6材料力学习题解答(弯曲应力)
材料力学06(第六章 弯曲应力)分析
F / 4 2 103 mm 134 mm
30 MPa 5493104 mm4
F 24.6 kN
因此梁的强度由截面B上的最大拉应力控制
[F] 19.2 kN
§6-3 梁横截面上的切应力•梁的切应力强度条件
Ⅰ、梁横截面上的切应力
分离体的平衡
横截面上切应力 分布规律的假设
横截面上弯曲切 应力的计算公式
二.工字形截面梁 1、腹板上的切应力
h
d
y
d
O
y b
O
' A*
y dA
FS
S
* z
Izd
S
* z
bd
2
h
d
d 2
h 2
d
2
y2
腹板与翼缘交界处
max
min
FS Izd
bd
h d
max O
中性轴处
max
FS
S
* z,m
ax
Izd
y
min
FS
bd
h
d
d
h
d
2
I z d 2
160 MPa 148 MPa
2
Ⅲ 梁的正应力强度条件
max 材料的许用弯曲正应力
中性轴为横截面对称轴的等直梁
M max
Wz
拉、压强度不相等的铸铁等脆性材料制成的梁
为充分发挥材料的强度,最合理的设计为
t,max
M max yt,max Iz
[
t]
c,max
M max yc,max Iz
Myc,max Iz
典型截面的惯性矩与抗弯截面系数 ( d D)
b
材料力学习题册答案-第5章 弯曲应力5页word文档
第 五 章 弯 曲 应 力一、是非判断题1、设某段梁承受正弯矩的作用,则靠近顶面和靠近底面的纵向纤维分别是伸长的和缩短的。
(×)2、中性轴是梁的横截面与中性层的交线。
梁发生平面弯曲时,其横截面绕中性轴旋转。
(√)3、 在非均质材料的等截面梁中,最大正应力maxσ不一定出现在maxM的截面上。
( × )4、等截面梁产生纯弯曲时,变形前后横截面保持为平面,且其形状、大小均保持不变。
5、梁产生纯弯曲时,过梁内任一点的任一截面上的剪应力都等于零。
( × )6、控制梁弯曲强度的主要因素是最大弯矩值。
( × )7、横力弯曲时,横截面上的最大切应力不一定发生在截面的中性轴上。
( √ )二、填空题1、应用公式y I Mz=σ时,必须满足的两个条件是 满足平面假设 和 线弹性 。
2、跨度较短的工字形截面梁,在横力弯曲条件下,危险点可能发生在 翼缘外边缘 、 翼缘腹板交接处 和 腹板中心 处。
3、 如图所示的矩形截面悬臂梁,其高为h 、宽为b 、长为l ,则在其中性层的水平剪力4、梁的三种截面形状和尺寸如图所示,则其抗弯截面系数分别为226161bH BH -、 H Bh BH 66132- 和 Hbh BH 66132- 。
)2、 如图所示的两铸铁梁,材料相同,承受相同的载荷F 。
则当F 增大时,破坏的情况是 ( C )。
A 同时破坏 ;B (a )梁先坏 ;C (b )梁先坏3、为了提高混凝土梁的抗拉强度,可在梁中配置钢筋。
若矩形截面梁的弯矩图如图所示,则梁内钢筋(图中虚线所示)配置最合理的是( D )x四、计算题1、长为l 的矩形截面梁,在自由端作用一集中力F ,已知m h 18.0=,m b 12.0=,m y 06.0=,m a 2=,kN F 1=,求C 截面上K 点的正应力。
解:MPa I y M Z C K1.21218.012.006.0210133=⨯⨯⨯⨯==σ2、⊥形截面铸铁悬臂梁,尺寸及载荷如图所示。
材料力学第五章-弯曲应力知识分享
材料力学第五章-弯曲应力注:由于本书没有标准答案,这些都是我和同学一起做的答案,其中可能会存在一些错误,仅供参考。
习 题6-1厚度mm h 5.1=的钢带,卷成直径 D=3m 的圆环,若钢带的弹性模量E=210GPa ,试求钢带横截面上的最大正应力。
解: 根据弯曲正应力公式的推导: Dy E yE 2..==ρσ MPa D h E 1053105.110210.39max =⨯⨯⨯==-σ 6—2直径为d 的钢丝,弹性模量为E ,现将它弯曲成直径为D 的圆弧。
试求钢丝中的最大应力与d /D 的关系。
并分析钢丝绳为何要用许多高强度的细钢丝组成。
解: ρσyE .= Dd E ED d .22max ==σ max σ与Dd成正比,钢丝绳易存放,而引起的最大引力很小.6—3 截面形状及尺寸完全相同的一根钢梁和一根木梁,如果所受的外力也相同,则内力是否相同?横截面上正应力的变化规律是否相同?对应点处的正应力与纵向线应变是否相同? 解: 面上的内力相同,正应力变化规律相同。
