材料力学弯曲应力

合集下载

材料力学弯曲应力_图文

材料力学弯曲应力_图文

§5-3 横力弯曲时的正应力
例题6-1
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
1.C 截面上K点正应力 2.C 截面上最大正应力
B
x
180
K
30 3.全梁上最大正应力 z 4.已知E=200GPa,
FBY
C 截面的曲率半径ρ y
解:1. 求支反力
x 90kN M
x
(压应力)
目录
目录
§5-2 纯弯曲时的正应力
正应力分布
z
M
C
zzy
x
dA σ
y
目录
§5-2 纯弯曲时的正应力
常见截面的 IZ 和 WZ
圆截面 空心圆截面
矩形截面 空心矩形截面
目录
§5-3 横力弯曲时的正应力
横力弯曲
6-2
目录
§5-3 横力弯曲时的正应力
横力弯曲正应力公式
弹性力学精确分析表明 ,当跨度 l 与横截面高度 h 之比 l / h > 5 (细长梁)时 ,纯弯曲正应力公式对于横 力弯曲近似成立。 横力弯曲最大正应力
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
2. C 截面最大正应力
B
x
180
K
30 C 截面弯矩 z
FBY
y
C 截面惯性矩
x 90kN M
x
目录
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m

材料力学5弯曲应力_图文

材料力学5弯曲应力_图文
(1)合理安排载荷 (2)分散载荷(从使用方案考虑) (3)调整支座位置(从设计角度)
1、合理安排梁的受力
(1)合理安排载荷
P
(降低最大弯矩)
P
a
b
l
1、合理安排梁的受力(降低最大弯矩)
(2)分散载荷(从使用方面考虑)
P P
P
若:
l
1、合理安排梁的受力(降低最大弯矩)
(3)调整支座位置(从设计角度)
aP
q
A
C
E
l
P
B D
弯曲切应力强度校核
一般而言,对于等直梁,梁上的最大切应力发生在剪力最大 截面的中性轴上,且
是中性轴一侧的面积对中性轴的静矩 。
型钢可查表
切应力强度条件:
梁上的最大切应力max≤[]
例题4-10 图示梁为工字型截面,跨长2a=4 m、 q=25 KN/m;材
料许用应力[]=160 MPa,[]=100 MPa。试选择工字钢型号。
3950
(3)合理截面要符合材料的力学性能
塑性材料
z
z
采用关于中性轴对称的截面
y
y
脆性材料
z
采用关于中性轴不对称的截面
y
理想情况: 可调整各部分尺寸,使
z
y
y1 z
y2 y
3、采用变截面梁
以危险截面的弯矩设计梁的截面,而在其
他截面的弯矩较小,材料不能被充分利用。
从强度的角度来看,如果在弯矩大的部位采用较大的截面,弯矩较 小的部位采用较小的截面,就比较合理。截面尺寸沿梁轴线变化的梁 叫变截面梁。 若各个截面上的最大应力都等于材料的许用应力,这种梁叫等强度梁。
正应力大小与其到中 性轴距离成正比;

