第17讲 全等三角形
2020年中考数学第一轮复习 第十七讲 三角形与全等三角形 知识点+真题 学生版(后含答案)
2020年中考数学第一轮复习教案第三章图形的认识与三角形第十七讲三角形与全等三角形【中考真题考点例析】考点一:三角形三边关系例1 (温州)下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,11对应练习1-1(长沙)如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2 B.4 C.6 D.8考点二:三角形内角、外角的应用例2 (2019青岛中考)如图,BD 是△ABC 的角平分线,AE⊥ BD ,垂足为F .若∠ABC=35°,∠ C=50°,则∠CDE 的度数为()A. 35°B. 40°C. 45°D. 50°对应练习2-1(2019年威海)把一块含有45°角的直角三角板与两条长边平行的直尺如图放置(直角顶点在直尺的一条长边上),若∠1=23°,则∠2=°对应练习2-2(2019年枣庄)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是().A.45°B. 60°C. 75°D. 85°考点三:三角形全等的判定和性质例3 (2019年山东滨州)如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC ,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM,下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的个数为()A.4 B.3 C.2 D.1对应练习3-1 (天门)如图,已知△ABC ≌△ADE ,AB 与ED 交于点M ,BC 与ED ,AD 分别交于点F ,N .请写出图中两对全等三角形(△ABC ≌△ADE 除外),并选择其中的一对加以证明.对应练习3-2 (宜宾)如图:已知D 、E 分别在AB 、AC 上,AB=AC ,∠B=∠C ,求证:BE=CD . 考点四:全等三角形开放性问题例4 (云南)如图,点B 在AE 上,点D 在AC 上,AB=AD .请你添加一个适当的条件,使△ABC ≌△ADE (只能添加一个).(1)你添加的条件是 .(2)添加条件后,请说明△ABC ≌△ADE 的理由.对应练习4-1 (昭通)如图,AF=DC ,BC ∥EF ,只需补充一个条件 ,就得△ABC ≌△DEF .第十七讲 三角形与全等三角形 参考答案【中考真题考点例析】考点一:三角形三边关系例1答案:C 对应练习1-1答案:B 考点二:三角形内角、外角的应用例2答案:C 对应练习2-1答案:68 对应练习2-2 答案:C 考点三:三角形全等的判定和性质MOCD B例3 答案:B 对应练习3-1 答案:△AEM ≌△ACN ,△BMF ≌△DNF ,△ABN ≌△ADM .选择△AEM ≌△ACN ,证明:∵△ADE ≌△ABC ,∴AE=AC ,∠E=∠C ,∠EAD=∠CAB ,∴∠EAM=∠CAN ,∵在△AEM 和△ACN 中,∠E =∠CAE =AC∠EAM =∠CAN∴△AEM ≌△ACN (ASA ).对应练习3-2 答案:证明:在△ABE 和△ACD 中,⎪⎩⎪⎨⎧)公共角A(=∠A ∠)已知AC(= AB )已知C(=∠B ∠ ∴△ABE ≌△ACD (ASA ),∴BE=CD (全等三角形的对应边相等).考点四:全等三角形开放性问题例4 答案:解:(1)∵AB=AD ,∠A=∠A ,∴若利用“AAS ”,可以添加∠C=∠E ,若利用“ASA ”,可以添加∠ABC=∠ADE ,或∠EBC=∠CDE ,若利用“SAS ”,可以添加AC=AE ,或BE=DC ,综上所述,可以添加的条件为∠C=∠E (或∠ABC=∠ADE 或∠EBC=∠CDE 或AC=AE 或BE=DC );故答案为:∠C=∠E ;(2)选∠C=∠E 为条件.理由如下:∵在△ABC 和△ADE 中,⎪⎩⎪⎨⎧AD =AB E=∠C ∠A =∠A ∠ ∴△ABC ≌△ADE (AAS ).对应练习4-1 答案:BC=EF ,解析:∵AF=DC ,∴AF+FC=CD+FC ,即AC=DF ,∵BC ∥EF ,∴∠EFC=∠BCF ,∵在△ABC 和△DEF 中,⎪⎩⎪⎨⎧DF =AC BCF=∠EFC ∠BC =EF ∴△ABC ≌△DEF (SAS ).故答案为:BC=EF .【聚焦中考真题】 一、选择题 1.(湘西州)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD 的度数是( )A .15°B .25°C .30°D .10°2.(鄂州)一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是( )A .165°B .120°C .150°D .135°3.(泉州)在△ABC 中,∠A=20°,∠B=60°,则△ABC 的形状是( )A .等边三角形B .锐角三角形C .直角三角形D .钝角三角形4.(宜昌)下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( )A .1,2,6B .2,2,4C .1,2,3D .2,3,45.(衡阳)如图,∠1=100°,∠C=70°,则∠A 的大小是( )A .10°B .20°C .30°D .80°6.(河北)如图1,M 是铁丝AD 的中点,将该铁丝首尾相接折成△ABC ,且∠B=30°,∠C=100°,如图2.则下列说法正确的是( )A .点M 在AB 上B .点M 在BC 的中点处C .点M 在BC 上,且距点B 较近,距点C 较远D .点M 在BC 上,且距点C 较近,距点B 较远7.(铁岭)如图,在△ABC 和△DEC 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D8.(台州)已知△A1B1C1△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2,对于上述的两个判断,下列说法正确的是()A.①正确,②错误B.①错误,②正确C.①,②都错误D.①,②都正确9.(邵阳)如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD 于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC10.(河北)一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90°B.100°C.130°D.180°11.(陕西)如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对二、填空题12.(威海)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF= .13.(黔东南州)在△ABC中,三个内角∠A、∠B、∠C满足∠B-∠A=∠C-∠B,则∠B= 度.14.(柳州)如图,△ABC≌△DEF,请根据图中提供的信息,写出x= .15.(巴中)如图,已知点B、C、F、E在同一直线上,∠1=∠2,BC=EF,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是.(只需写出一个)16.(郴州)如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是(只写一个条件即可).17.(达州)如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2012BC和∠A2012CD的平分线交于点A2013,则∠A2013= 度.三、解答题18.(聊城)如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.19.(菏泽)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BDC的度数.20.(临沂)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.21.(东营)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.22.(烟台)已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF 的数量关系式;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.23.(玉林)如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.24.(湛江)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.25.(荆州)如图,△ABC与△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,D在AB上,连结BE.请找出一对全等三角形,并说明理由.26.(十堰)如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.27.(佛山)课本指出:公认的真命题称为公理,除了公理外,其他的真命题(如推论、定理等)的正确性都需要通过推理的方法证实.(1)叙述三角形全等的判定方法中的推论AAS;(2)证明推论AAS.要求:叙述推论用文字表达;用图形中的符号表达已知、求证,并证明,证明对各步骤要注明依据.28.(内江)已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACD=∠DCE=90°,D为AB边上一点.求证:BD=AE.29.(舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?30.(荆门)如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.31.(随州)如图,点F 、B 、E 、C 在同一直线上,并且BF=CE ,∠ABC=∠DEF .能否由上面的已知条件证明△ABC ≌△DEF ?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使△ABC ≌△DEF ,并给出证明.提供的三个条件是:①AB=DE ;②AC=DF ;③AC ∥DF .第十七讲 三角形与全等三角形 参考答案【聚焦中考真题】一、选择题1-5 AADDC 6-10 CCDAB 11 C二、填空题12答案:25°13答案:6014答案:2015答案:CA=FD16答案:∠B=∠C17答案:20152m解:∵A1B 平分∠ABC ,A1C 平分∠ACD ,∴∠A1=21∠A ,∠A2=21∠A1=221∠A ,… ∴∠A2 015=201521∠A=20152m 。
七年级春季提高班第17讲 全等三角形(SSS与SAS)
全等三角形(SSS 与SAS)月 日 姓 名【知识要点】1.全等三角形的定义:能够完全重合的两个三角形,叫做全等三角形. 2.全等三角形性质、符号:(1)性质:全等三角形的对应边相等,对应角相等.(此性质今后常用来作为证明线段相等或角相等的依据).(2)符号:“≅”读作“全等于”,如ABC ∆和C B A '''∆全等,记作C B A ABC '''∆≅∆. 3.边边边公理(SSS):三边对应相等的两个三角形全等,简称“边边边”或“SSS ”. 4.边角边公理(SAS ):有两边和它们的夹角对应相等的两个三角形全等.【典型例题】例1.如图所示,一张长方形纸片ABCD ,将C 角折起至E 处,作EFB ∠的平分线FH ,求HF G ∠的大小.例2.如图,A 、E 、F 、C 在一条直线上,AD=BC ,ED=BF ,AF=EC ,求证:ED ∥BF .ABDCG E FH1 2 3D例3.已知,如图,AB=AC ,BD=DC ,F 是AD 的延长线上一点,求证:CDF BDF ∆≅∆.例4.如图,已知,AE=ED ,BE=EC ,求证:DCB ABC ∆≅∆.例5.如图,AD ∥BC ,且AD=BC ,AE ⊥AD ,AB ⊥AF ,且AF=AB ,AE=AD 。
求证:AC=EF 。
【经典练习】1.已知B C B A ABC ∠'''∆≅∆,与C C ∠'∠,与B '∠分别是对应角,则下列结论错误的是( ) A 、B A AB ''= B 、C B BC ''= C 、A A '∠=∠ D 、B A AC ''= 2.下列说法中错误的是( ) A 、全等三角形的对应边相等.B 、全等三角形的对应角相等.C 、若两个三角形全等,且有公共顶点,则公共顶点就是它们的对应顶点.D 、若两个三角形全等,则对应边所对的角是对应角.3.如图ABC E DE AB DEB ABC ∠=∠=∆≅∆,,,则C ∠的对应角为 ,BD 的对应边为 . 4.如图若E C ADE B ADE ABC ∠=∠∠=∠∆≅∆,,,BAC ∠则对应角是 ,AC 对应边是 . 5.如图,DEF ABC ∆≅∆,且10,1231,52='︒=∠︒=∠ED B A cm ,则=∠F ,AB= .CADECB DCBFAA B C D EFE ADB题3题4题56.如图,在△ABC 中,∠C=90°,D 、E 分别为AC 、AB 上的点,且AD=BD ,AE=BC ,DE=DC ,求证:DE ⊥AB 。
全等三角形-中考数学总复习精品课件
三角形全等的条件
如何找边相等、 角相等
1.找“角”相等的途径主要有:对顶角相等;两直线平行,同位角、 内错角相等;余角等角代换;角平分线;平行四边形对角相等等.
2.找“边”相等主要借助中点、平行四边形对边相等来证明.
三角形全等的证明
如何找边相等、 角相等
3.判定两个三角形全等的三个条件中,“边”是必不可少的.
