材料力学——弯曲应力
合集下载
材料力学弯曲应力_图文
§5-3 横力弯曲时的正应力
例题6-1
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
1.C 截面上K点正应力 2.C 截面上最大正应力
B
x
180
K
30 3.全梁上最大正应力 z 4.已知E=200GPa,
FBY
C 截面的曲率半径ρ y
解:1. 求支反力
x 90kN M
x
(压应力)
目录
目录
§5-2 纯弯曲时的正应力
正应力分布
z
M
C
zzy
x
dA σ
y
目录
§5-2 纯弯曲时的正应力
常见截面的 IZ 和 WZ
圆截面 空心圆截面
矩形截面 空心矩形截面
目录
§5-3 横力弯曲时的正应力
横力弯曲
6-2
目录
§5-3 横力弯曲时的正应力
横力弯曲正应力公式
弹性力学精确分析表明 ,当跨度 l 与横截面高度 h 之比 l / h > 5 (细长梁)时 ,纯弯曲正应力公式对于横 力弯曲近似成立。 横力弯曲最大正应力
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
2. C 截面最大正应力
B
x
180
K
30 C 截面弯矩 z
FBY
y
C 截面惯性矩
x 90kN M
x
目录
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m
材料力学第五章 弯曲应力分析
B
D
1m
1m
1m
y2
20
120
FRA
F1=9kN FRB F2=4kN
A C
BD
1m
1m
1m
2.5 Fs
+
+
4 kN
-
6.5 2.5
M
kNm
-
+
4
解: FRA 2.5kN FRB 10.5kN
88
52
-
+
C 2.5
4 B 80
z
20
120
20
B截面
σ t max
M B y1 Iz
4 • 52 763
20
+
-
+
10
Fs
kN
10
20
30
30
25
25
M
kNm
max
M max W
[ ]
W Mmax 30 187.5cm3
[ ] 160
1)圆 W d 3 187.5
32
d 12.4cm
A d 2 121cm2
4
2)正方形
a3 W 187.5
6
3)矩形
a 10.4cm
A a2 108cm2
压,只受单向拉压. (c)同一层纤维的变形相同。 (d)不同层纤维的变形不相同。
推论:必有一层变形前后长度不变的纤维—中性层
中性轴
中性轴⊥横截面对称轴
中性层
横截面对称轴
二、变形几何关系
dx
dx
图(a)
O
O
zb
O yx b
y
图(b)
材料力学-第四章弯曲应力教学
FS
x
dx
0
FS
x
dM x
dx
qx
dM 2x
dx 2
注:q(x)向上为正,反之为负。
●简易法作剪力图和弯矩图
①梁上无分布荷载作用:q(x)=0
qx dFS x 0
dx
FS x cont
剪力图斜率为零,FS(x)图为平行于x轴的直线。
dM x
B 1kN
A FAx
FB
FAy
FAx=-3kN FAy=3kN
FB=5kN
2)剪力图: 简易法 BC杆:取一点(水平线) DC杆:取两点(水平线) DA杆:取两点(斜直线)
D 3kN
C
1kN E
5kN
1kN B
3kN A
q=1kN/m 4m 3m
8kN
1m D
2m C
E
B 1kN
A FAx
A
A
ydA Sz 0 中性轴z必通过截面形心
A
横截面对z轴的静矩
My
z dA 0
A
zE
A
y dA
E
A
zydA
0
zydA I yz 0
A
截面对yz轴的惯性积
*由于y为对称轴, 上式自然满足。
M z
y dA
A
M
例5.作外伸梁的内力图
q
FA
ql 8
A
FB
5ql 8
FA
FS
B
lC
l
FB 2
ql / 2
材料力学——弯曲应力
公式推导
线应变的变化规律 与纤维到中性层的距离成正比。
从横截面上看: 点离开中性轴越远,该点的线应变越大。
2、物理关系
当σ<σP时 虎克定律
E
E
y
y
弯曲正应力的分布规律 a、与点到中性轴的距离成正比; 沿截面高度 线性分布; b、沿截面宽度 均匀分布; c、正弯矩作用下, 上压下拉; d、危险点的位置, 离开中性轴最远处.