材料弯曲应力

材料弯曲应力

材料弯曲应力
在材料力学中,弯曲应力是指在横截面上的一个点上由于外部载荷而引起的正应力(垂直于横截面的方向)。

弯曲应力的大小取决于材料的弯曲形状、外部载荷的大小和分布、以及材料的截面性质。

弯曲应力(σb)可以用以下的公式表示:
其中:
•σb是弯曲应力;
•Mc是在横截面上的一个点上的弯矩;
•S是该点处横截面的静力矩。

弯曲应力的单位通常是帕斯卡(Pascal,Pa)或兆帕(Megapascal,MPa)。

弯曲应力会导致材料产生弯曲变形。

对于均匀材料的简单弯曲梁,弯曲应力在横截面上是不均匀的,最大的弯曲应力通常出现在横截面的最外层纤维,而中性轴上的应力为零。

了解弯曲应力是设计和分析工程结构、梁、梁板等零件的重要因素。

在工程实践中,通常需要考虑弯曲应力来确保结构的安全性和稳定性。

材料力学-弯曲应力

材料力学-弯曲应力

对于宽为b高为h的矩形截面:
W
bh3 12
bh2
h
6
2
对于直径为d的圆形截面:
W d 4 64 d 3
d
32
2
限定最大弯曲正应力不得超过许用应力,于是强度条件为:
max
M max W
设σt 表示拉应力,σc 表示压应力,则:
t max t
cmax c
塑性材料, [σt]= [σc]= [σ];
所以由(1)式:
A
d
A
A E
y
d
A
E
A y d
A
E
Sz
0
由(2)式:
说明中性轴过形心
A z
d
A
A zE
y
d
A
E
A
yz d
A
E
I yz
0
由于y轴是对称轴,此 式自然满足。
由(3)式:
A
y
d
A
A
yE
y
d
A
E
A
y2
d
A
E
Iz
M
1 M
EI z
1 为梁轴线变形后的曲率 ;
由变形几何关系得到 y
由物理关系得到
bh2 2b3 W
63
故: b 121.6 mm
h 2b 243.2 mm
选取截面为: 125 250 mm 2
e.g.3 已知:l=1.2m,[σ]=170MPa, 18号工字钢,不计自重。
求:P 的最大许可值。
P A
解:作弯矩图, 由图可得:
M
| M |max Pl 1.2P N m

材料力学第六章弯曲应力

材料力学第六章弯曲应力

但相应的最大弯矩值变为
Fl ql2
M max
4
8
375 kN m 13 kN m 388 kN m
而危险截面上的最大正应力变为
max
388103 N m 2342106 m3
165.7106
Pa
165.7
MPa
显然,梁的自重引起的最大正应力仅为
165.7 160 MPa 5.7 MPa
<2>. 相邻横向线mm和nn,在梁弯曲后仍为直线,只是
相对旋转了一个角度,且与弧线aa和bb保持正交。
根据表面变形情况,并设想梁的侧面上的横向线mm和 nn是梁的横截面与侧表面的交线,可作出如下推论(假设):
平面假设 梁在纯弯曲时,其原来的横截面仍保持为平面, 只是绕垂直于弯曲平面(纵向平面)的某一轴转动,转动后 的横截面与梁弯曲后的轴线保持正交。
力的值max为
max
M ym a x Iz
M
Iz ymax
M Wz
式中,Wz为截面的几何性质,称为弯曲截面系数(对Z轴)
(section modulus in bending),其单位为m3。
b
h d
o
z
o
z
y
y
中性轴 z 不是横截面的对称轴时(参见图c),其横截面 上最大拉应力值和最大压应力值为
A
r
(b)
M z
y d A E
A
r
y2 d A EI z M
A
r
(c)
由于式(a),(b)中的
E
r
不可能等于零,因而该两式要求:
1. 横截面对于中性轴 z 的静矩等于零,A y d A 0 ;显

材料力学第5章弯曲应力

材料力学第5章弯曲应力
Iz
M
M
中性轴
z
m
n
y
o
o
dA
z
mn
y
dx
Mzy
Iz
max
Mz Wz
M
MZ:横截面上的弯矩
y:到中性轴的距离
IZ:截面对中性轴的惯性矩
M
中性轴
§5-2 惯性矩的计算
一、静矩 P319
y
Sz ydA
A
z dA
zc
c y
S y zdA
yc
A
o
z
分别为平面图形对z 轴和 y 轴的静矩。
ySc Az ydA
F M
F
a
B
F
Fa
5.3 梁弯曲时的正应力
若梁在某段内各横截
面上的弯矩为常量, F
F
a
a
剪力为零, 则该段梁 A 的弯曲就称为纯弯曲。
B
Fs
在 AC 和 DB 段 内 横 截 面上既有弯矩又有剪 M 力, 这种情况称为横 力弯曲或剪切弯曲。
F F
Fa
平面假设
变形前原为平面的梁的横截面变形后仍保持为 平面, 并绕垂直于纵对称面的某一轴旋转, 且仍 然垂直于变形后的梁轴线。这就是弯曲变形的 平面假设。
C y'
a
x'
xc
b
注意!C点必须为截面形心。
六、组合截面的惯性矩
Iy Iyi
Iz Izi
例2:求对倒T字型形心 轴yC和zC的惯性矩。
解:1. 取参考轴yOz 2. 求形心
2cm y(yc)
1 c1
6 cm
yc
Ai yi A
y
c 1

弯曲应力—纯弯曲时的正应力(材料力学)

弯曲应力—纯弯曲时的正应力(材料力学)