垂足分别是点 D,E,AD=3,BE=1,则 DE 的长是( B )
3 A.2
B.2
C.2 2
D. 10
61.2如0° 图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=________.
7.如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D,②AC=DB, ③AB=DC,其中不能确定△ABC≌△DCB的是_②_____(只填序号).
A.∠A=∠D B.AC=DF C.AB=ED D.BF=EC
平移加翻折型
2.如图,在△ABC和△DEF中,AB=DE,AC=DF,BE=CF,且 BC=5,∠A=70°,∠B=75°,EC=2,则下列结论中错误的是
( C)
A.BE=3 B.∠F=35° C.DF=5 D.AB∥DE
平移型
3.如图,小强利用全等三角形的知识测量池塘两端M,N的距离,如果
对称型
解:(1)在△ABC 和△ADC 中,AABC= =AADC,,∴△ABC≌△ADC(SSS), BC=DC,
∴∠BAC=∠DAC,即 AC 平分∠BAD (2) 由 (1) 得 ∠BAE = ∠ DAE , 在 △BAE 和 △DAE 中 ,
BA=DA, ∠BAE=∠DAE,∴△BAE≌△DAE(SAS),∴BE=DE AE=AE,
全等三角形(知识点讲解)
学习必备 欢迎下载全等三角形 全等三角形 知识梳理性质对应角相等 对应边相等二、基础知识梳理 一)、基本概念1、“全等 ”的理解 全等的图形必须满足: (1)形状相同的图形; (2)大小相等的图形;即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质( 1)全等三角形对应边相等; (2)全等三角形对应角相等; 3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。
(2)两角和它们的夹边对应相等的两个三角形全等。
(3)两角和其中一角的对边对应相等的两个三角形全等。
(4)两边和它们的夹角对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上 (二)灵活运用定理、知识网络全等形 全等三角形边边边SSS边角边SAS判定 角边角ASA角角边 AAS斜边、 直角边HL角平分线作图性质与判定定理应用1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要善于灵活选择适当的方法判定两个三角形全等。
(1) 已知条件中有两角对应相等, 可找:①夹边相等( ASA )②任一组等角的对边相等 (AAS ) (2) 已知条件中有两边对应相等, 可找①夹角相等 (SAS ) ②第三组边也相等 (SSS ) (3) 已知条件中有一边一角对应相等, 可找①任一组角相等 (AAS 或 ASA ) ②夹等角的另一组边相等 (SAS ) 5. 经典例题透析 证明图形全等 基础版—— “ SSS ” (1)已知: AB=DC ,AD=BC ,求证:∠ A= ∠C2)如图, E 是 AD 上的一点, AB=AC ,AE=BD ,CE=BD+DE ,求证:∠ CED=∠ B+ C基础版—— “ SAS ”(3)如图, AD ∥ BC ,AD=CB , AE=CF ,求证: BE=DF4) 已知:如图,点 A 、B 、C 、D 在同一条直线上, EA AD ,FD AD , AE DF , AB DC .求证: ACE DBF .基础版——“ ASA ”与“ AAS ”(5)如图,已知: AB = AC ,点 D 在 AB 上,点 E 在 AC 上,BE 和CD 相交 于点 O ,∠B =∠ C ,求证: BD =CEDB举一反三:变式 1】如图,△ABC ≌△ DBE . 问线段 AE 和 CD 相等吗?为什么?( 6)如图,△ABC 中,∠BAC=90 ,AB =AC ,直线 MN 过点 A , 于 E ,求证: DE =BD+CE基础版 HL ”( Rt △) N(7)如图, AB AC ,AB//CD ,AC=CD ,BC=DE ,BC 与 DE 相交于点 O ,求 证: DE BC 类型一:全等三角形性质的应用 1、如图,△ ABD ≌△ ACE , AB =AC ,写出图中的对应边和对应角、如图,已知ΔABC≌ΔDEF,∠A=30°,∠ B=50°,BF=2,求∠ DFE的度数与EC举一反三:如图所示,ΔACD≌ΔECD,ΔCEF≌ΔBEF,∠ACB=90°求证:( 1)CD⊥AB;( 2) EF∥ AC.变式 1】类型二:全等三角形的证明3、如图, AC=BD,DF=CE,∠ ECB=∠ FDA,求证:△ ADF≌△BCE.举一反三:【变式 1】如图,已知 AB∥DC,AB= DC,求证:AD∥BC【变式 2】如图,已知 EB⊥ AD于 B,FC⊥ AD 于 C,且 EB= FC,AB=CD.求证 AF =DE.、类型三:综合应用4、如图,AD为ΔABC的中线。
《全等三角形》讲义(完整版)
全等三角形讲义一、知识点总结全等三角形定义:形状大小相同,并且能够完全重合的两个三角形叫做全等形三角形。
:形状大小相同,并且能够完全重合的两个三角形叫做全等形三角形。
补充说明:重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
:重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等:全等三角形的对应边相等,全等三角形的对应角相等 全等三角形判定定理:(1)边边边定理:三边对应相等的两个三角形全等。
(简称SSS ) (2)边角边定理:两边和它们的夹角对应相等的两个三角形全等。
)边角边定理:两边和它们的夹角对应相等的两个三角形全等。
((简称SAS) (3)角边角定理:两角和它们的夹边对应相等的两个三角形全等。
(简称ASA ASA)) (4)角角边定理:两个角和其中一个角的对边对应相等的两个三角形全等。
(简称AAS AAS)) (5)斜边、直角边定理:斜边和一条直角边对应相等的两个直角三角形全等。
(简称HL HL)) 角平分线的性质:在角平分线上的点到角的两边的距离相等在角平分线上的点到角的两边的距离相等. .∵OP 平分∠平分∠AOB AOB AOB,,PM PM⊥⊥OA 于M ,PN PN⊥⊥OB 于N ,∴PM=PN 角平分线的判定:到角的两边距离相等的点在角的平分线上到角的两边距离相等的点在角的平分线上. .∵PM PM⊥⊥OA 于M ,PN PN⊥⊥OB 于N ,PM=PN ∴OP 平分∠平分∠AOB AOB三角形的角平分线的性质:三角形三个内角的平分线交于一点,并且这一点到三边的距离等。
二、典型例题举例A BC PMNO A BCPMN O例1、如图,△ABN ≌△ACM,∠B 和∠C 是对应角,AB 与AC 是对应边,写出其他对应边和对应角.例2、如图,△、如图,△ABC ABC 是一个钢架,是一个钢架,AB=AC AB=AC AB=AC,,AD 是连结点A 与BC 中点D 的支架.的支架.求证:△求证:△ABD ABD ABD≌△≌△≌△ACD ACD ACD..例3、已知:点A 、F 、E 、C 在同一条直线上,AF =CE ,BE ∥DF ,BE =DF . 求证:△ABE ≌△CDF .例4、如图:、如图:D D 在AB 上,上,E E 在AC 上,上,AB AB AB==AC AC,∠,∠,∠B B =∠=∠C C .求证AD AD==AE AE..例5、如图:∠、如图:∠1=1=1=∠∠2,∠,∠3=3=3=∠∠4 求证:求证:AC=AD AC=AD例6、如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,AB=DC ,BE=CF ,你认为AB 平行于CD 吗?说说你的理由吗?说说你的理由D CB ACADB123 4例7、如图1,△ABC 的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断△ABC 与△AEG 面积之间的关系,并说明理由.例8、如图,OC 是∠AOB 的平分线,P 是OC 上的一点,PD ⊥OA 交OA 于D ,PE ⊥OB 交OB 于E ,F 是OC 上的另一点,连接DF ,EF ,求证DF =EF例9、如图,△ABC 中,AD 是它的角平分线,P 是AD 上的一点,PE ∥AB 交BC 于E ,PF ∥AC 交BC 于F ,求证:D 到PE 的距离与D 到PF 的距离相等的距离相等例10、如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是282cm ,AB =20cm ,AC =8cm,求DE 的长.AGF CBDE图1AEB DCFAB CDED C EF BA 例10、已知:BE ⊥CD ,BE =DE ,BC =DA ,求证:①,求证:① △BEC ≌△DAE ;②DF ⊥BC .例11、如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C ,D 是垂足,连接CD ,求证:(1)∠ECD=∠EDC ;(2)OD=OC ;(3)OE 是CD 的中垂线.三、专题版块三、专题版块 专题一:专题一: 全等三角形的判定和性质的应用全等三角形的判定和性质的应用例1、如图,在△ABC 中,AB=AC , BAC=40°,分别以AB AB、AC 为边作两个等腰三角形ABD 和ACE ACE,使∠,使∠BAD=∠CAE=90°.(1)求∠DBC 的度数.(2)求证:BD=CE.例2、如图,A B ∥CD,AF CD,AF∥∥DE,BE=CF,DE,BE=CF,求证:求证:求证:AB=CD. AB=CD.例3、如图在△ABC 中,BE 、CF 分别是AC 、AB 边上的高,在BE 延长线上截取BM =AC ,在CF 延长线上截到CN =AB ,求证:AM =AN 。
专题17 三角形基础(归纳与讲解)(原卷版)
