材料力学第5章弯曲应力
刘鸿文《材料力学》(第5版)课后习题(弯曲应力)【圣才出品】

图 5-10 解:对横梁进行受力分析,作出其受力简图,如图 5-11 所示。
图 5-11
7 / 32
圣才电子书
十万种考研考证电子书、题库视频学习平
台
由梁结构和载荷的对称性可知,最大弯矩发生在梁跨中截面,且
。
抗弯截面系数:
由强度条件
则有 故许可顶压力:
,可得: 。
5.10 割刀在切割工件时,受到 F=1 kN 的切削力作用。割刀尺寸如图 5-12 所示。 试求割刀内的最大弯曲应力。
十万种考研考证电子书、题库视频学习平 台
图 5-8
解:根据梁的受力简图,由平衡条件可得支座反力: 由梁结构和载荷的对称性可知,梁上最大受的最大轧制力:
,可得: 907.4 kN。
5.8 压板的尺寸和载荷情况如图 5-9 所示。材料为 45 钢,σs=380 MPa,取安全因 数 n=1.5。试校核压板的强度。
图 5-9
解:由许用应力定义可知,该压板的许用应力:
6 / 32
圣才电子书
十万种考研考证电子书、题库视频学习平
台
分析可知,压板上的最大弯矩发生在 m-m 截面,且:
m-m 截面的抗弯截面系数:
故最大正应力: 因此压板强度满足要求,是安全的。
5.9 拆卸工具如图 5-10 所示。若 l=250 mm,a=30 mm,h=60 mm,c=16 mm,d=58 mm,[σ]=160 MPa,试按横梁中央截面的强度确定许可的顶压力 F。
图 5-12 解:分析可知,最危险截面可能发生在 m-m 截面或 n-n 截面。 (1)m-m 截面:弯矩值 则该截面上正应力:
(2)n-n 截面:弯矩值 则该截面上正应力:
材料力学课件第5章

M
zM
x
等截面梁
y
注意 当梁为变截面梁时, max 并不一定
发生在|M|max 所在面上.
22
5.3 横力弯曲时梁横截面上的正应力 弯曲正应力强度条件
h
常用图y形Wz
c b
Wz =Iz /ymax
z
Wz
Iz h
bh3 2 12 h
bh2 6
2
h2
h1
y
c
z
Wz
Iz h1
1 ( b1h13 h1 6
z
于是
M
E
Iz
M
得
1 M
EIz
y
x
代入
E
y得
My
Iz
15
5.2 纯弯曲时梁横截面上的正应力
常用图形y、Iz
h
y
1.矩形
dy
c
y z
Iz
Ay2 d A
h 2
y2b d y bh3
h 2
12
b
y
同理:
Iy
hb3 12
z
Iz
b1h13 12
b2h23 12
c
b2 b1
同理: I y
h1b13 12
y
12 rp
mn
x2
x
x1
12
dx
'=
x2 FN1
FN2
'=
38
5.4 横力弯曲时梁横截面上的切应力 弯曲切应力强度条件
F
Fx 0
FN 2 FN1 dx b
x1
y
12 rp mn
x2
x
12
dx
材料力学弯曲应力_图文

§5-3 横力弯曲时的正应力
例题6-1
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
1.C 截面上K点正应力 2.C 截面上最大正应力
B
x
180
K
30 3.全梁上最大正应力 z 4.已知E=200GPa,
FBY
C 截面的曲率半径ρ y
解:1. 求支反力
x 90kN M
x
(压应力)
目录
目录
§5-2 纯弯曲时的正应力
正应力分布
z
M
C
zzy
x
dA σ
y
目录
§5-2 纯弯曲时的正应力
常见截面的 IZ 和 WZ
圆截面 空心圆截面
矩形截面 空心矩形截面
目录
§5-3 横力弯曲时的正应力
横力弯曲
6-2
目录
§5-3 横力弯曲时的正应力
横力弯曲正应力公式
弹性力学精确分析表明 ,当跨度 l 与横截面高度 h 之比 l / h > 5 (细长梁)时 ,纯弯曲正应力公式对于横 力弯曲近似成立。 横力弯曲最大正应力
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
2. C 截面最大正应力
B
x
180
K
30 C 截面弯矩 z
FBY
y
C 截面惯性矩
x 90kN M
x
目录
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m
材料力学第5章弯曲变形ppt课件