§5-2 正应力计算公式
3、物理关系
σ Eε
M
?
所以 σ E y
z
O
x
应力分布规律:
?
y
直梁纯弯曲时横截面上任意一点的正应力,与它到中性轴的距离成正比。待解决问题中性轴的位置?
中性层的曲率半径
§5-2 正应力计算公式
4、静力关系
横截面上内力系为垂直于横截面的空 间平行力系,这一力系简化得到三个内力分 M 量。
y t max
M
z
y
σtmax
σ cmax My cmax Iz
§5-2 正应力计算公式
二、横力弯曲时梁横截面上的正应力
实际工程中的梁,其横截面上大多同时存在着弯矩和剪力,为横 力弯曲。但根据实验和进一步的理论研究可知,剪力的存在对正应力 分布规律的影响很小。因此对横力弯曲的情况,前面推导的正应力公 式也适用。
(2)最大正应力发生在横截面上离中性轴最远的点处。
σ max M y max Iz
引用记号
Wz
Iz ymax
—抗弯截面系数
则公式改写为
σ max
M Wz
§5-2 正应力计算公式
对于中性轴为对称轴的横截面
矩形截面
Wz
Iz h/2
bh3 / 12 h/2
bh2 6
实心圆截面
Wz
Iz d /2
πd 4 / 64 d /2
推论:必有一层变形前后长度不变的纤维—中性层
⊥ 中性轴 横截面对称轴
中性层
中性轴
横截面对称轴
§5-2 正应力计算公式
2、变形几何关系
d
dx
图(a)
O’
b’ z

弯曲应力-材料力学

弯曲应力-材料力学

弯曲应力的计算方法
根据材料力学的基本原理,弯曲应力 的计算公式为:σ=M/Wz,其中σ为 弯曲应力,M为弯曲力矩,Wz为截面 对中性轴的抗弯截面系数。
另外,根据不同的弯曲形式和受力情 况,还可以采用其他计算公式来求解 弯曲应力,如均布载荷下的简支梁、 集中载荷下的悬臂梁等。
弯曲应力的计算方法
根据材料力学的基本原理,弯曲应力 的计算公式为:σ=M/Wz,其中σ为 弯曲应力,M为弯曲力矩,Wz为截面 对中性轴的抗弯截面系数。
弯曲应力可能导致材料发生弯曲变形,影响结构的稳定性和精度。
弯曲应力对材料刚度的影响
弯曲应力对材料的刚度有影响,材料的刚度随着弯曲应力的增大而 减小。
弯曲应力与剪切应力的关系
1 2
剪切应力在弯曲应力中的作用
在弯曲过程中,剪切应力会在材料截面的边缘产 生,它与弯曲应力相互作用,影响梁的承载能力 和稳定性。
弯曲应力
材料的韧性和强度都会影响其弯曲应力的大小和分布。韧性好的材料能够更好地分散和 吸收弯曲应力,而高强度的材料则能够承受更大的弯曲应力而不发生断裂。
材料韧性、强度与弯曲应力的关系
韧性
是指材料在受到外力作用时吸收能量的能力。韧性好的材料能够吸收更多的能量,从而 减少因弯曲应力而产生的脆性断裂。
强度
剪切应力的分布
剪切应力在材料截面的边缘最大,向中性轴方向 逐渐减小。
3
剪切应力和弯曲应力的关系
剪切应力和弯曲应力共同作用,影响梁的承载能 力和稳定性,在设计时需要考虑两者的相互作用。
弯曲应力与剪切应力的关系
1 2
剪切应力在弯曲应力中的作用
在弯曲过程中,剪切应力会在材料截面的边缘产 生,它与弯曲应力相互作用,影响梁的承载能力 和稳定性。

材料力学第五章 弯曲应力

材料力学第五章  弯曲应力
x
F F d F 0 N 2 N 1 S
将FN2、FN1和dFS′的表达式带入上式,可得
* M M d M * S S b d x 0 z z
I z I z
简化后可得
dM S z* dx I z b
dM F S ,代入上式得 由公式(4-2), dx

