+5,把(10,7)代入,得7=10k+5,解得k=0.2,∴y2=0.2x+5.当y1≥y2,即0.5x≥0.2x+5时,0.3x≥5,x≥503.所以至少需要503min,快艇才能追上可疑船只.中考题例(2004年苏州卷)如图,平面直角坐标系中画出了函数y=kx+b的图像.(1)根据图像,求k和b的值.(2)在图中画出函数y=-2x+2的图像.(3)求x的取值范围,使函数y=kx+b的函数值大于函数y=-2x+2的函数值.解析(1)∵直线y=kx+b经过点(-2,0),(0,2).- 3 -- 4 -∴02,20,k b b =-+⎧⎨=+⎩ 解得1,2,k b =⎧⎨=⎩ ∴y=x+2.(2)y=-2x+2经过(0,2),(1,0),图像如图所示.(3)当y=kx+b 的函数值大于y=-2x+2的函数值时,也就是x+2>-2x+2,解得x>0,•即x 的取值范围为x>0.11.3.1 一次函数与一元一次方程同步练习[要点再现]1.由于任何一元一次方程都可以转化为 的形式,所以解一元一次方程可以转化为:当 时,求 的值。
一次函数与一次方程、一次不等式同步练习(含答案)

一次函数与一次方程、一次不等式同步练习(含答案)一次函数与一元一次方程同步练习1.直线y=3x+9与x轴的交点是()A.(0,-3) B.(-3,0) C.(0,3) D.(0,-3)2.直线y=kx+3与x轴的交点是(1,0),则k的值是()A.3 B.2 C.-2 D.-33.已知直线y=kx+b与直线y=3x-1交于y轴同一点,则b的值是()A.1 B.-1 C.13D.-134.已知直线AB∥x轴,且点A的坐标是(-1,1),则直线y=x 与直线AB的交点是()A.(1,1) B.(-1,-1) C.(1,-1) D.(-1,1)5.直线y=3x+6与x轴的交点的横坐标x的值是方程2x+a=0的解,则a?的值是______.6.已知直线y=2x+8与x轴和y轴的交点的坐标分别是_______、_______.?与两条坐标轴围成的三角形的面积是__________.7.已知关于x的方程mx+n=0的解是x=-2,则直线y=mx+n 与x?轴的交点坐标是________.8.方程3x+2=8的解是__________,则函数y=3x+2在自变量x等于_________?时的函数值是8.9.用作图象的方法解方程2x+3=910.弹簧的长度与所挂物体的质量的关系是一次函数,如图所示,请判断不挂物体时弹簧的长度是多少?11.有一个一次函数的图象,可心和黄瑶分别说出了它的两个特征.可心:图象与x轴交于点(6,0)。
黄瑶:图象与x轴、y轴围成的三角形的面积是9。
你知道这个一次函数的关系式吗?一次函数与一次方程、一次不等式同步练习1.函数y=kx+b,当12x=时,y<0,则k与b的关系是()A.2b>k B.2b-k D.2b<-k2. 在函数14xy=-+中,若y的值不小于0.则x( )A.x≤4 B.x≥4 C.x≤-4 D.x≥-43. 无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在( ).A.第一象限B.第二象限C.第三象限D.第四象限4. 若函数132y x=+,2115y x=--,且12y y y=+,则y的值是13时,x的值是.5. 当x=2时,函数y=kx+10与y=3x+3k的值相等,则k的值是.6. 函数42y x=-与函数342x y-=-的交点坐标为____.7. .函数y=12x-3与x轴交点的横坐标为().A.-3 B.6 C.3 D.-68.8.当x时,函数y=2x+3的值大于0.9.对于函数y=-x+4,当x>-2时,y的取值范围是().A.y<4 B.y>4 C.y>6 D.y<610.已知函数y1=3x+5,y2=2x-1,当x时,有y1<y211.已知y1=x-5,y2=2x+1.当y1>y2时,x的取值范围是().A.x>5 B.x<12C.x<-6 D.x>-612.如图,直线y=kx+b与x轴交于点A(-4,0),则当y>0时,x的取值范围是( ? )A.x>-4 B.x>0 C.x<-4 D.x<0第12题第13题13.已知一次函数y=kx+b的图像,如图所示,当x<0时,y的取值范围是( ?)A.y>0 B.y<0 C.-2<y<-2<="" p="">14.对于一次函数y=2x+4,当______时,2x+4>?0;?当________?时,?2x+?415.已知y1=2x-5,y2=-2x+3,当_______时,y1≤y2.16.已知关于x的方程ax-5=7的解为x=1,则一次函数y=ax-12与x?轴交点的坐标为________.17.已知2x-y=0,且x-5>y,则x 的取值范围是________.18.关于x的方程3x+3a=2的解是正数,则a________.19.已知y1=-x+2,y2=3x+4.(1)当x分别取何值时,y1=y2,y1y2?(2)在同一坐标系中,分别作出这两个函数的图像,请你说说(1)中的解集与函数图像之间的关系.20. 如图,已知函数y=3x+b和y=ax-3的图像交于点P(-3,-6),则不等式3x+b>ax-3的解集是_______第21题第22题21.如图直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图像如图所示,则关于x的不等式k2x>k1x+b的解集为_______22. 某校准备在甲、乙两家公司为毕业班学生制作一批纪念册.甲公司提出:每册收材料费5元,另收设计费1500元;乙公司提出:每册收材料费8元,不收设计费.(1)请写出制作纪念册的册数x与甲公司的收费y1(元)的函数关系式.(2)请写出制作纪念册的册数x与乙公司的收费y2(元)的函数关系式.(3)如果学校派你去甲、乙两甲公司订做纪念册,你会选择哪家公司?23在同一直角坐标系中,有直线和,请你求出当x在怎样的范围内直线l1在直线l2的上方.24 已知函数y=kx+b的图像经过(-1,-5)和(1,1)点.(1)当x取怎样的值时,y≥0;(2)当x<2时,y值的范围是什么?l211:52l y x=+21:23l y x=+l132-> 答案:1.B 2.D 3.B 4.A 5.4 6.(-4,0),(0,8);16 7.(-2,0) 8.x=2;29.画直线y=2x-6,图象与x 轴的交点的横坐标即方程的解,或先画直线y=2x+3,然后观察当自变量x 取何值时函数值为9. 10.10kg 11.y=-12x+3或y=12x-3。
八年级下册数学 一次函数与不等式练习题

一次函数与不等式练习题【1.一次函数与一元一次方程、一元一次不等式】A. B. C. D.例2:直线3+=kx y 经过点A (2,1),则不等式03≥+kx 的解集是 ( ) A.3≤x B.3≥x C.3-≥x D.0≤x针对训练1、一次函数b kx y +=的图象如图所示,则方程0=+b kx 的解为 ( ) A.=x 2 B.=y 2 C.=x -3 D.=y -1第1题图 第2题图 第3题图2、如图,一次函数b kx y +=的图象经过A 、B 两点, 则不等式0<+b kx 的解集是 ( ) A.0<x B.10<<x C.1<x D.1>x3、如图,已知一次函数3+=kx y 和b x y +-=的图象交于点P (2,4),则关于x 的方程b x kx +-=+3的解是_____.4、如图,直线b x y +=与直线6+=kx y 交于点P (3,5),则关于x 的不等式6+>+kx b x 的解集是_____.5、画出函数62+=x y 的图象,利用图象: (1)求方程062=+x 的解; (2)求不等式062>+x 的解; (3)若22≤≤-y ,求x 的取值范围.强化训练1.已知点(2,1y ) 和(4,2y ) 都在直线4)5(+-=x k y 上,若1y <2y ,则k 的取值范围是() A.k >0 B.k <0 C.k >5 D.k <52.若0<ab ,0=bc ,则0=++c by ax 直线通过 ( ) A.第一、三象限 B.第二、四象限 C.第一、二、三象限 D.第一、二、四象限3.关于x 的一次函数12++=k kx y 的图象可能正确的是 ( )4.若k ≠0,b<0,则b kx y +=的图象可能是 ( )5.下列图形中,表示一次函数n mx y +=与正比例函数mnx y =(m 、n 为常数,且mn ≠0)的图象的是 ( )6.直线1l :b x k y +=11与直线2l :x k y 22=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式x k b x k 21>+的解集为 ( ) A.x >-1 B.x <-1 C.x <-2 D.无法确定第6题图 第8题图 第9题图7.设点A (a ,b )是正比例函数x y 23-=图像上的任意一点,则下列等式一定成立的是( )A.2a +3b=0B.2a -3b=0C.3a -2b=0D.3a +2b=08.如图,直线b ax y +=过点A (0,2)和点B (-3,0),则方程0=+b ax 的解是 ( ) A.=x 2 B.=x 0 C.=x -1 D.=x -3 9.如图,若一次函数b x y +-=2的图象交y 轴于点A(0,3),则不等式02>+-b x 的解集为( ) A.23>x B.3>x C.23<x D.3<x 10.一次函数42-=x y 的图像与x 轴、y 轴分别交于A 、B 两点,O 为原点,则三角形AOB 的面积是 ( ) A.2 B.4 C.6 D.811.已知,一次函数b kx y +=的图象经过点(0,2),且y 随x 的增大而减小,请你写出一个符合上述条件的函数关系式:_________ . 12.若函数2)3(-+=k xk y 是一次函数,则函数解析式是.13.已知一次函数2+=kx y ,当1-=x 时,1=y ,求此函数的解析式,并在平面直角坐标系中画出此函数图象.14.如图,正比例函数与一次函数交于点A(3,4),且一次函数与x轴交于点C,与y轴交于点B.(1)求两个函数解析式;(2)求△AOC的面积.15.在“母亲节”期间,某校部分团员准备购进一批“康乃馨”进行销售,并将所得利润捐给贫困同学的母亲.根据市场调查,这种“康乃馨”的销售量y(枝)与销售单价x(元/枝)之间成一次函数关系,它的部分图象如图.(1)试求y与x之间的函数关系式;(2)若“康乃馨”的进价为5元/枝,且要求每枝的销售盈利不少于1元,问:在此次活动中,他们最多可购进多少数量的康乃馨?16.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克20元收费;超过1千克,超过的部分按每千克10元收费.乙公司表示:按每千克15元收费,另收包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?能力提升1.直线y=k x+b如图所示,则下列结论:①k>0,②b>0,③k+b>0,④2k+b=0,⑤不等式.其中正确的结论是(填序号).k x+b0第1题图第2题图2.如图,小明购买一种笔记本所付款金额y(元)与购买量x(本)之间的函数图象由线段OB 和BE射线组成,则一次购买8个笔记本比分次购买每次购买1个可节省_____元.3.