qL
4.22kNm
4.22kNm
M
max
32 M
max
76.4MPa
WZ
d 3
例题
20kN m
A
4m
FA
20kN m
A
MA
4m
试求图示梁的支反力
40kN
B
D
2m
2m
B
B1 FB
FB 40kN
B
D
B2
2m
2m
在小变形条件下,B点轴向力较小可忽略不
计,所以为一次超静定.
C
B1 B2
FBBBMF12AA2383qFEqELBqqLI84LI2LLZZ32F35BFF4FEFB83PBPLIEL7Z3L12IZ.218352.k75N5kFkN2PNmEL2IZ2
x
边界条件
A
L2
B
L2
C
y
连续条件
例题 5.5
用积分法求图示各梁挠曲线方程时,试问下列各梁 的挠曲线近似微分方程应分几段;将分别出现几个积 分常数,并写出其确定积分常数的边界条件
全梁仅一个挠曲线方程
C
q
EA
共有两个积分常数 边界条件
L1
A
x
B
EI Z
L
y
例题 5.5
用积分法求图示各梁挠曲线方程时,试问在列各梁 的挠曲线近似微分方程时应分几段;将分别出现几个 积分常数,并写出其确定积分常数的边界条件
q
a
B C LBC
B
2a
FN
B
q2a4
8EIZ
FN 2a3
3EIZ
C
FN
a
D
材料力学——弯曲应力

公式推导
线应变的变化规律 与纤维到中性层的距离成正比。
从横截面上看: 点离开中性轴越远,该点的线应变越大。
2、物理关系
当σ<σP时 虎克定律
E
E
y
y
弯曲正应力的分布规律 a、与点到中性轴的距离成正比; 沿截面高度 线性分布; b、沿截面宽度 均匀分布; c、正弯矩作用下, 上压下拉; d、危险点的位置, 离开中性轴最远处.
M max ymax IZ
x
67.5 103 90 103 5.832 105
104.17MPa
6、已知E=200GPa,C 截面的曲率半径ρ q=60KN/m A FAY B 1m C 3m FBY
M C 60kN m
I z 5.832 105 m 4
M EI
4 103 88 103 46.1MPa 6 7.64 10
9KN
4KN
C截面应力计算
A FA
M 1m
C 1m
B
1m FB
C截面应力分布 应用公式
t ,max
My Iz
2.5KNm
2.5 103 88 103 28.8MPa 6 7.64 10
Fb Fa
C截面: max M C Fb3 62.5 160 32 46.4MPa d W 3
zC
2
0.13
32
(5)结论 轮轴满足强度条件
一简支梁受力如图所示。已知 [ ] 12MPa ,空心圆截面 的内外径之比 一倍,比值不变,则载荷 q 可增加到多大? q=0.5KN/m A B
反映了截面的几何形状、尺寸对强度的影响
最大弯曲正应力计算公式
材料弯曲应力

材料弯曲应力
在材料力学中,弯曲应力是指在横截面上的一个点上由于外部载荷而引起的正应力(垂直于横截面的方向)。
弯曲应力的大小取决于材料的弯曲形状、外部载荷的大小和分布、以及材料的截面性质。
弯曲应力(σb)可以用以下的公式表示:
其中:
•σb是弯曲应力;
•Mc是在横截面上的一个点上的弯矩;
•S是该点处横截面的静力矩。
弯曲应力的单位通常是帕斯卡(Pascal,Pa)或兆帕(Megapascal,MPa)。
弯曲应力会导致材料产生弯曲变形。
对于均匀材料的简单弯曲梁,弯曲应力在横截面上是不均匀的,最大的弯曲应力通常出现在横截面的最外层纤维,而中性轴上的应力为零。
了解弯曲应力是设计和分析工程结构、梁、梁板等零件的重要因素。
在工程实践中,通常需要考虑弯曲应力来确保结构的安全性和稳定性。
材料力学64-5

46.07MPa
c
28.80MPa t
切应力互等定律的证明
y
切应力互等定律
τ
dy
——单元体互相垂直
τ
x 平面上的切应力大小
相等,其方向都指向
dz
或背向两平面的交线。
dx
z
§5.4 弯曲切应力
一、矩形截面上的切应力
y
mn
x
mn
x
dx
m
n FS
r m
p
O q
τ
n
y
dx
b
FS
S
z
Izb
假设:
y
q
解:4. 强度计算
x
A
C B
max
12.6号
2m
FS/kN
22.5
0.5m
12
x
25.5
M/kN·m Mmax
切应力校核: max
Fs
max
S
z
I z b1
查表:12.6号
x
Iz
S
z
10.8cm,
b1 5mm
max
25.5103 10.8102 5103
47.2MPa
x
例题5.12:(P171 习题5.22)
32
63.3MPa
BE段:
MW max BE
max BE zBE
0.9 103 0.063 1 4
32
62.1MPa
例5.5 长度为l =2.5m的外伸梁,其外伸部分长a=0.5m,梁上作用均匀
荷载q=24kN/m,许用应力[σ]=160MPa,试选工字钢型号。
y
q
FAxA
材料力学第五章