专题17 三角形基础【专题目录】技巧1:三角形三边关系的巧用技巧2:三角形的三种重要线段技巧3:三角形内角和与外角的几种常见应用类型【题型】一、三角形的分类【题型】二、构成三角形三边的条件【题型】三、确定三角形第三边的取值范围【题型】四、与三角形高有关的相关计算问题【题型】五、与三角形重心有关的计算【题型】六、与三角形内角和定理的有关的计算【题型】七、利用直角三角形两个锐角互余进行相关计算【题型】八、利用三角形外角性质进行相关计算【考纲要求】1、了解三角形和全等三角形有关的概念,掌握三角形的三边关系.2、理解三角形内角和定理及推论.3、理解三角形的角平分线、中线、高的概念及画法和性质.【考点总结】一、三角形的概念【考点总结】二、三角形中的重要线段和有关的角【技巧归纳】技巧1:三角形三边关系的巧用【类型】一、判断三条线段能否组成三角形1.下列每组数分别表示三根木棒的长度,将它们首尾连接后,不能摆成三角形的一组是()A.4,4,8 B.5,5,1C.3,7,9 D.2,5,42.有四条线段,长度分别为4 cm,8 cm,10 cm,12 cm,选其中三条组成三角形,试问可以组成多少个三角形?分别写出来.【类型】二、求三角形第三边的长或取值范围3.一个三角形的两边长分别为5 cm和3 cm,第三边的长是整数,且周长是偶数,则第三边的长是() A.2 cm或4 cm B.4 cm或6 cm C.4 cm D.2 cm或6 cm4.如果三角形的两边长分别为3和5,则周长l的取值范围是()A.6<l<15 B.6<l<16C.11<l<13 D.10<l<165.若三角形的三边长是三个连续的自然数,其周长m满足10<m<22,则这样的三角形有________个.【类型】三、三角形的三边关系在等腰三角形中的应用6.等腰三角形的一条边长为6,另一条边长为13,则它的周长为()A.25 B.25或32C.32 D.197.已知等腰三角形ABC的底边BC=8 cm,|AC-BC|=2 cm,则AC=________.8.若等腰三角形的底边长为4,且周长小于20,则它的腰长b的取值范围是____________.【类型】四、三角形的三边关系在代数中的应用9.已知三角形三边长分别为a,b,c,且|a+b-c|+|a-b-c|=10,求b的值.10.已知a,b,c是△ABC的三边长,b,c满足(b-2)2+|c-3|=0,且a为方程|x-4|=2的解,求△ABC的周长.【类型】五、利用三角形的三边关系说明边的不等关系11.如图,已知D,E为△ABC内两点,说明:AB+AC>BD+DE+CE.技巧2:三角形的三种重要线段【类型】一、三角形的高题型1:找三角形的高1.如图,已知AB⊥BD于点B,AC⊥CD于点C,AC与BD交于点E.△ADE的边DE上的高为________,边AE上的高为________.题型2:作三角形的高2.(动手操作题)画出图中△ABC的三条高.(要标明字母,不写画法)题型3:应用三角形的高3.如图,在△ABC中,BC=4,AC=5,若BC边上的高AD=4.(1)求△ABC的面积及AC边上的高BE的长;(2)求AD∶BE的值.4.如图,在△ABC中,AB=AC,DE⊥AB,DF⊥AC,BG⊥AC,垂足分别为点E,F,G.试说明:DE+DF=BG.【类型】二、三角形的中线题型1:利用中线求长度5.如图,AE是△ABC的中线,已知EC=4,DE=2,则BD的长为()A.2 B.3 C.4 D.66.如图,已知BE=CE,ED为△EBC的中线,BD=8,△AEC的周长为24,则△ABC的周长为()A.40B.46C.50D.567.在等腰三角形ABC中,AB=AC,一腰上的中线BD将这个三角形的周长分成15 cm和6 cm两部分,求这个等腰三角形的三边长.题型2:利用中线求面积8.图,△ABC的三边的中线AD,BE,CF的公共点为G,且AG∶GD=2∶1,若S△ABC=12,则图中阴影部分的面积是________.9.操作与探索:在图①~③中,△ABC的面积为a.(1)如图①,延长△ABC的边BC到点D,使CD=BC,连接DA,若△ACD的面积为S1,则S1=________(用含a的代数式表示);(2)如图②,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE,若△DEC的面积为S2,则S2=________(用含a的代数式表示),请说明理由;(3)如图③,在图②的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF,若阴影部分的面积为S3,则S3=________(用含a的代数式表示).【类型】三、三角形的角平分线题型1:三角形角平分线定义的直接应用10.(1)如图,在△ABC中,D,E,F是边BC上的三点,且∠1=∠2=∠3=∠4,以AE为角平分线的三角形有__________;(2)如图,若已知AE平分∠BAC,且∠1=∠2=∠4=15°,计算∠3的度数,并说明AE是△DAF的角平分线.题型2:三角形的角平分线与高线相结合求角的度数11.如图,在△ABC中,AD是高,AE是∠BAC的平分线,∠B=20°,∠C=60°,求∠DAE的度数.题型3:求三角形两内角平分线的交角度数12.如图,在△ABC中,BE,CD分别为其角平分线且交于点O.(1)当∠A=60°时,求∠BOC的度数;(2)当∠A=100°时,求∠BOC的度数;(3)当∠A=α°时,求∠BOC的度数.技巧3:三角形内角和与外角的几种常见应用类型【类型】一、直接计算角度1.如图,在△ABC中,∠A=60°,∠B=40°,点D,E分别在BC,AC的延长线上,则∠1=________.2.在△ABC中,三个内角∠A,∠B,∠C满足∠B-∠A=∠C-∠B,则∠B=________.【类型】二、三角尺或直尺中求角度3.把一个直尺与一块三角尺按如图所示的方式放置,若∠1=40°,则∠2的度数为()A.125°B.120°C.140°D.130°4.一副三角尺ABC和DEF如图放置(其中∠A=60°,∠F=45°),使点E落在AC边上,且ED∥BC,则∠CEF的度数为________.5.一副三角尺如图所示摆放,以AC为一边,在△ABC外作∠CAF=∠DCE,边AF交DC的延长线于点F,求∠F的度数.【类型】三、与平行线的性质综合求角度6.如图,AB ∥CD ,∠ABE =60°,∠D =50°,求∠E 的度数.【类型】四、与截角和折叠综合求角度7.如图,在△ABC 中,∠C =70°,若沿图中虚线截去∠C ,则∠1+∠2等于( )A .360°B .250°C .180°D .140°8.△ABC 是一个三角形的纸片,点D ,E 分别是△ABC 边AB ,AC 上的两点.(1)如图①,如果沿直线DE 折叠,则∠BDA′与∠A 的关系是____________;(2)如果折成图②的形状,猜想∠BDA′,∠CEA′和∠A 的关系,并说明理由;(3)如果折成图③的形状,猜想∠BDA′,∠CEA′和∠A 的关系,并说明理由.【题型讲解】【题型】一、三角形的分类例1、已知①ABC 中::3:4:7A B C ∠∠∠=,则①ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定【题型】二、构成三角形三边的条件例2、三角形的两边长分别为3cm 和6cm ,则第三边长可能为( )A .2cmB .3cmC .6cmD .9cm【题型】三、确定三角形第三边的取值范围例3、如图,ABCD 的对角线AC ,BD 交于点O ,若6AC =,8BD =,则AB 的长可能是( )A .10B .8C .7D .6【题型】四、与三角形高有关的相关计算问题例4、如图,在ABC ∆中,90ACB ∠=︒,过点C 作CD AB ⊥于点D ,已知12AC =,13AB =,则CD 的长是( )A .5B .6013C .6D .6512【题型】五、与三角形重心有关的计算例5、如图,在①ABC 中,AD ,BE 分别是BC ,AC 边上的中线,且AD①BE ,垂足为点F ,设BC =a ,AC =b ,AB =c ,则下列关系式中成立的是( )A .a 2+b 2=5c 2B .a 2+b 2=4c 2C .a 2+b 2=3c 2D .a 2+b 2=2c 2【题型】六、与三角形内角和定理的有关的计算例6、如图所示,直线EF //GH ,射线AC 分别交直线EF 、GH 于点B 和点C ,AD ①EF 于点D ,如果①A =20°,则①ACG =( )A .160°B .110°C .100°D .70°【题型】七、利用直角三角形两个锐角互余进行相关计算例7、如图,在四边形ABCD 中,CD①AB ,AC①BC ,若①B =50°,则①DCA 等于( )A .30°B .35°C .40°D .45°【题型】八、利用三角形外角性质进行相关计算例8、如图,已知//,AB CD 直线AC 和BD 相交于点,E 若70,40ABE ACD ∠=︒∠=︒,则AEB ∠等于( )A .50︒B .60︒C .70︒D .80︒三角形基础(达标训练)一、单选题1.如图,在①ABC 中,D 为BC 的延长线上一点,若①B =70°,①1=110°,则①A =( )A .35°B .40°C .55°D .70°2.如图,已知直线AE ①BD ,且①C =15°,①1=110°,则①2的度数是( )A .45°B .55°C .65°D .75°3.数学课上,同学们在作ABC 中AC 边上的高时,共画出下列四种图形,其中正确的是( ).A .B .C .D .4.某班级计划在耕读园里搭三角形围栏,可以选择三种长度的木条组合是( )A .3、4、8B .4、4、8C .3、5、6D .5、6、115.如图,人字梯中间设计一“拉杆”,在使用梯子时,固定拉杆会增加安全性.这样做蕴含的数学道理是( )A .三角形具有稳定性B .两点之间线段最短C .经过两点有且只有一条直线D .垂线段最短二、填空题6.如图,点B 、C 、D 在同一直线上,AB ①CE ,若①A =55°,①ACB =65°,则①1为___°.7.如图,在Rt ABC 中,90C ∠=︒,点E 、F 分别是边AB AC 、上,且AF EF =.若72CFE ∠=︒,则B ∠=_________°.三、解答题8.如图,在四边形ABCD 中,AB CD ∥,130BCD ∠=︒,BE 平分ABC ∠交AD 于点E ,交CD 的延长线于点F .(1)求ABE ∠的大小;(2)若48ADC ∠=︒,求DEF ∠的大小.三角形基础(提升测评)一、单选题1.如图,点C ,D 在直线AB 上,OC OD ⊥,若120ACO ∠=,则①BDO 的大小为( )A .120B .140C .150D .1602.一把直尺和一块三角板ABC (含45°角)如图所示摆放,直尺一边与三角板的两直角边分别交于点D 和点E ,另一边与三角板的两直角边分别交于点F 和点A ,①CED =25°,则①BF A 的大小为( )A .105°B .110°C .115°D .125°3.如图,BE 是ABC 的中线,AD BC ⊥交BE 于点F ,且BD AE =,50∠︒=EAD ,则EBC ∠的度数为( )A .30°B .25°C .20°D .15°4.如图,在ABC 中,BD 为AC 边上的中线,已知8BC =,5AB =,BCD △的周长为20,则ABD △的周长为( )A .17B .23C .25D .285.如图,Rt ①ABC 中,①C =90°,BD 平分①ABC 交AC 于点D ,点E 为AB 的中点,若AB =12,CD =3,则①DBE 的面积为( )A .10B .12C .9D .6二、填空题6.如图,在ABC ∆ 中,AD 平分CAB ∠ ,AB AC CD =+ ,若81CAB ∠=︒ ,则B ∠ 度数为______.7.如图,在ABC 中,AB AC =,点D 在边BC 上,AD BD =,如果102∠=︒DAC °,那么BAD ∠=___________度.三、解答题8.如图,在Rt ABC △中,90BAC ∠=︒,将Rt ABC △绕点A 旋转一定的角度得到Rt ADE △,且点E 恰好落在边BC 上.(1)求证:AE 平分CED ∠;(2)连接BD ,求证:90DBC ∠=︒.。
2025年广东中考数学第一部分+中考考点精准解读课件第4章 第17讲 全等、相似三角形的性质与判断
证明:∵AP平分∠BAC,PD⊥AB,PE⊥AC,
∴PD=PE.
=,
在Rt△ADP和Rt△AEP中,
=,
∴Rt△APD≌Rt△APE(HL).