为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内米的环形跑道上同时起跑,同时到达终点;所跑的路程S(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第_____秒.4.一次函数y=k x+b(k≠0)的自变量x的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,求这个函数的解析式.5.某工厂用一种自动控制加工机制作一批工件,该机器运行过程分为加油过程和加工过程.加工过程中,当油箱中油量为10L时,机器自动停止加工进入加油过程,将油箱加满后继续加工,如此往复.已知机器需运行185min才能将这批工件加工完.下图是油箱中油量y(L)与机器运行时间x(min)之间的函数关系图象.根据图象回答下列问题:(1)函数图像中描述机器加油过程的是(填“OA”或“OB”);(2)求在第一个加工过程中,油箱中油量y(L)与机器运行时间x(min)之间的函数关系式(不必写出自变量x的取值范围);并求出机器运行多少分钟时,第一个加工过程停止;*(3)加工完这批工件,机器耗油多少升?6.公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆.已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元.(1)设租用甲种货车x辆(x为非负整数),试填写表格.表一:表二:(2)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.7.在一条笔直的公路上有A、B两地,甲乙两人同时出发,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(s)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地的距离;(2)求出点M的坐标,并解释该点坐标所表示的意义.。
一次函数与二元一次方程不等式的关系题库

一次函数与方程、不等式的关系一.选择题1.如图,直线y=kx+b经过A(2,1),B(﹣1,﹣2)两点,则不等式x>kx+b>﹣2的解集为()A.x<2 B.x>﹣1 C.x<1或x>2 D.﹣1<x<22.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣3)﹣b>0的解集为()A.x<2 B.x>2 C.x<5 D.x>53.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<14.如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a满足﹣3≤a<0时,k的取值范围是()A.﹣1≤k<0 B.1≤k≤3 C.k≥1 D.k≥35.同一直角坐标系中,一次函数y1=k1x+b与正比例函数y2=k2x的图象如图所示,则满足y1≥y2的x取值范围是()A.x≤﹣2 B.x≥﹣2 C.x<﹣2 D.x>﹣26.一次函数y=3x+b和y=ax﹣3的图象如图所示,其交点为P(﹣2,﹣5),则不等式3x+b >ax﹣3的解集在数轴上表示正确的是()A.B.C.D.7.如图,直线y=﹣x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,﹣1),则关于x的不等式﹣x+2≥ax+b的解集为()A.x≥﹣1 B.x≥3 C.x≤﹣1 D.x≤38.如图,表示阴影区域的不等式组为()A .B .C .D .9.已知一次函数y=kx+b的图象如图,则关于x的不等式k(x﹣4)﹣2b>0的解集为()A.x>﹣2 B.x<﹣2 C.x>2 D.x<310.如图,函数y=kx和y=﹣x+4的图象相交于点A(3,m)则不等式kx≥﹣x+4的解集为()A.x≥3 B.x≤3 C.x≤2 D.x≥211.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a<0,b<0;③当x=3时,y1=y2;④不等式kx+b>x+a的解集是x<3,其中正确的结论个数是()A.0 B.1 C.2 D.312.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为()A.x>0 B.0<x<1 C.1<x<2 D.x>213.如图,直线y=﹣x+m与y=x+3的交点的横坐标为﹣2,则关于x的不等式﹣x+m>x+3>0的取值范围为()A.x>﹣2 B.x<﹣2 C.﹣3<x<﹣2 D.﹣3<x<﹣114.如图,直线y=kx+b交坐标轴于A(﹣3,0)、B(0,1)两点,则不等式﹣kx﹣b<0的解集为()A.x>﹣3 B.x<﹣3 C.x>3 D.x<315.一次函数y=k1x+b1和y=k2x+b2的图象如图所示,自变量为x时对应的函数值分别为y1,y2.若﹣3<y1<y2,则x的取值范围是()A.x<﹣1 B.﹣5<x<1 C.﹣5<x<﹣1 D.﹣1<x<116.同一平面直角坐标系中,一次函数y=k1x+b的图象与正比例函数y=k2x的图象如图所示,则关于x的方程k1x﹣2b>k2x的解为()A.x>﹣2 B.x<﹣2 C.x<2 D.x<417.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则方程2x=ax+4的解集为()A.x=B.x=3 C.x=﹣D.x=﹣318.如图所示,一次函数y=kx+b(k、b为常数,且k≠0)与正比例函数y=ax(a为常数,且a≠0)相交于点P,则不等式kx+b>ax的解集是()A.x>1 B.x<1 C.x>2 D.x<219.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,关于x 的不等式k2x>k1x+b的解集为()A.x>﹣1 B.x<﹣1 C.x<﹣2 D.无法确定20.如图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(2,3),则不等式kx>ax+4的解集为()A.x>3 B.x<3 C.x>2 D.x<221.如图,已知直线y1=ax+b与y2=mx+n相交于点A(2,﹣1),若y1>y2,则x的取值范围是()A.x<2 B.x>2 C.x<﹣1 D.x>﹣122.如图是一次函数y=kx+b的图象,当y<2时,x的取值范围是()A.x<1 B.x>1 C.x<3 D.x>323.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k2x>k1x+b的解集为()A.x>3 B.x<3 C.x>﹣1 D.x<﹣124.如图,函数y=ax﹣1的图象过点(1,2),则不等式ax﹣1>2的解集是()A.x<1 B.x>1 C.x<2 D.x>225.如图,已知直线y1=x+a与y2=kx+b相交于点P(﹣1,2),则关于x的不等式x+a>kx+b 的解集正确的是()A.x>1 B.x>﹣1 C.x<1 D.x<﹣126.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1≥y2的x的取值范围为()A.x≥1 B.x≥2 C.x≤1 D.x≤227.如图,直线y=kx+b经过点A(0,4),点B(﹣2,0),不等式0<kx+b<4的解集是()A.x<﹣2 B.﹣2<x<﹣1 C.﹣2<x<0 D.﹣1<x<028.若函数y=kx+b(k,b为常数)的图象如图所示,那么当y>0时,x的取值范围是()A.x>2 B.x<2 C.x<1 D.x>129.一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集是()A.x>﹣2 B.x<﹣2 C.x>﹣4 D.x<﹣430.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≤ax+4的解集为()A.x B.x≥3 C.x D.x≤3(1.D 2.C 3.C 4.C 5.A 6.C 7.D 8.D 9.B 10.A 11.D 12.C 13.C 14.A 15.B 16.D 17.A 18.D 19.C20.C 21.B 22.C 23.D 24.B 25.B 26.A 27.C 28.B29.C 30.A )1.若不等式ax<b的解集为x>2,则一次函数y=ax+b的图象大致是()A.B.C.D.2.如图,函数y=3x与y=kx+b的图象交于点A(2,6),则不等式3x<kx+b的解集为()A.x<4 B.x<2 C.x>2 D.x>43.如图,两直线y2=﹣x+3与y1=2x相交于点A,下列错误的是()A.x<3时,y1﹣y2>3 B.当y1>y2时,x>1C.y1>0且y2>0时,0<x<3 D.x<0时,y1<0且y2>34.如图直线l1:y=ax+b,与直线l2:y=mx+a交于点A(1,3),那么不等式ax+b<mx+n 的解集是()A.x>3 B.x<3 C.x>1 D.x<15.如图,一次函数y=kx+b的图象与两坐标轴交于两点,则不等式kx+b>0的解集是()A.x<5 B.x>5 C.x<3 D.x>36.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0:③b>0;④x<2时,kx+b<x+a中,正确的个数是()A.1 B.2 C.3 D.47.已知一次函数y=kx+b的图象如图所示,则当x<0时,y的取值范围是()A.y>1 B.y<﹣2 C.﹣2<y<0 D.﹣2<y<28.已知一次函数y=kx+b(k,b是常数,且k≠0),x与y的部分对应值如下表所示:X ﹣2 ﹣1 0y 3 2 1则不等式kx+b<bx+k的解集为()A.x>﹣1 B.x<1 C.x>﹣3 D.x>19.如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax ﹣3的解集为()A.x>﹣2 B.x<﹣2 C.x>﹣5 D.x<﹣510.如图,函数y=3x和y=ax+4的图象相交于点A(1,3),则不等式2x≥ax+4的解集为()A.x≥1 B.x≤3 C.x≤1 D.x≥311.已知关于x的不等式ax+1>0(a≠0)的解集是x<1,则直线y=ax+1与x轴的交点是()A.(0,1)B.(﹣1,0)C.(0,﹣1)D.(1,0)12.函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b>0的解集为()A.x>0 B.x<0 C.x<2 D.x>213.若函数y=kx+b的图象如图所示,那么当y>0时,x的取值范围是()A.x>1 B.x>2 C.x<1 D.x<214.如图,一次函数y=ax+b的图象经过A、B两点,则关于x的不等式ax+b<0的解集是()A.x<﹣1 B.x<2 C.x>﹣1 D.x>215.观察函数y1和y2的图象,当x=0,两个函数值的大小为()A.y1>y2B.y1<y2C.y1=y2D.y1≥y216.如图,直线y=kx+b经过点A,B,则不等式kx+b<0的解集是()A.x>1 B.x<1 C.x<0 D.0<x<117.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥B.x≤3 C.x≤D.x≥318.