y
= ∫ y dA
2 A
1 1 π ⋅ d4 π ⋅ d4 I y = Iz = I ρ = ⋅ = z 2 2 32 64
1 π ⋅ (D4 − d 4 ) 对空心圆截面: 对空心圆截面: I = I = I = y z ρ 2 64
第五章 弯曲应力
§5-2 对称弯曲正应力 对称弯曲正应力
M⋅ y 二、弯曲正应力一般公式: 弯曲正应力一般公式: σ= Iz
Ip
弯曲 剪力Q 剪力
?
第五章 弯曲应力
§5-1 引言 y
梁段
M τ Q
z
σ
横截面上剪应力 横截面上正应力
横截面上内力
Q = ∫τdA
剪应力造成剪力
M = ∫σydA
正应力造成弯矩
剪应力和正应力的分布规律是什么? 剪应力和正应力的分布规律是什么?
超静定问题
第五章 弯曲应力
§5-1 引言
§5-2 对称弯曲正应力 对称弯曲正应力 §5-3 对称弯曲切应力 对称弯曲切应力 弯曲 §5-4 梁的强度条件与合理强度设计 梁的强度条件与合理强度设计 §5-5 双对称截面梁的非对称弯曲 双对称截面梁的非对称弯曲 §5-6 弯拉(压)组合 弯拉( 对称弯曲(平面弯曲): 对称弯曲(平面弯曲): 外力作用在纵向对称面内, 外力作用在纵向对称面内,梁轴线变形 后为一平面曲线,也在此纵向对称面内。 后为一平面曲线,也在此纵向对称面内。
(3)
Mz = ∫ σ ⋅ y ⋅ dA = M (5) A E 2 E 2 E (5) M z = ∫ ρ y dA = ∫ y dA = ρ I z = M
A
ρ
A
1 M = ρ EIz
第五章 弯曲应力
弯曲应力—纯弯曲时的正应力(材料力学)

§5-2 正应力计算公式
3、物理关系
σ Eε
M
?
所以 σ E y
z
O
x
应力分布规律:
?
y
直梁纯弯曲时横截面上任意一点的正应力,与它到中性轴的距离成正比。待解决问题中性轴的位置?
中性层的曲率半径
§5-2 正应力计算公式
4、静力关系
横截面上内力系为垂直于横截面的空 间平行力系,这一力系简化得到三个内力分 M 量。
y t max
M
z
y
σtmax
σ cmax My cmax Iz
§5-2 正应力计算公式
二、横力弯曲时梁横截面上的正应力
实际工程中的梁,其横截面上大多同时存在着弯矩和剪力,为横 力弯曲。但根据实验和进一步的理论研究可知,剪力的存在对正应力 分布规律的影响很小。因此对横力弯曲的情况,前面推导的正应力公 式也适用。
(2)最大正应力发生在横截面上离中性轴最远的点处。
σ max M y max Iz
引用记号
Wz
Iz ymax
—抗弯截面系数
则公式改写为
σ max
M Wz
§5-2 正应力计算公式
对于中性轴为对称轴的横截面
矩形截面
Wz
Iz h/2
bh3 / 12 h/2
bh2 6
实心圆截面
Wz
Iz d /2
πd 4 / 64 d /2
推论:必有一层变形前后长度不变的纤维—中性层
⊥ 中性轴 横截面对称轴
中性层
中性轴
横截面对称轴
§5-2 正应力计算公式
2、变形几何关系
d
dx
图(a)
O’
b’ z
弯曲应力-材料力学

弯曲应力的计算方法
根据材料力学的基本原理,弯曲应力 的计算公式为:σ=M/Wz,其中σ为 弯曲应力,M为弯曲力矩,Wz为截面 对中性轴的抗弯截面系数。
另外,根据不同的弯曲形式和受力情 况,还可以采用其他计算公式来求解 弯曲应力,如均布载荷下的简支梁、 集中载荷下的悬臂梁等。
弯曲应力的计算方法
根据材料力学的基本原理,弯曲应力 的计算公式为:σ=M/Wz,其中σ为 弯曲应力,M为弯曲力矩,Wz为截面 对中性轴的抗弯截面系数。
弯曲应力可能导致材料发生弯曲变形,影响结构的稳定性和精度。
弯曲应力对材料刚度的影响
弯曲应力对材料的刚度有影响,材料的刚度随着弯曲应力的增大而 减小。
弯曲应力与剪切应力的关系
1 2
剪切应力在弯曲应力中的作用
在弯曲过程中,剪切应力会在材料截面的边缘产 生,它与弯曲应力相互作用,影响梁的承载能力 和稳定性。
弯曲应力
材料的韧性和强度都会影响其弯曲应力的大小和分布。韧性好的材料能够更好地分散和 吸收弯曲应力,而高强度的材料则能够承受更大的弯曲应力而不发生断裂。
材料韧性、强度与弯曲应力的关系
韧性
是指材料在受到外力作用时吸收能量的能力。韧性好的材料能够吸收更多的能量,从而 减少因弯曲应力而产生的脆性断裂。
强度
剪切应力的分布
剪切应力在材料截面的边缘最大,向中性轴方向 逐渐减小。
3
剪切应力和弯曲应力的关系
剪切应力和弯曲应力共同作用,影响梁的承载能 力和稳定性,在设计时需要考虑两者的相互作用。
弯曲应力与剪切应力的关系
1 2
剪切应力在弯曲应力中的作用
在弯曲过程中,剪切应力会在材料截面的边缘产 生,它与弯曲应力相互作用,影响梁的承载能力 和稳定性。
材料力学第五章-弯曲应力知识分享

