人教版初三数学上册切线长定理教学设计
切线长定理教案(优秀教案)-(含多款)
切线长定理教案(优秀教案)-(含多款)教案切线长定理教案一、教学目标1.让学生理解切线长定理的概念和意义,掌握切线长定理的证明和应用方法。
2.培养学生的几何思维能力,提高学生的空间想象力和逻辑推理能力。
3.培养学生运用切线长定理解决实际问题的能力,增强学生的数学应用意识。
二、教学内容1.切线长定理的概念和意义2.切线长定理的证明方法3.切线长定理的应用三、教学重点与难点1.教学重点:切线长定理的概念、证明和应用。
2.教学难点:切线长定理的证明过程,以及如何运用切线长定理解决实际问题。
四、教学方法1.采用启发式教学方法,引导学生自主探究切线长定理的证明和应用。
2.利用多媒体教学手段,展示切线长定理的直观图形,帮助学生理解定理。
3.设计丰富的例题和练习题,让学生在实践操作中掌握切线长定理的应用。
五、教学过程1.导入新课通过生活中的实例,如圆规作图等,引出切线长定理的概念,激发学生的学习兴趣。
2.讲解切线长定理的概念和意义(1)切线的定义:与圆相切,且与圆的半径垂直的直线。
(2)切线长定理:从圆外一点引圆的两条切线,切线长相等。
3.证明切线长定理(1)构造图形,连接圆心与切点,利用圆的半径相等,证明切线长相等。
(2)通过几何画板演示证明过程,让学生直观感受定理的正确性。
4.切线长定理的应用(1)讲解切线长定理在几何作图中的应用,如求圆的切线、等分弦等。
(2)讲解切线长定理在解决实际问题中的应用,如求圆的直径、周长等。
5.课堂练习设计不同难度的练习题,让学生独立完成,巩固切线长定理的应用。
6.总结与拓展(1)总结切线长定理的概念、证明和应用方法。
(2)拓展切线长定理的相关知识,如圆的切线方程、切线长定理的推广等。
7.课后作业布置适量的课后作业,让学生巩固所学知识,提高解题能力。
六、教学评价1.课堂参与度:观察学生在课堂上的发言和讨论情况,了解学生的学习兴趣和积极性。
2.作业完成情况:检查学生的作业,了解学生对切线长定理的掌握程度。
人教版九年级数学上册24.2.2切线长定理教案
在难点解析部分,我发现通证明过程有了更清晰的认识。但仍有学生反映在理解证明思路时感到困难。我考虑在下一节课中,引入更多的辅助手段,如动画演示或实物模型,来帮助学生们更好地理解几何证明的思路。
-证明思路:证明过程中涉及到的几何变换和逻辑推理对学生来说是难点。
-举例:在证明过程中,如何通过构造全等三角形和使用圆的性质来推导切线长定理。
-问题解决:学生在应用切线长定理解决具体问题时,往往难以找到合适的解题切入点。
-举例:在求解切线长或证明线段相等的问题时,学生可能不知道如何利用切线长定理来简化问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了切线长定理的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对切线长定理的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。如果有任何疑问或不明白的地方,请随时向我提问。
二、核心素养目标
1.培养学生的几何直观与空间观念:通过切线长定理的学习,使学生能够观察和理解几何图形,发展空间想象力,提高解决几何问题的能力。
2.提升学生的逻辑推理与证明能力:引导学生探索切线长定理的证明过程,训练学生运用逻辑推理、几何论证的方法,培养严谨的数学思维。
3.增强学生的解决问题能力:通过切线长定理在具体题目中的应用,让学生掌握解决问题的方法和策略,提高解题效率,形成良好的数学解题习惯。
最新人教版九年级数学上册《切线长定理》优质教案