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.19.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解为()A.﹣1 B.﹣5 C.﹣4 D.﹣320.如图,函数y=2x和y=ax+5的图象交于点A(m,3),则不等式2x<ax+5的解集是()A.x<B.x<3 C.x>D.x>321.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为()A.x=﹣1 B.x=2 C.x=0 D.x=322.如图,一次函数y=kx+b的图象经过A、B两点,则不等式kx+b<0的解集是()A.x<0 B.0<x<1 C.x<1 D.x>123.如图,直线y1=kx+b过点A(0,2)且与直线y2=mx交于点P(﹣1,﹣m),则关于x 的不等式组mx>kx+b>mx﹣2的解集为()A.x<﹣1 B.﹣2<x<0 C.﹣2<x<﹣1 D.x<﹣224.如图,在同一平面直角坐标系内,直线l1:y=kx+b与直线l2:y=mx+n分别与x轴交于点(﹣2,0)与(5,0),则不等式组的解集为()A.x<﹣2 B.x>5 C.﹣2<x<5 D.无解25.一次函数y=kx+b的图象如图所示,不等式kx+b>0的解集是()A.x>2 B.x>4 C.x<2 D.x<426.如图,在平面直角坐标系中,点P(,a)在直线y=2x+2与直线y=2x+4之间,则a的取值范围是()A.2<a<4 B.1<a<3 C.1<a<2 D.0<a<227.如图所示,一次函数y=ax+b与x轴的交点为A(2,0),交y轴于B(0,1),那么不等式ax+b<0的解集为()A.x>1 B.x<1 C.x>2 D.x<228.如图,y=kx+b的图象经过点(1,2),则不等式kx+b>2的解集为()A.x>1 B.x<1 C.x>2 D.x<229.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),关于x的不等式x+m>kx ﹣1的解集是()A.x≥﹣1 B.x>﹣1 C.x≤﹣1 D.x<﹣130.如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣2(1.D 2.B 3.A 4.D 5.A 6.B 7.B 8.B 9.A 10.A 11.D 12.C 13.D 14.B 15.A 16.A 17.A 18.A 19.D20.A 21.A 22.D 23.C 24.A 25.C 26.B 27.C 28.A29.B 30.B )1.如图,一次函数y1=x+b与y2=kx﹣2的图象相交于点P,若点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣2的解集是()A.x<﹣2 B.x>﹣2 C.x<﹣1 D.x>﹣12.观察图中的函数图象,可以得到关于x的不等式ax﹣bx<c的解为()A.x<﹣2 B.x<4 C.x>﹣2 D.x>43.如图,函数y=2x和y=ax+4的图象相交于点A(1,2),则不等式2x≥ax+4的解集为()A.x<1 B.x>1 C.x≤1 D.x≥14.已知平面直角坐标系上的动点A(x,y),满足x=1+2a,y=1﹣a,其中﹣2≤a≤3,有下列四个结论:①﹣3≤x≤7 ②﹣2≤y≤0 ③0≤x+y≤5 ④若x≤0,则0≤y≤3.其中正确的结论是()A.②④B.②C.①③D.③④5.如图,直线y=kx+b交坐标轴于A(﹣4,0),B(0,3),则不等式kx+b<0的解集为()A.x>3 B.﹣4<x<3 C.x>﹣4 D.x<﹣46.已知函数y1=x+b1与函数y2=﹣x+b2的图象如图所示,则不等式y1<y2的解集为()A.x>1 B.x<1 C.x<0 D.x<27.如图,已知函数y=x+b和y=ax+4的图象交点为P,则不等式x+b>ax+4的解集为()A.x>1 B.x<1 C.x≥1 D.x≤18.如图,函数y=2x+2的图象与直线y=kx的交点横坐标为﹣,则2x+2>kx的解集是()A.x>﹣1 B.x<﹣1 C.x>﹣D.x<﹣9.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.10.如图,已知一次函数y=kx+b的图象经过A、B两点,那么不等式kx+b>0的解集是()A.x>5 B.x<5 C.x>3 D.x<3.11.已知一次函数y=kx+b的图象如图所示,当x<2时,y的取值范围是()A.y>0 B.y<2 C.y<0 D.﹣4<y<012.如图,直线y=kx+b与坐标轴的两交点分别为A(2,0)和B(0,﹣3),则不等式kx+b+3≤0的解为()A.x≤0 B.x≥0 C.x≥2 D.x≤213.一次函数y=kx+b(k≠0)的图象如图,当y<0时,x的取值范围是()A.x>﹣3 B.x<﹣3 C.x<﹣2 D.x<014.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y2<y1的取值范围为()A.x>1 B.x>2 C.x<1 D.x<215.一次函数y1=mx+n(m≠0,m,n为常数)与一次函数y2=ax+b(a≠0,a,b为常数)的图象如图所示,这两个函数的图象交点在y轴上,那么使y1、y2的值都大于0的x的取值范围是()A.x>1 B.x<﹣1 C.x<1 D.﹣1<x<216.如图,一次函数y1=﹣x+7与正比例函数y2=x的图象交于点A,若y1>y2,则自变量x的取值范围是()A.x>3 B.x<3 C.x>4 D.x<417.如图,直线y=kx+b交坐标轴于A(3,0)、B(0,5)两点,则不等式kx+b<0的解集为()A.x<3 B.x>3 C.x<5 D.x>518.观察两个函数y1和y2的图象,当x=1时,这两个函数的函数值的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.不确定19.已知的图象如图所示,当y<0时,x的取值范围是()A.x>﹣3 B.x<﹣3 C.x>1 D.x<120.如图,直线y=kx+b交坐标轴于A(﹣2,0)、B(0,3)两点,则不等式kx+b>0的解集是()A.x>﹣2 B.x>3 C.x<﹣2 D.x<321.已知不等式ax+b<0的解集是x<﹣2,下列有可能是直线y=ax+b的图象是()A.B.C.D.22.已知不等式ax+b<0的解集是x<﹣2,下列哪个图象有可能是直线y=ax+b()A.B.C.D.23.一次函数y=mx+n的图象如图所示,则方程mx+n=0的解为()A.x=2 B.y=2 C.x=﹣3 D.y=﹣324.如图,直线y=x+b交x轴于点A(﹣2,0),则不等式x+b<0解集是()A.x<﹣2 B.x<2 C.x>﹣2 D.x>225.若函数y=ax+b(a≠0)的图象如图所示,则不等式ax+b≥0的解集是()A.x≥3 B.x≤3 C.x=3 D.x≥﹣26.函数的图象与x、y轴分别交于点A、B,点P(x,y)为直线AB上的一动点(x>0),过P作PC⊥y轴于点C,若使△PBC的面积大于△AOB的面积,则P的横坐标x 的取值范围是()A.0<x<3 B.x>3 C.3<x<6 D.x>627.如图,函数y=﹣2x和y=kx+b的图象相交于点A(m,3),则关于x的不等式kx+b+2x >0的解集为()A.x>B.x<m C.x>m D.x>﹣28.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3 C.x>D.x>329.如图,直线y=kx+b交坐标轴于A(﹣2,0),B(0,3)两点,则不等式kx+b>0的解集是()A.x>3 B.﹣2<x<3 C.x<﹣2 D.x>﹣230.如图所示,函数y=ax+b和a(x﹣1)﹣b>0的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是()A.x<﹣1 B.﹣1<x<2 C.x>2 D.x<﹣1或x>2(1.D 2.C 3.D 4.C 5.D 6.B 7.A 8.C 9.D 10.B 11.C 12.A 13.A 14.A 15.D 16.B 17.B 18.B 19.B20.A 21.C 22.C 23.C 24.A 25.B 26.D 27.D 28.A29.D 30.D )1.已知一次函数y=kx+b(k、b是常数,且k≠0),x与y的部分对应值如表所示,那么不等式kx+b<0的解集是()x ﹣2 ﹣1 0 1 2 3y 3 2 1 0 ﹣1 ﹣2A.x<0 B.x>0 C.x>1 D.x<22.如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是()A.1<x<2 B.0<x<2 C.0<x<1 D.1<x3.如图,过A点的一次函数y=kx+b的图象与正比例函数y=2x的图象相交于点B,则不等式0<2x<kx+b的解集是()A.x<1 B.x<0或x>1 C.0<x<1 D.x>14.如图,直线y=2x和y=ax+4交于点A,则不等式2x<ax+4的解集为()A.x<B.x<3 C.x>D.x>3(1.C 2.A 3.C 4.A)1.如图,在平面直角坐标系中,线段AB的端点坐标为A(﹣2,4),B(4,2),直线y=kx ﹣2与线段AB有交点,则k的值不可能是()A.﹣5 B.﹣2 C.3 D.52.如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()A.1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣43.一次函数y=ax﹣1和y=bx+5的图象如图所示,则a、b的值是()A.a=3,b=2 B.a=2,b=3 C.a=1,b=﹣1 D.a=﹣1,b=14.如图是小亮在同一直角坐标系内作的三个一次函数的图象l1、l2、l3,根据它们的位置,l1、l2、l3的解析式应分别是()A.y=x,y=﹣x+2,y=﹣x﹣2 B.y=﹣x+2,y=x,y=﹣x﹣2C.y=x,y=﹣x﹣2,y=﹣x+2 D.y=﹣x+2,y=﹣x﹣2,y=x5.如图,直线y1=﹣x+m与y2=kx+n相交于点A,若点A的横坐标为2,则下列结论中错误的是()A.k>0 B.m>nC.当x<2时,y2>y1D.2k+n=m﹣26.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表:进球数0 1 2 3 4 5人数 1 5 x y 3 2其中进2个球的有x人,进3个球的有y人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是()A.y﹣x=9与3y﹣2x=22 B.y+x=9与3y﹣2x=22C.y+x=9与3y+2x=22 D.y=x+9与3y+2x=227.函数y1=x+1与y2=ax+b(a≠0)的图象如图所示,这两个函数图象的交点在y轴上,那么使y1,y2的值都大于零的x的取值范围是()A.x>﹣1 B.x>2 C.x<2 D.﹣1<x<28.如图,等腰三角形ABO中,底边OA在y轴的正半轴上,且OA=3,点B在第二象限.若直线y=﹣x+1恰好经过点B,则△ABO的面积是()A.B.C.2 D.39.如图,在平面直角坐标系中,线段AB的端点坐标为A(﹣3,5)、B(2,3),如果直线y=kx﹣1与线段AB有交点,则k的值不可能是()A.