材料力学第五章-弯曲应力注:由于本书没有标准答案,这些都是我和同学一起做的答案,其中可能会存在一些错误,仅供参考。
习 题6-1厚度mm h 5.1=的钢带,卷成直径 D=3m 的圆环,若钢带的弹性模量E=210GPa ,试求钢带横截面上的最大正应力。
解: 根据弯曲正应力公式的推导: Dy E yE 2..==ρσ MPa D h E 1053105.110210.39max =⨯⨯⨯==-σ 6—2直径为d 的钢丝,弹性模量为E ,现将它弯曲成直径为D 的圆弧。
试求钢丝中的最大应力与d /D 的关系。
并分析钢丝绳为何要用许多高强度的细钢丝组成。
解: ρσyE .= Dd E ED d .22max ==σ max σ与Dd成正比,钢丝绳易存放,而引起的最大引力很小.6—3 截面形状及尺寸完全相同的一根钢梁和一根木梁,如果所受的外力也相同,则内力是否相同?横截面上正应力的变化规律是否相同?对应点处的正应力与纵向线应变是否相同? 解: 面上的内力相同,正应力变化规律相同。
处的正应力相同,线应变不同6—4 图示截面各梁在外载作用下发生平面弯曲,试画出横截面上正应力沿高度的分布图.6—5 一矩形截面梁如图所示,已知F=1.5kN 。
试求(1) I —I 截面上A 、B 、C 、D 各点处的正应力; (2) 梁上的最大正应力,并指明其位置。
解:(1)m N F M .3002.0*10*5.12.0*3===MPa M I y M z A 11110*30*1812*10*15*.1233===--σ A B σσ-= 0=C σMPa M D 1.7410*30*1812*10*)5.15(*1233==--σ MPa W Fl z 5.16610*30*186*10*300*10*5.19233max ===--σ 位置在:固定端截面上下边缘处。
6—6 图示矩形截面简支梁,受均布载荷作用。
已知载荷集度q=20kN /m ,跨长l =3,截面高度=h 24cm ,宽度=b 8cm 。
材料力学-刘鸿文-第四版-第五章

σmax
M
y max max Iz
σ
1.弯矩最大的截面上
2.离中性轴最远处
3.变截面梁要综合考虑 M与 Iz
4.脆性材料抗拉和抗压性能不同,二方面都要考虑
s t,max s t
s c,max s c
2019年9月22日2时45分
材料力学 第五章 弯曲应力
根据强度条件可进行:
s t,max
2.5103 88103 7.64106
28.8106 Pa 28.8MPa s t
2019年9月22日2时45分
材料力学 第五章 弯曲应力
例5-3-5:图a所示为横截面如图b所示的槽形截面铸铁梁,该 截面对于中性轴z 的惯性矩Iz=5493×104 mm4。已知图a中, b=2 m。铸铁的许用拉应力[st]=30 MPa,许用压应力[s c]=90 MPa 。试求梁的许可荷载[F]。
4
Iz
显然,B截面上的最大拉应力控制了梁的强度。
2019年9月22日2时45分
材料力学 第五章 弯曲应力 第四章 弯曲应力
于是由B截面上最大拉应力不得超过铸铁的许用拉应
力[st]的条件来求该梁的许可荷载[F]:
F 2 m 86103 m
2
5493108 m4
l /2
F
AaCB Nhomakorabeal
z
NO.16
2019年9月22日2时45分
材料力学 第五章 弯曲应力
解: 1)s C EC 210 103 400 10 6 84MPa
M
C
s C
FB (l a) 0.25F
材料力学--弯曲正应力及其强度条件

C
E
15 106 200 109
7.5 105
q 40 kN / m
A
C
1.5 m
1.5 m
B 300 200
例21:图示木梁,已知下边缘纵向总伸
长为 10 mm,E=10GPa,求载荷P的大小。
P
300
A
C
B 200
2m
2m
解: AC
l/2
(x) dx
0
l/2 (x) d x l/2 M ( x) d x
1m
例20:简支梁受均布荷载,在其C截面
的下边缘贴一应变片,已知材料的 E=200GPa,试问该应变片所测得的应变 值应为多大?
q 40 kN / m
A
C
1.5 m
1.5 m
B 300 200
解:C截面的弯矩
ql2 MC 8 45kN m
C截面下边缘的应力 C
MC Wz
15MPa
应变值
P
y1
y2
Cz
解:
max
M max y1 Iz
[ ]
(1)
max
M max y2 Iz
[ ]
(2)
(1) 得: y1 [ ]
(2)
y2 [ ]
例16:图示外伸梁,受均布载荷作用,
材料的许用应力[σ]=160 MPa,校核 该梁的强度。
10 kN / m
2m
4m
200 100
10 kN / m
变形几何关系 从三方面考虑: 物理关系
静力学关系
1、变形几何关系
m
mn
m
aa
bb
mn
m
m
观察到以下变形现象: (1)aa、bb弯成弧线,aa缩短,bb伸长 (2)mm、nn变形后仍保持为直线,且仍与变为
材料力学+第四版+刘洪文+第五章 弯曲应力