M max ymax IZ
x
67.5 103 90 103 5.832 105
104.17MPa
6、已知E=200GPa,C 截面的曲率半径ρ q=60KN/m A FAY B 1m C 3m FBY
M C 60kN m
I z 5.832 105 m 4
M EI
4 103 88 103 46.1MPa 6 7.64 10
9KN
4KN
C截面应力计算
A FA
M 1m
C 1m
B
1m FB
C截面应力分布 应用公式
t ,max
My Iz
2.5KNm
2.5 103 88 103 28.8MPa 6 7.64 10
Fb Fa
C截面: max M C Fb3 62.5 160 32 46.4MPa d W 3
zC
2
0.13
32
(5)结论 轮轴满足强度条件
一简支梁受力如图所示。已知 [ ] 12MPa ,空心圆截面 的内外径之比 一倍,比值不变,则载荷 q 可增加到多大? q=0.5KN/m A B
反映了截面的几何形状、尺寸对强度的影响
最大弯曲正应力计算公式
材料力学第6章弯曲应力
图6.5
页 退出
材料力学
出版社 理工分社
例6.1如图6.6所示,矩形截面悬臂梁受集中力和集中力偶作用。试求Ⅰ—Ⅰ 截面和固定端Ⅱ—Ⅱ截面上A,B,C,D 4点处的正应力。
图6.6
页 退出
材料力学
出版社 理工分社
解矩形截面对中性轴的惯性矩为 对于Ⅰ—Ⅰ截面,弯矩MⅠ=20 kN·m,根据式(6.2),各点正应力分别为
页 退出
材料力学
出版社 理工分社
(1)变形几何关系 弯曲变形前和变形后的梁段分别表示于图6.4(a)和(b)。以梁横截面的对称 轴为y轴且向下为正(见图6.4(c))。以中性轴为z轴,但中性轴的位置尚待确 定。在中性轴尚未确定之前,x轴只能暂时认为是通过原点的横截面的法 线。根据弯曲平面假设,变形前相距为dx的两个横截面,变形后各自绕中性 轴相对旋转了一个角度dθ ,且仍然保持为平面。这就使得距中性层为y的纵 向纤维bb的长度变为
式中积分
是横截面对y轴和z轴的惯性积。由于y轴是横截面的对
称轴,必然有Iyz=0(见附录)。所以式(g)是自然满足的。 将式(b)代入式(e),得
式中积分∫Ay2dA=Iz是横截面对z轴(中性轴)的惯性矩。于是式(h)改写为 式中 ——梁轴线变形后的曲率。
页 退出
材料力学
出版社 理工分社
式(6.1)表明,EIz越大,则曲率 越小,故EIz称为梁的抗弯刚度。从式 (6.1)和式(b)中消去 ,得
而对于变截面梁,虽然是等截面梁但中性轴不是横截面对称轴的梁,在计算 最大弯曲正应力时不能只注意弯矩数值最大的截面,应综合考虑My/Iz的值 (参看例6.5和例6.8)。
页 退出
材料力学
出版社 理工分社
引用记号
弯曲应力-材料力学
弯曲应力的计算方法
根据材料力学的基本原理,弯曲应力 的计算公式为:σ=M/Wz,其中σ为 弯曲应力,M为弯曲力矩,Wz为截面 对中性轴的抗弯截面系数。
另外,根据不同的弯曲形式和受力情 况,还可以采用其他计算公式来求解 弯曲应力,如均布载荷下的简支梁、 集中载荷下的悬臂梁等。
弯曲应力的计算方法
根据材料力学的基本原理,弯曲应力 的计算公式为:σ=M/Wz,其中σ为 弯曲应力,M为弯曲力矩,Wz为截面 对中性轴的抗弯截面系数。
弯曲应力可能导致材料发生弯曲变形,影响结构的稳定性和精度。
弯曲应力对材料刚度的影响
弯曲应力对材料的刚度有影响,材料的刚度随着弯曲应力的增大而 减小。
弯曲应力与剪切应力的关系
1 2
剪切应力在弯曲应力中的作用
在弯曲过程中,剪切应力会在材料截面的边缘产 生,它与弯曲应力相互作用,影响梁的承载能力 和稳定性。
弯曲应力
材料的韧性和强度都会影响其弯曲应力的大小和分布。韧性好的材料能够更好地分散和 吸收弯曲应力,而高强度的材料则能够承受更大的弯曲应力而不发生断裂。
材料韧性、强度与弯曲应力的关系
韧性
是指材料在受到外力作用时吸收能量的能力。韧性好的材料能够吸收更多的能量,从而 减少因弯曲应力而产生的脆性断裂。
强度
剪切应力的分布
剪切应力在材料截面的边缘最大,向中性轴方向 逐渐减小。
3
剪切应力和弯曲应力的关系
剪切应力和弯曲应力共同作用,影响梁的承载能 力和稳定性,在设计时需要考虑两者的相互作用。
弯曲应力与剪切应力的关系
1 2
剪切应力在弯曲应力中的作用
在弯曲过程中,剪切应力会在材料截面的边缘产 生,它与弯曲应力相互作用,影响梁的承载能力 和稳定性。
材料力学《第五章》弯曲应力
上海交通大学
1
2
c
O1
d
O2
a
1 1 2
b
2
M
d
O2
c
O1
a
1
b
2
O z y
由变形的连续形可知:
从伸长到缩短的过程中,必存在一 层纵向纤维既不伸长也不缩短,保 持原来的长度。 中性层:由既不伸长也不缩短的纵 M 向纤维组成。 中性轴:中性层与梁横截面的交线。 中性轴垂直于梁横截面的纵向对称轴。 a
1
1
2
c
O1
d
O2
a
1 1 2
b
2
M
d
O2
c
O1
b
2
3. 在伸长区,梁宽度减小, 在缩短区,梁宽度增加。 与轴向拉、压时变形相似。
上海交通大学
O z y
二、假设 1. 梁弯曲平面假设 梁弯曲变形后,横截面仍保持为平 面,并仍与已变弯后的梁轴线垂直, 只是绕该截面内某轴转过一个微小 M 角度。 2. 单向受力假设 设想梁由许多层纵向纤维组成,弯 曲时各纵向纤维处于单向受拉或单 向受压状态。 由实验现象和假设可推知: 弯曲变形时: 靠近梁顶面的纵向纤维受压、缩短; 靠近梁底面的纵向纤维受拉、伸长。