﹣5 B.﹣1 C.3 D.510.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x<1时,y2<0;④当x<3时,y1<y2中正确的个数是()A.0 B.1 C.2 D.311.如图,过点Q(0,3.5)的一次函数与正比例函数y=2x的图象相交于点P,能表示这个一次函数图象的解析式是()A.y=B.y=C.y=D.y=﹣12.如图,在平面直角坐标系中,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0)…直线l n⊥x轴于点(n,0).函数y=x的图象与直线l1,l2,l3,…l n 分别交于点A1,A2,A3A n,.函数y=2x的图象与直线l1,l2,l3,…l n分别交于点B1,B2,B3B n.△OA1B1的面积记为S1,四边形A1A2B2B1的面积记为S2,四边形A2A3B3B2的面积记为S3,四边形A n﹣1A n B n B n﹣1的面积记为S n,则S2014=()A.2012 B.2013 C.2013.5 D.201413.图象与直线y=﹣x+2平行的函数是()A.y=x﹣2 B.y=x C.y=﹣x D.y=﹣2x14.一次函数y1=k1x+a和y2=k2x+b的图象如图所示,下列结论正确的有()①a>0;②y1随x的增大而减小;③k1>k2;④当x<3时,y1<y2.A.1个B.2个C.3个D.4个15.如图,直线y=﹣x+5与直线y=﹣x+b交于点P,若点P的纵坐标为3,则b的值为()A.3 B.3.5 C.4 D.4.516.如图,点A、B的坐标分别为(1,0)、(0,1),点P是第一象限内直线y=﹣x+3上的一个动点,当点P的横坐标逐渐增大时,四边形OAPB的面积()A.逐渐增大 B.逐渐减小 C.先减小后增大 D.不变17.一次函数y=ax+b与y=abx(ab≠0),在同一平面直角坐标系里的图象应该是()A.B.C.D.(1.B 2.D 3.C 4.B 5.C 6.C 7.D 8.B 9.B 10.B 11.D 12.C 13.C 14.B 15.C 16.D 17.C )二.填空题1.如图,一次函数y=kx+b(k>0)的图象与x轴的交点坐标为(﹣2,0),则关于x的不等式kx+b<0的解集是.2.已知一次函数y=ax+b(a、b是常数,a≠0)函数图象经过(﹣1,4),(2,﹣2)两点,下面说法中:(1)a=2,b=2;(2)函数图象经过(1,0);(3)不等式ax+b>0的解集是x <1;(4)不等式ax+b<0的解集是x<1;正确的说法有.(请写出所有正确说法的序号)3.如图是一次函数的y=kx+b图象,则关于x的不等式kx+b>0的解集为.4.函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为.5.一次函数y=kx+b(k、b为常数,且k≠0)的图象如图所示.根据图象信息可求得关于x 的方程kx+b=﹣3的解为.6.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为.7.如图,函数y=2x和y=ax+5的图象相交于A(m,3),则不等式2x<ax+5的解集为.8.如图,函数y=﹣2x和y=kx+b的图象相交于点A(m,3),则关于x的不等式kx+b+2x >0的解集为.9.如图所示,函数y1=|x|和y2=x+的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.10.已知一次函数y=kx+b的图象如图,则关于x的不等式kx+b﹣1≤0的解集是.11.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集.12.如图,已知函数y=kx+2与函数y=mx﹣4的图象交于点A,根据图象可知不等式kx+2<mx﹣4的解集是.13.如图,直线y=kx+b经过A(3,1),B(﹣1,﹣3)两点,则不等式x>kx+b>﹣3的解为.14.某通讯公司推出了①②两种收费方式,收费y1,y2(元)与通讯时间x(分钟)之间的函数关系如图所示,则使不等式kx+30<x成立的x的取值范围是.15.如图,直线y=kx+b与坐标轴的两个交点分别为A(2,0),B(0,﹣3),则不等式kx+b+3≥0的解为.16.已知一次函数y=﹣2x+a与y=x+b的图象如图所示,则关于x的不等式﹣2x+a≤x+b的解集是.(1.x<-2 2.(2)(3)3.x>-2 4.x<1 5.x=-4 6.x> 7.x< 8.x>-9.x<-1或x>2 10.x≥0 11.x>-1 12.x>-3 13.-1<x<3 14.x>300 15.x≥0 16.x≥-1)1.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式kx+b<4x+2<0的解集为.2.如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则关于x的不等式k1x+b1>k2x+b2的解集是.3.在平面直角坐标系中,将直线y=kx+1绕(0,1)逆时针旋转90°后,刚好经过点(﹣1,2),则不等式0<kx+1<﹣2x的解集为.4.如图,正比例函数y=2x与一次函数y=kx+4的图象交于点A(m,2),则不等式2x<kx+4的解集为.5.如图,过A点的一次函数y=kx+b的图象与正比例函数y=2x的图象相交于点B,则关于x的不等式kx+b>2x的解集是.6.如图,直线l1:y=k1x+b与直线l2:y=k2x交于点(﹣1,3),则关于x的不等式k2x>k1x+b 的解集为.7.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式kx+b<4x+2<0 的解集为.8.已知点P(x,y)位于第二象限,并且y≤x+4,x、y为整数,若以P为圆心,PO为半径画圆,则可以画出个半径不同的圆来.9.已知直线y=2x﹣b经过点(1,﹣1),则关于x的不等式2x﹣b≥0的解集是.10.已知直线y=2x+m经过点(﹣1,0),则关于x的不等式2x+m≥0的解集是.11.如图,已知一次函数y=ax+b(a≠0)和y=kx(k≠0)的图象交于点P(﹣4,﹣2),则不等式ax+b>kx的解是.12.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1>y2中,正确的序号是.13.已知一次函数y=ax+b中,x和y的部分对应值如表:x ﹣2 ﹣1 0 1.5 2 3y 6 4 2 ﹣1 ﹣2 ﹣4那么方程ax+b=0的解是.14.如图,直线y=kx+b(k<0)与x轴交于点(3,0),关于x的不等式kx+b>0的解集是.15.已知关于x的不等式kx﹣2>0(k≠0)的解集是x<﹣3,则直线y=﹣kx+2与x轴的交点是.16.如图,在同一平面直角坐标系中作出相应的两个一次函数的图象,则不等式组的解为.17.已知关于x的一元一次不等式组有解,则直线y=﹣x+b不经过第象限.18.如图,已知一次函数y=kx+b,观察图象回答下列问题:x时,kx+b<0.19.如图,直线L1:y=x+3与直线L2:y=ax+b相交于点A(m,4),则关于x的不等式x+3≤ax+b 的解集是.20.已知一次函数y=ax+b的图象如图,根据图中信息请写出不等式ax+b≥2的解集为.21.如图:函数y=2x和y=ax+4的图象交于点A(m,2),不等式2x<ax+4的解集为.22.某单位准备和一个体车主或一国营出租车公司中的一家签订月租车合同,设汽车每月行驶x千米,个体车主收费y1元,国营出租车公司收费为y2元,观察下列图象可知,当x 时,选用个体车较合算.23.如图,直线y1=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y2=2x经过点A,当y1<y2时,x的取值范围是.24.直线l1:y=kx与直线l2:y=ax+b在同一平面直角坐标系中的图象如图,则关于x的不等式ax+b>kx的解集为.25.一次函数y=kx+b与反比例函数的图象交于A、B两点(如图),则0<<kx+b的解集是.26.已知一次函数y=kx+b(k、b为常数,k≠0)的图象如图所示,则kx+b>﹣2的解集为.27.如图,直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b的解集为.28.如图,一次函数y=kx+b与x轴、y轴分别交于A、B两点,则不等式kx+b>1的解集是.29.如图,一次函数y=kx+b(k、b为常数,且k≠0)与正比例函数y=ax(a为常数,且a≠0)相交于点P,则不等式kx+b≤ax的解集是.30.如图,函数y=ax+4和y=bx的图象相交于点A,则不等式ax+4<0的解集为,不等式bx≥ax+4的解集为.(1.-1<x<-2.x<-2 3.-1<x<-4.x<1 5.x<1 6.x<-1 7.-1<x<-8.4 9.x≥10.x≥-1 11.x<-4 12.①②③13.x=1 14.x<3 15.(-3,0)16.x>3 17.三18.<2.5 19.x≤1 20.x≥0 21.x<1 22.>150023.x>-1 24.x<1 25.x<-1 26.x>0 27.x<-1 28.x<029.x≥2 30.x>7x≥2)1.一次函数y1=kx+b与y2=﹣x+c的图象如图,则kx+b≥﹣x+c的解集是.2.如图,函数y=ax和y=bx+c的图象相交于点A(1,2),则不等式ax>bx+c的解集为.3.如图,函数y=﹣2x和y=ax+4的图象相交于A(m,3),则关于x的不等式0<ax+4<﹣2x的解集是.4.如图,一次函数y=kx+b(k<0)的图象过点(0,﹣2),则不等式kx+b<﹣2的解集是.5.y=kx+b(k≠0)的图象如图所示,当y<0时,x的取值范围是.6.如图,已知一次函数y=kx+b,观察图象回答下列问题:x时,kx+b>0.7.已知函数y1=k1x+b1与函数y2=k2x+b2的图象如图所示,则不等式y1<y2的解集是.8.如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式mx >kx+b>mx﹣4的解.9.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x 的不等式0<k2x<k1x+b的解集为.10.如图,直线y=kx+b和y=mx都经过点A(﹣1,﹣2),则不等式mx<kx+b的解集为.11.一次函数的图象如图所示,当x>0时,y.12.观察图象,当x时,y>3?13.如图,已知函数y1=2x﹣1和y2=x﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式y1>y2的解集是.14.如图,函数y1=|x|,y2=x+.当y1>y2时,x的范围是.15.如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax ﹣3的解集为.16.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.17.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是.18.