σ = Eε
y
?
M
O
z x
ρ
?
y
应力分布规律: 应力分布规律: 直梁纯弯曲时横截面上任意一点的正应力, 直梁纯弯曲时横截面上任意一点的正应力,与它到中性轴 的距离成正比. 的距离成正比. 待解决问题 中性轴的位置 中性层的曲率半径ρ
?
(Stresses in Beams) relationship) 四、静力关系 (Static relationship)
2.强度条件的应用 2.强度条件的应用(Application of strength condition) 强度条件的应用(Application (1) 强度校核
Mmax ≤ [σ] W
Mmax (2)设计截面 W ≥ [σ]
(3)确定许可载荷 Mmax ≤ W[σ] 对于铸铁等脆性材料制成的梁,由于材料的 [σt ] ≠ [σc ] 对于铸铁等脆性材料制成的梁, 且梁横截面的中性轴一般也不是对称轴, 且梁横截面的中性轴一般也不是对称轴,所以梁的 中性轴一般也不是对称轴
三、强度条件(Strength condition) 强度条件(
梁内的最大工作应力不超过材料的许用应力. 梁内的最大工作应力不超过材料的许用应力. 1.数学表达式 1.数学表达式(Mathematical formula) 数学表达式(
Mmax σmax = ≤ [σ] W
(Stresses in Beams)
Miz = ∫ dMz = ∫ yσdA= M 3) (
A A
dFN= σdA
dMy = z σdA dMz = y σdA
(Stresses in Beams)
将应力表达式代入( 将应力表达式代入(1)式,得
材料力学(刘鸿文)第五章-弯曲应力

关于中性层的历史
1620年,荷兰物理学家、力学家比克门首先发现中性层; 英国科学家胡克于1678年也阐述了同样现象, 但没有涉及中性轴的位置问题; 法国科学家纳维于1826年,出版《材料力学》讲义, 给出结论: 中性轴 过截面形心。
观察建筑用的预制板的特征,并给出合理解释
P
为什么开孔?孔开在何处? 可以在任意位置随便开孔吗? 为什么加钢筋? 施工中如何安放?
(3)特别注意正应力沿高度呈线性分布;
(4)中性轴上正应力为零, 而在梁的上下边缘处分别是最大拉应力和最大压应力。
注意
(5)梁在中性轴的两侧分别受拉或受压; 正应力的正 负号(拉或压)可根据弯矩的正负 及梁的变形状态来 确定。
(6)熟记矩形、圆形截面对中性轴的惯性矩的计算式。
例1 T型截面铸铁梁,截面尺寸如图。
a 无论截面形状如何, 无论内力图如何
梁内最大应力 其强度条件为
σmax
σmax
M y max max
M
Iyz
max max
Iz
σ
b 但对于塑性材料,通常将梁做成矩形、圆形、工字形等
对称于中性轴的截面;
此类截面的最大拉应力与最大压应力相等。
因此:
强度条件可以表示为
σmax
M max wz
σ
3m
180
30 K
z
1、C 截面上K点正应力
y
2、C 截面上最大正应力
3、全梁上最大正应力
4、已知E=200GPa,C 截面的曲率半径ρ
180
1、截面几何性质计算
120
z
确定形心的位置 确定形心主轴的位置
确定中性轴的位置
IZ
bh 3 12
材料力学练习册5-6详细答案