O1Biblioteka 1dqr2
O2
M
a
1
y
b
2
中性层下方,y 为正值, s 也为正值,表示为拉应力; 中性层上方,y 为负值, s 也为负值,表示为压应力。 y =0 (中性轴上),s = 0 ; y |max (上、下表层), s max 。
由(b)式可得s 的分布规律,但因r 的数值未知,中性轴的位置未确定, y 无从算起,所以仍不能计算正应力,用静力学关系解决。
1
2
c
O1
d
O2
a
1 1 2
b
2
M
d
O2
c
O1
a
1
b
2
O z y
由变形的连续形可知:
从伸长到缩短的过程中,必存在一 层纵向纤维既不伸长也不缩短,保 持原来的长度。 中性层:由既不伸长也不缩短的纵 M 向纤维组成。 中性轴:中性层与梁横截面的交线。 中性轴垂直于梁横截面的纵向对称轴。 a
1
1
2
c
O1
d
O2
a
1 1 2
b
2
M
d
O2
c
O1
b
2
3. 在伸长区,梁宽度减小, 在缩短区,梁宽度增加。 与轴向拉、压时变形相似。
上海交通大学
O z y
二、假设 1. 梁弯曲平面假设 梁弯曲变形后,横截面仍保持为平 面,并仍与已变弯后的梁轴线垂直, 只是绕该截面内某轴转过一个微小 M 角度。 2. 单向受力假设 设想梁由许多层纵向纤维组成,弯 曲时各纵向纤维处于单向受拉或单 向受压状态。 由实验现象和假设可推知: 弯曲变形时: 靠近梁顶面的纵向纤维受压、缩短; 靠近梁底面的纵向纤维受拉、伸长。
O1Biblioteka 1dqr2
O2
M
a
1
y
b
2
中性层下方,y 为正值, s 也为正值,表示为拉应力; 中性层上方,y 为负值, s 也为负值,表示为压应力。 y =0 (中性轴上),s = 0 ; y |max (上、下表层), s max 。
由(b)式可得s 的分布规律,但因r 的数值未知,中性轴的位置未确定, y 无从算起,所以仍不能计算正应力,用静力学关系解决。
材料力学第五章 弯曲应力
x
F F d F 0 N 2 N 1 S
将FN2、FN1和dFS′的表达式带入上式,可得
* M M d M * S S b d x 0 z z
I z I z
简化后可得
dM S z* dx I z b
dM F S ,代入上式得 由公式(4-2), dx
* 式中 S z
A1
y1dA ,是横截面距中性轴为 y 的横线 pq 以下的面积对中性轴的静矩。同理,
可以求得左侧面 rn 上的内力系的合力 FN 1 为
M * FN 1 S z Iz
在顶面rp上,与顶面相切的内力系的合力是
d F b d x S
根据水平方向的静平衡方程
F 0 ,可得
综上所述,对于各横截面剪力相同的梁和剪力不相同的
细长梁(l>5h),在纯弯曲情况下推导的弯曲正应力公式 (5-2)仍然适用。
例5-1
图5-10(a)所示悬臂梁,受集中力F与集中力
偶Me作用,其中F=5kN,Me=7.5kN· m,试求梁上B点左邻 面1-1上的最大弯曲正应力、该截面K点处正应力及全梁的 最大弯曲正应力。
第五章 弯曲应力
5.1 弯曲正应力 5.2 弯曲切应力简介 5.3 弯曲强度条件及其应用 5.4 提高梁弯曲强度的主要措施
5.1 弯曲正应力
上一章研究表明,一般情况下,梁横截面上同时存在
剪力FS和弯矩M。由于只有切向微内力τ dA才可能构成剪力, 也只有法向微内力σdA才可能构成弯矩,如图5-1(a)所示。 因此,在梁的横截面上将同时存在正应力σ和切应力τ(见图 5-1(b))。梁弯曲时横截面上的正应力与切应力分别称为 弯曲正应力与弯曲切应力。
F F d F 0 N 2 N 1 S
将FN2、FN1和dFS′的表达式带入上式,可得
* M M d M * S S b d x 0 z z
I z I z
简化后可得
dM S z* dx I z b
dM F S ,代入上式得 由公式(4-2), dx
* 式中 S z
A1
y1dA ,是横截面距中性轴为 y 的横线 pq 以下的面积对中性轴的静矩。同理,
可以求得左侧面 rn 上的内力系的合力 FN 1 为
M * FN 1 S z Iz
在顶面rp上,与顶面相切的内力系的合力是
d F b d x S
根据水平方向的静平衡方程
F 0 ,可得
综上所述,对于各横截面剪力相同的梁和剪力不相同的
细长梁(l>5h),在纯弯曲情况下推导的弯曲正应力公式 (5-2)仍然适用。
例5-1
图5-10(a)所示悬臂梁,受集中力F与集中力
偶Me作用,其中F=5kN,Me=7.5kN· m,试求梁上B点左邻 面1-1上的最大弯曲正应力、该截面K点处正应力及全梁的 最大弯曲正应力。
第五章 弯曲应力
5.1 弯曲正应力 5.2 弯曲切应力简介 5.3 弯曲强度条件及其应用 5.4 提高梁弯曲强度的主要措施
5.1 弯曲正应力
上一章研究表明,一般情况下,梁横截面上同时存在
剪力FS和弯矩M。由于只有切向微内力τ dA才可能构成剪力, 也只有法向微内力σdA才可能构成弯矩,如图5-1(a)所示。 因此,在梁的横截面上将同时存在正应力σ和切应力τ(见图 5-1(b))。梁弯曲时横截面上的正应力与切应力分别称为 弯曲正应力与弯曲切应力。
材料力学第5章弯曲应力
3 R2
4)
最大切应力: max
k
FS A