处的正应力相同,线应变不同6—4 图示截面各梁在外载作用下发生平面弯曲,试画出横截面上正应力沿高度的分布图.6—5 一矩形截面梁如图所示,已知F=1.5kN 。
试求(1) I —I 截面上A 、B 、C 、D 各点处的正应力; (2) 梁上的最大正应力,并指明其位置。
解:(1)m N F M .3002.0*10*5.12.0*3===MPa M I y M z A 11110*30*1812*10*15*.1233===--σ A B σσ-= 0=C σMPa M D 1.7410*30*1812*10*)5.15(*1233==--σ MPa W Fl z 5.16610*30*186*10*300*10*5.19233max ===--σ 位置在:固定端截面上下边缘处。
6—6 图示矩形截面简支梁,受均布载荷作用。
已知载荷集度q=20kN /m ,跨长l =3,截面高度=h 24cm ,宽度=b 8cm 。
材料力学典型例题及解析 5.弯曲应力典型习题解析
9m q
4 ≤ [σ ]
A
1 πd 2
4
解得 q ≤ 1 π d 2 [σ ] = 1 × 20 ×10 −6 m 2 ×160 ×10 6 Pa = 22300 N/m = 22.3 kN/m
9m
9m
4、确定结构的许用载荷 取 AC 梁、BD 杆的许用 q 值中的小值,即为结构的许用载荷。
所以 [ q ] = 15.68 kN / m 。
切口,如图 a 所示。已知材料的许用应力 [σ ] = 100 MPa , (1) 计算切口许可的最大深度,并
画出切口处截面的应力分布图。(2) 如在杆的另一侧切出同样的切口,正应力有何变化?
F
y
(a)
38MPa
h=40mm
F
C'
M
F
CF F
F
100MPa
b=5mm (b)
(c)
(d)
题6图
解题分析:此题为偏心拉伸问题,可利用弯曲与拉伸组合变形的强度条件求出切口的允许深 度。若另一侧开同样深度切口,偏心拉伸问题变为轴向拉伸问题。 解:1、计算切口许可的最大深度
得 F B y = 12.75 kN
2、作弯矩图,确定危险截面
1
弯矩图如图 b 所示,峰值为 M C = 3.75kN ⋅ m 和 M B = − 4.5kN ⋅ m 。
B 截面的上边缘各点受拉,下边缘各点受压;C 截面的上边缘各点受压,下边缘各 点受拉。由于不能直观确定最大拉、压应力的位置,需要进一步计算。 3、计算 B、C 截面上的应力
设 A 处支反力为 F A y ,B 处支反力为 F B y ,均竖直向上。考虑梁 AD 的平衡,有
∑ M B = 0 , − F A y × 2 m − 4.5×103 N ×1m + 12×103 N ×1m = 0
材料力学06弯曲应力_3切应力_机
5
三、圆形截面梁
最大弯曲切应力发生于中性轴上各点处, 计算公式为
max
4FS 3A
式中,A 为圆形截面的面积
四、薄壁圆环形截面梁
薄壁圆环:壁厚 t 远小于平均半径 R
最大弯曲切应力发生于中性轴上各点
max
处,计算公式为
max
2
FS A
式中,A 为薄壁圆环形截面的面积
FS
max
z
x
14
FS max 9.75kN
M 26kN m max
2)校核弯曲正应力强度
由型钢表中查得 No. 18 工字钢截面的几何参数:d = 6.5 mm,Wz = 185 mm3 ,Iz : Sz = 15.4 cm
max
M max Wz
26 185
103 106
140.6 MPa < 170 MPa
y
FS R
max
z
t
y
6
五、弯曲切应力强度条件
其中
max ≤
max
3 FS max 2A
4 FS max 3A
2 FS max A
FS max
d
(Iz
:
S z max
)
矩形截面 圆形截面 薄壁圆环形截面 工字形截面
7
[例1] 图示矩形截面简支梁受均布载荷作用,试求梁的最大弯曲正 应力和最大弯曲切应力,并比较其大小。
b
FS
max h
z
缘各点处,弯曲切应力为
材料力学答案6
弯曲应力6-1 求图示各梁在m -m 截面上A 点的正应力和危险截面上最大正应力。