第五章弯曲应力5-1 直径为d的金属丝,环绕在直径为D的轮缘上。
试求金属丝内的最大正应变与最大正应力。
已知材料的弹性模量为E。
解:5-2 图示直径为d的圆木,现需从中切取一矩形截面梁。
试问:(1) 如欲使所切矩形梁的弯曲强度最高,h和b应分别为何值;(2) 如欲使所切矩形梁的弯曲刚度最高,h和b应分别为何值;解:(1) 欲使梁的弯曲强度最高,只要抗弯截面系数取极大值,为此令(2) 欲使梁的弯曲刚度最高,只要惯性矩取极大值,为此令5-3 图示简支梁,由№18工字钢制成,在外载荷作用下,测得横截面A 底边的纵向正应变ε=3.0×10-4,试计算梁内的最大弯曲正应力。
已知钢的弹性模量E =200GPa ,a =1m 。
解:梁的剪力图及弯矩图如图所示,从弯矩图可见:5-4 No.20a 工字钢梁的支承和受力情况如图所示。
若[]MPa 160=σ,试求许可载荷F 。
5-5 图示结构中,AB 梁和CD 梁的矩形截面宽度均为b 。
如已知AB 梁高为1h ,CD 梁高为2h 。
欲使AB 梁CD 梁的最大弯曲正应力相等,则二梁的跨度1l 和2l 之间应满足什么样的关系?若材料的许用应力为[σ],此时许用载荷F 为多大?5-6 某吊钩横轴,受到载荷kN 130F =作用,尺寸如图所示。
已知mm 300=l ,mm 110h =,mm 160b =,mm 75d 0=,材料的[]MPa 100=σ,试校核该轴的强度。
5-7 矩形截面梁AB,以固定铰支座A及拉杆CD支承,C点可视为铰支,有关尺寸如图所示。
设拉杆及横梁的[]MPaσ,试求作用于梁B端的许可载荷F。
=1605-8 图示槽形截面铸铁梁,F=10kN,M e=70kN·m,许用拉应力[σt]=35MPa,许用压应力[σc]=120MPa。
试校核梁的强度。
解:先求形心坐标,将图示截面看成一大矩形减去一小矩形惯性矩弯矩图如图所示,C截面的左、右截面为危险截面。
材料力学第五章

例5-2 求图5-9所示简支梁各截面内力,并作内力图。 (a)
(c) (d)
(b)
图5-9
(e)
解 (1)求约束力。注意固定铰 A 处 FAx 0 ,故梁 AB 受力如图 5-9(a) 所示。
材料力学
第五章 弯曲内力与强度计算
一 平面弯曲的概念与实例
二 梁的内力——剪力与弯矩
三
剪力图与弯矩图
四
载荷集度、剪力与弯矩间的关系
五
纯弯曲时梁横截面上的正应力
六
梁的弯曲正应力强度条件及其应用
七
弯曲切应力
八
提高梁的弯曲强度的措施
第一节 平面弯曲的概念与实例
直杆在垂直于其轴线的外力或位于其轴线所在平面内的外力偶作用下, 杆的轴线将由直线变成曲线,这种变形称为弯曲。承受弯曲变形为主的杆 件通常称为梁。
(a)
(b) (c)
图5-12
解 (1)由静力平衡方程求出支座约束力。
FA
Me L
(方向向上)
FB
Me L
(方向向下)
(2)列剪力方程和弯矩方程。
FS ( x)
FA
Me L
(0 x L)
(a)
由于力偶在任何方向的投影皆等于零,所以无论在梁的哪一个横截面上,
剪力总是等于支座约束力 FA (或 FB )。所以在梁的整个跨度内,只有一个剪 力方程式(a)。
设 a x2 a b ,左段受力如图 5-9(c)所示。 由平衡方程求得
FS2 FAy F 0
第五章 弯曲应力(材料力学)PPT课件

n
作如下假设: (1) 梁的横截面变形后仍保持为平面,且垂直于变形
后的轴线,即弯曲变形的平面假设。 (2) 纵向纤维间无挤压作用,各纵向纤维均处于单向
受拉或受压状态。
材料力学Ⅰ电子教案
第五章 弯曲应力
bb 变形前的长度等于中性层
中性层长度不变, 所以:
bbO 1 O 2 O1O 2 d
纵向线bb变形后的长度为:
纯弯曲和横力弯曲的概念
F
F
在 AC 和 DB 段 , 梁 的 横 截 面既有弯矩,又有剪力,这 种情况称为横力弯曲(剪切 弯曲)。 在 CD 段 内 , 梁 的 横 截 面
A C
a
F
+
B
D
a
上剪力为零,而弯矩为常量, 这种情况称为纯弯曲。
+
F. a
F
梁在纯弯曲变形时,横截面
+
上只有与弯矩有关的正应力。
材料力学Ⅰ电子教案
材料力学
第五章 弯曲应力
第五章 弯曲应力
четверг, 3 декабря 2020 г.
材料力学Ⅰ电子教案
第五章 弯曲应力
第五章 弯曲应力
§5-1 纯弯曲 §5-2 纯弯曲时的正应力
§5-3 横力弯曲时的正应力
§5-4 弯曲切应力
§5-5* 关于弯曲理论的基本假设
§5-6 提高弯曲强度的措施
即:
FN
dA0,
A
My
zdA0,
A
Mz
ydAM
A
材料力学Ⅰ电子教案
第五章 弯曲应力
FN
dA0
A
AdAEAydA0
AydASz 0
z 轴通过形心
材料力学(5)