返回
目录
方法讲练·拓思维
变 式 2 :如 图 2 , AB= AC , ∠BAC = 45° , AP平 分 ∠BAC, 过 点 B作
在线段EN上.请回答下列问题:
(1)写出图中所有的平行线:____________________.
EF∥NM,FG∥MH
(2)若∠E=100°,EH=1,NH=3,则∠N=_______,HG的长为___.
2
100°
6
(3)若△EFG的周长为16,EF=EG=5,则HM的长为___.
返回
目录
考点梳理·精整合
∵AE=AC,∴AF⊥CE.∴∠CFD=90°.
返回
目录
方法讲练·拓思维
设CF=m,CD=AD=x.∵ =tan∠DAC=tan∠BAC= ,
∴AF=3CF=3m.∴DF=3m-x.
2
2
2
2
2
2
∵CF +DF =CD ,∴m +(3m-x) =x ,解得x= m.
∴CD= m.∴cos∠DCE= = .
AH=2CP
变式3:(2024·泰安改编)如图3,AB=AC,∠BAC=90°,AP平分∠BAC
,点D,E分别在AP,CP上,且PD=PE,连接AE,CD,取AE中点F,
CD=2PF
连接PF,则CD与PF的数量关系为_____________,CD与PF的位置关系
全等三角形经典讲义
全等三角形状元笔记【知识要点】1.全等三角形能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质全等三角形的对应边相等,全等三角形的对应角相等.3.三角形全等的判定方法(1)三边分别相等的两个三角形全等(简写成“边边边”或“SSS”).(2)两边和它们的夹角分别相等的两个三角形全等(简写成“边角边”或“SAS”).(3)两角和它们的夹边分别相等的两个三角形全等(简写成“角边角”或“ASA”).(4)两个角和其中一个角的对边分别相等的两个三角形全等(简写成“角角边”或“AAS”).4.直角三角形全等的判定方法斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).【温馨提示】1.两个三角形全等的条件中必须有一条边分别相等,只有角分别相等不能证明两个三角形全等.2.有两边和其中一边的对角分别相等的两个三角形不一定全等.3.“HL”定理指的是斜边和一条直角边分别相等,而不是斜边和直角分别相等.【方法技巧】1.应用全等三角形性质解决问题的前提是准确地确定全等三角形的对应边和对应角,其规律主要有以下几点:(1)以对应顶点为顶点的角是对应角;(2)对应顶点所对应的边是对应边;(3)公共边(角)是对应边(角);(4)对顶角是对应角;(5)最大边(角)是对应边(角),最小边(角)是对应边(角).全等三角形的对应边和对应角可以依据字母的对应位置来确定,如若△ABC≌△DEF,说明A与D,B与E, C与F是对应点,则∠ABC与∠DEF是对应角,边AC与边DF是对应边.2.判定两个三角形全等的解题思路:专题一 三角形全等的判定1.如图,BD 是平行四边形ABCD 的对角线,∠ABD 的平分线BE 交AD 于点E ,∠CDB 的平分线DF 交BC 于点F .求证:△ABE≌△CDF .2.如图,在△ABC 中,D 是BC 边上的点(不与B ,C 重合),F ,E 分别是AD 及其延长线上的点,CF ∥BE . 请你添加一个条件,使△BDE ≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1)你添加的条件是:__________; (2)证明:SAS SSS AAS SAS ASA AAS ASA AAS ⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎩找夹角——已知两边找另一边——边为角的对边——找任一角——找夹角的另一边——已知一边一角边为角的邻边找夹边的另一角——找边的对角——找夹边——已知两角找任一边——3.如图,△ABC中,点D在BC上,点E在AB上,BD=BE,要使△ADB≌△CEB,还需添加一个条件.(1)给出下列四个条件:①AD=CE;②AE=CD;③∠BAC=∠BCA;④∠ADB=∠CEB;请你从中选出一个能使△ADB≌△CEB的条件,并给出证明;(2)在(1)中所给出的条件中,能使△ADB≌△CEB的还有哪些?直接在题后横线上写出满足题意的条件序号.__________________.专题二 全等三角形的判定与性质4.如图,已知△ABC 中,∠ABC =45°,AC =4,H 是高AD 和BE 的交点,则线段BH 的长度为( )AB .4C .D .55.【2013·襄阳】如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,将△ADC 绕点A 顺时针旋转,使AC 与AB 重合,点D 落在点E 处,AE 的延长线交CB 的延长线于点M ,EB 的延长线交AD 的延长线于点N .求证:AM =AN .6.【2012·泸州】如图,△ABC 是等边三角形,D 是AB 边上一点,以CD 为边作等边三角形CDE ,使点E 、A 在直线DC 的同侧,连接AE .求证:AE ∥BC .NME D B CA专题三全等三角形的应用7.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60° B.90° C.120° D.150°8.有一座小山,现要在小山A、B的两端开一条隧道,施工队要知道A、B两端的距离,于是先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B两端的距离,你能说说其中的道理吗?9.已知如图,要测量水池的宽AB ,可过点A 作直线AC ⊥AB ,再由点C 观测,在BA 延长线上找一点B′,使∠ACB′=∠ACB ,这时只要量出AB′的长,就知道AB 的长,对吗?为什么?10.如图,点D 、B 分别在∠A 的两边上,C 是∠A 内一点,AB = AD ,BC = CD ,CE ⊥AD 于E ,CF ⊥AF于F .求证:CE = CF11.已知:如图,在△ABC 中,∠A =90°,AB = AC ,BD 平分∠ABC .求证:BC = AB + ADFA BECD12.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB13.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B14.如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.DBACPEDCBA D CBA15.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):16.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .OEDCBAFEA17.已知:在△ABC中,∠BAC=90,AB=AC,AE是过点A的一条直线,且BD⊥AE于D,CE⊥AE于E.(1)当直线AE处于如图①的位置时,有BD=DE+CE,请说明理由;(2)当直线AE处于如图②的位置时,则BD、DE、CE的关系如何?请说明理由;(3)归纳(1)、(2),请用简洁的语言表达BD、DE、CE之间的关系.18、两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B C E,,在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);图1图2DCAB(2)证明:DC BE⊥.19.如图-1,ABC△的边BC在直线l上,AC BC⊥,且AC BC=;EFP△的边FP也在直线l上,边EF与边AC重合,且EF FP=.(1)在图-1中,请你通过观察、测量,猜想并写出AB与AP关系;(2)将EFP△沿直线l向左平移到图-2的位置时,EP交AC于点Q,连结AP,BQ.猜想并写出BQ与AP的关系,请证明你的猜想;(3)将EFP△沿直线l向左平移到图-3的位置时,EP的延长线交AC的延长线于点Q,连结AP,BQ.你认为(2)中所猜想的BQ与AP的关系还成立吗?若成立,给出证明;若不成立,请说明理由.A (E)B C (F)Pl l l图-1 图-2图-3全等三角形——角的平分线的性质状元笔记【知识要点】1.角的平分线的性质角的平分线上的点到角的两边的距离相等.2.角的平分线的判定角的内部到角的两边的距离相等的点在角的平分线上.【温馨提示】1.到三角形三边距离相等的点是三角形三条角平分线的交点,不是其他线段的交点.2.到三角形三边距离相等的点不仅有内角的平分线的交点,还有相邻两外角的平分线的交点,这样的点共有4个.【方法技巧】1.利用角的平分线的性质解决问题的关键是:挖掘角的平分线上的一点到角两边的垂线段.若已知条件存在两条垂线段——直接考虑垂线段相等,若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段.2.利用角平分线的判定解决问题的策略是:挖掘已知图形中一点到角两边的垂线段.若已知条件存在两条垂线段——先证明两条垂线段相等,然后说明角平分线或角的关系;若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,再证明两条垂线段相等;若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段后,证明两条垂线段相等.专题一利用角的平分线的性质解题1.如图,在△ABC中,AC=AB,D在BC上,若DF⊥AB,垂足为F,DG⊥AC,垂足为G,且DF=DG.求证:AD⊥BC.2.如图,已知CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC.求证:OB=OC.3.如图,在Rt △ABC 中,∠C=90°,,AD 是∠BAC 的角平分线,DE ⊥AB 于点E ,AC =3 cm ,求BE 的长.专题二 角平分线的性质的应用 4.如图,三条公路把A 、B 、C 三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在()A .在AC 、BC 两边高线的交点处B .在AC 、BC 两边中线的交点处C .在∠A 、∠B 两内角平分线的交点处D .在AC 、BC 两边垂直平分线的交点处5.如图,要在河流的南边,公路的左侧M 区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A 处的距离为1cm (指图上距离),则图中工厂的位置应在__________,理由是__________.21BAC B ∶∶∠∠6. 如图, ∠ B= ∠ C=90 °, M 是 BC 中点, DM 平分 ∠ ADC ,求证: AM 平分 ∠ DAB .7. 如图,已知 △ ABC 的周长是 22 , OB 、 OC 分别平分 ∠ ABC 和 ∠ ACB , OD ⊥ BC 于 D ,且 OD=3 , △ ABC 的面积是多少?8.如图,已知 ∠ 1= ∠ 2 , P 为 BN 上的一点, PF ⊥ BC 于 F , PA=PC ,求证: ∠ PCB+ ∠ BAP=180 º9.如图,△ ABC 中, P 是角平分线 AD , BE 的交点. 求证:点 P 在∠ C 的平分线上.10. 如图,在 △ ABC 中, BD 为 ∠ ABC 的平分线, DE ⊥ AB 于点 E ,且 DE=2cm , AB=9cm , BC=6cm ,求 △ ABC 的面积.21NP F C BA11.如图, D 、 E 、 F 分别是△ ABC 的三条边上的点, CE=BF ,△ DCE 和△ DBF 的面积相等.求证: AD 平分∠ BAC .。
中考一轮复习--第17讲 全等三角形
2
考点梳理
自主测试
2.如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作
PM∥AB交AF于M,作PN∥CD交DE于N.
(1)①∠MPN=
;
②求证:PM+PN=3a;
(2)如图2,点O是AD的中点,连接OM,ON,求证:OM=ON;
(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否
1
1
1
1
=BP,PC=DN. ∴GM=2AM,HP=2BP,PL=2PC,NK=2ND,
∵AM=BP,PC=DN,∴MG+HP+PL+KN=a,GH=LK=a,∴MP+PN=
MG+GH+HP+PL+LK+KN=3a.
考点梳理
自主测试
(2)证明:如图2,连接OE,
∵六边形ABCDEF是正六边形,AB∥MP,PN∥DC,O为AD中点,
考点梳理
自主测试
考点二
类型
一般
三角
形的
判定
全等三角形的判定
图
形
已知条件
A1B1=A2B 2,
B1C1=B2C2,
A1C1=A2C2
∠B1=∠B2,
B1C1=B2C2,
∠C1=∠C2
∠B1=∠B2,
∠C1=∠C2,
A1C1=A2C2
A1B1=A2B 2,
∠B1=∠B2,
B1C1=B2C2
是否全等 形成结论
应邻边.