第3课时 切线长定理1.掌握切线长定理,初步学会运用切线长定理进行计算与证明.2.了解有关三角形的内切圆和三角形的内心的概念.3.学会利用方程思想解决几何问题,体验数形结合思想.一、情境导入新农村建设中,张村计划在一个三角形中建一个最大面积的圆形花园,请你设计一个建筑方案.二、合作探究探究点一:切线长定理 【类型一】利用切线长定理求三角形的周长如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在AB ︵上.若PA 长为2,则△PEF 的周长是________.解析:因为PA 、PB 分别与⊙O 相切于点A 、B ,所以PA =PB ,因为⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点为C ,所以EA =EC ,CF =BF ,所以△PEF 的周长PE +EF +PF =PE +EC +CF +PF =(PE +EC)+(CF +PF)=PA +PB =2+2=4. 【类型二】利用切线长定理求角的大小如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,点C 在⊙O 上,如果∠ACB =70°,那么∠OPA 的度数是________度.解析:如图所示,连接OA、OB.∵PA、PB是⊙O的切线,切点分别为A、B,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°.又∵∠AOB=2∠ACB=140°,∴∠APB=360°-∠PAO-∠AOB-∠OBP=360°-90°-140°-90°=40°.又易证△POA≌△POB,∴∠OPA=12∠APB=20°.故答案为20.方法总结:由公共点引出的两条切线,可以运用切线长定理得到等腰三角形.另外根据全等的判定,可得到PO平分∠APB.【类型三】切线长定理的实际应用为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一把刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径.若测得PA=5cm,则铁环的半径长是多少?说一说你是如何判断的.解:过O作OQ⊥AB于Q,设铁环的圆心为O,连接OP、OA.∵AP、AQ为⊙O的切线,∴AO为∠PAQ的平分线,即∠PAO=∠QAO.又∠BAC=60°,∠PAO+∠QAO+∠BAC=180°,∴∠PAO=∠QAO=60°.在Rt△OPA中,PA=5,∠POA=30°,∴OP=55(cm),即铁环的半径为55cm.探究点二:三角形的内切圆【类型一】求三角形的内切圆的半径如图,⊙O是边长为2的等边△ABC的内切圆,则⊙O的半径为________.解析:如图,连接OD.由等边三角形的内心即为中线,底边高,角平分线的交点.所以∠OCD=30°,OD⊥BC,所以CD=12BC,OC=2OD.又由BC=2,则CD=1.在Rt△OCD中,根据勾股定理得OD 2+CD 2=OC 2,所以OD 2+12=(2OD)2,所以OD =33.即⊙O 的半径为33. 方法总结:等边三角形的内心为等边三角形中线,底边高,角平分线的交点,它到三边的距离相等. 【类型二】求三角形的周长如图,Rt △ABC 的内切圆⊙O 与两直角边AB ,BC 分别相切于点D 、E ,过劣弧DE ︵(不包括端点D 、E)上任一点P 作⊙O 的切线MN 与AB 、BC 分别交于点M 、N.若⊙O 的半径为r ,则Rt △MBN 的周长为( )A .r B.32r C .2r D.52r 解析:连接OD ,OE ,∵⊙O 是Rt △ABC 的内切圆,∴OD ⊥AB ,OE ⊥BC.又∵MD ,MP 都是⊙O 的切线,且D 、P 是切点,∴MD =MP ,同理可得NP =NE ,∴C Rt △MBN =MB +BN +NM =MB +BN+NP +PM =MB +MD +BN +NE =BD +BE =2r ,故选C.三、板书设计教学过程中,强调用切线长定理可解决有关求角度、周长的问题.明确三角形内切圆的圆心是三角形三条角平分线的交点,到三边的距离相等.学生励志寄语:同学们,通过这节课的学习,你们学到了哪些知识?要珍惜时间好好学习,要明白时间就像日历一样,撕掉一张就不会再回来。
切线长定理优秀教案
切线长定理
【教学目标】
1.切线长定理的探究,通过设计让学生经历观察、猜想、验证、最后归纳得出切线长定理,使学生的直观操作与逻辑推理有机的整合到一起,让学生在探究的过程中体验数学活动充满着探索性和创造性,感受证明的必要性,证明过程的严谨性以及结论的确定性。
2.应用了“实验几何——论证几何”的探究方法,并初步建立了由动手操作抽象出数学条件进而解决问题的意识。
3.让学生的思维能够经历一个从模糊到清晰,从具体到抽象,从直觉到逻辑的过程,再由直观、粗糙的向严格、精确的追求过程中,使学生体验数学发展的过程。