矩形:k =3/2 工字形:k =1 圆形:k =4/3
5)
切应力强度条件: max
F S* S max z max Izb
[
]
梁的强度条件小结:
1)应力公式:
正应力: My
Iz
最大值在距中 性轴最远处 max
M W
切应力:
FS Sz* Izb
最大值在 中性轴处
。 F位于跨中时,M最大
FRA
F
FRB
Mmax=Fl/4 F靠近支座时,FS最大 Qmax=F 按弯曲正应力强度条件选择截面
Wz
Fl
4
3.0 104 m3
300cm 3
max
FS z max Izd
14.11MPa
选择 22a工字钢
Iz / Szmax 18.9cm
d=7.5mm
5.16 铸铁梁的载荷及横截面尺寸如图所示。许用 拉应力[ t ] 40,MP许a 用压应力 [ c ] 。 1试60按MP正a 应力
My Iz
My
zdA
E
yzdA
E
I yz
0——y为主惯轴
总结: • 应力应变沿高度线性变化,中间有零应力应变层
• 应力应变公式的适用范围 • 最大应力、应变点在哪里
§5.3 横力弯曲时的正应力
1)横力弯曲时的正应力公式
横力弯曲时,基本假设不成立,但
My 满足精度要求,可使用。
Iz
max
Mmax ymax Iz
应变: (bb bb) / bb
(
y)d d
d
y
2)物理方程: E Ey /
4)
最大切应力: max
k
FS A
矩形:k =3/2 工字形:k =1 圆形:k =4/3
5)
切应力强度条件: max
F S* S max z max Izb
[
]
梁的强度条件小结:
1)应力公式:
正应力: My
Iz
最大值在距中 性轴最远处 max
M W
切应力:
FS Sz* Izb
最大值在 中性轴处
。 F位于跨中时,M最大
FRA
F
FRB
Mmax=Fl/4 F靠近支座时,FS最大 Qmax=F 按弯曲正应力强度条件选择截面
Wz
Fl
4
3.0 104 m3
300cm 3
max
FS z max Izd
14.11MPa
选择 22a工字钢
Iz / Szmax 18.9cm
d=7.5mm
5.16 铸铁梁的载荷及横截面尺寸如图所示。许用 拉应力[ t ] 40,MP许a 用压应力 [ c ] 。 1试60按MP正a 应力
My Iz
My
zdA
E
yzdA
E
I yz
0——y为主惯轴
总结: • 应力应变沿高度线性变化,中间有零应力应变层
• 应力应变公式的适用范围 • 最大应力、应变点在哪里
§5.3 横力弯曲时的正应力
1)横力弯曲时的正应力公式
横力弯曲时,基本假设不成立,但
My 满足精度要求,可使用。
Iz
max
Mmax ymax Iz
应变: (bb bb) / bb
(
y)d d
d
y
2)物理方程: E Ey /
材料力学(给排水)第四章-弯曲应力
弯曲应力的计算方法
1 梁弯曲公式
常用于计算直梁受弯时的应力分布和最大应 力值。
2 等强度法
常用于计算不同形状截面的梁受弯时的应力 分布。
弯曲应力的分布特点
1 最大应力出现在最远离中性轴的位置
2 中性轴附近应力应变
2 下表面拉应变
3 中性面应变为0
弯曲应力的应力-应变关系
1 胡克定律
当弯曲应力小于材料的弹性极限时,应力与 应变成正比关系。
2 弹性模量
描述了材料在受力时的变形程度。
材料力学中常见的弯曲应力计算问题
1 悬臂梁的最大弯曲应力计算
2 叠木梁的弯曲应力分布计算
3 榀形梁的弯曲应力计算
弯曲应力的工程应用及实例
1 建筑结构设计
弯曲应力的分析和计算对 于设计坚固和稳定的建筑 结构至关重要。
2 桥梁工程
弯曲应力的研究可以帮助 工程师设计和评估桥梁的 结构和安全性。
3 车辆设计
在汽车和飞机等交通工具 的设计过程中,弯曲应力 是一个重要的考虑因素。
材料力学(给排水)第四章 -弯曲应力
在材料力学中,弯曲应力是一个重要的概念,它涉及到物体在受力时的弯曲 情况。本章将介绍弯曲应力的定义、计算方法、分布特点、应变状态、应力应变关系以及其工程应用及实例。
弯曲应力的定义
1 弯曲应力
当一个物体受到外力作用而发生弯曲时,物体内部会出现垂直于弯曲面的应力,这种应 力即为弯曲应力。
6.材料力学——弯曲应力
80 F1=9kN A 1m F2=4kN z C 1m B 1m D y1 20
y2 20
120
20
RA A
F1=9kN
RB
F2=4kN
解
RA = 2.5kN RB = 10.5kN 最大正弯矩在截面 C 上
C 1m 1m
B 1m
D
MC = 2.5kN ⋅ m
最大负弯矩在 截面 B 上
2.5kN 80 y1
M( x) ⋅ y σ= Iz
M( x) — 横截面上的弯矩
18
强度条件: 二. 强度条件:
σmax
Mmax ⋅ ymax = ≤ [σ ] Iz
σmax
拉压强度相等材料: 拉压强度相等材料: 拉压强度不等材料: 拉压强度不等材料: 强度计算: 强度计算: a. 强度校核 强度校核: b. 截面设计 截面设计:
σ = Eε
=E
ρ
y
对称轴
o
z
y
正应力与它到中性层的距离成正比, 正应力与它到中性层的距离成正比, 中性层上的正应力为零 上式只能用于定性分析, 上式只能用于定性分析, 而不能用于定量计算: 而不能用于定量计算: 的位置未确定, (1)由于中性轴 z 的位置未确定, ) 无法标定; 故 y 无法标定;
中性轴 中性层
y
z
对称轴
ρ
M
中性层