A
Iz
∫ ∫∫ z dydz = ∫ y dA = ∫∫ z dydz
2 2 2 A
则分别定义为图形对 y 轴和 z 轴的惯性矩(也称为 二次矩) 惯性矩性质: 惯性矩性质:当一个平面图形是由若干个简单图 形组成时,可以先算出每一个简单图形对某一轴 的惯性矩,然后求其总和,即等于整个图形对同 一轴的惯性矩。
z o y x
5-1 梁纯弯曲时的正应力
正应力计算公式的使用条件和范围
正应力公式是在纯弯曲情况下导出的。但是按弹性力 学理论与工程实践表明:在有些情况下,横力弯曲的 正应力分布规律与纯弯曲的完全相同;在有些情况下 虽略有差异,但是当梁跨度与截面高度之比大于5时, 误差是非常小的。所以,该公式应用于横力弯曲的正 应力计算有足够的精度,完全可以应用于横力弯曲时 的正应力计算。 对于具有纵向对称截面的梁,包括不对称于中性轴的 截面(即无横向对称面,如T字型截面),正应力公式 都可以使用。 正应力公式不适用于非对称弯曲的情况。 当梁的材料不服从胡克定律时,正应力公式不适用。 正应力公式只适用于直梁。但可近似地用于曲率半径 较梁高大得多的曲梁。对变截面梁也可近似地应用。
平行移轴公式:截面对任一轴的惯性矩, 平行移轴公式 等于它对平行于该轴的形心轴的惯性矩, 加上截面面积与两轴间距离平方的乘积。
5-2 惯性矩计算
T字型截面对其形心轴(z轴)的惯性矩为:
I z = I zI + I zII
y
矩形Ⅰ和矩形Ⅱ对 z 轴的惯性矩 可以通过平行移轴公式写成如下形式:
z1
a
b
E
5-1 梁纯弯曲时的正应力
(三)静力学关系(续3)
Mz = ∫A yσdA = ML(e)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( y)d d y
d
bb dx OO O'O' d
应变分布规律:
直梁纯弯曲时纵向纤维的应变与它到中性层的距离成正比.
三、物理关系
Hooke’s Law σ Eε M
z
所以 σ E y
?
O
x
应力分布规律:
?
y
直梁纯弯曲时横截面上任意一点的正应力,与它到中性轴
的距离成正比.
待解决问题
拉应力为 [t] = 30MPa ,许用压应力为[c] =160MPa. 已知截面
对形心轴z的惯性矩为 Iz =763cm4 , y1 =52mm,校核梁的强度.
20
F1=9kN
F2=4kN
80
y1
A C
z
B
D
1m
1m
1m
y2
20
120
y2
y1
FRA A
z
F1=9kN FRB F2=4kN 解: FRA 2.5kN FRB 10.5kN
B
C
2a
a
Fa
Iz
(3cm)(2cm)3 12
(1.4cm)(2cm)3 12
1.07cm4
Wz
Iz ymax
1.07cm4 1cm
1.07cm3
(3)求许可载荷
Fa Wz[σ]
Mmax Wz[σ]
F Wz[σ] 3kN a
+
φ14 φ30
20
例题2 T形截面铸铁梁的荷载和截面尺寸如图所示. 铸铁的许用
(4)切应力沿截面高度的变化规律
沿截面高度的变化由静矩 Sz 与y之间的关系确定.
Sz A1 y1dA
h/2 y
y1bdy1
b 2
h2 (
4
y2)
FS Sz
FS
h2 (
y2)
Izb 2Iz 4
z
y1 y
O A1 B1
dy 1 m1
可见,切应力沿截面高度按抛物线规律变化.
y
y=±h/2(即在横截面上距中性轴最远处)0
矩形截面 W Iz bh3 / 12 bh2 h/2 h/2 6
空心圆截面 W πD3 (1 4 )
32
α d D
h
d
z y
b
z y
D d
z y
(2)对于中性轴不是对称轴的横截面 应分别以横截面上受拉和受压部分距中性轴最远的距离
ycmax和 ytmax 直接代入公式
σ My Iz
σc max
[σt]
例 3 ( 书例5.2)
已知: []=100 MPa, P = 25.3 kN。
求:校核心 轴的强度。
解:
计算简图如图。
(1) 求弯矩图
支反力
RA 23.6 kN, RB 27 kN
22
(1)求弯矩图
(2) 确定危险截面 I截面 II截面 III截面
23
(3) 强度校核
I截面
M I M max 4.72 kN m
WI
d13
32
(95103)3 84.1106 m3
32
I
MI WI
56.1 MPa [
]
24
II截面
MII 3.42 kN m
WII
d
3 2
32
(85103)3 60.3106 m3
32
II
M II WII
56.7
MPa [
]
III截面
MIII 4.64 kN m
假设切应力的分布规律,然后根据平衡条件求出切 应力。
按截面形状,分别讨论。
1.矩形截面梁
(1)两个假设