【教学重点】
1.使学生理解切线长定义。
生,从而使每个学生都能达标。
第五环节:延伸思考,提升层次。
这节课我们所探索的有关切线长的知识是在给出圆的两条切线的情况下得出的,那么要是圆的三条切线两两相交,又会有什么样的结论呢?如果有四条切线呢?这些问题有待于我们课后去研究。
人教版数学九年级上册第24章圆《切线长定理》教学设计
-使用动态图形展示切线与圆的关系,帮助学生形成直观的认识。
-利用信息技术手段,制作互层次的学生设计不同难度的练习和任务,使每个学生都能在原有基础上得到提高。
-设计探究活动,鼓励学生提出假设,通过实际操作验证假设。
-组织小组讨论,培养学生的合作意识和交流能力。
2.逻辑推理:运用几何知识和逻辑推理方法证明切线长定理。
-引导学生运用已学的几何知识,如圆的性质、直角三角形的性质等,进行逻辑推理。
-培养学生的逻辑思维和分析问题的能力。
3.应用与实践:将切线长定理应用于解决实际问题,提高学生的应用能力。
四、教学内容与过程
(一)导入新课
在导入新课环节,我将利用学生的生活经验和已有知识,激发他们对新知识的兴趣和好奇心。首先,我会提出一个问题:“在日常生活中,你们有没有见过或听说过道路或铁路在接近圆形交叉路口时,为什么会设计成曲线而非直线呢?”通过这个问题,引导学生思考圆与直线的关系,从而自然过渡到切线的概念。
-注意:要求学生在解题过程中注重逻辑推理的严密性和步骤的完整性。
2.实践应用题:选择一个生活中的实际问题,如道路设计、园林规划等,运用切线长定理进行解决,并将解题过程和结果写成小报告。通过这项作业,学生可以更好地理解数学与实际生活的联系,提高解决实际问题的能力。
-提示:鼓励学生使用图形和图表来辅助说明解题思路,使报告更加清晰易懂。
1.切线与半径的垂直关系:通过动态演示切线与半径的垂直关系,引导学生观察和思考,从而得出切线与半径垂直的结论。
2.切线长定理的证明:利用直角三角形的性质,分步骤引导学生完成切线长定理的证明。在此过程中,强调每一步的逻辑推理和几何依据。
切线长定理的教学设计
切线长定理的教学设计教学设计:切线长定理一、教学目标:1.理解切线长定理的概念和公式。
2.掌握应用切线长定理计算相关问题的方法。
3.培养学生的思维逻辑能力和数学推理能力。
二、教学准备:1.教师准备黑板、粉笔、投影仪等教学工具。
2.学生准备纸笔等学习工具。
三、教学过程:第一部分:导入新知1. 教师用一道具体问题引入切线长定理的概念,如:请思考,一个半径为5cm的圆,有一条线段与圆相切,线段长度为8cm,那么这条线段是圆的什么部分?学生思考后回答切线。
教师引导学生思考切线与圆的关系。
2.教师用黑板上的图形向学生展示切线的定义,并引导学生回答切线与圆的关系。
然后,教师引入切线长定理,并对定理进行介绍与解释。
3.教师向学生展示定理的证明过程,以加深学生对定理的理解。
第二部分:切线长定理的公式推导1.教师向学生讲解切线长定理的公式推导过程。
教师用黑板或投影仪展示推导过程,并引导学生一起完成。
2.学生逐步推导切线长定理的公式,教师进行指导和纠正。
3.学生站起来,互相核对答案,并与教师进行讨论。
第三部分:切线长定理的应用1. 教师通过实例向学生展示切线长定理的应用。
例如,给出一个半径为6cm的圆,线段与圆相切,线段长为10cm,让学生计算切线长。
2.学生用纸和笔在课本或练习册上计算问题。
教师巡视教室,指导学生解决问题。
3.学生互相核对答案并与教师讨论。
第四部分:练习与拓展1.教师提供一些练习题,学生在纸上进行计算。
2.教师引导学生思考一些拓展问题,如:当线段与圆相交、两个圆相切等情况下,如何应用切线长定理。
3.学生讨论解决拓展问题。
教师对解决方法进行总结和点评,引导学生发现问题的普遍解法。
第五部分:课堂小结1.教师对切线长定理进行小结,强调定理的重要性和应用范围。
2.教师提醒学生预习下一课时的内容。
四、教学反思:切线长定理是中学数学中的一个重要定理,教师在课堂上需要通过一道具体问题引入切线的概念,并引导学生之间的互动与讨论,以培养学生的思维能力和数学推理能力。
九年级数学上册《切线长定理》教案、教学设计
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握切线长定理的定义及其证明过程。