y
图6-4
m ∆θ n z o a′ 中性轴 a′ o′ o′ b′ y b关系
o
o
y 轴 — 截面的对称轴 Z 轴 — 截面的中性轴 —距中性层为 b′b′ 距中性层为 y 处的纤维变形后的长度
y
dϕ 的线应变: 纤维 bb 的线应变: γ p = ρ dx M (ρ + y)dθ − ρ ⋅ dθ = y ε= ρ ⋅ dθ ρ
y2 20
120
20
RA A
F1=9kN
RB
F2=4kN
解
RA = 2.5kN RB = 10.5kN 最大正弯矩在截面 C 上
C 1m 1m
B 1m
D
MC = 2.5kN ⋅ m
最大负弯矩在 截面 B 上
2.5kN 80 y1
M( x) ⋅ y σ= Iz
M( x) — 横截面上的弯矩
18
强度条件: 二. 强度条件:
σmax
Mmax ⋅ ymax = ≤ [σ ] Iz
σmax
拉压强度相等材料: 拉压强度相等材料: 拉压强度不等材料: 拉压强度不等材料: 强度计算: 强度计算: a. 强度校核 强度校核: b. 截面设计 截面设计:
σ = Eε
=E
ρ
y
对称轴
o
z
y
正应力与它到中性层的距离成正比, 正应力与它到中性层的距离成正比, 中性层上的正应力为零 上式只能用于定性分析, 上式只能用于定性分析, 而不能用于定量计算: 而不能用于定量计算: 的位置未确定, (1)由于中性轴 z 的位置未确定, ) 无法标定; 故 y 无法标定;
中性轴 中性层
y
z
对称轴
ρ
M
中性层
y
图6-4
m ∆θ n z o a′ 中性轴 a′ o′ o′ b′ y b关系
o
o
y 轴 — 截面的对称轴 Z 轴 — 截面的中性轴 —距中性层为 b′b′ 距中性层为 y 处的纤维变形后的长度
y
dϕ 的线应变: 纤维 bb 的线应变: γ p = ρ dx M (ρ + y)dθ − ρ ⋅ dθ = y ε= ρ ⋅ dθ ρ
材料力学 弯曲应力
h h1
腹板
yz
FS——横截面上剪力。
y
翼缘
矩形截面的两个假定同样适用。
δ
h h1
y
δ
FN1
b
dF z
dx
dF FN 2 FN1
FN2
式中:FN1
dA M
A*
Iz
A*
ydA
M Iz
S
* z
FN 2
dA M dM
A*
Iz
A*
ydA
M
dM Iz
Izb 16bh
§5-4、梁的强度计算
一、梁的强度计算
危险截面: 危险点:
最大弯矩截面 最大剪力截面
最大弯矩截面的上、下底面各点为正应力危险点。
最大剪力截面的中性轴各点为切应力危险点。
1、等截面梁的正应力强度条件为:
max
M max Wz
注:①弯曲容许正应力[σ]弯略大于轴向拉压容许正应力[σ]轴,
FS
S
* z
Izd
b
δ d
h h1
yz
τmax
FS——横截面上剪力。
y
Iz ——整个工字形截面对中性轴z的惯性矩。 d——腹板宽度。
Sz* ——距z轴y处横线一侧 阴影部分截面对z的面积矩。
τ FS [( h2 h12 ) ( h12 y2 )]
2Izd 4 4 4
2、翼缘
δ
u
h
δ
z
τ1
F’N'1τ1
B
τ'1
F’N'2
u
材料力学-弯曲应力
超静定梁
超静定梁
q
Hale Waihona Puke L/2L/2q
L
M
M
*
5-6 提高梁强度的主要措施
合理设计截面
合理放置截面
增大 WZ
*
5-6 提高梁强度的主要措施
合理放置截面
*
5-6 提高梁强度的主要措施
合理设计截面
*
5-6 提高梁强度的主要措施
合理设计截面
*
充分利用材料特性合理设计截面
脆性材料:
宜上下不对称截面:
T 形,不等边工字型,不等边矩形框等;
中性轴偏向受拉区的一侧
理想的中性轴的位置: 应是最大拉应力和最大压应力同时达到许用应力。
*
讨论:钢筋混凝土楼板,钢筋应该铺设在哪一边?
等强梁的概念与应用
等截面梁WZ为常数,横力弯曲时弯矩M是随截面位置变化的。只有|M|max位置的横截面上应力达到[]。 不合理!
某车间欲安装简易吊车,大梁选用工字钢。已知电葫芦自重
材料的许用应力
起重量
跨度
试选择工字钢的型号。
例题
(4)选择工字钢型号
(5)讨论
(3)根据
计算
(1)计算简图
(2)绘弯矩图
解:
36c工字钢
*
作弯矩图,寻找需要校核的截面
要同时满足
分析:
非对称截面,要寻找中性轴位置
T型截面铸铁梁,截面尺寸如图示。
强度条件
h
max
*
叠合梁问题
悬臂梁由三块木板粘接而成。跨度为1m。胶合面的许可切应力为0.34MPa,木材的〔σ〕= 10 MPa,[τ]=1MPa,求许可载荷
1.画梁的剪力图和弯矩图
超静定梁
q
Hale Waihona Puke L/2L/2q
L
M
M
*
5-6 提高梁强度的主要措施
合理设计截面
合理放置截面
增大 WZ
*
5-6 提高梁强度的主要措施
合理放置截面
*
5-6 提高梁强度的主要措施
合理设计截面
*
5-6 提高梁强度的主要措施
合理设计截面
*
充分利用材料特性合理设计截面
脆性材料:
宜上下不对称截面:
T 形,不等边工字型,不等边矩形框等;
中性轴偏向受拉区的一侧
理想的中性轴的位置: 应是最大拉应力和最大压应力同时达到许用应力。
*
讨论:钢筋混凝土楼板,钢筋应该铺设在哪一边?
等强梁的概念与应用
等截面梁WZ为常数,横力弯曲时弯矩M是随截面位置变化的。只有|M|max位置的横截面上应力达到[]。 不合理!