题 6-1图解:(a )m KN M m m ⋅=-5.2 m KN M ⋅=75.3max48844108.49064101064m d J x --⨯=⨯⨯==ππMPa A 37.20108.490104105.2823=⨯⨯⨯⨯=--σ (压)MPa 2.38108.4901051075.3823max =⨯⨯⨯⨯=--σ (b )m KN M m m ⋅=-60 m KN M ⋅=5.67max488331058321210181212m bh J x --⨯=⨯⨯== MPa A 73.611058321061060823=⨯⨯⨯⨯=--σ (压) MPa 2.104105832109105.67823max =⨯⨯⨯⨯=--σ (c )m KN M m m ⋅=-1 m KN M ⋅=1max48106.25m J x -⨯=36108.7m W x -⨯=cm y A 99.053.052.1=-=MPa A 67.38106.251099.0101823=⨯⨯⨯⨯=--σ (压) MPa 2.128106.2510183max =⨯⨯=-σ 6-2 图示为直径D =6 cm 的圆轴,其外伸段为空心,内径d =4cm ,求轴内最大正应力。
解:)1(32431απ-=D W x⎪⎭⎫ ⎝⎛-⨯⨯⨯=-463)64(110326π 361002.17m -⨯=3463321021.213210632m D W x --⨯=⨯⨯==ππMPa 88.521002.17109.0631=⨯⨯=-σ MPa 26.551021.2110172.1631=⨯⨯=-σ M P a 26.55max =σ6-3 T 字形截面铸铁梁的尺寸与所受载荷如图示。
试求梁内最大拉应力与最大压应力。
已知I z =10170cm 4,h 1=9.65cm ,h 2=15.35cm 。
材料力学习题及答案4-6
第四章弯曲应力判断图弯矩的值等于梁截面一侧所有外力的代数和。
()负弯矩说明该截面弯矩值很小,在设计时可以忽略不计。
()简支梁上向下的集中力对任意横截面均产生负弯矩。
()横截面两侧所有外力对该截面形心力矩的代数和就是该截面的弯矩值。
()梁的任一横截面上的弯矩在数值上等于该截面任一侧所有外力对该截面形心的力矩代数和。
()在计算指定截面的剪力时,左段梁向下的荷载产生负剪力。
()在计算指定截面的剪力时,右段梁向下的荷载产生正剪力。
()梁纯弯曲时中性轴一定通过截面的形心。
()简支梁上受一集中力偶作用,当集中力偶在不改变转向的条件下,在梁上任意移动时,弯矩图发生变化,剪力图不发生变化。
()图示梁弯矩图的B点是二次抛物线的顶点。
()图示梁段上集中力偶作用点两侧的弯矩直线一定平行。
()(M图)下列三种斜梁A截面的剪力均相同。
()l/2l/2l/2l/2l/2l/2下列三种斜梁B截面的剪力均相同。
()l/2l/2l/2l/2l/2l/2下列三种斜梁C截面的弯矩均相同。
()l/2l/2l/2l/2l/2l/2梁弯曲时的内力有剪力和弯矩,剪力的方向总是和横截面相切,而弯矩的作用面总是垂直于横截面。
()一端(或两端)向支座外伸出的简支梁叫做外伸梁。
()##√悬臂梁的一端固定,另一端为自由端。
()##√弯矩的作用面与梁的横截面垂直,它们的大小及正负由截面一侧的外力确定。
()##√弯曲时剪力对细长梁的强度影响很小,所以在一般工程计算中可忽略。
()##√图示,外伸梁BC段受力F作用而发生弯曲变形,AB段无外力而不产生弯曲变形()##×由于弯矩是垂直于横截面的内力的合力偶矩,所以弯矩必然在横截面上形成正应力。
()##√抗弯截面系数是反映梁横截面抵抗弯曲变形的一个几何量,它的大小与梁的材料有关。
()##×无论梁的截面形状如何,只要截面面积相等,则抗弯截面系数就相等。
()##×梁弯曲变形时,弯矩最大的截面一定是危险截面。
材料力学习题第六章应力状态分析答案详解
材料⼒学习题第六章应⼒状态分析答案详解第6章应⼒状态分析⼀、选择题1、对于图⽰各点应⼒状态,属于单向应⼒状态的是(A )。
20(MPa )20d20(A )a 点;(B )b 点;(C )c 点;(D )d 点。