如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为.19.如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是.20.根据如图的部分函数图象,可得不等式ax+b>mx+n的解集为.21.一次函数y=kx+b(k≠0)中两个变量x、y的部分对应值如下表所示:x …﹣2 ﹣1 0 1 2 …y …8 5 2 ﹣1 ﹣4 …那么关于x的不等式kx+b≥﹣1的解集是.22.如图,直线y=kx+b经过A(﹣1,1)和B(﹣3,0)两点,则关于x的不等式组0<kx+b<﹣x的解集为.23.如图,已知函数y=ax+2与y=bx﹣3的图象交于点A(2,﹣1),则根据图象可得不等式ax>bx﹣5的解集是.24.直线y=kx+3经过点A(﹣3,2),不等式﹣2x﹣4≤kx+3<3的解集是.25.如图直线y=kx+b过A(1,3),则不等式组kx+b≥3x>0的解集是.26.如图,函数y=2x和y=ax+5的图象相交于A(m,3),则不等式0<2x<ax+5的解集为.27.如图,直线y=kx+b经过A(,0)、B(2,1),则不等式0<2kx+2b≤x的解集为.28.如图,两直线y1=ax+2与y2=x相交于P点,当y2<y1≤2时,x的取值范围是.29.如图,已知函数y=3x+1和y=ax﹣3的图象交于点P(m,﹣5),则根据图象可得不等式3x+1<ax﹣3的解集是.30.如图,函数y=kx和的图象相交于A (a,2),则不等式的解集为.(1.x>3 2.x>1 3.-6<x<-4.x>0 5.x>1 6.>2.5 7.x<1 8.1<x<39.-1<x<0 10.x<-1 11.>-2 12.>4 13.x>-2 14.x<-1,x>2 15.x>-2 16.x<4 17.x<-2 18.-2≤x≤-1 19.x>-2 20.x<4 21.x≤1 22.-3<x<-1 23.x<2 24.-3≤x<0 25.0<x≤1 26.0<x< 27.<x≤2 28.0≤x<3 29.x<-2 30.)1.直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c的解集为.2.如图,已知函数y=x+b和y=ax+4的图象交点为P,则不等式x+b>ax+4的解集为.3.如图.函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b>0的解集为.4.如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式ax﹣3<3x+b<0的解集是.5.如图直线y=﹣x+m与y=nx+5n(n≠0)的交点的横坐标为﹣2,则关于﹣x+m>nx+5n>0的整数解为.6.已知函数y1、y2与自变量x的关系分别由下表给出,那么满足y1>y2的自变量x的取值是.x ﹣1 0 1 2 3y1 3 2 1 0 ﹣1x ﹣1 0 1 2 3y2﹣3 ﹣1 1 3 57.如图,已知一次函数y1=﹣x+b的图象与y轴交于点A(0,4),y2=kx﹣2的图象与x轴交于点B(1,0).那么使y1>y2成立的自变量x的取值范围是.8.如图,直线y=kx+b交坐标轴于A(2,0)、B(0,3),当x>0时,y的取值范围是.9.如图,若y1≥y2,则x的取值范围是.10.已知一次函数y=kx+b与y=mx+n的图象如图所示,若0<kx+b<mx+n,则x的取值范围为.11.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3<2x+b的解集是.12.如图,已知函数y1=ax+b和y2=kx的图象交于点P,则根据图象可得,当y1<y2时,x 的取值范围是.13.如图,函数y=﹣3x和y=kx+b的图象相交于点A(m,3),则关于x的不等式kx+b+3x <0的解集为.14.如图,一次函数y=kx+b与y=mx+n的图象交于点P(2,﹣1),则由函数图象,得不等式kx+b>mx+n的解集为.15.在平面直角坐标系中,函数y=kx+b与y=2x的图象交于点P(m,2),则不等式2x>kx+b 的解集为.16.如图,一次函数y=kx+b的图象与x轴的交点坐标为(2,0),则下列说法:①y随x 的增大而减小;②b>0;③关于x的方程kx+b的解为x=2;④kx+b<0的解集是x<2.其中说法正确的有.(把你认为说法正确的序号都填上).17.如图,一次函数y=kx+b(k,b是常数,k≠0)的图象经过A、B两点,则一元一次方程kx+b=0的解是;不等式kx+b>0的解集是.18.已知一次函数y=kx+b的图象如图,则不等式kx+b>0的解集是.。
八年级下册数学第十九章《一次函数》一次函数与方程不等式的关系同步练习题

八年级数学第十九章《一次函数》之一次函数与方程、不等式的关系同步练习题一、选择题(本大题共5小题,共15.0分)1.直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b≤2的解集是()A. x≤−2B. x≤−4C. x≥−2D. x≥−42.在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=−2x交于点A,B,则△AOB的面积为()A. 2B. 3C. 4D. 63.如图,直线y=kx+3经过点(2,0),(0,3),则关于x的不等式kx+3>0的解集是()A. x>2B. x<2C. x≥2D. x≤24.在平面直角坐标系中,已知点A(1,2)和点B(4,5),当直线y=kx−2k(k为常数)与线段AB有交点时,k的取值范围为()A. k≤−2或k⩾52B. −2⩽k⩽52C. −2≤k≤0或0⩽k⩽52D. −2<k<0或0<k<525.如图,过点Q(0,3)的一次函数与正比例函数y=2x的图象交于点P,能表示这个一次函数图象的方程是()A. 3x−2y+3=0B. 3x−2y−3=0C. x−y+3=0D. x+y−3=0二、填空题(本大题共2小题,共6.0分)6.一次函数y=7−4x与y=1−x的图象的交点坐标为,则方程组{4x+y=7, x+y=1的解为.7.如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx−2的解集是___________三、解答题(本大题共4小题,共32.0分)8.在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.9.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值.(2)不解关于x,y的方程组{y=x+1,y=mx+n,请你直接写出它的解.10.已知函数y=kx+b的图象如图所示,利用函数图象回答:(1)当x取何值时,kx+b=0?(2)当x取何值时,kx+b=1.5?(3)当x取何值时,kx+b<0?(4)当x取何值时,0.5<kx+b<2.5?在学习一元一次不等式与一次函数中,小明在同一个坐标系中分别作出了一次函数y =k 1x +b 1和y =kx +b 的图象,分别与x 轴交于点A ,B ,两直线交于点C.已知点A(−1,0),B(2,0),观察图象并回答下列问题:(1)关于x 的方程k 1x +b 1=0的解是________,关于x 的不等式kx +b <0的解集是________.(2)直接写出关于x 的不等式组{kx +b >0k 1x +b 1>0的解集. (3)若点C(1,3),求关于x 的不等式k 1x +b 1>kx +b 的解集和△ABC 的面积.1.【答案】C【解析】【分析】本题考查了待定系数法求一次函数的解析式,一次函数与一元一次不等式的关系,属于基础题.根据待定系数法求得直线的解析式,然后求得函数y=2时的自变量的值,根据图象即可求得.【解答】解:∵直线y=kx+b与x轴交于点(2,0),与y轴交于点(0,1),∴{2k+b=0b=1,解得{k=−12 b=1∴直线为y=−12x+1,当y=2时,2=−12x+1,解得x=−2,由图象可知:y随x的增大而减小,∴不等式kx+b≤2的解集是x≥−2,故选C.2.【答案】B【解析】解方程(组)得到A(−3,0),B(−1,2),根据三角形的面积公式即可得到结论.3.【答案】B【解析】略4.【答案】A【解析】略5.【答案】D【分析】设这个一次函数的解析式为y =kx +b ,那么根据这条直线经过点P(1,2)和点Q(0,3),用待定系数法即可得出此一次函数的解析式。
初中数学一次函数与方程(组)与不等式经典练习题.docx

xx 学校xx 学年xx 学期xx 试卷姓名:_____________ 年级:____________ 学号:______________一、xx 题(每空xx 分,共xx 分)试题1:(2006,绍兴)如图所示,一次函数y=x+5的图像经过点P (a ,b ),Q (c ,d ),•则a (c -d )-b (c -d )的值为______. 试题2:关于x 的一次函数y=(a -3)x+2a -5的图像与y 轴的交点不在x•轴的下方,且y 随x 的增大而减小,则a 的取值范围是______. 试题3:已知一次函数y=kx+b (k ≠0)的图像经过点(0,1),且y 随x 的增大而增大,•请你写出一个符合上述条件的函数关系式_______. 试题4:如图所示,L 甲,L 乙分别表示甲走路与乙骑自行车(在同一条路上)行走的路程s 与时间t 的关系,观察图像并回答下列问题:(1)乙出发时,与甲相距______km ;(2)走了一段路后,乙的自行车发生故障,停下来修理,修车为_____h ; (3)乙从出发起,经过_____h 与甲相遇;(4)甲行走的路程s 与时间t 之间的函数关系式_______;(5)如果乙自行车不出现故障,那么乙出发后经过______h 与甲相遇,相遇处离乙的出发点____km .并在图中标出其相遇点.试题5:直线y=-x+a与直线y=x+b的交点坐标为(m,8),则a+b=______.试题6:已知关于x的一次函数y=mx+2m-7在-1≤x≤5上的函数值总是正数,则m的取值范围是_______.试题7:(2008,绍兴)如图所示,已知函数y=x+b和y=ax+3的图像交点为P,•则不等式x+b>ax+3的解集为________.试题8:(2006,南安)如图所示,一个蓄水桶,60min可匀速将一满桶水放干.其中,水位h(cm)随着放水时间t(min)的变化而变化.h与t的函数的大致图像为()试题9:(2005,杭州市)已知一次函数y=kx-k,若y随x的增大而减小,则该函数的图像经过()A.第一,二,三象限 B.第一,二,四象限C.第二,三,四象限 D.第一,三,四象限试题10:(2008,济南)济南市某储运部紧急调拨一批物资,调进物资共用4h,调进物资2h后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(t)•与时间t(h)之间的函数关系如图5-35所示,•这批物资从开始调进到全部调出所需要的时间是()A.4h B.4.4h C.4.8h D.5h试题11:(2009年新疆)如图,直线与轴交于点,关于的不等式的解集是()A. B. C. D.