某车间欲安装简易吊车,大梁选用工字钢。已知电葫芦自重
材料的许用应力
起重量
跨度
试选择工字钢的型号。
例题
(4)选择工字钢型号
(5)讨论
(3)根据
计算
(1)计算简图
(2)绘弯矩图
解:
36c工字钢
*
作弯矩图,寻找需要校核的截面
要同时满足
分析:
非对称截面,要寻找中性轴位置
T型截面铸铁梁,截面尺寸如图示。
强度条件
h
max
*
叠合梁问题
悬臂梁由三块木板粘接而成。跨度为1m。胶合面的许可切应力为0.34MPa,木材的〔σ〕= 10 MPa,[τ]=1MPa,求许可载荷
1.画梁的剪力图和弯矩图
弯曲应力-材料力学
已知:弯矩M、横截面的惯性矩Iz、许用应力[]。求:判断不等号。
max
Mymax Iz
工程力学 Engineering Mechanics
典型例题
例1 图示矩形截面梁,梁上载荷q=100kN/m,梁跨度l=6m,截面尺寸:
b=400mm,h=600mm,材料许用应力[]=100MPa,试判断该梁是否安全。
弹性力学精确分析表明,当跨度l与横截面高度h之比l/h>5(细长梁)时, 纯弯曲正应力公式对于横力弯曲近似成立。
横力弯曲最大正应力
max
M max ymax Iz
弯曲正应力适用范围 细长梁的纯弯曲或横力弯曲 横截面惯性积Iyz=0 弹性变形阶段
工程力学 Engineering Mechanics
YA
2m
2m YB
B 2m
20 b
90
c
z
a
50
解:(3)求解正应力
My Iz
惯性矩
Iz
1 12
50 903
3.0375106 mm4
弯矩
M 10kN.m
典型例题
例1 求图示矩形截面梁指定截面上对应点的正内力。
10kN
1
A
YA
2m
2m YB
B 2m
20 b
90
c
z
a
50
解:(3)求解正应力
M max
1 8
ql 2
1 8
q
62
q
533.3kN/m
练习1
受均布载荷作用的简支梁如图,求 ① 1-1截面上1、2两点的正应力; ② 1-1截面上的最大正应力; ③ 全梁的最大正应力; ④ 已知E=200GPa,求1-1截面的曲率半径。
max
Mymax Iz
工程力学 Engineering Mechanics
典型例题
例1 图示矩形截面梁,梁上载荷q=100kN/m,梁跨度l=6m,截面尺寸:
b=400mm,h=600mm,材料许用应力[]=100MPa,试判断该梁是否安全。
弹性力学精确分析表明,当跨度l与横截面高度h之比l/h>5(细长梁)时, 纯弯曲正应力公式对于横力弯曲近似成立。
横力弯曲最大正应力
max
M max ymax Iz
弯曲正应力适用范围 细长梁的纯弯曲或横力弯曲 横截面惯性积Iyz=0 弹性变形阶段
工程力学 Engineering Mechanics
YA
2m
2m YB
B 2m
20 b
90
c
z
a
50
解:(3)求解正应力
My Iz
惯性矩
Iz
1 12
50 903
3.0375106 mm4
弯矩
M 10kN.m
典型例题
例1 求图示矩形截面梁指定截面上对应点的正内力。
10kN
1
A
YA
2m
2m YB
B 2m
20 b
90
c
z
a
50
解:(3)求解正应力
M max
1 8
ql 2
1 8
q
62
q
533.3kN/m
练习1
受均布载荷作用的简支梁如图,求 ① 1-1截面上1、2两点的正应力; ② 1-1截面上的最大正应力; ③ 全梁的最大正应力; ④ 已知E=200GPa,求1-1截面的曲率半径。
材料力学第5章弯曲应力
材料力学第5章弯曲应力
欢迎来到材料力学第5章弯曲应力的世界!在本章中,我们将深入探讨什么是 弯曲应力,并研究其在不同形状截面中的计算方法和应用。
弯曲应力的定义和概念
什么是弯曲应力?
弯曲应力是物体受到外力作用时,在横截面上产生的力分布状态。
应变张量与应力张量
了解应变张量和应力张量的关系是理解弯曲应力的基础。
应力-应变曲线与弯曲应力
探索材料的应力-应变曲线与弯曲应力之间的关系。
弯曲应力在工程中的应用
建筑结构
了解弯曲应力在建筑结构中的应 用,如桥梁和楼梯等。
机械设计
探索弯曲应力在机械设计中的重 要性,如机械零件和工具。
航空航天工程
了解弯曲应力在航空航天工程中 的关键应用,如飞机和火箭。
梯形截面
探索梯形截面的弯曲应力计算方法。
弯曲应力的影响因素
1 外力
外力的大小和方向将直接影响到物体的弯曲应力。
2 截面形状
不同形状的截面将对弯曲应力的分布产生影响。
3 材料的力学性质
材料的弯曲应力极限和应力-应变关系是必须考虑的因素。
材料的弯曲应力极限
如何确定材料的弯曲应力极限
了解如何通过实验和模拟来确定材料的弯曲应力极限。
材料力学中的弯曲应力方程
一般弯曲应力方程
通过一般弯曲应力方程,我们可以计算出材料在弯曲时 的应力。
悬臂梁的弯曲应力
悬臂梁的弯曲应力方程与一般情况下的方程有所不同, 的弯曲应力计算方法
1
圆形截面
2
了解计算圆形截面的弯曲应力的公式和步骤。
3
矩形截面
学习如何计算矩形截面的弯曲应力。
欢迎来到材料力学第5章弯曲应力的世界!在本章中,我们将深入探讨什么是 弯曲应力,并研究其在不同形状截面中的计算方法和应用。
弯曲应力的定义和概念
什么是弯曲应力?