2、在平⾯应⼒状态下,对于任意两斜截⾯上的正应⼒αβσσ=成⽴的充分必要条件,有下列四种答案,正确答案是( B )。
(A ),0x y xy σστ=≠;(B ),0x y xy σστ==;(C ),0x y xy σστ≠=;(D )x y xy σστ==。
3、已知单元体AB 、BC ⾯上只作⽤有切应⼒τ,现关于AC ⾯上应⼒有下列四种答案,正确答案是( C )。
(A )AC AC /2,0ττσ==;(B )AC AC /2,/2ττσ==;(C )AC AC /2,/2ττσ==;(D )AC AC /2,/2ττσ=-=。
4、矩形截⾯简⽀梁受⼒如图(a )所⽰,横截⾯上各点的应⼒状态如图(b )所⽰。
关于它们的正确性,现有四种答案,正确答案是( D )。
(b)(a)(A)点1、2的应⼒状态是正确的;(B)点2、3的应⼒状态是正确的;(C)点3、4的应⼒状态是正确的;(D)点1、5的应⼒状态是正确的。
5、对于图⽰三种应⼒状态(a)、(b)、(c)之间的关系,有下列四种答案,正确答案是( D )。
τ(a) (b)(c)(A)三种应⼒状态均相同;(B)三种应⼒状态均不同;(C)(b)和(c)相同;(D)(a)和(c)相同;6、关于图⽰主应⼒单元体的最⼤切应⼒作⽤⾯有下列四种答案,正确答案是( B )。
(A) (B) (D)(C)解答:maxτ发⽣在1σ成45o的斜截⾯上7、⼴义胡克定律适⽤范围,有下列四种答案,正确答案是( C )。
(A)脆性材料;(B)塑性材料;(C)材料为各向同性,且处于线弹性范围内;(D)任何材料;8、三个弹性常数之间的关系:/[2(1)]G E v =+ 适⽤于( C )。
材料力学第6章弯曲应力习题答案
材料力学习题解答弯曲应力
6.1.矩形截而悬臂梁如图所示,已知1=4 b/h=2!3, q二10 kN/m, [cr]=10 MPa,试确定此梁横截面的尺寸.max 2(2)计算抗弯截面系数2,3W 如31"yy = ----- = ------- =—6 6 9(3)强度计算0尸max W M 2 h3~[T/9X10X103X42心/. h > / —— = 3 ------------------- - - =416〃〃〃\2[(T] V 2xl0xl06b > 277mm62 20a工字钢梁的支承和受力情况如图所示,若[a]=160 MPa,试求许可载荷。
由弯矩图知:2P= = J_.pgEW W 3W.• A 哄=3x237xl0F60>d。
”= %.8 球2取许可载荷[P] = 57AN解:(1)画梁的弯矩图M c M c 32xl.34xl03=—=—Y = :— = 63.2MPaW c诚;. n x 0.06?"3TB截面:0.9xlO3 5z 4——;------------ -- = 62.1 MPa力以八d;、〃x0.06 〃 0.045、---- U ——r)------------ (1 —----- r-)32 矶32 0.064(3)轴内的最大正应力值(2)查表得抗弯截面系数(3)强度计算2P、=——W =237x10^7/1maxbfmax63.图示圆轴的外伸部分系空心轴.试作轴弯矩图,并求轴内最大正应力.由弯矩图知:可能危险截面是C和B截而(2)计算危险截而上的最大正应力值C截面:解:(1)画梁的弯矩图M t = 308M H(2)计算抗弯截面系数(3)强度计算 许用应力[(r] = ^- = — = 253MPa n 1.5强度校核308 inA1/rn r 】b” = —- = ------------------ I T = 1961"“ Y b maxW 1.568x1 Of压板强度足够。
第六章 弯曲应力(习题解答)
6-3、图示矩形截面梁受集中力作用,试计算1-1横截面上a 、b 、c 、d 四点的正应力。
解:(1)外力分析,判变形。
荷载在纵向对称面内,与轴线垂直,梁发生平面弯曲。
中性轴z 轴过形心C 与载荷垂直,沿水平方向。
(2)内力分析,弯矩图如图(b )所示,1-1横截面的弯矩为:1115230(M -=-⨯=-⋅kN m)(3)应力分析,梁上边有弯矩图,上侧纤维受拉。
1-1横截面上的a 点处于拉伸区,正应力为正;c 点处于中性层上,正应力为零;b 、d 两点处于压缩区,正应力为负。