试题12:(2005,重庆市)为了增强抗旱能力,保证今年夏粮丰收,某村新修建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同),一个进水管和一个出水管的进出水速度如图a,b所示,某天0点到6点(•至少打开一个水管),该蓄水池的蓄水量如图c所示,并给出以下3个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水,则一定正确的论断是()(a) (b)(c)A.①③ B.②③ C.③ D.①②③试题13:函数y1=x+1与y2=ax+b(a≠0)的图像如图5所示,•这两个函数图像的交点在y轴上,那么使y1,y2的值都大于零的x的取值范围是()A.x>-1 B.x<2 C.1<x<2 D.-1<x<2试题14:小亮用作图像的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图像L1,L2如图所示,他解的这个方程组是()A. B.C. D.试题15:已知一次函数y=x+m和y=-x+n的图像都经过点A(-2,0),且与x轴交于A,B两点,那么△ABC的面积是() A.2 B.3 C.4 D.6试题16:(2009年烟台市)如图,直线经过点和点,直线过点A,则不等式的解集为()A.B.C. D.试题17:(2009年宁波市)以方程组的解为坐标的点在平面直角坐标系中的位置是()A.第一象限 B.第二象限 C.第三角限 D.第四象限试题18:(2008,南京)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),下图中的折线表示y•与x之间的函数关系.根据图像进行以下探究:信息读取:(1)甲,乙两地之间的距离为_____km;(2)请解释图中点B的实际意义.图像理解:(3)求慢车和快车的速度;(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围.问题解决:(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.•在第一列快车与慢车相遇30min后,第二列快车与慢车相遇,•求第二列快车比第一列快车晚出发多少小时.试题19:(2009年陕西省)在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示.根据图像信息,解答下列问题:(1)这辆汽车的往、返速度是否相同?请说明理由;(2)求返程中y与x之间的函数表达式;(3)求这辆汽车从甲地出发4h时与甲地的距离.试题20:(2005,哈尔滨市)甲,乙两名同学进行登山比赛,图5-42所示为甲同学和乙同学沿相同的路线同时从山脚出发到达山顶过程中,•各自行进的路程随时间变化的图象,根据图像中的有关数据回答下列问题:(1)分别求出表示甲,乙两同学登山过程中路程s(km)与时间t(h)的函数解析式;(不要求写出自变量t的取值范围)(2)当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;(3)在(2)的条件下,设乙同学从A处继续登山,甲同学到达山顶后休息1h,沿原路下山,在点B处与乙相遇,此时点B与山顶距离为1.5km,相遇后甲,•乙各自按原来的线路下山和上山,求乙到达山顶时,甲离山脚的距离是多少千米?试题21:某校部分住校学生,放学后到学校锅炉房打水,每人接水2L,•他们先同时打开两个放水龙头,后来故故障关闭一个放水龙头,假设前后两个接水间隔时间忽略不计,且不发生泼洒,锅炉内的余水量y(L)与接水时间x(min)的函数图像如图所示.请结合图像,回答下列问题:(1)根据图中信息,请你写出一个结论;(2)问前15位同学接水结束共需要几分钟?(3)小敏说:“今天我们寝室的8位同学去锅炉房连续接完水恰好用了3min”.•你说可能吗?请说明理由.试题22:(2006,浙江舟山)近阶段国际石油迅速猛涨,中国也受期影响,为了降低运行成本,部分出租车进行了改装,改装后的出租车可以用液化气来代替汽油.•假设一辆出租车日平均行程为300km.(1)使用汽油的出租车,假设每升汽油能行驶12km,当前的汽油价格为4.6元/L,•当行驶时间为t天时,所耗的汽油费用为p元,试写出p关于t的函数关系式;(2)使用液化气的出租车,假设每千克液化气能行驶15~16km,•当前的液化气价格为4.95元/kg,当行驶时间为t 天时,所耗的液化气费用为w元,试求w的取值范围(用t表示);(3)若出租车要改装为使用液化气,每辆需配置成本为8000元的设备,•根据近阶段汽油和液化气的价位,请在(1)(2)的基础上,计算出最多几天就能收回改装设备的成本?•并利用你所学的知识简单说明使用哪种燃料的出租车对城市的健康发展更有益.(用20字左右谈谈感想).试题23:(2003,岳阳市)我市某化工厂现有甲种原料290kg,乙种原料212kg,计划利用这两种原料生产A,B两种产品共80件.生产一件A产品需要甲种原料5kg,•乙种原料1.5kg,生产成本是120元;生产一件B产品,需要甲种原料2.5kg,乙种原料3.5kg,•生产成本是200元.(1)该化工厂现有的原料能否保证生产?若能的话,有几种生产方案,请你设计出来;(2)设生产A,B两种产品的总成本为y元,其中一种的生产件数为x,试写出y与x之间的函数关系,并利用函数的性质说明(1)中哪种生产方案总成本最低?•最低生产总成本是多少?试题24:(2009年江苏省)某加油站五月份营销一种油品的销售利润(万元)与销售量(万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量为多少时,销售利润为4万元;(2)分别求出线段AB与BC所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在OA.AB.BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)试题25:(2006,宁波市)宁波市土地利用现状通过国土资源部验收,该市在节约集约用地方面已走在全国前列.1996~2004年,市区建设用地总量从33万亩增加到48万亩,相应的年GDP从295亿元增加到985亿元.宁波市区年GDPy(亿元)与建设用地总量x(•万亩)之间存在着如图所示的一次函数关系.(1)求y关于x的函数关系式;(2)据调查2005年市区建设用地比2004年增加4万亩,•如果这些土地按以上函数关系式开发使用,那么2005年市区可以新增GDP多少亿元?(3)按以上函数关系式,该市年GDP每增加1亿元,需增建设用地多少万亩?(•精确到0.001万亩)试题26:.绿谷商场“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:类别冰箱彩电进价(元/台) 2 320 1 900售价(元/台) 2 420 1 980(1) 按国家政策,农民购买“家电下乡”产品可享受售价13%的政府补贴.农民田大伯到该商场购买了冰箱、彩电各一台,可以享受多少元的政府补贴?(2)为满足农民需求,商场决定用不超过85 000元采购冰箱、彩电共40台, 且冰箱的数量不少于彩电数量的.①请你帮助该商场设计相应的进货方案;②哪种进货方案商场获得利润最大(利润=售价进价),最大利润是多少?试题27:(2004,河北省)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A,B两地区收割小麦,其中30台派往A地区,20•台派往B地区.两地区与该农村租赁公司商定的每天的租赁价格见下表:每台甲型收割机的租金每台乙型收割机的租金A地区 1800元 1600元B地区 1600元 1200元(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x之间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华租赁公司提出一条合理建议.试题28:我市部分地区近年出来持续干旱现象,为确保生产生活用水,某村决定由村里提供一点,村民捐一点的办法筹集资金维护和新建一批储水池。
一次函数与方程不等式专项练习60题(有复习资料)15页

一次函数与方程、不等式专项练习60题(有答案)1.一次函数的图象如图所示,则方程0的解为()C. - 1D. - 12 .如图,函数2x和4的图象相交于点A( m 3),则不等式2x V 4的解集为()A.x 一B. x V 33.如图,一次函数的图象与y轴交于点(0, 1),则关于x的不等式〉1的解集A. x > 0B. x V 04. 已知一次函数的图象过第一、二、四象限,且与x的不等式a (x - 1)- b>0的解集为()x轴交于点(2, 0),则关于B. 2C. x5.如图,直线yn 与y 22的交点坐标为(1,2),则使屮v 屮的x 的取值范围为( )6.直线I 仁1与直线12 : 2X 在同一平面直角坐标系中的图象如图所示,则关于x的不等式k 2x v k 1的解集为(式2x vv 0的解集为(A. x v — 1B. x >— 1C. x > 1D. x v 1A. x > 1B. x > 2A. x v — 1B. x >— 17.如图,直线经过点A (— 1,— 2)和点B (— 2, 0),直线2x 过点A ,则不等 A. x v — 2 B. — 2 v x vC .——1 v x v 08. 已知整数x满足-5<x<5, y11, y2=—24,对任意一个x, m都取y〔,y2中的较小值,则m的最大值是(9. 如图,直线y.W 与y 2=-3相交于点A ,若yY y2,那么()A. x > 2B. x v 2C. x > 1D. x v 110. 一次函数39的图象经过(-黑1),则方程39=1的解为3*rL113.已知直线一丄:T 与x 轴、y 轴交于不同的两点 A 和B,4,贝V b 的取值范围是 .14.已知关于x 的方程0的解是-2,则直线与x 轴的交点坐标是 .A. 1B. 2C. 24D. - 912.如图,一次函数的图象经过 A , B 两点,则关于 x 的方程0的解是15. 已知0的解为-2,则函数与x轴的交点坐标为16. —次函数的图象如图所示, 则关于x 的方程0的解为,当x 时,v 0.21. 一次函数22的图象如图所示,则由图象可知,方程 22=0的解为17.如图,已知函数 2和-3的图象交于点P (- 2,— 5),根据图象可得方程218. 一元一次方程0.51=0的解是一次函数 0.51的图象与 的横坐标.19.如图,已知直线- b ,则关于x 的方程-1的解20. 一次函数y 1与y 2的图象如图,贝V 方程的解是-3的解是22. —次函数的图象过点(0,- 2)和(3, 0)两点,则方程0的解为23. 方程32=8的解是,则函数32在自变量x等于时的函数值是8.24. —次函数的图象如图所示,则一元一次方程0的解是25.观察下表,估算方程x的值 1 21700+1502450 的解是73 4 5 61700+150X的1850 200021502300 2450 26002750值26. 已知已1, 打3x,当x取何值时,y比目y月小2.27. 计算:(4a- 3b) ? ( a- 2b)28. 我们知道多项式的乘法可以利用图形的面积进行解释,如( 2) () =2a2+32就能用图1或图2等图形的面积表示:(1) 请你写出图3所表示的一个等式:(2) 试画出一个图形,使它的面积能表示:()(3b) 2+43b2.d.mi up ms29. 