(a)切应力与剪力平行; (b)切应力沿截面宽度均匀分布 (距中性轴等距离处切应力相等).
F1
F2
q(x)
(2)分析方法 (a)用横截面m-m , n-n从梁中截取 dx一段.两横截面上的弯矩不等. 所 以两截面同一y处的正应力也不等; (b)假想地从梁段上截出体积元素 mB1,在两端面mA1,nB1上两个法向 内力不等.
A
E y2dA M
A
1 M
E Iz
I yz
yzdA 0
A
E
Iz
M
将
1M
EIz
代入
σE y
得到纯弯曲时横截面上正应力的计算公式:
σ My Iz
M为梁横截面上的弯矩;
y为梁横截面上任意一点到中性轴的距离;
Iz为梁横截面对中性轴的惯性矩.
讨论
(1)应用公式时,一般将 My 以绝对值代入. 根据梁变形的情
dFS = dA 才能合成剪力;
只有与正应力有关的法向内力元素
dFN = dA 才能合成弯矩.
所以,在梁的横截面上一般既有正应力, 又有切应力.
mM
m FS
m
m FS m M
m
二、分析方法
平面弯曲时横截面 纯弯曲梁(横截面上只有M而无FS的情况)
平面弯曲时横截面
横力弯曲(横截面上既有FS又有M的情况)
要求分别不超过材料的许用拉应力和许用压应力
σtmax [σt] σcmax [σc ]
例题1 螺栓压板夹紧装置如图所示.已知板长3a=150mm,压板
材料的弯曲许用应力[]=140MP.试计算压板传给工件的最大允
许压紧力F.
FRA
FRB
F
解:(1)作出弯矩图的最大弯
A
矩为Fa; (2)求惯性矩,抗弯截面系数
yc max yt max
M
z
y
σtmax
σt max Myt max Iz
σcmax Mycmax Iz
§5-3 横力弯曲时的正应力
横力弯曲
弹性力学精确分析表明, 当跨度 l 与横截面高度 h 之 比 l / h > 5 (细长梁)时, 纯弯曲正应力公式对于横力 弯曲近似成立。
§5-3 横力弯曲时的正应力
变形后仍保持为平面且垂直于变形 后的梁轴线; (b)单向受力假设:纵向纤维不相互挤 压,只受单向拉压.
推论:必有一层变形前后长度不变的纤维—中性层
中性轴
中性轴⊥横截面对称轴
中性层
横截面对称轴
二、变形几何关系
dx
dx
d
图(a)
O
O
zb
O yx b
y
图(b)
O’
x
O’
b’
b’
z
y 图(c)
bb ( y)d
F
F
三、纯弯曲
A
若梁在某段内各横截面的弯矩为
C
B
D
常量,剪力为零,则该段梁的弯曲就
a
a
称为纯弯曲.
F
+
简支梁CD段任一横截面上,剪 力等于零,而弯矩为常量,所以该段
+
F Fa
梁的弯曲就是纯弯曲.
+
§5-2 纯弯曲时的正应力
deformation geometric relationship
physical relationship
y=0(即在中性轴上各点处),切应力达到最大值
max
FS h2 8I z
FS h2 8 bh3 12
3 2
FS bh
max
3FS 2A
式中,A=bh为矩形截面的面积.
x
AB
m
n
τmax
z
截面静矩的计算方法
Sz
ydA Ay
A
z
A为截面面积
y为截面的形心坐标
y
A1
2.工字形截面梁
研究方法与矩形截面同,切应力的计算公式亦为
WIII
d33
32
(88103)3 66.9106 m3
32
III
M III WIII
69.4 MPa
[
]
结论
满足强度要求。
注意
最大正应力并非发生在弯矩最大的截面。
§5-4 梁的切应力及强度条件
一、梁横截面上的切应力
➢横力弯曲时, 横截面上既有正应力, 又有切应力。 ➢推导切应力公式的方法:
FS
bh
max min
FS S*z
Izb
b
x
Hh z o
假设求应力的点到中性轴的距离为y.
By
S
* z
B(
H 2
h) [h 1 (H 2 2 22
h)] 2
z
y
O
b( h y) [ y 1 ( h y)]
2
22
B
(H 2
h2)
b
h2 (
y2)
A*
y
8
24
则,距中性层 y处的切应力公式为:
Q
[
B
(H
横力弯曲正应力公式 My 公式适用范围
IZ
•细长梁的纯弯曲或横力弯曲
•横截面惯性积 IYZ =0
•弹性变形阶段 横力弯曲最大正应力
max
M max ymax IZ
M max WZ
弯曲正应力强度条件
σmax
M
y max max Iz
M max
WZ
σ
1.等截面梁弯矩最大的截面上
2.离中性轴最远处
2
h2)
b
h2 (
y2 )]
Izb 8
24
切应力分布如图。
(a)腹板上的切应力沿腹板高度按二 次抛物线规律变化;
(b)最大切应力也在中性轴上.这也是 整个横截面上的最大切应力.最小切应力
发生在 y=±h/2 处