3111111max2301011.1110.1800.36a a zzzM M M y y I I W σ---⨯=⋅=⋅===⨯⨯Pa MPa 。
11.11b a σσ=-=-MPa0c σ= 31133010(0.1500.050)7.4110.1800.312d d zM y I σ-⨯=-⋅=-⨯-=-⨯⨯Pa MPa37M kN V 图(kN)(a)(c)(b)(c)(e)(d)2+q l /8MkN ·m)(f)(b)180q题6-3图 题6-5图6-5、两根矩形截面简支木梁受均布荷载q 作用,如图所示。
梁的横截面有两种情况,一是如图(b)所示是整体,另一种情况如图(c)所示是由两根方木叠合而成(二方木间不加任何联系且不考虑摩擦)。
若已知第一种情况整体时梁的最大正应力为10MPa ,试计算第二种情况时梁中的最大正应力,并分别画出危险截面上正应力沿高度的分布规律图示。
解:(1)外力分析,判变形。
荷载在纵向对称面内,与轴线垂直,梁发生平面弯曲。
第一种情况中性层为过轴线的水平纵向面,中性轴z 轴过整体形心C 与载荷垂直,沿水平方向。
而第二种情况,两根木梁以各自的水平纵向面为中性层发生弯曲,两根中性轴为与荷载垂直的水平形心主轴。
如图所示。
(2)内力分析,判危险面:弯矩图如图(b )所示,跨中截面为危险面。
材料力学练习册5-6详细答案
第五章弯曲应力5-1 直径为d的金属丝,环绕在直径为D的轮缘上。
试求金属丝内的最大正应变与最大正应力。
已知材料的弹性模量为E。
解:5-2 图示直径为d的圆木,现需从中切取一矩形截面梁。
试问:(1) 如欲使所切矩形梁的弯曲强度最高,h和b应分别为何值;(2) 如欲使所切矩形梁的弯曲刚度最高,h和b应分别为何值;解:(1) 欲使梁的弯曲强度最高,只要抗弯截面系数取极大值,为此令(2) 欲使梁的弯曲刚度最高,只要惯性矩取极大值,为此令5-3 图示简支梁,由№18工字钢制成,在外载荷作用下,测得横截面A 底边的纵向正应变ε=3.0×10-4,试计算梁内的最大弯曲正应力。
已知钢的弹性模量E =200GPa ,a =1m 。
解:梁的剪力图及弯矩图如图所示,从弯矩图可见:5-4 No.20a 工字钢梁的支承和受力情况如图所示。
若[]MPa 160=σ,试求许可载荷F 。
5-5 图示结构中,AB 梁和CD 梁的矩形截面宽度均为b 。
如已知AB 梁高为1h ,CD 梁高为2h 。
欲使AB 梁CD 梁的最大弯曲正应力相等,则二梁的跨度1l 和2l 之间应满足什么样的关系?若材料的许用应力为[σ],此时许用载荷F 为多大?5-6 某吊钩横轴,受到载荷kN 130F =作用,尺寸如图所示。
已知mm 300=l ,mm 110h =,mm 160b =,mm 75d 0=,材料的[]MPa 100=σ,试校核该轴的强度。
5-7 矩形截面梁AB,以固定铰支座A及拉杆CD支承,C点可视为铰支,有关尺寸如图所示。
设拉杆及横梁的[]MPaσ,试求作用于梁B端的许可载荷F。
=1605-8 图示槽形截面铸铁梁,F=10kN,M e=70kN·m,许用拉应力[σt]=35MPa,许用压应力[σc]=120MPa。
试校核梁的强度。
解:先求形心坐标,将图示截面看成一大矩形减去一小矩形惯性矩弯矩图如图所示,C截面的左、右截面为危险截面。
(整理)材料力学试题库题解题6_弯曲应力
弯曲应力1.圆形截面简支梁A,B套成,A,B层间不计摩擦,材料的弹性模量E B=2E A求在外力偶矩M e作用下,A,B中最大正应力的比值^max有4个答案:Bmin1(A)-;61 (C)1;81(D)丄10答: B2.矩形截面纯弯梁,材料的抗拉弹性模量E t大于材料的抗压弹性模量E c,则正应力在截面上的分布图有以下4种答案:(A) (B) (C) (D) 答: C3.将厚度为2 mm的钢板尺与一曲面密实接触,已知测得钢尺点A处的应变为—,则该曲面在点A1000处的曲率半径为_________ m m。
答:999 mmP4.边长为a的正方形截面梁,按图示两种不同形式放置,在相同弯矩作用下,两者最大正应力之比匕丛= ___________(%x)bO(b)答:1/ , 25. 一工字截面梁,截面尺寸如图,h二b, b =10t。