* 式中 S z

A1
y1dA ,是横截面距中性轴为 y 的横线 pq 以下的面积对中性轴的静矩。同理,
可以求得左侧面 rn 上的内力系的合力 FN 1 为
M * FN 1 S z Iz
在顶面rp上,与顶面相切的内力系的合力是
d F b d x S
根据水平方向的静平衡方程
F 0 ,可得
综上所述,对于各横截面剪力相同的梁和剪力不相同的
细长梁(l>5h),在纯弯曲情况下推导的弯曲正应力公式 (5-2)仍然适用。
例5-1
图5-10(a)所示悬臂梁,受集中力F与集中力
偶Me作用,其中F=5kN,Me=7.5kN· m,试求梁上B点左邻 面1-1上的最大弯曲正应力、该截面K点处正应力及全梁的 最大弯曲正应力。
第五章 弯曲应力
5.1 弯曲正应力 5.2 弯曲切应力简介 5.3 弯曲强度条件及其应用 5.4 提高梁弯曲强度的主要措施
5.1 弯曲正应力
上一章研究表明,一般情况下,梁横截面上同时存在
剪力FS和弯矩M。由于只有切向微内力τ dA才可能构成剪力, 也只有法向微内力σdA才可能构成弯矩,如图5-1(a)所示。 因此,在梁的横截面上将同时存在正应力σ和切应力τ(见图 5-1(b))。梁弯曲时横截面上的正应力与切应力分别称为 弯曲正应力与弯曲切应力。

材料力学第5章弯曲应力

材料力学第5章弯曲应力
3 R2
4)
最大切应力: max
k
FS A
矩形:k =3/2 工字形:k =1 圆形:k =4/3
5)
切应力强度条件: max
F S* S max z max Izb
[
]
梁的强度条件小结:
1)应力公式:
正应力: My
Iz
最大值在距中 性轴最远处 max
M W
切应力:
FS Sz* Izb
最大值在 中性轴处
。 F位于跨中时,M最大
FRA
F
FRB
Mmax=Fl/4 F靠近支座时,FS最大 Qmax=F 按弯曲正应力强度条件选择截面
Wz
Fl
4
3.0 104 m3
300cm 3
max
FS z max Izd
14.11MPa
选择 22a工字钢
Iz / Szmax 18.9cm
d=7.5mm
5.16 铸铁梁的载荷及横截面尺寸如图所示。许用 拉应力[ t ] 40,MP许a 用压应力 [ c ] 。 1试60按MP正a 应力
My Iz
My
zdA
E
yzdA
E
I yz
0——y为主惯轴
总结: • 应力应变沿高度线性变化,中间有零应力应变层
• 应力应变公式的适用范围 • 最大应力、应变点在哪里
§5.3 横力弯曲时的正应力
1)横力弯曲时的正应力公式
横力弯曲时,基本假设不成立,但
My 满足精度要求,可使用。
Iz
max
Mmax ymax Iz
应变: (bb bb) / bb
(
y)d d
d
y
2)物理方程: E Ey /

材料力学 弯曲应力

材料力学  弯曲应力

D (1 )
3 4
材料力学
三. 弯曲正应力计算练习
简支梁如图所示,截面尺寸如图,单 位为mm,求1-1截面上1、2两点正应力的
大小,并求此截面上的最大正应力。
180 30 1 A q=60kN/m B 1 2 Z
120 1m
1
材料力学
2m
1 A 1m
q=60kN/m
B
2m
1
2
120
Z
1
思路分析:
max 3FS 2bh
一般来说,满足弯曲正应力强度条件的梁都 能满足切应力强度条件。 弯曲强度校核仅满足正应力强度条件即可。
材料力学
弯曲应力/提高弯曲强度的措施
§5.6
提高弯曲强度的措施
材料力学
思考:设计梁的主要依据是什么? 弯曲正应力的强度条件
max
M max [ ] Wz
M M M
横截面变形后仍保持为平面,且仍然垂直于 变形后的轴线,此即弯曲的平面假设。
材料力学
弯曲应力/纯弯曲
现象四:
M M
有一个曲面,其纵向线段既不伸长又不缩短。
材料力学
弯曲应力/纯弯曲
中性层:杆件弯曲变形时,其纵向线段既不伸长
又不缩短的曲面。 中性轴:中性层与横截面的交线。
材料力学
弯曲应力/纯弯曲时的正应力
并确定该点到中性轴的距离。
材料力学
弯曲应力/纯弯曲时的正应力
(2)要特别注意正应力在横截面上沿高度呈线性分布 的规律,在中性轴上为零,而在梁的上下边缘处正应力 最大。
材料力学
弯曲应力/纯弯曲时的正应力
z
x
(3)梁在中性轴的两侧分别受拉或受压,正应力的正 负号(拉或压)可根据弯矩确定。 (4)必须熟记矩形截面、圆形截面对中性轴的惯性矩, 并且注意圆形截面与扭转时的极惯性矩的区别与联系。