考法
对应练1如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一
C
个条件后,仍然不能证明△ABC≌△DEF,这个条件是( )
初中三角形全等公开课教案
初中三角形全等公开课教案教学目标:1. 知识与技能:理解并掌握三角形全等的概念及性质。
2. 过程与方法:经历观察、操作、测量等探究活动,增强动手能力和解决问题的能力。
3. 情感、态度价值观:感受生活中的数学,体会数学的魅力,从而激发学习数学的兴趣,获得成功的情感体验。
教学重难点:1. 教学重点:三角形全等的概念与性质。
2. 教学难点:三角形全等的性质。
教学过程:一、导入新课1. 图片导入:展示一些生活中的全等图形,如全等的三角形、正方形等。
2. 提问:这些图形有什么特点?它们能够完全重合,形状和大小完全相同。
3. 引导学生思考:为什么我们会说这些图形是全等的呢?二、讲解新知1. 操作观察,得出概念a. 给学生分发纸板,请他们将各自的三角尺按在纸板上,画下图形,并裁下。
b. 提问:照图形裁下来的纸板和三角尺的形状、大小完全一样吗?把三角尺和裁得的纸板放在一起能够完全重合吗?c. 预设:形状大小完全一样,能完全重合。
d. 多媒体上展示用同一张底片冲洗出来的两张尺寸大小一样的照片,请学生观察,放在一起是否也能完全重合。
e. 教师总结全等形和全等三角形的概念。
2. 平移、翻折、旋转,对应关系a. 小组活动:对一个三角形作出平移、翻折、旋转三种变换,然后动手操作进行探究,看看对于变换前后的两个三角形是否全等。
b. 学生汇报探究结果,教师引导学生总结三角形全等的性质。
三、巩固练习1. 让学生独立完成一些关于三角形全等的练习题,巩固所学知识。
2. 教师选取一些学生的作业进行点评,解答学生的疑问。
四、课堂小结1. 让学生回顾本节课所学的内容,总结三角形全等的概念和性质。
2. 强调三角形全等在实际生活中的应用价值。
五、课后作业1. 请学生总结三角形全等的性质,并写在日记中。
2. 设计一些关于三角形全等的习题,提高学生的解题能力。
教学反思:本节课通过图片导入、操作观察、小组活动等方式,让学生直观地理解了三角形全等的概念和性质。
中考数学复习讲义课件 第4单元 第17讲 全等三角形
6.(2018·衡阳)如图,线段 AC,BD 相交于点 E,AE=DE,BE=CE. (2)当 AB=5 时,求 CD 的长.
解:∵△ABE≌△DCE,∴AB=CD. ∵AB=5,∴CD=5.
7.(2016·衡阳)如图,点 A,C,D,B 四点共线,且 AC=BD,∠A=∠B, ∠ADE=∠BCF,求证:DE=CF. 证明:∵AC=BD,∴AC+CD=BD+CD, 即 AD=BC.
[分析] 过点 M 作 AD 的垂线交 AB 于点 E,根据 ASA 可 证明 △BEM≌△NAM,得出 BM=NM;
证明:过点 M 作 AD 的垂线交 AB 于点 E. ∵∠BAC=90°,AB=AC,AD⊥BC, ∴∠NAB=90°,∠BAD=45°. ∴∠AEM=90°-45°=45°=∠BAD. ∴EM=AM,∠BEM=135°. ∵∠NAB=90°,∠BAD=45°, ∴∠NAD=135°.∴∠BEM=∠NAD.
12.(2021·柳州)如图,有一池塘,要测池塘两端 A,B 的距离,可先在平地 上取一个点 C,从点 C 不经过池塘可以直接到达点 A 和 B,连接 AC 并延 长到点 D,使 CD=CA,连接 BC 并延长到点 E,使 CE=CB,连接 DE, 那么量出 DE 的长就是 A,B 的距离,为什么?请结合解题过程,完成本题 的证明.
[解析] 根据全等三角形的判定方法,可以判断添加各个选项中的条件是否能够判断 △ABC≌△DEF. ∵BF=EC,∴BF+FC=EC+FC.∴BC=EF. 又∠B=∠E, ∴当添加条件 AB=DE 时,△ABC≌△DEF(SAS),故选项 A 不符合题意; 当添加条件∠A=∠D 时,△ABC≌△DEF(AAS),故选项 B 不符合题意; 当添加条件 AC=DF 时,无法判断△ABC≌△DEF,故选项 C 符合题意; 当添加条件 AC∥FD 时,则∠ACB=∠DFE,故△ABC≌△DEF(ASA),故选项 D 不符合题意. 故选 C.
2013年中考数学专题复习第十七讲:三角形与全等三角形(含详细参考答案)
2013年中考数学专题复习第十七讲三角形与全等三角形【基础知识回顾】三角形的概念:1、由直线上的三条线段组成的图形叫三角形2、三角形的基本元素:三角形有条边个顶点个内角二、三角形的分类:按边可分为三角形和三角形,按角可分为三角形三角形三角形注意:等边三角形属于特殊的三角形,锐角三角形和钝角三角形有事称为三角形。
三、三角形的性质:1、三角形的内角和是三角形的任意一个外角和它不相得两个内角的和三角形的一个外角任意一个和它不相邻的内角2、三角形任意两边之和第三边,任意两边之差第三边3、三角形具有性注意:1、三角形的外角是指三角形一边和另一边的组成的角,三角形有个外角,三角形的外角和事,是其中各外角的和2、三角形三边关系定理是确定三条线段否构成三角形和判断限度间不等关系的主要依据。
四、三角形中的主要线段:1、角平分线:三角形的三条角平分线都在三角形部且交于一点,这些是三角形的心它到得距离相等2、中线:三角形的三条中线都在三角形部,且交于一点3、高线:不同三角形的三条高线位置不同,锐角三角形三条高都连三角形直角三角形有一条高线在部,另两条河重合,钝角三角形有一条高线在三角形部,两条在三角形部4、中位线:连接三角形任意两边的线段叫做三角形的中位线。
定理:三角形的中位线第三边且等于第三边的注意:三角形的平分线、中线、高线、中位线都是且都有条】五、全等三角形的概念和性质:1、的两个三角形叫做全等三角形2、性质:全等三角形的、分别相等,全等三角形的对应线段(角平分线、中线、高线)周长、面积分别对应注意:全等三角形的性质是证明线段、角等之间数量关系的最主要依据。
一、全等三角形的判定:1、一般三角形的全等判定方法:①边角边,简记为②角边角:简记为③角角边:简记为④边边边:简记为2、直角三角形的全等判定除可用一般三角形全等判定的所有方法以外,还可以用来判定注意:1、判定全等三角形的条件中,必须至少有一组对应相等,用SAS判定全等,切记角为两边的2、判定全等三角形的有关条件要特别注意对应两个字。
第17讲 等边三角形
第17讲等边三角形知识导航1.等边三角形三个内角均为60°.2.等边三角形三条边相等.3.直角三角形中,30°角所对的直角边等于斜边的一半.4.三个角都相等的三角形是的等边三角形.5.有一个角为60°的等腰三角形是等边三角形.【板块一】等边三角形的性质方法技巧(1)运用等边三角形角的数量特征和边的相等关系解题.(2)共顶点的两个等边三角形(也称手拉手图形)组成的图中,必定有全等三角形.题型利一与等边三角形有关的角度的计算.【例1】如图,△ABC是等边三角形,CD⊥BC,CD=BC,求∠DAC和∠ADB的度数.题型二共顶点的等边三角形(手拉手图形)【例2】如图,点D是等边△ABC的边AB上一点,以CD为一边,向上作等边△EDC,连接AE.(1)求证:△DBC≌△EAC;(2)求证:AE∥BC.【例3】如图,△ABC和△CDE都是等边三角形,点E在BC上,AE的延长线交BD于点F.(1)求证:AE=BD;(2)求∠AFB的度数;(3)求证:CF平分∠AFD;(4)直接写出EF,DF,CF之间的数量关系.题型三平面直角坐标系中的等边三角形【例4】如图,,点A(-2,0),B(2,0),C(6,0),D为y轴正半轴上一点,且∠ODB=30°,延长DB至E,使BE=BD,点P为x轴正半轴上一动点(点P在点C的右边),点M在EP上,且∠EMA=60°,AM交BE于点N.(1)求证:BE=BC;(2)求证:∠ANB=∠EPC;(3)当点P运动时,求BP-BN的值.针对练习11.如图,等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点B’处,DB’,EB’分别交AC于点F,G,若∠ADF=80°,求∠EGC的度数.2.如图,△ABD和△ACE都是等边三角形,DC于BE交于点M.(1)求证:BE=CD;(2)求∠AMD的度数.3.如图1,等边△ABC中,点D是AB上一点,以CD 为一边,向上作等边△EDC,向下作等边△DCF,连接AE,BF.(1)求证:AB=AE+BF;(2)当点D在BA延长线上时,如图2,若AE=10,BF=4,求AC的长.图1图24.已知点D,E分别是等边△ABC的边BC,AB上的点,∠ADE=60°.(1)如图1,当点D是BC的中点时,求证:AE=3BE;(2)如图2,当点M 在AC 上,满足∠ADM =60°,求证:BE =CM ;(3)如图3,过C 作CF ∥AB 交ED 延长线于点F ,探究线段BE ,CF ,CD 之间的数量关系,并给出证明.图1图2图35.在平面直角坐标系中,已知点A 在y 轴的正半轴上,点B 在第二象限,AO =a ,AB =b ,BO 与x 轴正方向的夹角150°,且220a -b a-b +=.⑴判断△ABO 的形状;⑵如图1,若BC ⊥BO ,BC =BO ,点D 为CO 的中点,AC 、BD 交于点E ,求证:AE =BE +CE ;⑶如图2,若点E 为y 轴的正半轴上一动点,以BE 为边作等边△BEG ,延长GA 交x 轴于点P ,AP 与AO 之间有何数量关系?试证明你的结论.6.△ABC 为等边三角形,BC 交y 轴于点D ,A (a ,0),B (b ,0),且a ,b 满足()230a+.(1)如图1,求点A ,B 的坐标及CD 的长;(2)如图2,P是AB的延长线上一点,点E是CP右侧一点,CP=PE,且∠CPE=60°,连接EB,求证:直线EB必过点D关于x轴对称的对称点;(3)如图3,若点M在CA的延长线上,点N在AB的延长线上,且∠CMD=∠DNA,求AN-AM的值.【板块二】60°角的用法◆方法技巧◆合理利用60°角构造等边三角形得到相等线段,再进行推理.题型一过60°角一边上一点作平行线构造等边三角形.方法技巧:过60°角一边上一点,作平行线构造等边三角形,转化边与角.【例5】如图,△ABC是等边三角形,点D是AC的中点,点E,F分别在BC,AB的延长线上,∠EDF=120°.(1)求证:DE=DF;(2)若AB=5,求CE-BF的值.题型二在60°角的两边上截取两条相等线段构造等边三角形方法技巧:在60°角的边上截取两条相等线段后构成等边三角形,然后产生新的全等三角形,从而找到解决问题的突破口.【例6】如图,△ABC为等边三角形,∠ADB=60°.(1)如图1,当∠DAB=90°时,直接写出DA,DC,DB之间的数量关系_______;(2)如图2,当∠DAB≠90°时,①中的关系式是否成立?说明理由.题型三利用60°角的一边上的点向另一边做垂线构造30°,60°,90°的直角三角形方法技巧:利用30角所对的直角边等于斜边的一半,作高.+,求△ABC的面积.【例7】如图,在△ABC中,∠B=60°,∠C=45°,AB=2,BC=31題型四利用60°角延长构造等边三角形方法技巧;向外延长60”角的一边,在外部构造等边三角形.【例8】已知点D,点E分別等边△ABC边BC,AC上的点,CD=AE,AD与BE交于点F.(1)如图1,求∠AFE的度数;(2)点G边AC中点,∠BFG=120°,如图2,求证:AF=2FG.针对练习21.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,以O为圆心,OP长为半径画弧交BC于点D,连接PD,如果PO=PD,求AP的长.2.如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.(1)试判定△ODE的形状,并说明你的理由;(2)线段BD,DE,EC三者有什么关系?请说明理由.3.点D为BC上任一点,∠ADE=60°,边ED与∠ACB外角的平分线交于点E,求证:AD=DE;4.已知△ABC 是边长为5的等边三角形.(1)如图1,若点P 是BC 上一点,过点C ,点P 分别作AB ,AC 的平行线,两线相交于点Q ,连接BQ ,AP 的延长线交BQ 于点D .