试证明,此梁上,下翼缘承担的弯矩约为截面上总弯矩的88%证: — My M12MA y(ybdy) =1 820 罟3Iz4 l z=690tM1 Mt4 1勺8207 6904”88%I yh/2—- 丄h/2zt其中:积分限Bt? , A弓为翼缘弯矩6. 直径d =20 mm 的圆截面钢梁受力如图,已知弹性模量E = 200 GPa , a =200 mm ,欲将其中段AB 弯成 f m 的圆弧,试求所需载荷,并计算最大7. 钢筋横截面积为A ,密度为「,放在刚性平面上,一端加力F ,提起钢筋离 开地面长度-。
试问F 应多大?3解:截面C 曲率为零2Fl gA(l /3) 3 28. 矩形截面钢条长l ,总重为F ,放在刚性水平面上,在钢条A 端作用|向上的拉力时,试求钢条内最大正应力。
解:在截面C 处,有―罟丸弯曲正应力。
解:1 = M 而 M 二 Fa P EI Fmax64 =0.785 10 岀 m 4, 「旦 Pa = 0.654 kN21 Fad 21 3 3 0.654 1 03 0.2 20 10 2 0.785 10 出 = 167 MPa即M C =F Is3 l AC F (I AC )2 l 2 2l AC AC 段可视为受均布载荷q 作用的简支梁 max max 2q(U c ) /8 _ Fl bt 2/6 3bt 2iF/3 C9.图示组合梁由正方形的铝管和正方形钢杆套成,在两端用刚性平板牢固联接。
材料力学答案第六章
第六弯曲应力第六章答案6.1钢丝直径d=0.4mm, 弹性模量E=200GPa, 若将钢丝弯成直径D=400mm 的圆弧时,试求钢丝横截面上的最大弯曲正应力。
(200MPa ) 解:钢丝的弯矩和中性层曲率半径之间的关系为:EIM =ρ1则: ρEIM =,由弯曲正应力公式得ρσmaxmax My ==ρmaxEy ,钢丝弯成圆弧后,产生的弯曲变形,其中性层的曲率半径22Dd D ≈+=ρ 2)2(maxD dE =σ==D Ed MPa 2004004.0102003=⨯⨯6.2 矩形截面梁如图所示。
b = 8cm, h =12cm, 试求危险截面上a 、c 、d 三点的弯曲正应力。
(20.8MPa, 10.4MPa, 0) 解:由平衡方程0)(=∑F M A得到: KN F F B A 44221=⨯⨯== 危险截面在梁的中点处:KNm ql M 442818122max =⨯⨯==I z =1212h b ⨯⨯=44310115212080121mm ⨯=⨯⨯MP a I My MPa I MyI My z d d z c c za a 83.201011526010442.101011523010404646=⨯⨯⨯===⨯⨯⨯====σσσA F BF s F MM机械土木6.3 从直径为d 的圆木中截取一矩形截面梁,试根据强度观点求出所截取的矩形截面的最合理的高h 和宽b 。
(h=d 36, b=d 33) 解:最大弯曲正应力:zz W My I M m a x m a x m a x m a x ==σ h/b 的最佳值应应使梁的抗弯截面系数为最大。
抗弯截面系数: )(61)(616132222b b d b d b bh W -=-==为b 为自变量的函数。
由 06322=-=b d dt dW 36 333222db d h d d b =-===6.4 图示两根简支梁,其跨度、荷载及截面面积都相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.1. 矩形截面悬臂梁如图所示,已知l =4 m , b / h =2/3,q =10 kN/m ,[σ]=10 MPa ,试确定此梁横截面的尺寸。
解:(1) 画梁的弯矩图由弯矩图知:2max2ql M = (2) 计算抗弯截面系数32323669hbh h W === (3) 强度计算22maxmax 33912[]29416 277ql M ql h Wh h mm b mmσσ===⋅≤∴≥==≥ 6.2. 20a 工字钢梁的支承和受力情况如图所示,若[σ]=160 MPa ,试求许可载荷。