2.能够运用切线长定理解决实际问题,如求切线长度、判断点到圆的距离等。
3.掌握切线长定理与其他数学知识(如相似三角形、勾股定理等)的联系与运用。
6.总结反思,提炼方法:在教学结束后,组织学生进行总结反思,提炼切线长定理的学习方法和解题技巧,培养学生的自主学习能力。
7.评价反馈,调整教学:通过课堂提问、课后作业、小组讨论等形式,了解学生的学习情况,给予及时反馈。根据学生的反馈,调整教学策略,以提高教学效果。
8.关注情感,培养态度:在教学过程中,关注学生的情感态度,鼓励学生积极参与,勇于克服困难。培养学生的团队合作意识,形成良好的学习氛围。
3.情感态度:强调数学在现实生活中的应用,激发学生对数学学科的兴趣和热爱。
4.课后作业:布置课后作业,巩固所学知识。要求学生按时完成,教师及时批改并给予反馈。
五、作业布置
为了巩固学生对切线长定理的理解和应用,布置以下作业:
1.基础巩固题:设计一些基础的切线长定理题目,要求学生熟练掌握定理的基本应用,如求解切线长度、判断点到圆的距离等。此类题目旨在帮助学生巩固课堂所学知识,提高解题速度和准确性。
(三)情感态度与价值观
1.培养学生主动探索、积极思考的学习态度,激发学生对数学学科的兴趣。
2.引导学生体会数学的严谨性和逻辑性,培养学生的理性思维和科学精神。
3.通过数学史的了解,让学生感受数学文化的魅力,增强民族自豪感。
4.培养学生的团队协作意识,学会倾听、尊重他人意见,形成良好的人际关系。
教学设计:
人教版九年级数学上册24.2.2切线长定理及三角形的内切圆(教案)
(1)对于切线长定理的证明,教师可以采用构造辅助线、利用相似三角形等方法,逐步引导学生理解证明过程,降低难度。
(2)在讲解内切圆半径计算时,可以针对不同类型的三角形,给出具体的计算步骤和方法,让学生通过练习逐步掌握。
(3)针对解决实际问题时思路的拓展,教师可以设置一些具有挑战性的题目,引导学生运用所学知识,培养学生的问题分析和解决能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“切线长定理及内切圆在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-解决实际问题的能力培养:通过典型例题,重点训练学生运用切线长定理和内切圆性质解决实际问题的能力。
举例解释:
(1)在讲解切线长定理时,可以通过图形演示和实际测量,让学生直观地理解切线长的概念,并掌握切线长的计算方法。
(2)对于三角形内切圆的性质,通过构造具体的三角形模型,让学生观察内切圆与三角形各边的关系,理解并掌握内切圆半径的计算方法。
2.教学难点
-切线长定理的证明:对于定理的证明过程,学生可能难以理解,需要教师通过直观演示和逐步引导,帮助学生突破这一难点。
-内切圆半径的计算:学生在计算内切圆半径时,可能会对涉及到的几何关系和代数运算感到困惑,需要教师详细讲解并举例说明。
-解决实际问题时思路的拓展:学生在面对复杂的几何问题时,可能会缺乏解题思路,教师需要指导学生如何将问题转化为切线长定理和内切圆性质的应用。
四、教学流程
人教版数学九年级上册24.2.2.3《切线长定理》教学设计
人教版数学九年级上册24.2.2.3《切线长定理》教学设计一. 教材分析人教版数学九年级上册24.2.2.3《切线长定理》是九年级数学中的一个重要知识点。
切线长定理是指:圆的切线长等于半径的长度。
这个定理在几何学中有着广泛的应用,对于培养学生的逻辑思维能力和空间想象力有重要作用。
二. 学情分析九年级的学生已经具备了一定的几何知识,对圆的相关概念和性质有所了解。
但是,对于切线长定理的证明和应用,学生可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生理解切线长定理的证明过程,并通过例题让学生掌握切线长定理的应用。
三. 教学目标1.让学生理解切线长定理的定义和证明过程。
2.培养学生运用切线长定理解决实际问题的能力。
3.提高学生的逻辑思维能力和空间想象力。
四. 教学重难点1.切线长定理的证明过程。
2.切线长定理在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生通过探究问题来理解切线长定理。