如图,直线I是一次函数的图象,点A、B在直线l上.根据图象回答下列问题:(1)写出方程0的解;(2)写出不等式〉1的解集;(3)若直线I上的点P (m n)在线段上移动,则m n应如何取值.4-H MJ 111Xo F Y30. 当自变量x的取值满足什么条件时,函数-27的值为-2.31.如图,过A 点的一次函数的图象与正比例函数2x 的图象相交于点B ,则不等式O v 2x V 的解集是()32. 已知关于x 的一次函数(〜0)的图象过点(2, 0), (0,- 1),则不等式>0的解集是()A. x >2B. x <2C. 0<x <2D. - Kx <233.当自变量x 的取值满足什么条件时,函数 3x - 8的值满足y >0 ( ) A .B.c.x >-D.x >-W34 .已知函数8x - 11,要使y > 0,那么x 应取()A.x >4B.x v 二c.x > 0D.x v 035. 如图,已知直线3与-2的交点的横坐标为-2,根据图象有下列3个结论: ①a > 0;②b > 0;③x >- 2是不等式3>- 2的解集.其中正确的个数是()B. x V 0或 x >C. O v x v 1D. x> 1A. 0B. 1C. 2D.336. 如图,直线经过点(-4, 0),则不等式》0的解集为37. 如图,直线经过A (- 2,- 1)和B (- 3, 0)两点,则不等式-3W- 2x -38. 如图所示,函数和a( x- 1) - b> 0的图象相交于(-1,1) (2, 2)两点.当y i>y2时,x的取值范围是39. 如图,直线与直线相交于点(2, 1),直线交y轴于点(0, 2),则不等式组vv 2的解集为41. 一次函数的图象如图所示,由图象可知,当x 时,y 值为正数,当x 时,y 为负数.42. 如图,直线经过 A (1, 2), B (- 2,- 1)两点,则不等式2x vv 2的解集 £43. 如果直线经过 A (2, 1), B (- 1,- 2)两点,则不等式^x >>- 2的解集为:40.如图,直线经过点( 0W x v 22b 的解集为244. 如图,直线与x轴交于点(-3, 0),且过P (2,— 3),则2x-7VW0的解45. 已知一次函数-b的图象经过一、二、三象限,且与x轴交于点(-2,0),则不等式〉b的解集为46. 已知一次函数的图象过第一、二、四象限,且与x轴交于点(2, O),贝V关于x的不等式a (x —I ) — b > 0的解集为47. 如图,直线经过A (—2,—5)、B (3, 0)两点,那么,不等式组2 ()V5x V 0的解集是48. 已知函数y i=2与y2 —3的图象交于点P(- 2,5),则不等式y i>屮的解集是49. 如图,直线经过A(2, 0), B(—2, —4)两点,则不等式y>0的解集为50. 已知点P (x, y)位于第二象限,并且y w 4, x、y为整数,符合上述条件的点P共有6个.51. 作出函数2x- 4的图象,并根据图象回答下列问题:(1)当-2W x W4时,求函数y的取值范围;(2)当x取什么值时,y V 0, 0, y >0;(3)当x取何值时,-4v y V 2.52. 画出函数21的图象,利用图象求:(1) 方程2仁0的根;(2) 不等式21>0的解;(3) 求图象与坐标轴的两个交点之间的距离.53.用画函数图象的方法解不等式54V 210.54. 画出函数312的图象,并回答下列问题:(1)当x为什么值时,y > 0;(2)如果这个函数y的值满足-6W y w6,求相应的x的取值范围.55. 如图,直线1和-3交于点A (2, m).(1 )求m b的值;(2)在所给的平面直角坐标系中画出直线- 3;(3)结合图象写出不等式-3V 1的解集是56. 如图,图中是11和22的图象,根据图象填空.的解集是 的解集是57 .在平面直角坐标系xOy 中,直线(〜0)过(1, 3)和(3, 1)两点,且与x 轴、y 轴分别交于 A B 两点,求不等式W0的解.58 .用图象法解不等式 5x - 1 > 25. 的解集是oj i+ba.-f x+ b59. (1)在同一坐标系中,作出函数y i=-x与y2- 2的图象;(2)根据图象可知:方程组(产■”的解为;- 2(3)当x 时,y2< 0.(4 )当x 时,y2<- 2(5)当x 时,y i>y2.60. 做一做,画出函数-22的图象,结合图象回答下列问题.函数- 22的图象中:(1)随着x的增大,y将填“增大”或“减小”)(2)它的图象从左到右(填“上升”或“下降”)(3)图象与x轴的交点坐标是,与y轴的交点坐标是(4)这个函数中,随着x的增大,y将增大还是减小?它的图象从左到右怎样变化?(5)当x取何值时,0?(6)当x取何值时,y >0?一次函数与方程不等式60题参考答案:1. V一次函数的图象与x轴的交点为(-1, 0),二当0时,-1.故选C.2. V函数2x和4的图象相交于点A (m 3),二3=2m』,二点A的坐标是(卫,2 23),•••不等式2x v 4的解集为x v_;故选A3. 由一次函数的图象可知,此函数是减函数,:一次函数的图象与y轴交于点(0, 1),•••当x v 0时,关于x的不等式〉1.故选B.4. v一次函数的图象过第一、二、四象限,二b> 0 , a v0 ,把(2 , 0 )代入解析式得:0=2 ,解得:2 - b —= - 2 ,aT a (x - 1) - b> 0, • a (x - 1)> b, :a v 0, • x- 1 v_ , • x v - 1,故a选A5. 由图象可知,当x v 1时,直线y1落在直线y2的下方,故使y1V y2的x的取值范围是:x v 1 .故选C.6. 两条直线的交点坐标为(-1, 2),且当x>- 1时,直线12在直线l 1的下方, 故不等式k2x v k1的解集为x>- 1 .故选B7. 不等式2x vv 0体现的几何意义就是直线上,位于直线2x上方,x轴下方的那部分点,显然,这些点在点A与点B之间.故选BTy=Hl,解得;8.联立两函数的解析式,得:\y= -2x+4即两函数图象交点为(1 , 2),在-5<x W5的范围内;由于y1的函数值随x的增大而增大,y2的函数值随x的增大而减小;因此当1时,m值最大,即2.故选B9. 从图象上得出,当y i v y2时,x v 2.故选B.10. 方程39=1的解,即函数39中函数值1时,x的值.•••一次函数39的图象经过(-卫,1),即函数值是1时,自变量-卫.3 3因而方程39=1的解为-卫311. 根据图形知,当1时,4, 即卩1时,4.二方程1的解412. 由图可知:当2时,函数值为0;因此当0时,0,即方程0的解为:213. 由直线尸寺于b与x轴、y轴交于不同的两点A和B,令0,贝V,令0,则-2b, •••S △二X 2b22w 4,2解得:-2W b W2且b z0,故答案为:-2W b W2 且b^014. V方程的解为-2,二当-2时0;又,••直线与x轴的交点的纵坐标是0,•••当0时,则有0,二-2时,0.二直线与x轴的交点坐标是(-2, 0)15. V0的解为-2,二函数与x轴的交点坐标为(-2, 0),故答案为:(-2, 0)16. 从图象上可知则关于x的方程0的解为的解是-3,当x v- 3时,v 0.故答案为:-3, x v- 317. 根据题意,知点P (- 2,- 5)在函数2的图象上,•- 5=-4,解得,-1;又点P (- 2,- 5)在函数-3的图象上,•- 5=- 2a- 3,解得,1 ;•由方程2-3, 得2x - 1 - 3,解得,-2;故答案是:-218. • 0.51=0 , • 0.5 - 1, •- 2, •一次函数0.51的图象与x轴交点的横坐标为:-2,故答案为:x轴交点.19. 根据图形知,当1时,4,即-1时,4.故方程1的解4.故答案为:420. —次函数屮与y的图象的交点的横坐标是3,故方程的解是:3 .故答案是:321. 由一次函数22的图象知:22经过点(-1, 0),二方程22=0的解为:-1, 故答案为:-1.22. 一次函数的图象过点(0,- 2)和(3, 0)两点,二-2, 30,解得:二■--1•••方程0可化为:二X-2=0,二3.323. 解方程32=8得到:2,函数32的函数值是8.即32=8,解得2,因而方程32=8的解是2即函数32在自变量x等于2时的函数值是8.故填2、824. V一次函数的图象与x轴交点的横坐标是-2,.••—元一次方程0的解是:-2.故填-225 .设1700+150X,由图中所给的表可知:当5时,1700+1502450,.方程1700+1502450 的解是5.故答案为:526.T*比勺y 一小2 .,訶1, 诃3x.•打+1= 7 (勺-3x ) -2 勺孑 2两边都乘12得,412=3-1824 ,移项及合并得2233,解得1.5 ,当1.5时,y比勺y』小2.27 .原式=4a?a- 8 - 36b?4a2- 116b228. (1)v长方形的面积=长乂宽,•.图3的面积=(2b) (2) =2a2+52b2,故图3所表示的一个等式:(2b) (2) =2a2+52b2,故答案为:(2b) (2) =2a2+52b2;(2)v图形面积为:()(3b) 2+43b2,.长方形的面积=长乂宽=()(3b),由此可画出的图形为:29. 函数与x轴的交点A坐标为(-2, 0),与y轴的交点的坐标为(0, 1),且y随x 的增大而增大.(1)函数经过点(-2, 0),则方程0的根是-2;(2)函数经过点(0, 1),则当x>0时,有〉1,即不等式〉1的解集是x>0; (3)线段的自变量的取值范围是:-2W x w2,当-2W mC2时,函数值y的范围是0w y w2,则0w n W2.30. 函数-27 中,令-2,贝V- 27=- 2,解得:4.5 .31. 一次函数经过A B两点,二c ,解得:-_, 3.\2=2k+3 2故:-专工十知:0v 2x v-节十;5,解得:0v x v 1 .故选C32. 由于x的一次函数(k z0)的图象过点(2, 0),且函数值y随x的增大而增大,二不等式》0的解集是x>2.故选A33. 函数3x - 8的值满足y >0,即3x - 8 > 0,解得:x > .故选C334. 函数8x - 11,要使y> 0,则8x - 11> 0,解得:x>=.故选A.S35. 由图象可知,a> 0,故①正确;b> 0,故②正确;当x >- 2是直线3在直线-2的上方,即x >- 2是不等式3>- 2,故③正确.故选D.36.由图象可以看出:当1 x> 4时,y>0, ••不等式》0 的解集为x> 4,故答案为:x>- 437. V直线经过A (- 2,- 1)和B (- 3, 0)两点,二不等式变为-3W- 2x-5v- x - 3,解得-2v x<- 1,故答案为-2v x w f - 2k+b= - 1,解得k - 1 (-3k+b=0-138. v函数和a (x - 1)- b> 0的图象相交于(-1, 1), (2, 2)两点,二根据图象可以看出,当y1> y2时,x的取值范围是x > 2或x v- 1,故答案为:x v- 1或x>239. 如图,直线与直线相交于点(2, 1),直线交y轴于点(0, 2),则不等式组vv 2的解集为(0, 2).40. 由直线与直线相交于点(2, 1),直线交y轴于点(0 , 2),根据图象即可知不等式组VV 2的解集为(0 , 2),故答案为:(0 , 2).41. 