解:(1) 画梁的弯矩图由弯矩图知:No20a xql 2xmax 23P M =(2) 查表得抗弯截面系数6323710W m -=⨯(3) 强度计算max max 66223[]33[]3237101601056.8822PM P W W WW P kNσσσ-===⋅≤⨯⨯⨯⨯∴≤== 取许可载荷[]57P kN =6.3. 图示圆轴的外伸部分系空心轴。
试作轴弯矩图,并求轴内最大正应力。
解:(1) 画梁的弯矩图由弯矩图知:可能危险截面是C 和B 截面 (2) 计算危险截面上的最大正应力值C 截面:3max3332 1.341063.20.0632C C C C C M M MPa d W σππ⨯⨯====⨯ B 截面:3max3434440.91062.10.060.045(1)(1)32320.06B B B BB B B M M MPa D d W D σππ⨯====⨯-- (3) 轴内的最大正应力值MPa C 2.63max max ==σσx6.5. 把直径d =1 m 的钢丝绕在直径为2 m 的卷筒上,设E =200 GPa ,试计算钢丝中产生的最大正应力。
解:(1) 由钢丝的曲率半径知1M E MEI Iρρ=∴=(2) 钢丝中产生的最大正应力93max200100.510100 1MR ER MPa I σρ-⨯⨯⨯====6.8. 压板的尺寸和载荷如图所示。
材料为45钢,σs =380 MPa ,取安全系数n=1.5。
试校核压板的强度。
解:(1) 画梁的弯矩图由弯矩图知:危险截面是A 截面,截面弯矩是308A M Nm =(2) 计算抗弯截面系数232363330.030.0212(1)(1) 1.568106620bH h W m H -⨯=-=-=⨯(3) 强度计算许用应力380[]2531.5SMPa nσσ=== 强度校核max 6308196[]1.56810A M MPa W σσ-===⨯ 压板强度足够。
1A-Ax6.12. 图示横截面为⊥形的铸铁承受纯弯曲,材料的拉伸和压缩许用应力之比为[σt ]/[ σc ]=1/4。
求水平翼缘的合理宽度b 。
解:(1) 梁截面上的最大拉应力和最大压应力()[][]11,max ,max ,max 1,max 11400 40014320 t c zzt t c c M y My I I y y y mmσσσσσσ-==-====(2) 由截面形心位置()()304006017060370320304006060510 i CiCiA y b y Ab b mm⨯-⨯+⨯⨯===⨯-+⨯=∑∑6.13. ⊥形截面铸铁梁如图所示。
若铸铁的许用拉应力为[σt ]=40 MPa ,许用压应力为[σc ]=160 MPa ,截面对形心z c 的惯性矩I zc =10180 cm 4,h 1=96.4 mm ,试求梁的许用载荷P 。
解:(1) 画梁的弯矩图由弯矩图知:可能危险截面是A 和C 截面 (2) 强度计算A 截面的最大压应力Bz C x()22max 86320.8[][]101801016010132.60.80.825096.410A C C zC zCzC C M h Ph I I I P kN h σσσ--==≤⨯⨯⨯∴≤==-⨯A 截面的最大拉应力11max 86310.8[][]1018010401052.80.80.896.410A t t zC zCzC t M h Ph I I I P kN h σσσ--==≤⨯⨯⨯∴≤==⨯⨯C 截面的最大拉应力()22max 86320.6[][]1018010401044.20.60.625096.410C t t zC zCzC t M h Ph I I I P kN h σσσ--==≤⨯⨯⨯∴≤==-⨯取许用载荷值[]44.2P kN =6.14. 铸铁梁的载荷及截面尺寸如图所示。
许用拉应力[σl ]=40 MPa ,许用压应力[σc ]=160MPa 。
试按正应力强度条件校核梁的强度。