2.使用多媒体课件,直观展示切线长定理的证明过程。
3.通过例题和练习题,让学生巩固切线长定理的应用。
六. 教学准备1.多媒体课件。
2.练习题和测试题。
3.黑板和粉笔。
七. 教学过程1.导入(5分钟)利用多媒体课件,展示一些与圆和切线有关的图片,引发学生的兴趣。
然后提出问题:“圆的切线长和半径有什么关系?”让学生思考。
2.呈现(10分钟)讲解切线长定理的定义和证明过程。
首先,解释切线的概念,然后说明切线与半径的关系,最后证明切线长等于半径的长度。
3.操练(10分钟)让学生分组讨论,每组尝试证明一个圆的切线长等于半径的长度。
每组派代表进行讲解,老师点评并给予指导。
4.巩固(10分钟)出示一些练习题,让学生独立完成。
题目包括判断题、选择题和解答题,涵盖切线长定理的证明和应用。
5.拓展(10分钟)让学生思考:切线长定理在实际生活中有哪些应用?可以举例说明。
鼓励学生发表自己的观点和想法。
6.小结(5分钟)对本节课的内容进行简要回顾,强调切线长定理的定义和证明过程,以及其在实际问题中的应用。
九年级数学上册《切线长定理三角形的内切圆内心》教案、教学设计
一、教学目标
(一)知识与技能
1.了解切线长定理的定义,能够运用定理解决实际问题。
2.熟悉三角形内切圆的概念,掌握内切圆半径的计算方法。
3.掌握三角形内心的定义,能够准确找出三角形的内心。
4.能够运用切线长定理和内切圆知识解决与三角形相关的问题。
1.学生对几何图形的观察能力和空间想象能力,引导他们通过观察、操作、思考等途径,逐步理解并掌握内切圆的性质。
2.学生在解决实际问题时,可能对切线长定理的应用感到困惑。教师需要通过典型例题的讲解和练习,帮助学生巩固知识,提高解题能力。
3.针对不同学生的学习水平和认知风格,教师应采取分层教学和个性化指导,使每位学生都能在课堂上获得成功的体验,增强学习信心。
4.小组合作,探讨以下问题:如何利用切线长定理解决三角形面积问题?请给出至少两种不同的解题方法,并说明各自的优势。
5.思考题:在一个等边三角形内,如何作出一个最大的内切圆?请给出具体的作图步骤,并解释为什么这是最大的内切圆。
6.撰写一篇关于切线长定理和三角形内切圆在生活中的应用的小短文,字数不限,要求内容真实、具体,体现数学在实际生活中的价值。
-设想二:利用几何画板动态演示内切圆半径的变化,帮助学生理解内切圆半径与三角形边长的关系。
2.创设问题情境,引导学生通过自主探究、小组合作等方式,发现并理解切线长定理。
-设想一:设计一系列层层递进的问题,引导学生从特殊三角形出发,探索切线长定理的形成过程。
-设想二:组织小组讨论,让学生在交流中碰撞思维火花,共同推导切线长定理的证明过程。
-设想一:根据学生的认知水平和学习风格,提供不同层次的指导,使学生在各自的基础上得到提高。
人教版数学九年级上册《切线长定理》教学案
第3课时切线长定理教学目标:1、了解切线长定义,掌握切线长定理,并利用它进行有关计算。
2、在运用切线长定理的解题过程中,进一步渗透方程的思想,熟悉用代数的方法解几何题。
教学重点:理解切线长定理。
教学难点:灵活应用切线长定理解决问题。
教学过程:一、复习引入:1.切线的判定定理和性质定理.2.过圆上一点可作圆的几条切线?过圆外一点呢?过圆内一点呢?二、合作探究1、切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长叫做这点到圆的切线长。
2、切线长定理(1)操作:纸上一个⊙O,PA是⊙O的切线,•连结PO,•沿着直线PO将纸对折,设与点A重合的点为B。
OB是⊙O 的半径吗?PB是⊙O的切线吗?猜一猜PA与PB的关系?∠APO与∠BPO呢?从上面的操作及圆的对称性可得:从圆外一点可以引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角.(2)几何证明.如图,已知PA、PB是⊙O的两条切线.求证:PA=PB,∠APO=∠BPO.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.3、三角形的内切圆思考:如图是一张三角形的铁皮,如何在它上面截下一块圆形的铁片,并且使圆的面积尽可能大呢?三角形的内切圆定义:与三角形各边都相切的圆叫做三角形的内切圆三角形的内心:三角形内切圆的圆心即三角形三条角平分线的交点叫做——(1)图中共有几对相等的线段(2)若AF=4、BD=5、CE=9,则△ABC周长为____例如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F, 且AB=9cm=1810,求⊙O的半径。