试问:线段AD ,BD ,CD 之间是否存在某种确定的数量关系?若存在,请写出它们之间数量关系并证明你的结论;若不存在,说明理由;(2)如图2,若点P 是BC 延长线上一点,连接AP ,以AP 为边作等边△APE (点E 、点A 在直线BC 同侧),连接CE 交AP 于点F ,求CE -CP 的值.5.如图,在△ABC 中,∠BAC =60°,以BC 为边在△ABC 的同侧作等边△DBC ,BD ,AC 相交于点E ,连结AD .(1)如图1,若A 2AC AB=,求证:△ABC ≌△ADC(2)如图2,若3AC AB =,求AB AD的值. 6.如图1,△ABC 为等边三角形,延长BC 到D ,延长BA 到E ,AE =BD ,连接CE 、DE .⑴求证:EC =ED ;⑵如图2,EO ⊥CD 于点O ,点N 在EO 上,△DNM 为等边三角形,CM 交EO 于F ,若FO =1,求FM -FN 的值.7.如图1,△ABC 是等边三角形,点D 是AB 中点,点E 在BC 上,△DEF 为等边三角形,(1)当点E为BC中点时,直接写出FE与FC的数量关系为_______________.(2)当点E不为BC中点时,(1)结论还是否成立?请说明理由;(3)如图2,当∠DAF=90°时,求证:BE=3EC.[板块三)30°角的用法方法技巧构造30°角的直角三角形,算边长与面积.题型一已知30°角连线巧得隐直角.【例9】如图,在△ABC中,AB=AC,∠C=30°,AB的垂直平分线交AB于点D,交BC于点E,试探究BE与CE之间的数量关系.题型二利用30°作高构造直角三角形.【例10】如图,CD是△ABC的中线,CD⊥CB,∠ACD=30°,求证:AC=2BC.题型三已知30°和90°角补形构造直角三角形【例11】如图,四边形ABCD中,∠C=30°,∠B=90°,∠ADC=120°,若AB=2,CD=8,求AD的长.题型四利用底角为15°的等腰三角形构造30°角的直角三角形【例12】如图,∠AOC=15°,OC平分∠AOB,点P为OC上一点,PD/∥OA交OB于点D,PE⊥OA于点E,若OD=4cm,求PE的长.题型五利用150°构造30°角的直角三角形【例13】如图,在△ABC中,AB=AC,点D为BC上一点,以AD为腰作等腰△ADE,且AD=AE,∠BAC=∠DAE=30°,连接CE,若BD=2,CD=5,求△DCE的面积.题型六30°直角三角形斜边上的高方法技巧:30°角的直角三角形斜边上的高中,有3个30°的直角三角形,选取最小的和最大的两个直角三角形进行计算.【例14】如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,∠A=30°,AD=6,求BC的长.针对练习31.某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米的售价为a元,求购买这种草皮至少需要多少元?2.在△ABC中,∠B=30°,AB=AC=8,P为BC上一点,求AP的最小值.3.如图,在等边△ABC中,点D为AC上一点,CD=CE,∠ACE=60°.(1)求证:△BCD≌△ACE;(2)延长BD交AE于点F,连接CF,若AF=CF,猜想线段BF,AF的数量美系,并证明你的猜想.4.如图,在△ABC中,∠BAC=90°,点D为三角形内一点,且AB=AC=BD,∠ABD=30°.求证:AD=CD,5.如图,在△ABC中,∠ABC=45°,∠BAC=60°,点D为BC上一点,∠ADC=60°,AE⊥BC,CF⊥AD,垂足分别为E、F,AE、CF相交于点H.(1)求证:△DFC≌△HFA;(2)若DF=2,AF3EH的值.6.如图1,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线MN分别交BC,AB于点M,N.(1)求证:CM=2BM;(2)如图2,点F为AB上方一点,连接BF,AF,CF,点B关于直线AF的对称点E在CF上,连接BE.求证:△BEF为等边三角形.。
八年级数学几何图形第17讲 图形变换和动态问题中的全等(学生版)
第17讲图形变换和动态问题中的全等(原卷版)第一部分典例剖析+针对训练类型一图形变换中的全等典例1(2019秋•来宾期末)如图,△ABE和△ADC分别沿着边AB、AC翻折180°形成的,若∠BCA:∠ABC:∠BAC=28:5:3,BE与DC交于点F,则∠EFC的度数为()A.20°B.30°C.40°D.45°典例2(2019•广阳区一模)如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE,PF分别交AB,AC于点E,F,当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B 重合),给出以下五个结论:①AE=CF;②∠APE=∠CPF;③连接EF,△EPF是等腰直角三角形;④EF=AP;⑤S四边形AFPE=S△APC,其中正确的有几个()A.2个B.3个C.4个D.5个典例3(德惠市期末)如图,在直角三角形ABC中,∠BAC=90°,将△ABC沿直线BC向右平移得到△DEF,连接AD、AE,则下列结论中不成立的是()A.AD∥BE,AD=BE B.∠ABE=∠DEFC.ED⊥AC D.△ADE为等边三角形针对训练11.(2020秋•旌阳区校级月考)如图,△ABE、△ADC是△ABC分别沿着AB、AC边翻折180°形成的.若∠BAC:∠ABC:∠ACB=28:5:3,则∠EFC的度数为()A.75°B.80°C.95°D.100°2.(门头沟区期末)在△ABC中,∠ACB=90°AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E.(1)当MN绕点C旋转到图1的位置时,请你探究线段DE、AD、BE之间的数量关系(直接写出结论,不要求写出证明过程);(2)当MN绕点C旋转到图2的位置时,你在(1)中得到的结论是否发生变化?请写出你的猜想,并加以证明;(3)当MN绕点C旋转到图3的位置时,你在(1)中得到的结论是否发生变化?请写出你的猜想,并加以证明.3.如图①点A、B、C、D在同一直线上,AB=CD,作CE⊥AD,BF⊥AD,且AE=DF.本*号资料*皆来源于微信公众号:数学第六感(1)证明:EF平分线段BC;(2)若△BFD沿AD方向平移得到图②时,其他条件不变,(1)中的结论是否仍成立?请说明理由.类型二动态问题中的全等典例4(2020秋•姜堰区期中)如图,在Rt△ABC中,∠ACB=90°,AC=7cm,BC=5cm,CD为AB边上的高,点E从点B出发,在直线BC上以2cm/s的速度移动,过点E作BC的垂线交直线CD于点F.(1)求证:∠A=∠BCD;(2)当CF=AB时,点E运动多长时间?并说明理由.典例5(镇康县期末)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,BP=3cm,CQ=3cm.(2)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?(4)若点Q以(3)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次相遇?针对训练24.(邗江区期末)活动一:已知如图1,AB⊥AD,DE⊥AD,BC⊥CE,且AB=CD.求证:△ABC≌△DCE.本号资料皆来源于微信@公众号:数学第六感活动二:动手操作,将两个斜边长相等的直角三角形纸片按图2放置,其中∠ACB=∠CED=90°,∠A =45°,∠D=30°.把△DCE绕点C按顺时针方向旋转15°得到△MCN.如图3,连接MB,求证:△ACB≌△CBM.活动三:如图4,已知点C坐标为(0,2),B为x轴上一点,△ABC是以BC为腰的在第一象限的等腰直角三角形,∠BCA=90°,当B点从原点出发沿x轴正半轴运动时,在图中画出A点运动路线.并请说明理由.5.(2021秋•松滋市期中)如图,在△ABC中,∠ACB=90,AC=6,BC=8.点P从点A出发,沿折线AC ﹣﹣CB以每秒1个单位长度的速度向终点B运动,点Q从点B出发沿折线BC﹣CA以每秒3个单位长度的速度向终点A运动,P、Q两点同时出发.分别过P、Q两点作PE⊥l于E,QF⊥l于F.设点P的运动时间为t(秒):(1)当P、Q两点相遇时,求t的值;(2)在整个运动过程中,求CP的长(用含t的代数式表示);(3)当△PEC与△QFC全等时,直接写出所有满足条件的CQ的长.。
中考数学专题复习_第十七讲__三角形与全等三角形(含详细参考答案)
第十七讲三角形与全等三角形【重点考点例析】考点一:三角形三边关系例1 (2013•温州)下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,11思路分析:看哪个选项中两条较小的边的和不大于最大的边即可.解:A、因为1+2<4,所以本组数不能构成三角形.故本选项错误;B、因为4+5=9,所以本组数不能构成三角形.故本选项错误;C、因为9-4<5<8+4,所以本组数可以构成三角形.故本选项正确;D、因为5+5<11,所以本组数不能构成三角形.故本选项错误;故选C.点评:本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,只要满足两短边的和大于最长的边,就可以构成三角形.对应训练1.(2013•长沙)如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2 B.4 C.6 D.81.B考点二:三角形内角、外角的应用例2 (2013•湘西州)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°思路分析:先由三角形外角的性质求出∠BDF的度数,根据三角形内角和定理即可得出结论.解:∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=∠C+∠E=90°+30°=120°,∵△BDF中,∠B=45°,∠BDF=120°,∴∠BFD=180°-45°-120°=15°.故选A.点评:本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.对应训练2.(2013•鄂州)一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165°B.120°C.150°D.135°2.A考点三:三角形全等的判定和性质例3 (2013•天门)如图,已知△ABC ≌△ADE ,AB 与ED 交于点M ,BC 与ED ,AD 分别交于点F ,N .请写出图中两对全等三角形(△ABC ≌△ADE 除外),并选择其中的一对加以证明.思路分析:找到两三角形全等的条件,三角形全等就写出来,选择一组证明即可. 解:△AEM ≌△ACN ,△BMF ≌△DNF ,△ABN ≌△ADM .选择△AEM ≌△ACN ,理由如下:∵△ADE ≌△ABC ,∴AE=AC ,∠E=∠C ,∠EAD=∠CAB ,∴∠EAM=∠CAN ,∵在△AEM 和△ACN 中,E C AE ACEAM CAN =⎧⎪=⎨⎪∠=∠⎩, ∴△AEM ≌△CAN (ASA ).点评:本题考查三角形全等的判定方法及等腰三角形的性质;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.例4 (2013•宜宾)如图:已知D 、E 分别在AB 、AC 上,AB=AC ,∠B=∠C ,求证:BE=CD .思路分析:要证明BE=CD ,把BE 与CD 分别放在两三角形中,证明两三角形全等即可得到,而证明两三角形全等需要三个条件,题中已知一对边和一对角对应相等,观察图形可得出一对公共角,进而利用AAS 可得出三角形ABE 与三角形ACD 全等,利用全等三角形的对应边相等可得证.证明:在△ABE 和△ACD 中,B C A A AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (AAS ),∴BE=CD (全等三角形的对应边相等).