材料力学-弯曲应力

材料力学-弯曲应力
超静定梁
超静定梁
q
Hale Waihona Puke L/2L/2q
L
M
M
*
5-6 提高梁强度的主要措施
合理设计截面
合理放置截面
增大 WZ
*
5-6 提高梁强度的主要措施
合理放置截面
*
5-6 提高梁强度的主要措施
合理设计截面
*
5-6 提高梁强度的主要措施
合理设计截面
*
充分利用材料特性合理设计截面
脆性材料:
宜上下不对称截面:
T 形,不等边工字型,不等边矩形框等;
中性轴偏向受拉区的一侧
理想的中性轴的位置: 应是最大拉应力和最大压应力同时达到许用应力。
*
讨论:钢筋混凝土楼板,钢筋应该铺设在哪一边?
等强梁的概念与应用
等截面梁WZ为常数,横力弯曲时弯矩M是随截面位置变化的。只有|M|max位置的横截面上应力达到[]。 不合理!
某车间欲安装简易吊车,大梁选用工字钢。已知电葫芦自重
材料的许用应力
起重量
跨度
试选择工字钢的型号。
例题
(4)选择工字钢型号
(5)讨论
(3)根据
计算
(1)计算简图
(2)绘弯矩图
解:
36c工字钢
*
作弯矩图,寻找需要校核的截面
要同时满足
分析:
非对称截面,要寻找中性轴位置
T型截面铸铁梁,截面尺寸如图示。
强度条件
h
max
*
叠合梁问题
悬臂梁由三块木板粘接而成。跨度为1m。胶合面的许可切应力为0.34MPa,木材的〔σ〕= 10 MPa,[τ]=1MPa,求许可载荷
1.画梁的剪力图和弯矩图

弯曲应力-材料力学

弯曲应力-材料力学
已知:弯矩M、横截面的惯性矩Iz、许用应力[]。求:判断不等号。
max
Mymax Iz
工程力学 Engineering Mechanics
典型例题
例1 图示矩形截面梁,梁上载荷q=100kN/m,梁跨度l=6m,截面尺寸:
b=400mm,h=600mm,材料许用应力[]=100MPa,试判断该梁是否安全。
弹性力学精确分析表明,当跨度l与横截面高度h之比l/h>5(细长梁)时, 纯弯曲正应力公式对于横力弯曲近似成立。
横力弯曲最大正应力
max
M max ymax Iz
弯曲正应力适用范围 细长梁的纯弯曲或横力弯曲 横截面惯性积Iyz=0 弹性变形阶段
工程力学 Engineering Mechanics
YA
2m
2m YB
B 2m
20 b
90
c
z
a
50
解:(3)求解正应力
My Iz
惯性矩
Iz
1 12
50 903
3.0375106 mm4
弯矩
M 10kN.m
典型例题
例1 求图示矩形截面梁指定截面上对应点的正内力。
10kN
1
A
YA
2m
2m YB
B 2m
20 b
90
c
z
a
50
解:(3)求解正应力
M max
1 8
ql 2
1 8
q
62
q
533.3kN/m
练习1
受均布载荷作用的简支梁如图,求 ① 1-1截面上1、2两点的正应力; ② 1-1截面上的最大正应力; ③ 全梁的最大正应力; ④ 已知E=200GPa,求1-1截面的曲率半径。