BC=14cm,CA=13cm,求AF,BD,CE的长。
若S△ABC三、巩固练习1、如图1,PA、PB是⊙O的两条切线、A、B为切点。
PO交⊙O于E点(1)若PB=12,PO=13,则AO=____(2)若PO=10,AO=6,则PB=____(3)若PA=4,AO=3,则PO=____;PE=_____.(4)若PA=4,PE=2,则AO=____.2、如图2,PA、PB是⊙O的两条切线、 A、B为切点,CD切⊙O于E交PA、PB 于C、D两点。
人教版初三数学上册24.2.2.切线长定理教案
《切线长定理》教案茂南中学 陈佳莹【教学目标】1)知识目标:1.理解切线长的概念。
2.掌握切线长定理,并能解决一些简单问题。
2)能力目标:通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想.3)情感目标:激发学生发现数学探究数学的兴趣,发扬既合作又竞争的精神,养成认真细致、独立思考、严谨开放的学习习惯,树立科学的学习态度。
【教学重点】 切线长定理及其应用是教学重点【教学难点】 切线长定理的灵活运用是教学难点教学过程设计:一、复习提问1.如图,已知⊙O 的半径O A ⊥直线l 于点A ,则直线l 是⊙O 的2.OA 是⊙O 半径,直线l 切⊙O 于点A ,则OA 与 直线l 的位置关系是3.判断:(1)过半径的外端的直线是圆的切线 ( )(2)与半径垂直的直线是圆的切线 ( )(3)过半径的端点与半径垂直的直线是圆的切线 ( )利用判定定理时,要注意直线须具备以下两个条件,缺一不可:(1) 直线经过半径的外端;(2)直线与这半径垂直。
二、讲授新知【一】经过平面上一个已知点,作已知圆的切线会有怎样的情形?【二】观察、猜想、证明,形成定理1、切线长的概念:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB的距离叫做点P到⊙O的切线长.引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是切线上一条线段的长,即圆外一点与切点之间的距离,可以度量.即时训练:①过任意一点总可以作圆的两条切线()②从圆外一点引圆的两条切线,它们的长相等。
()如图,已知AB,BC, AC分别与圆O相切于点D, E, F,则点A到圆O的切线长是线段的长;点B到圆O的切线长是线段的长;点C到圆O的切线是线段的长。
2、观察由学生动手实验和利用PPT来展示点P 位置的变化,观察图形的特征和各量之间的关系.3、猜想引导学生直观判断,猜想图中PA 与PB ,∠OPA 与∠OPB 有什么关系?4、证明猜想,形成定理.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
新人教版九年级上册数学切线长定理优质课教学设计完美版
学生理解点到圆的切 线长概念, 初步感知圆 的切线长定理.
使学生结合图 形理解概念
学生观察图形, 思考证 明思路, 书写规范的证 明步骤,教师及时点 拨,肯定.
学生运用全等 知识进行几何 推理证明, 体会 数学结论的严 谨性, 培养学生
切线长定理:从圆外一点可以引圆的两条切线,它们的切线长 相等,ቤተ መጻሕፍቲ ባይዱ一点和圆心的连线平分两条切线的夹角. (二)三角形的内切圆 如图,三角形的三条角平分线交于一点,设交点为 I,那么 I 到 AB、AC、BC 的距离相等,因此以点 I 为圆心,点 I 到 BC 的 距离 ID 为半径作圆,则⊙I 与△ABC 的三条边都 相切. 与三角形各边都相切的圆叫做三角形的内切 圆,• 内切圆的圆心是三角形三条角平分线的交 点,叫做三角形的内心. (三)应用 1.如图,已知⊙O 是△ABC 的内切圆,切点分 别为 D、E、F,CD=1,AE=2,BF=3,且△ABC 的面积为 6.求内切圆的半径 r.