弯曲应力是物体受到外力作用时,在横截面上产生的力分布状态。
应变张量与应力张量
了解应变张量和应力张量的关系是理解弯曲应力的基础。
应力-应变曲线与弯曲应力
探索材料的应力-应变曲线与弯曲应力之间的关系。
弯曲应力在工程中的应用
建筑结构
了解弯曲应力在建筑结构中的应 用,如桥梁和楼梯等。
机械设计
探索弯曲应力在机械设计中的重 要性,如机械零件和工具。
航空航天工程
了解弯曲应力在航空航天工程中 的关键应用,如飞机和火箭。
梯形截面
探索梯形截面的弯曲应力计算方法。
弯曲应力的影响因素
1 外力
外力的大小和方向将直接影响到物体的弯曲应力。
2 截面形状
不同形状的截面将对弯曲应力的分布产生影响。
3 材料的力学性质
材料的弯曲应力极限和应力-应变关系是必须考虑的因素。
材料的弯曲应力极限
如何确定材料的弯曲应力极限
了解如何通过实验和模拟来确定材料的弯曲应力极限。
材料力学中的弯曲应力方程
一般弯曲应力方程
通过一般弯曲应力方程,我们可以计算出材料在弯曲时 的应力。
悬臂梁的弯曲应力
悬臂梁的弯曲应力方程与一般情况下的方程有所不同, 的弯曲应力计算方法
1
圆形截面
2
了解计算圆形截面的弯曲应力的公式和步骤。
3
矩形截面
学习如何计算矩形截面的弯曲应力。
材料力学- 弯曲应力)
z
h
y
m
A1 m'
b
O
B1
A
'
dx
y m
B n
窄高矩形截面梁横截面上弯曲切应力分布的假设:
(1) 横截面上各点处的切应力均与侧边平行;
(2) 横截面上距中性轴等远各点处的切应力大小相等。
m' z
h y
n' m n
根据切应力互等定理
x推得: (1) ' 沿截面宽度方向均匀分 布;
A1
z y1 A1 O B1 d F A
x
dA * FN1 m'
S
B
而横截面上纵向力的大小为
n y m dx
F
* N2
F
* N1
My1 M *1 d A * dA A A Iz Iz
M * A* y1 d A I z S z
面积AA1mm' 对中性轴 z的静矩
F
* N2
* * d F S FN2 FN1
n y m dx
* FN2
dM * d FS Sz Iz
要确定与之对应的水平切应力‘ 还需要补充条件。
矩形截面梁对称弯曲时横截面上切应力的分布规律
m' n' n (1) 由于梁的侧面为 =0的 自由表面,根据切应力互 等定理,横截面两侧边处 x 的切应力必与侧边平行; (2) 对称轴y处的切应力必沿 y轴方向,即平行于侧边; (3)横截面两侧边处的切应 力值大小相等,对于狭长 矩形截面则沿截面宽度其 值变化不会大。
Wz
1 4
Ⅱ .纯弯曲理论的推广 横力弯曲时: 1、由于切应力的存在梁的横截面发生翘曲; 2、横向力还使各纵向线之间发生挤压。 平面假设和纵向线之间无挤压的假设实际上都 不再成立。
材料力学 第5章 弯曲应力
材料力学
(三)静力学关系
FN x
dA 0
A
Mz A (dA) y M
1 Mz
EI z
由(2)(3)两式可得
… …(3)
x
M y Iz
z x
y
EIz ——抗弯刚度
...... (4)
材料力学
(四)最大正应力
… …(5)
z x
Wz
Iz ymax
——抗弯截面系数
y
z
D
z b
实心圆截面
Pa
92.6MPa
④全梁最大正应力
max
M max Wz
67.5103 6.48 104
Pa
104
.2MPa
材料力学
5.4 弯曲切应力
一、 矩形截面梁横截面上的切应力
x dx 图a
M(x) Fs(x)
Fs(x) y
x 图b
dx M(x)+d M(x)
z
t1
x
b FN1
t
y FN2 图c
1、两点假设: ①切应力与剪力平行; ②距中性轴等距离处,切应力 相等。 2、研究方法:分离体平衡。
60
103 (60 10 3 ) 5.832 10 5
Pa
61.7MPa
材料力学
1 q=60kN/m
A
B
1m
2m
1
180 30
12 z
120 y
qL2
M
8
+
M1 Mmax
x
③1-1截面上的最大正应力
Wz
Iz y
Iz h2
6.48 10 4 m3
1max
材料力学第五章__弯曲应力
矩(中性轴以下或以上面积对中性轴的静矩)
的比值(Iz/S),因此工程中经常采用的最大
剪应力的计算公式为:
max
bIz
FS / Smax
整理课件
3.圆截面梁的剪应力
整理课件
假设
1.假设AB弦上各点的剪 应力作用线都通过k点。
2.假设AB弦上各点剪应 力的垂直分量τy相等, 亦即假设τy沿AB弦均 匀分布。
整理课件
1、矩形截面梁弯曲剪应力
初等剪应力理论是由俄罗斯工程师茹拉夫斯基( 1844-1850)设计木梁时提出。 1856年圣维南提出精确剪应力理论。 1.矩形截面梁的剪应力 分析步骤: 1.提出假设; 2.在假设的基础上推导公式; 3.找出剪应力沿截面高度分布的规律。
整理课件整理课件来自理课件P yz Q
x
整理e课件
h
e Hh R
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
*§5.5 关于弯曲理论 的基本假设
自学
整理课件
§5.6 提高弯曲强度的 措施
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
F
S
S
* z
整理课件
I zb
整理课件
整理课件
工字钢截面:
max
Q Af
min
Af —腹板的面积。
max
结论: 翼缘部分max«腹板上的max,只计算 腹板上的max。
铅垂剪应力主要腹板承受(95~97%),且
max≈ min
故工字钢最大剪应力
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
观察纵向纤维的变化
在正弯矩的作用下, 偏上的纤维 缩短,
偏下的纤维 伸长。
凹入一侧纤维 缩短;
凸出一侧纤维伸长。
中性层
ΔL<0
ΔL>0
ΔL=0 既不伸长也不缩短
中性层 --纤维长度不变
中性轴
各横截面绕 中性轴发生偏转。
(三)理论分析:
y
z
两直线间的距离
y的物理意义
纵向纤维到中性层的距离; 点到中性轴的距离。
3、静力学关系
横截面上没有切应力 只有正应力。
弯曲正应力的 分布规律和计算公式
1、变形几何关系 (一)实验观察现象:
施加一对正弯矩,观察变形
观察到纵向线与横向线有何变化?
变化的是: 1、纵向线的长度 2、两横截面的夹角 3、横截面的宽度
纵向线 横向线
由直线
曲线 各纵向线的长度还相等吗?
由直线
直线 各横向线之间依然平行吗?