材料力学第5章弯曲应力

材料力学第5章弯曲应力
材料力学第5章弯曲应力
欢迎来到材料力学第5章弯曲应力的世界!在本章中,我们将深入探讨什么是 弯曲应力,并研究其在不同形状截面中的计算方法和应用。
弯曲应力的定义和概念
什么是弯曲应力?
弯曲应力是物体受到外力作用时,在横截面上产生的力分布状态。
应变张量与应力张量
了解应变张量和应力张量的关系是理解弯曲应力的基础。
应力-应变曲线与弯曲应力
探索材料的应力-应变曲线与弯曲应力之间的关系。
弯曲应力在工程中的应用
建筑结构
了解弯曲应力在建筑结构中的应 用,如桥梁和楼梯等。
机械设计
探索弯曲应力在机械设计中的重 要性,如机械零件和工具。
航空航天工程
了解弯曲应力在航空航天工程中 的关键应用,如飞机和火箭。
梯形截面
探索梯形截面的弯曲应力计算方法。
弯曲应力的影响因素
1 外力
外力的大小和方向将直接影响到物体的弯曲应力。
2 截面形状
不同形状的截面将对弯曲应力的分布产生影响。
3 材料的力学性质
材料的弯曲应力极限和应力-应变关系是必须考虑的因素。
材料的弯曲应力极限
如何确定材料的弯曲应力极限
了解如何通过实验和模拟来确定材料的弯曲应力极限。
材料力学中的弯曲应力方程
一般弯曲应力方程
通过一般弯曲应力方程,我们可以计算出材料在弯曲时 的应力。
悬臂梁的弯曲应力
悬臂梁的弯曲应力方程与一般情况下的方程有所不同, 的弯曲应力计算方法
1
圆形截面
2
了解计算圆形截面的弯曲应力的公式和步骤。
3
矩形截面
学习如何计算矩形截面的弯曲应力。

材料力学弯曲应力

材料力学弯曲应力

六. 弯曲应力
从变形特点分析,到材料本构关系,到静力平衡
1、研究对象:等直、细长、对称截面梁
细长梁:长度比其高度大许多倍的梁, 一般来讲长高比 L/h > 20
有关细长梁的理论:经典梁理论, 或叫 Euler-Bernoulli 梁理论
2、基本假设:
(a) 小变形——在弹性变形范围内,
(b) 满足平面弯曲条件, (c) 纯弯曲。
dA
x
s
y
I yz 0
(d)
即:y -轴,z -轴为截面的形心主惯性轴
材料力学
六. 弯曲应力
§6.1 纯弯曲时梁横截面上的正应力
对于实心截面,若截面无对称轴,要使梁产生平面弯曲,
亦必须满足 I yz 。0即 y、z 轴为截面的形心主惯性轴。
所以只要外力作用在形心主惯性平面内同样可产生平面弯曲。
中性轴的特点:
q=0.5KN/m
D
A
B
d
z
L= 4m
1 qL2 8
(+)
M 图
M
max
1 8
qL2
材料力学
§6.3 弯曲正应力强度条件
解:
M max
1 8
qL2
1.0
103
N.m
由强度条件
Wz
D3(1 4 )
32
M max
[s ]
D 0.113m
六. 弯曲应力
1 qL2 8
(+)
M 图
若外径 D增加一倍,则 D 0.226m, 仍由强度条件,得
(x) EI
正应力计算公式为
s (x) M (x) y
I
材料力学
六. 弯曲应力

材料力学 第5章 弯曲应力

材料力学 第5章 弯曲应力

材料力学
(三)静力学关系
FN x
dA 0
A
Mz A (dA) y M
1 Mz
EI z
由(2)(3)两式可得
… …(3)
x
M y Iz
z x
y
EIz ——抗弯刚度
...... (4)
材料力学
(四)最大正应力
… …(5)
z x
Wz
Iz ymax
——抗弯截面系数
y
z
D
z b
实心圆截面
Pa
92.6MPa
④全梁最大正应力
max
M max Wz
67.5103 6.48 104
Pa
104
.2MPa
材料力学
5.4 弯曲切应力
一、 矩形截面梁横截面上的切应力
x dx 图a
M(x) Fs(x)
Fs(x) y
x 图b
dx M(x)+d M(x)
z
t1
x
b FN1
t
y FN2 图c
1、两点假设: ①切应力与剪力平行; ②距中性轴等距离处,切应力 相等。 2、研究方法:分离体平衡。
60
103 (60 10 3 ) 5.832 10 5
Pa
61.7MPa
材料力学
1 q=60kN/m
A
B
1m
2m
1
180 30
12 z
120 y
qL2
M
8
+
M1 Mmax
x
③1-1截面上的最大正应力
Wz
Iz y
Iz h2
6.48 10 4 m3
1max