作 课 类 别 教 学 媒 体 知 识 教 学 目 标 情 感 态 度 教学重点 教学难点 技 能 过 程 方 法
课 题
24.2.2.3 切线长定理 多媒体
课 型
新 授
1.了解切线长的概念. 2.理解切线长定理,了解三角形的内切圆和三角形的内心的概念,熟练掌握并能应用. 复习圆与直线的位置关系和切线的判定和性质定理,知识迁移到切长线的概念和切线 长定理,根据三角形角平分线的性质给出三角形的内切圆和三角形的内心概念,并应 用解决相关问题. 学生经历观察、实验、猜想、证明等数学活动,发展合情推理能力和初步演绎推理能 力.能有条理地,清晰地写出推理过程. 切线长定理及其运用 切线长定理的推导和运用
教学过程设计
教 学 程 序及 教 学内容 一、复习引入这节课我们继续来研究切线. 1.作△ABC 的三条角平分线,有什么结论? 2.回忆切线的判定定理和性质定理? 二、探究新知 (一)切线长定理 1.操作探究:从上面的复习,可知,过⊙O 上任一点 A 都可以作 圆的一条切线,且只能作一条,根据下面提出的问题,操作、 思考、 并解决问题: 在纸上画⊙O, 并画出过圆上点 A 的切线 PA, •连结 PO,•沿着直线 PO 将纸对折,设与点 A 重合的点为 B,这 时,OB 是⊙O 的一条半径吗?PB 是⊙O 的切线吗?利用圆的轴 对称性,思考图中的线段 PA 与线段 PB,∠APO 与∠BPO 有什么 数量关系? 分析:对折之后,OB 与 OA 重合,OA 是半径,OB 也是半径. B 为 OB•的外端,根据对折后角的度数不变,所以 PB 是⊙O 的又 一条切线,且 PA=PB,∠APO=∠BPO. 我们把线段 PA 或 PB 的长, 即经过圆外一点作圆的切线, 这 点和切点之间的线段的长, • 叫做这点到 圆的切线长. 从上面的操作及圆的对称性可得: 从圆外一点可以引圆的两条切线,它们的 切线长相等,这点和圆心的连线平分两条切线的夹角. 2.几何证明. 如图,已知 PA、PB 是⊙O 的两条切线.求证:PA=PB,∠OPA= ∠OPB. 分析:据所要证明的结论在图中分布的位置特点和已知条件, 易得只要证明两个对应的三角形全等即可. 得到
人教版数学九年级上册《切线长定理、三角形的内切圆、内心》教案1
人教版数学九年级上册《切线长定理、三角形的内切圆、内心》教案1一. 教材分析人教版数学九年级上册《切线长定理、三角形的内切圆、内心》这一节主要介绍了切线长定理以及三角形的内切圆和内心的性质。
通过学习这一节内容,学生能够了解并掌握切线长定理,以及如何运用该定理求解三角形的问题。
同时,学生还能够了解三角形的内切圆和内心的性质,以及如何运用这些性质解决实际问题。
二. 学情分析学生在学习这一节内容之前,已经学习了相似三角形的性质,对三角形的基本概念和性质有一定的了解。
但是,对于切线长定理以及三角形的内切圆和内心的性质可能还比较陌生,需要通过本节课的学习来掌握。
此外,学生可能对于如何运用这些性质解决实际问题还比较困惑,需要通过教师的引导和实例的讲解来进行理解和掌握。
三. 教学目标1.了解并掌握切线长定理,能够运用切线长定理求解三角形的问题。
2.了解三角形的内切圆和内心的性质,能够运用这些性质解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.切线长定理的理解和运用。
2.三角形的内切圆和内心的性质的理解和运用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过思考和讨论来理解和掌握切线长定理和三角形的内切圆、内心的性质。
2.通过实例讲解和练习,让学生能够运用所学的知识解决实际问题。
3.采用分组合作的学习方式,培养学生的团队合作能力和沟通能力。
六. 教学准备1.准备相关的教学PPT和教学素材。
2.准备相关的练习题和测试题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题,引导学生思考和讨论如何解决这个问题,激发学生的学习兴趣和动力。