点评:此题考查了全等三角形的判定与性质,常常利用三角形的全等来解决线段或角相等的问题,在证明三角形全等时,要注意公共角及公共边,对顶角等隐含条件的运用.对应训练3.(2013•荆州)如图,△ABC 与△CDE 均是等腰直角三角形,∠ACB=∠DCE=90°,D 在AB 上,连结BE .请找出一对全等三角形,并说明理由.3.解:△ACE ≌△BCD .∵△ABC 和△ECD 都是等腰直角三角形,∴∠ECD=∠ACB=90°,∴∠ACE=∠BCD (都是∠ACD 的余角),在△ACE 和△BCD 中,∵CE CD ACE BCD CA CB =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD .4.(2013•十堰)如图,点D ,E 在△ABC 的边BC 上,AB=AC ,BD=CE .求证:AD=AE .4.证明:∵AB=AC ,∴∠B=∠C ,在△ABD 与△ACE 中,∵AB AC B C BD EC =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴AD=AE .考点四:全等三角形开放性问题例5 (2013•云南)如图,点B 在AE 上,点D 在AC 上,AB=AD.请你添加一个适当的条件,使△ABC ≌△ADE (只能添加一个).(1)你添加的条件是 .(2)添加条件后,请说明△ABC ≌△ADE 的理由.思路分析:(1)可以根据全等三角形的不同的判定方法选择添加不同的条件;(2)根据全等三角形的判定方法证明即可.解:(1)∵AB=AD ,∠A=∠A ,∴若利用“AAS”,可以添加∠C=∠E ,若利用“ASA”,可以添加∠ABC=∠ADE ,或∠EBC=∠CDE ,若利用“SAS”,可以添加AC=AE ,或BE=DC ,综上所述,可以添加的条件为∠C=∠E (或∠ABC=∠ADE 或∠EBC=∠CDE 或AC=AE 或BE=DC ); 故答案为:∠C=∠E ;(2)选∠C=∠E 为条件.理由如下:在△ABC 和△ADE 中,A A C E AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△ADE (AAS ).点评:本题主要考查了全等三角形的判定,开放型题目,根据不同的三角形全等的判定方法可以选择添加的条件也不相同.对应训练【聚焦山东中考】1.(2013•威海)将一副直角三角板如图摆放,点C 在EF 上,AC 经过点D .已知∠A=∠EDF=90°,AB=AC .∠E=30°,∠BCE=40°,则∠CDF= .1.25°2.(2013•聊城)如图,四边形ABCD 中,∠A=∠BCD=90°,BC=CD ,CE ⊥AD ,垂足为E ,求证:AE=CE .2.证明:如图,过点B 作BF ⊥CE 于F ,∵CE ⊥AD ,∴∠D+∠DCE=90°,∵∠BCD=90°,∴∠BCF+∠DCE=90°,∴∠BCF=∠D ,在△BCF 和△CDE 中,90BCF D CED BFC BC CD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△BCF ≌△CDE (AAS ),∴BF=CE ,又∵∠A=90°,CE ⊥AD ,BF ⊥CE ,∴四边形AEFB 是矩形,∴AE=BF ,3.(2013•菏泽)如图,在△ABC 中,AB=CB ,∠ABC=90°,D 为AB 延长线上一点,点E 在BC 边上,且BE=BD ,连结AE 、DE 、DC .(1)求证:△ABE ≌△CBD ;(2)若∠CAE=30°,求∠BDC 的度数.3.(1)证明:∵∠ABC=90°,D 为AB 延长线上一点,∴∠ABE=∠CBD=90°,在△ABE 和△CBD 中,AB CB ABE CBD BE BD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBD (SAS );(2)解:∵AB=CB ,∠ABC=90°,∴∠CAB=45°,∵∠CAE=30°,∴∠BAE=∠CAB-∠CAE=45°-30°=15°,∵△ABE ≌△CBD ,∴∠BCD=∠BAE=15°,∴∠BDC=90°-∠BCD=90°-15°=75°;4.(2013•临沂)如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF .(1)求证:AF=DC ;(2)若AB ⊥AC ,试判断四边形ADCF 的形状,并证明你的结论.4.(1)证明:∵AF ∥BC ,∴∠AFE=∠DBE ,∵E 是AD 的中点,AD 是BC 边上的中线,∴AE=DE ,BD=CD ,在△AFE 和△DBE 中AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DBE (AAS ),∴AF=BD ,∴AF=DC .(2)四边形ADCF 是菱形,证明:∥BC ,AF=DC ,∴四边形ADCF 是平行四边形,∵AC ⊥AB ,AD 是斜边BC 的中线,∴AD=DC ,∴平行四边形ADCF 是菱形.5.(2013•东营)(1)如图(1),已知:在△ABC 中,∠BAC=90°,AB=AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .证明:DE=BD+CE .(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA=∠AEC=∠BAC ,试判断△DEF 的形状.5.证明:(1)∵BD ⊥直线m ,CE ⊥直线m ,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD ,∵在△ADB 和△CEA 中ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE=BD ,AD=CE ,∴DE=AE+AD=BD+CE ;(2)∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,∴∠CAE=∠ABD ,∵在△ADB 和△CEA 中ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE=BD ,AD=CE ,∴DE=AE+AD=BD+CE ;(3)由(2)知,△ADB ≌△CEA ,BD=AE ,∠DBA=∠CAE ,∵△ABF 和△ACF 均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF ,∴∠DBF=∠FAE ,∵BF=AF在△DBF 和△EAF 中FB FA FBD FAE BD AE =⎧⎪∠=∠⎨⎪=⎩,∴△DBF ≌△EAF (sas ),∴DF=EF ,∠BFD=∠AFE ,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF 为等边三角形.6.(2013•烟台)已知,点P 是直角三角形ABC 斜边AB 上一动点(不与A ,B 重合),分别过A ,B 向直线CP 作垂线,垂足分别为E ,F ,Q 为斜边AB 的中点.(1)如图1,当点P 与点Q 重合时,AE 与BF 的位置关系是 ,QE 与QF 的数量关系式 ;(2)如图2,当点P 在线段AB 上不与点Q 重合时,试判断QE 与QF 的数量关系,并给予证明;(3)如图3,当点P 在线段BA (或AB )的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.6.解:(1)AE ∥BF ,QE=QF ,理由是:如图1,∵Q 为AB 中点,∴AQ=BQ ,∵BF ⊥CP ,AE ⊥CP ,∴BF ∥AE ,∠BFQ=∠AEQ ,在△BFQ 和△AEQ 中BFQ AEQBQF AQE BQ AQ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BFQ ≌△AEQ (AAS ),∴QE=QF ,故答案为:AE ∥BF ,QE=QF .(2)QE=QF ,证明:如图2,延长FQ 交AE 于D ,∵AE ∥BF ,∴∠QAD=∠FBQ ,在△FBQ 和△DAQ 中FBQ DAQAQ BQ BQF AQD∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△FBQ ≌△DAQ (ASA ),∴QF=QD ,∵AE ⊥CP ,∴EQ 是直角三角形DEF 斜边上的中线,∴QE=QF=QD ,即QE=QF .(3)(2)中的结论仍然成立,证明:如图3,延长EQ 、FB 交于D ,∵AE ∥BF ,∴∠1=∠D ,在△AQE 和△BQD 中123D AQ BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AQE ≌△BQD (AAS ),∴QE=QD ,∵BF ⊥CP ,∴FQ 是斜边DE 上的中线,∴QE=QF .【备考真题过关】一、选择题1.(2013•泉州)在△ABC 中,∠A=20°,∠B=60°,则△ABC 的形状是( )A .等边三角形B .锐角三角形C .直角三角形D .钝角三角形1.D2.(2013•宜昌)下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( )A .1,2,6B .2,2,4C .1,2,3D .2,3,42.D3.(2013•衡阳)如图,∠1=100°,∠C=70°,则∠A 的大小是( )A .10°B .20°C .30°D .80°3.C4.(2013•河北)如图1,M 是铁丝AD 的中点,将该铁丝首尾相接折成△ABC ,且∠B=30°,∠C=100°,如图2.则下列说法正确的是( )A .点M 在AB 上B .点M 在BC 的中点处C .点M 在BC 上,且距点B 较近,距点C 较远D .点M 在BC 上,且距点C 较近,距点B 较远4.C5.(2013•铁岭)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC ≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D5.C6.(2013•台州)已知△A1B1C1△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2,对于上述的两个判断,下列说法正确的是()A.①正确,②错误B.①错误,②正确C.①,②都错误D.①,②都正确6.A7.(2013•邵阳)如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE 交CD于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC7.A8.(2013•河北)一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90°B.100°C.130°D.180°8.B9.(2013•陕西)如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对9.C二、填空题10.(2013•黔东南州)在△ABC中,三个内角∠A、∠B、∠C满足∠B-∠A=∠C-∠B,则∠B= 度.10.6011.(2013•柳州)如图,△ABC≌△DEF,请根据图中提供的信息,写出x= .11.2012.(2013•巴中)如图,已知点B、C、F、E在同一直线上,∠1=∠2,BC=EF,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是.(只需写出一个)12.CA=FD13.(2013•郴州)如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,13.∠B=∠C (答案不唯一)14.