1M
EIZ
E y
正应力公式
My
IZ
1826年纳维在《材料力学》讲义中给出正确计算公式
弯曲正应力计算公式 弯曲正应力分布规律
My
IZ
适用范围:平面弯曲 比例极限内
5、横截面上最大弯曲正应力
max
Mym a x Iz
M I z / ymax
Wz
Iz ym a x
——截面的抗弯截面系数;。
相对旋转一个角度后, 仍然与纵向弧线垂直。
(二)提出假设:
1、平面假设: 变形前为平面的横截面变形后仍保持为平面; 横截面绕某一轴线发生了偏转。
瑞士科学家Jacob.贝努力 于1695年提出梁弯曲的平面假设
观察纵向纤维之间有无相互作用力
2、假设: 纵向纤维之间没有相互挤压, 各纵向纤维只是发生了简单的轴向拉伸或压缩。
公式推导
线应变的变化规律 与纤维到中性层的距离成正比。 从横截面上看: 点离开中性轴越远,该点的线应变越大。
2、物理关系
当σ<σP时
虎克定律
弯曲正应力的分布规律
E E y
a、与点到中性轴的距离成正比;
沿截面高度 线性分布;
y
z
b、沿截面宽度 均匀分布;
c、正弯矩作用下, 上压下拉;
d、危险点的位置, 离开中性轴最远处.
注意
(5)梁在中性轴的两侧分别受拉或受压; 正应力的正 负号(拉或压)可根据弯矩的正负 及梁的变形状态来 确定。
(6)熟记矩形、圆形截面对中性轴的惯性矩的计算式。
例:矩形截面简支梁承受均布载荷作用,如图所示
q=60KN/m
120
A
B
1m C
3m
180
30 K
z
1、C 截面上K点正应力
y
2、C 截面上最大正应力
反映了截面的几何形状、尺寸对强度的影响
最大弯曲正应力计算公式
max
M
WZ
6、常见图形的惯性矩及抗弯截面系数:
z hb
d z
D dz
Iz
1 bh3, 12
Wz
1 bh2 6
Iz
d4,
64
Wz
32
d3
Iz
(D4
64
d4)
D4 (1 4 )
64
Wz
32
D3(1 4 )
现代梁分析理论与伽利略结论对比
FBY
3、C 截面上K点正应力
弯矩 MC 901 6010.5 60kN m
公式
K
M C yK IZ
60103 60103 5.832 105
61.7MPa (压应力)
4、C 截面上最大正应力
Cmax
M C ymax IZ
60103 90103 5.832 105
92.55MPa
q=60KN/m
A
1m C
FAY
3m
5、全梁上最大正应力
B
FAy 90kN FBy 90kN
FBY
作内力图 危险截面
FS 90kN
x 90kN
M ql2 / 8 67.5kN m
二 横力弯曲正应力
纯弯曲正应力公式 My
IZ
弹性力学精确分析表明:
对于跨度 L 与横截面高度 h 之比 L / h > > 5的细长梁,
用纯弯曲正应力公式计算横力弯曲正应力, 误差<<2%
满足工程中所需要的精度。
横力弯曲最大正应力
max
Mymax Iz
弯曲正应力公式适用范围
弯曲正应力公式 My
观察建筑用的预制板的特征,并给出合理解释
P
为什么开孔?孔开在何处? 可以在任意位置随便开孔吗? 为什么加钢筋? 施工中如何安放?
你能解释一下托架开孔合理吗?托架会不会破坏?
伽利略 Galilei (1564-1642) 此结论是否正确?
回顾与比较
内力
应力公式及分布规律
均匀分布 F
A
线形分布 T
3、全梁上最大正应力
4、已知E=200GPa,C 截面的曲率半径ρ
180
1、截面几何性质计算
120
z
确定形心的位置 确定形心主轴的位置
确定中性轴的位置
IZ
bh3 12
0.12 0.183 12
5.832105 m4
q=60KN/m
A
1m C
FAY
3m
120
30
K
z
180
y
2. 求支反力
B
FAy 90kN FBy 90kN
弯曲正应力的分布规律
沿高度 沿宽度
3、静力学关系
dA FN 0
A
E y
Sz 0 中性轴过截面形心
M y z dA 0
A
M z y dA M
A 1M
EIZ
坐标轴是主轴
中性层的曲率计算公式 EIz 抗弯刚度
4、弯曲正应力计算公式
变形几何关系 y
物理关系 E
静力学关系
科学家与时代同步 伽利略时代钢铁没有出现
但他开辟了理论与实践 计算构件的新途径。
是“实验力学”的奠基 人
观察建筑用的预制板的特征,并给出合理解释
P
一、横力弯曲
横力弯曲时的正应力
F
Fs
F
x
M x
FL
横截面上内力
剪力+弯矩
横截面上的应力 既有正应力, 又有切应力
横力弯曲时的横截面
横截面 不再保持为平面 且由于切应力的存在,也不能保证纵向纤维之间没有正应力
IZ
1、纯弯曲或细长梁的横力弯曲;
2、弹性变形阶段;
注意
(1)计算正应力时,必须清楚所求的是哪个截面上的应力, 从而确定该截面上的弯矩及该截面对中性轴的惯性矩;
(2)必须清楚所求的是该截面上哪一点的正应力, 并确定该点到中性轴的距离,以及该点处应力的符号
(3)特别注意正应力沿高度呈线性分布;
(4)中性轴上正应力为零, 而在梁的上下边缘处分别是最大拉应力和最大压应力。
IP
M
?
FA
FS
?
y
纯弯曲 纯弯曲时的正应力 横力弯曲时的正应力 强度条件
弯曲切应力 提高梁强度的措施
一、纯弯曲
纯弯曲
Fs
F
F
M
Fa
Fa
梁段CD上,只有弯矩,没有剪力 --纯弯曲
梁段AC和BD上,既有弯矩,又有剪力 --横力弯曲
纯弯曲
纯弯曲的内力 剪力Fs=0
1、变形几何关系 2、物理关系