2.呈现(10分钟)教师通过PPT呈现切线长定理和三角形的内切圆、内心的性质,并用相关的图示和实例进行讲解,让学生理解和掌握这些概念和性质。
3.操练(10分钟)学生分组进行练习,教师给予指导和解答疑问。
每组选择一道练习题,运用切线长定理和三角形的内切圆、内心的性质进行求解,并将结果进行展示和讨论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
切线长定理教案
教学目标:1、了解切线长定义,掌握切线长定理,并利用它进行有关计算。
2、在运用切线长定理的解题过程中,进一步渗透方程的思想,熟悉用代数
的方法解几何题。
教学重点:理解切线长定理。
教学难点:灵活应用切线长定理解决问题。
学情分析:上节课我们共同学习了切线的定义以及与切线相关的定理,同学们掌握的不错,整体不错,为这节课的学习打下了良好的基础。
教学过程:
一、复习引入:
1. 切线的判定定理和性质定理.
2. 过圆上一点可作圆的几条切线?过圆外一点呢?过圆内一点呢?
二、合作探究
1、切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长叫做这
点到圆的切线长
2、切线长定理
(1)操作:纸上一个。
0, PA是OO的切线,?连结PQ ?沿着直线PO将纸对折, 设与点A重合的点为B。
0B是O 0的半径吗?PB是OO的切线吗?猜一猜PA 与PB的关系?/ AP0与/ BP0呢?
从上面的操作及圆的对称性可得:
从圆外一点可以引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角.
(2)几何证明.
如图,已知PA PB是OO的两条切线.求证:PA=PB Z AP(=Z BPO
证明:
B
切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.
(1) 图中共有几对相等的线段
(2) 若 AF=4 BD=5 CE=9 则厶 ABC 周长为 _______
例 如图,△ ABC 的内切圆。
0与BC,CA,AB 分别相切于点D,E,F,且AB=9cm BC=14cm,CA=13cm 求 AF,BD,CE 的长。
若 S ^ABC = 18 10 ,求OO 的半径。
三、巩固练习
1、如图1, PA PB 是OO 的两条切线、A 、B 为切点。
PO 交OO 于E 点
(1) 若 PB=12 PO=13 贝U AO= ___
(2) 若 PO=1Q AO=6 J 则 PB= ____
(3) 若 PA=4 AO=3 贝U PO= ___ ; PE= ___ .
(4) 若 PA=4 PE=2 贝U AO= ___ .
(1) 若PA=12则厶PCD 周长为 ______ 。
(2) 若厶 PCD 周长=1Q ,贝U PA= __ 。
(3) __________________________ 若/ APB=3Q ,则/AOB= ___________ , M 是OO 上一动点,则/ AMB= _______ 3、如图Rt △ ABC 的内切圆分别与 AB AC BC 相切于点E 、D F ,且/ ACB=9Q ,
AC=3、BC=4,求OO 的半径。
2、如图2 ,
于C D 两点。
PB
0 4、如图 Rt △ ABC 中,/ ACB=90 , AC=6、BC=8 , O 为 BC 上一点,以 0 为圆 心,OC 为半径作圆与AB 切于D 点,求。
0的半径。
5、如图,。
0与厶ADE 各边所在直线都相切,切点分别为 M 、P 、N ,且DE 丄 AE ,AE=8,AD=10,求OO 的半径
&如图,AB 是OO 的直径,AE BF 切OO 于A 、B ,EF 切OO 于C. 求证:
OEL OF
7、如图,00的直径AB=12cm AM BN是切线,DC切OO于E,交AM于D, ?交BN 于C,设AD=x BC=y
(1)求y与x的函数关系式,并说明是什么函数?
(2)若x、y是方程2t2-30t+m=0的两根,求x,y的值.
(3)求厶COD勺面积.
四、小结归纳
圆的切线长概念和定理五、作业设计。