(2013•达州)如图,在△ABC 中,∠A=m°,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…∠A 2012BC 和∠A 2012CD 的平分线交于点A 2013,则∠A 2013= 度.14.20132m三、解答题15.(2013•玉林)如图,AB=AE ,∠1=∠2,∠C=∠D .求证:△ABC ≌△AED .15.证明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC ,即∠BAC=∠EAD ,∵在△ABC 和△AED 中,D C BAC EAD AB AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△AED (AAS ).16.(2013•湛江)如图,点B 、F 、C 、E 在一条直线上,FB=CE ,AB ∥ED ,AC ∥FD ,求证:AC=DF .16.证明:∵FB=CE ,∴FB+FC=CE+FC ,∴BC=EF ,∵AB ∥ED ,AC ∥FD ,∴∠B=∠E ,∠ACB=∠DFE ,∵在△ABC 和△DEF 中,B E BC EFACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF (ASA ),∴AC=DF .17.(2013•佛山)课本指出:公认的真命题称为公理,除了公理外,其他的真命题(如推论、定理等)的正确性都需要通过推理的方法证实.(1)叙述三角形全等的判定方法中的推论AAS ;(2)证明推论AAS .要求:叙述推论用文字表达;用图形中的符号表达已知、求证,并证明,证明对各步骤要注明依据.17.解:(1)三角形全等的判定方法中的推论AAS 指的是:两角及其中一角的对边对应相等的两个三角形全等.(2)已知:在△ABC 与△DEF 中,∠A=∠D ,∠C=∠F ,BC=EF .求证:△ABC ≌△DEF .证明:如图,在△ABC 与△DEF 中,∠A=∠D ,∠C=∠F (已知),∴∠A+∠C=∠D+∠F (等量代换).又∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和定理),∴∠B=∠E .∵在△ABC 与△DEF 中,C F BC EF B E ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DEF (ASA ).18.(2013•随州)如图,点F 、B 、E 、C 在同一直线上,并且BF=CE ,∠ABC=∠DEF .能否由上面的已知条件证明△ABC ≌△DEF ?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使△ABC ≌△DEF ,并给出证明.提供的三个条件是:①AB=DE ;②AC=DF ;③AC ∥DF .18.解:不能;选择条件:①AB=DE ;∵BF=CE ,∴BF+BE=CE+BE ,即EF=CB ,在△ABC 和△DFE 中,AB DE ABC DEF EF CB =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DFE (SAS ).19.(2013•内江)已知,如图,△ABC 和△ECD 都是等腰直角三角形,∠ACD=∠DCE=90°,D 为AB 边上一点.求证:BD=AE .19.证明:∵△ABC 和△ECD 都是等腰直角三角形,∴AC=BC ,CD=CE ,∵∠ACD=∠DCE=90°,∴∠ACE+∠ACD=∠BCD+∠ACD ,∴∠ACE=∠BCD ,在△ACE 和△BCD 中,AC BC ACE BCD CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD (SAS ),∴BD=AE .20.(2013•舟山)如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A=∠D ,AB=DC .(1)求证:△ABE ≌DCE ;(2)当∠AEB=50°,求∠EBC 的度数?20.(1)证明:∵在△ABE 和△DCE 中A D AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCE (AAS );(2)解:∵△ABE ≌△DCE ,∴BE=EC ,∴∠EBC=∠ECB ,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.21.(2013•荆门)如图1,在△ABC 中,AB=AC ,点D 是BC 的中点,点E 在AD 上.(1)求证:BE=CE ;(2)如图2,若BE 的延长线交AC 于点F ,且BF ⊥AC ,垂足为F ,∠BAC=45°,原题设其它条件不变.求证:△AEF ≌△BCF .21.证明:(1)∵AB=AC ,D 是BC 的中点,∴∠BAE=∠EAC ,在△ABE 和△ACE 中,AB AC BAE EAC AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACE (SAS ),∴BE=CE ;(2)∵∠BAC=45°,BF ⊥AF ,∴△ABF 为等腰直角三角形,∴AF=BF ,∵AB=AC ,点D 是BC 的中点,∴AD ⊥BC ,∴∠EAF+∠C=90°,∵BF ⊥AC ,∴∠CBF+∠C=90°,∴∠EAF=∠CBF ,在△AEF 和△BCF 中,90EAF CBF AF BF AFE BFC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△AEF ≌△BCF (ASA ).。
数学中考总复习(一轮复习)第17讲全等三角形
第17讲全等三角形【考点总汇】一、全等三角形的性质及判定定理 1•性质(1) _________________________ 全等三角形的对应边,对应角 。
(2) ________________________________ 全等三角形的对应边的中线 _______________________ ,对应角平分线 _____________________________________ ,对应边上的高 __________ ,全等三角 形的周长 _________ ,面积 _________ 。
2•判定定理(1)三边分别 _________ 的两个三角形全等(简写“边边边”或“ _______ ”)。
微拨炉:已知两边和一角判定三角形全等时,没有“ SSA ”定理,即不能错用成“两边及一边对角相等的两个三角形全等”。
二、角的平分线1•性质:角的平分线上的点到角的两边的距离 ___________ 。
2•判定:角的内部到角的两边的距离相等的点在 ____________ 。
3•三角形的三条角平分线相交于一点,并且这一点到三条边的距离 微拨炉: 1•三角形的角平分线是一条线段,不是射线。
2•角的平分线的性质定理和判定定理互为逆定理。
注意分清题设和结论。
高频考点1、全等三角形的判定与性质 【范例】如图,在△ ABC 中,AB=CB ,■ ABC =90,D 为AB 延长线上一点,点 E 在BC 边上, 且 BE 二 BD ,连接 AE 、DE 、DC 。
(2)两边和它们的夹角分别________ 的两个三角形全等(简写“边角边”或 ”) (3)两角和它们的夹边分别________ 的两个三角形全等(简写“角边角”或”)(4)斜边和一条直角边分别 的两个直角三角形全等(简写“斜边、直角边”或 ”)(1)求证:△ ABE ◎△ CBD(2)若• CAE =30 [求• BDC 的度数D得分要领:判定全等三角形的基本思路1•已知两边:(1)找夹角(SAS) ; (2)找直角(HL或SAS) ; (3)找第三边(SSS)。
冀教版数学八年级上册《17.4 直角三角形全等的判定》教学设计1
冀教版数学八年级上册《17.4 直角三角形全等的判定》教学设计1一. 教材分析冀教版数学八年级上册《17.4 直角三角形全等的判定》是直角三角形全等知识的一部分。
本节课的主要内容是让学生掌握HL(Hypotenuse-Leg)判定法,即直角三角形中,如果两个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等。
学生通过本节课的学习,可以进一步理解全等形的概念,提高解决几何问题的能力。
二. 学情分析学生在学习本节课之前,已经学习了全等形、三角形的全等条件(SAS、ASA、AAS)以及直角三角形的性质。
但部分学生对全等形的概念理解不深,对直角三角形全等的判定方法辨识不清,运用不灵活。
因此,在教学过程中,教师需要关注学生的知识基础,引导学生理解全等形的概念,并通过实例分析,让学生掌握直角三角形全等的判定方法。
三. 教学目标1.知识与技能目标:让学生掌握HL判定法,能运用HL判定法判断两个直角三角形是否全等。
2.过程与方法目标:通过观察、分析、归纳,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队协作精神,使学生在解决实际问题中体验到数学的价值。
四. 教学重难点1.教学重点:掌握HL判定法,能运用HL判定法判断两个直角三角形是否全等。
2.教学难点:对HL判定法的理解与应用,能灵活运用HL判定法解决实际问题。
五. 教学方法采用问题驱动法、案例分析法、小组合作法、引导发现法等教学方法。
通过生动有趣的实例,引导学生观察、分析、归纳直角三角形全等的判定方法,激发学生的学习兴趣,培养学生的逻辑思维能力和空间想象能力。
六. 教学准备1.准备相关的教学案例和图片,用于引导学生观察和分析。
2.准备PPT,展示教学内容和实例分析。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的主题:在直角三角形ABC中,AB是斜边,AC是直角边,如果在另一个直角三角形DEF中,DF是斜边,DE是直角边,并且AB=DF,AC=DE,那么这两个直角三角形全等吗?2.呈现(10分钟)教师通过PPT呈现直角三角形全等的判定方法(HL判定法),并用实例进行解释和演示。
第17讲 三角形的中位线应用问题
第17讲三角形的中位线应用问题一、方法剖析与提炼(一)利用中位线证明线段的位置及数量关系例1:(2015邵阳)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=1BC,连接CD和EF。
2(1)求证:DE=CF;(2)求EF的长.【解析】1BC,进而得出DE=FC;(1)直接利用三角形中位线定理得出DE2(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长.【解答】1BC(1)证明:△D、E分别为AB、AC的中点,△DE2△延长BC至点F,使CF=BC,△DE FC,即DE=CF;(2)解:△DE FC,△四边形DEFC是平行四边形,△DC=EF,△D为AB的中点,等边△ABC的边长是2,△AD=BD=1,CD△AB,BC=2,△DC=EF=3.【说明】此题主要考查了等边三角形的性质以及平行四边形的判定与性质和三角形中位线定理等知识,得1BC是解题关键.出DE2(二)利用中位线证明中点四边形的问题例2:已知任意四边形ABCD,且线段AB、BC、CD、DA、AC、BD的中点分别是E、F、G、H、P、Q.(1)若四边形ABCD如图1,判断下列结论是否正确(正确的在括号里填“√”,错误的在括号里填“×”).甲:顺次连接EF、FG、GH、HE一定得到平行四边形;()乙:顺次连接EQ、QG、GP、PE一定得到平行四边形.()(2)请选择甲、乙中的一个,证明你对它的判断.(3)若四边形ABCD如图2,请你判断(1)中的两个结论是否成立?【解析】中点四边形问题只要连接中点利用中位线的性质即可说明边与边的关系,注意中位线所在的三角形要清晰。
【解法】(1)甲()乙()(2)证明:(1)中对甲的判断:连接EF、FG、GH、HE.△E、F分别是AB、BC的中点,△同理,得△EF△HG,EF=HG,△四边形EFGH是平行四边形.(3)。