材料力学07弯曲应力ppt课件

材料力学07弯曲应力ppt课件
分离部分 ——平衡分析……
x
y 26
dA1
s
, b s
顶面有 ,存在.
两截面M 不等—— s 不等
(X 0)
左侧面
dx
N1
M
A1 sdA1 I z
A1 ydA1
右侧面
MS
z
Iz
dM
S
* z
, b( dx ) 0
Iz
FS
,
dM dx
S
z
Izb
FS
S
z
Izb
(∵切应力互等 )
2s
h
2 ( bdy )y s
bh2
M
0
4
s
4M bh2
2. 按沿梁高线性分布:
s max
M h2 Iz
s
6M bh2
s1 2 s2 3
(相差三分之一)
13
[例2]:
15KN
6KN
求B截面K点应力
B
1m
1m
解: M
3
6kNm
s
My Iz
90
K 90
60
120 ( 拉? 压应力? )
IZ
bh3 12
第七章 弯曲应力
§1 弯曲正应力 §2 正应力强度条件 §3 弯曲剪应力 §4 剪应力强度条件 梁的合理截面 §5 非对称截面梁弯曲弯曲中心 §6 考虑塑性的极限弯矩
1
概述

-F
Q
Fa

M
CD段:只有弯矩没有剪力- 纯弯曲
AC和BD段:既有弯矩又有剪力- 剪切弯曲
2
剪力FS
弯矩M
切应力τ
正应力s
先分析纯弯梁横截面的正应力s ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
E y
Sz 0 中性轴过截面形心
M y z dA 0
A
M z y dA M
A 1M
EIZ
坐标轴是主轴
中性层的曲率计算公式 EIz 抗弯刚度
4、弯曲正应力计算公式
变形几何关系 y
物理关系 E
静力学关系
1M
EIZ
E y
正应力公式
My
IZ
1826年纳维在《材料力学》讲义中给出正确计算公式
弯曲正应力计算公式 弯曲正应力分布规律
My
IZ
5、横截面上最大弯曲正应力
max
Mym a x Iz
M I z / ymax
Wz
Iz ym a x
——截面的抗弯截面系数;。
反映了截面的几何形状、尺寸对强度的影响
最大弯曲正应力计算公式
max
M WZ
适用条件 截面关于中性轴对称。
6、常见图形的惯性矩及抗弯截面系数:
中性轴
中性轴上各点 σ=0 各横截面绕 中性轴发生偏转。 中性轴的位置 过截面形心
你能解释一下托架开孔合理吗?托架会不会破坏?
(三)理论分析:
y
z
两直线间的距离
y的物理意义
纵向纤维到中性层的距离; 点到中性轴的距离。
公式推导
线应变的变化规律 与纤维到中性层的距离成正比。 从横截面上看: 点离开中性轴越远,该点的线应变越大。
Байду номын сангаас察纵向纤维之间有无相互作用力
2、假设: 纵向纤维之间没有相互挤压, 各纵向纤维只是发生了简单的轴向拉伸或压缩。
观察纵向纤维的变化
在正弯矩的作用下, 偏上的纤维 缩短,
偏下的纤维 伸长。
凹入一侧纤维 缩短;
凸出一侧纤维伸长。
中性层
ΔL<0
ΔL>0
ΔL=0 既不伸长也不缩短
中性层 --纤维长度不变
(2)必须清楚所求的是该截面上哪一点的正应力, 并确定该点到中性轴的距离,以及该点处应力的符号
(3)特别注意正应力沿高度呈线性分布;
(4)中性轴上正应力为零, 而在梁的上下边缘处分别是最大拉应力和最大压应力。
注意
(5)梁在中性轴的两侧分别受拉或受压; 正应力的正 负号(拉或压)可根据弯矩的正负 及梁的变形状态来 确定。
q=60KN/m
120
A
B
1m C
3m
180
30 K
z
1、C 截面上K点正应力
y
2、C 截面上最大正应力
3、全梁上最大正应力
4、已知E=200GPa,C 截面的曲率半径ρ
180
1、截面几何性质计算
横截面 不再保持为平面 且由于切应力的存在,也不能保证纵向纤维之间没有正应力
二 横力弯曲正应力
纯弯曲正应力公式 My
IZ
弹性力学精确分析表明:
对于跨度 L 与横截面高度 h 之比 L / h > > 5的细长梁,
用纯弯曲正应力公式计算横力弯曲正应力, 误差<<2%
满足工程中所需要的精度。
横力弯曲最大正应力
max
Mymax Iz
推导弯曲正应力计算公式的方法总结
(1)理想模型法:纯弯曲(剪力为零,弯矩为常数) 横力弯曲
(2)“实验—观察—假设” :梁弯曲假设
(3)外力
内力
应力法
(4)三关系法
变形几何关系 物理关系 静力学关系
(5)数学方法
积分
应力合成内力
注意
(1)计算正应力时,必须清楚所求的是哪个截面上的应力, 从而确定该截面上的弯矩及该截面对中性轴的惯性矩;
回顾与比较
内力
应力公式及分布规律
均匀分布 F
A
线形分布 T
IP
M
?
FA
FS
?
y
§5-1 纯弯曲 §5-2 纯弯曲时的正应力 §5-3 横力弯曲时的正应力 强度条件 §5-4 弯曲切应力 §5-6 提高梁强度的措施
一、纯弯曲
§5-1 纯弯曲
Fs
F
F
M
Fa
Fa
梁段CD上,只有弯矩,没有剪力 --纯弯曲
z hb
d z
D dz
Iz
1 bh3, 12
Wz
1 bh2 6
Iz
d4,
64
Wz
32
d3
Iz
(D4
64
d4)
D4 (1 4 )
64
Wz
32
D3(1 4 )
§5-3
一、横力弯曲
横力弯曲时的正应力
F
Fs
F
x
M x
FL
横截面上内力
剪力+弯矩
横截面上的应力 既有正应力, 又有切应力
横力弯曲时的横截面
A
CB
4KN C截面应力计算 C截面应力分布
FA 1m 1m
F1Bm
2.5KNm
M
应用公式
My
Iz
4KNm
t,max
2.5103 88103 7.64 106
28.8MPa
(3)结论
52 zc
88
c,max 46.1MPa t,max 28.8MPa
例2:矩形截面简支梁承受均布载荷作用,如图所示
(6)熟记矩形、圆形截面对中性轴的惯性矩的计算式。
例1 T型截面铸铁梁,截面尺寸如图。
求最大拉应力、最大压应力。
9KN 4KN
A
C
B
1m 1m
1m
Iz 7.64 106 m4
52 zc
88
分析: 非对称截面, 要寻找中性轴位置; 作弯矩图,寻找最大弯矩的截面 计算最大拉应力、最大压应力
9KN 4KN
2、物理关系
当σ<σP时
虎克定律
弯曲正应力的分布规律
E E y
a、与点到中性轴的距离成正比;
沿截面高度 线性分布;
y
z
b、沿截面宽度 均匀分布;
c、正弯矩作用下, 上压下拉;
d、危险点的位置, 离开中性轴最远处.
弯曲正应力的分布规律
可 别 忘 记 啦 沿高度 沿宽度
3、静力学关系
dA FN 0
变化的是: 1、纵向线的长度 2、两横截面的夹角 3、横截面的宽度
纵向线 横向线
由直线
曲线 各纵向线的长度还相等吗?
由直线
直线 各横向线之间依然平行吗?
相对旋转一个角度后, 仍然与纵向弧线垂直。
(二)提出假设:
1、平面假设: 变形前为平面的横截面变形后仍保持为平面; 横截面绕某一轴线发生了偏转。
瑞士科学家Jacob.贝努力 于1695年提出梁弯曲的平面假设
A
CB
FA
1m 1m
1m
2.5KNm FB
M
(1)求支反力,作弯矩图 FA=2.5KN (2)计算应力: B截面应力分布
4KNm 52 zc
88
应用公式 My
Iz
t,max
4103 52103 7.64 106
27.2MPa
c,max
4103 88103 7.64 106
46.1MPa
9KN
梁段AC和BD上,既有弯矩,又有剪力 --横力弯曲
§5-2 纯弯曲时的正应力
纯弯曲的内力 剪力Fs=0
1、变形几何关系 2、物理关系
3、静力学关系
横截面上没有切应力 只有正应力。
弯曲正应力的 分布规律和计算公式
1、变形几何关系 (一)实验观察现象:
施加一对正弯矩,观察变形
观察到纵向线与横向线有何变化?
相关文档
最新文档