一次函数的图象如图所示,由图象可知,当x x >- 3时,y值为正数,当x x v- 3 时,y 为负数.42. 由图形知,一次函数经过点(- 3, 0), (0, 2)故函数解析式为:匸2,令y >0,解得:x>- 3,令y v 0,解得:x v- 3.故答案为:x>- 3, x v-3,解得仟; 43•直线经过A(2, 1)和B (- 1,-2)两点,可得:-胃b二则不等式组^x>>- 2可化为x- 1>- 2,解得:-1W x<244. 直线与x轴交于点(-3, 0),且过P (2,- 3),二结合图象得:W0的解集是:x>- 3,v 2x- 7v- 3,二x v 2,二2x- 7 vw0 的解集是:-3w x v 2,故答案为:-3w x v 245. 如右图所示:不等式〉b的解集就是求函数-b> 0,当y >0时,图象在x轴上方,则不等式〉b的解集为x>- 2 .故答案为:x46. 次函数的图象过第一、二、四象限,二b> 0, a v 0,把(2, 0)代入解析式得:0=2,解得:2 - b,丄=-2,aT a (x- 1)- b>0,二a (x- 1) > b,v a v 0,二x- 1 v丄,二x v- 147. 把A (- 2,- 5)、B (3, 0)两点的坐标代入,得-2- 5, 30,解得:1,- 3.解不等式组:2 (x - 3)v 5x v 0,得:-2v x v 0.故答案为:-2v x v 048.由图象可知x >- 2 时,y1> y2;故答案为x>- 249. T一次函数的图象经过A、B两点,由图象可知:直线从左往右逐渐上升,即y随x的增大而增大,又A (2, 0),所以不等式y >0的解集是x>2.故答案为x> 250. T已知点P (x, y)位于第二象限,二x v 0, y > 0,又:y w4,二0v y v 4, x v 0,又T x、y为整数,.••当1时,x可取-3,- 2,- 1,当2时,x可取-1,- 2,当3时,x可取-1.则P坐标为(-1, 1) (- 1, 2), (- 1, 3), (- 2, 1) (-2, 2), (- 3, 1) 共 6 个.故答案为:651. 当0时,-4,当0时,2,即2x - 4过点(0,- 4)和点(2, 0),过这两点 作直线即为2x - 4的图象,从图象得出函数值随 x 的增大而增大;(1) 当-2时,-8,当4,4,二当-2W X W4时,函数y 的取值范围为:-8<y <4; (2) 由于当0时,2,二当x V 2时,y V 0,当2时,0,当x >2时,y > 0; (3) v 当-4时,0;当2时,3,二当x 的取值范围为:0v x V 3时,有-4v y(2) 不等式21>0的解应为函数图象上不在 x 轴下方的点的横坐标,所以x >- +是不等式21>0的解; (3)由勾股定理得它们之间的距离为 :・53. 令 y 1=54, y 2=210,对于 y 1=54,当 0 时,4;当 0 时,-半,即y i =54过点(0, 4)和点(-士 0),过这两点作直线即为 y i =54的图象;对于52.列表:丁0 1 '2y1 0描点,过(0, 1 )和(-2, 0)两点作直线即可得函数221的图象,如(1)由图象看出当- 丄时,0,即2仁0,所以-二是方程21=0的解;图y2=210,当0时,10;当0时,-5,即y2=210过点(0, 10)和点(-5, 0),过这两点作直线即为y2=210的图象. 图象如图:由图可知当x V 2时,不等式54V 210成立.54. 当0时,12;当0时,-4,即312过点(0, 12)和点(-4, 0),过这两点作直线即为312的图象,从图象得出函数值随x的增大而增大;(1)函数图象经过点(-4, 0),并且函数值y随x的增大而增大,因而当x >-4 时y>0;(2)函数经过点(-6,- 6)和点(-2, 6)并且函数值y随x的增大而增大,因而函数y的值满足-6<y W6时,相应的x的取值范围是:-6<x w- 2.55. (1)根据题意得:解得:化一6+b=rn知:由图象知11>0时有x>- 3,函数22>0时有x V 1,的解集的解集为:-3V x V 1;故答案为:-3V x V 1 ;时有x > 1,d 1 x+ b i < 0a2•直线的解析式为:-4,v当0时,4,「.A (4, 0), •不等式W0的解集为:58. 5x- 1>25可变形为x - 2>0,画一次函数-2的图象,如图所示:根据图象可得:当y > 0时,图象在x轴的上方,故x>2.-4-559. (1)解:如图所示:•••不等式组由题-a x+b1知:由图象知ii V 0时有X V- 3,根据函数图象知22V0时有X V 1, 屯巴1 b ] V 0•••不等式组的解集为:x V- 3;故答案为:x V- 3;由题意x+b ]<0 a2x+bj^O知:根据函数图象知ii V 0时有x V- 3,根据函数图象知22V 0•••不等式组(1, 3)和(3, 1)两点,•rk+b=3,解得:jk=-1(3k+b二〔2456.由题意Sj x+ba2 x 十的解集是空集;故答案为:空集5 57.V直线(k z0)过⑵解:由图象可知:方程组]的解为y故答案为:(3)解:根据题意得:x- 2v 0,解得:x V 2,故答案为:V 2.(4)解:根据题意得:x- 2v- 2,解得:x V0,故答案为:V 0.(5)解:根据题意得:-x>x- 2,解得:x V 1,故答案为:x v 1.60. 函数-22的图象为:(1)由图象知:随着x的增大,y将减小.(2)由图象知:图象从左向右下降.(3) 由图象知:与x轴的交点坐标是(1, 0),与y轴的交点坐标是(0, 2).(4) 由图象知:这个函数中,随着x的增大,y将减小,图象从左向右下降.(5) 由图象知:当1时,0. (6)由图象知:当x V 1时,y>0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数与方程不等式关系同步测试题
一、选择题
1、直线l1∶y=k1x+b与直线l2∶y=k2x+c在同一平面直角坐标系中的图象如图,则关于x的不等式k1x+b<k2x+c的解集为( )
A.x>1 B.x<1 C.x>-2 D.x<-2
2、如图,已知直线y1=x+m与y2=kx-1相交于点P(-1,1),则关于x的不等式x+m>kx-1的解集在数轴上表示正确的是( )
3、用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()
4、直线y = kx + b(k<0)上有三个点,A(4,y1),B(-2,y2),C(1,y3),则y1、y2、y3大小关系是()
A、y1<y2<y3
B、y1<y3<y2
C、y2<y3<y
D、y3<y1<y2
5、若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a的图象可能是()
A. B. C.
D.
6、若直线y=-2x-4与直线y=4x+b的交点在第三象限,则b的取值范围是( )
A.-4<b<8 B.-4<b<0 C.b<-4或b>8 D.-4≤b≤8 7、当时,函数与在同一坐标系中的图象大致是
()
8、如图,已知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,若∠a=75°,则b值为( )
A.3
B.
C.
D.
9、已知直线y1=x,y2=x+1,y3=-x+5的图象如图,若无论x取何值,y总取y1、y2、y3中的最小值,则y的最大值为()
A. B. C. D.
10、如图,一次函数y=-x+2图象上有两点A、B,A点横坐标为2,B点横坐标为a(0<a<4且a≠2),过点A、B分别作x轴垂线,垂足为C、D,△AOC、△BOD面积分别为S1、S2,则S1与S2大小关系是( )
A.S1>S2
B.S1=S2
C.S1<S2
D.无法确定
二、填空题:
11、已知函数和的图象交于点P(一1,0),则为.
12、如图:直线与轴交于点A,与直线交于点B,且直线
与轴交于点C,则△ABC的面积为.
13、已知一次函数的图象如图,当时,的取值范围是.
14、如图,直线经过,两点,则不等式的解集为.
15、如图,点Q在直线y=-x上运动,点A的坐标为(1,0),当线段AQ最短时,点Q的坐标为____________
16、已知直线,,的图象如图,若无论x取何值,y总取y1、y2、y3中的最小值,则y的最大值为.
三、简答题:
17、已知一次函数的图象经过点P(3,5),且平行于直线y=2x.
(1)求该一次函数的解析式;
(2)若点Q(x,y)在该直线上,且在x轴的下方,求x的取值范围.
18、点P(x,y)在直线x+y=8上,且x>0,y>0,点A的坐标为(6,0),设△OPA的面积为S.
(1)求S与x的函数关系式,并直接写出x的取值范围;
(2)当S=12时,求点P的坐标.
19、已知一次函数y=kx+b,当x=2时y的值是-1,当x=-1时y的值是5.
(1)求此一次函数的解析式;
(2)若点P (m , n )是此函数图象上的一点,-3≤x≤2,求n的最大值.
20、已知:直线x-2y=-k+6和x+3y=4k+1,若它们的交点在第四象限内.
(1)求k的取值范围.
(2)若k为非负整数,求直线x-2y=-k+6和x+3y=4k+1分别与y轴的交点,及它们交点所围成的三角形的面积.
一次函数与不等式巩固练习
1、已知函数y =8x -11,要使y >0,那么x 应取( ) A 、x >
8
11 B 、x <
8
11
C 、x >0
D 、x <0
2、已知一次函数y =kx +b 的图像,如图所示,当x <0时,y 的取值范围是( •) A 、y >0 B 、y <0 C 、-2<y <0 D 、y <-
2
3
O
y 2=x+a
y 1=kx+b
(第5题)
3、已知y 1=x -5,y 2=2x +1.当y 1>y 2时,x 的取值范围是( ). A 、x >5 B 、x <
1
2
C 、x <-6
D 、x >-6 4、已知一次函数y kx b =+的图象如图所示,当x <1时,y 的取值范围是( ) A 、-2<y <0 B 、-4<y <0 C 、y <-2
D 、y <-4
5、一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论①k<0;②a>0;③当x <3 时,y 1<y 2中,正确的个数是( ) A 、0 B 、1 C 、2 D 、3
6、若一次函数y =(m -1)x -m +4的图象与y 轴的交点在x 轴的上方,则m 的取值范围是________.
7、如图,某航空公司托运行李的费用与托运行李的重量的关系为一次函数,由图可知行李的重量只要不超过________千克,就可以免费托运.
8、当自变量x 时,函数y=5x+4的值大于0;当x 时,函数y=5x +4的值小于0.
9、已知2x-y=0,且x-5>y,则x的取值范围是________.
10、如图,已知函数y=3x+b和y=ax-3的图象交于点P(-2,-5),则根据图象可得不等式3x+b>ax-3的解集是_______________。
ax-3
11、在同一坐标系中画出一次函数y
1=-x+1与y
2
=2x-2的图象,并根据图象
回答下列问题:
(1)写出直线y
1=-x+1与y
2
=2x-2的交点P的坐标.
(2)直接写出:当x取何值时y
1>y
2
;y
1
<y
2。