若载荷不变,但将T 形截面倒置成为⊥形,是否合理?何故?解:(1) 画梁的弯矩图由弯矩图知:可能危险截面是B 和C 截面 (2) 计算截面几何性质形心位置和形心惯性矩42.572.522264157.542.53020021520030100157.5 30200200303020060.12510i Ci C i zCAA y y mmAIy dA y dy y dy m --⨯⨯+⨯⨯===⨯+⨯==⨯⨯+⨯⨯=⨯∑∑⎰⎰⎰x(3) 强度计算B 截面的最大压应力3max620100.157552.4 []60.12510B C C C zC M y MPa I σσ-⨯⨯===⨯ B 截面的最大拉应力3max6(0.23)2010(0.230.1575)24.12 []60.12510B C t t zC M y MPa I σσ--⨯-===⨯C 截面的最大拉应力3max610100.157526.2 []60.12510C C t t zC M y MPa I σσ-⨯⨯===⨯ 梁的强度足够。
(4) 讨论:当梁的截面倒置时,梁内的最大拉应力发生在B 截面上。
3max620100.157552.4 []60.12510B C t t ZC M y MPa I σσ-⨯⨯===⨯梁的强度不够。
6.19. 试计算图示工字形截面梁内的最大正应力和最大剪应力。
解:(1) 画梁的剪力图和弯矩图最大剪力和最大弯矩值是max max 15 20 Q kN M kNm ==(2) 查表得截面几何性质3*max14113.8 6z z I W cm cm b mm S===(3) 计算应力最大剪应力No16 Qxx*3max max max151018.10.0060.138Z Z Q S MPa bI τ⨯===⨯最大正应力3max max62010141.814110M MPa W σ-⨯===⨯ 6.22. 起重机下的梁由两根工字钢组成,起重机自重Q=50 kN ,起重量P=10 kN 。
许用应力[σ]=160 MPa ,[τ]=100 MPa 。
若暂不考虑梁的自重,试按正应力强度条件选定工字钢型号,然后再按剪应力强度条件进行校核。
解:(1) 分析起重机的受力由平衡方程求得C 和D 的约束反力10 50C D R kN R kN ==(2) 分析梁的受力由平衡方程求得A 和B 的约束反力x R x R B A 610 650+=-=(3) 确定梁内发生最大弯矩时,起重机的位置及最大弯矩值C 截面:()(506)()501204.17C C M x x x dM x x dxx m=-=-==BR此时C 和D 截面的弯矩是104.25 134.05C D M kNm M kNm ==D 截面:()(106)(8)()381203.17D D M x x x dM x x dxx m=+-=-== 此时C 和D 截面的弯矩是98.27 140.07C D M kNm M kNm ==最大弯矩值是max 140.07 M kNm =(4) 按最大正应力强度条件设计maxmax 33max 6[]2140.0710438 2[]216010M WM W cm σσσ=≤⨯∴≥==⨯⨯查表取25b 工字钢(W=423 cm 3),并查得*max1021.3z z I b mm cm S ==(5) 按剪应力强度校核当起重机行进到最左边时(x =8 m ),梁内剪应力最大;最大剪力值是max 58 Q kN =xQ剪应力强度计算*3max max max581013.6[]220.010.213z z Q S MPa bI ττ⨯===⨯⨯剪应力强度足够。
6.23. 由三根木条胶合而成的悬臂梁截面尺寸如图所示,跨度l =1 m 。
若胶合面上的许用切应力为0.34 MPa ,木材的许用弯曲正应力为[σ]=10 MPa ,许用切应力为[τ]=1 MPa ,试求许可载荷P 。
解:(1) 截面上的最大剪力和弯矩max max Q P M Pl ==(2) 梁弯曲正应力强度条件max max 2262[]16[]10100.10.15 3.75 661M PlW bhbh P kNl σσσ==≤⨯⨯⨯≤==⨯ (3) 梁弯曲切应力强度条件max max 633[]222[]21100.10.1510 33Q PA bhbh P kNτττ==≤⨯⨯⨯⨯≤== (4)胶合面上切应力强度条件2222max 1336312222[]244212[]0.34100.10.15 3.825 0.15660.02544z Q h P h y y bh I bh P kN h y τττ⎛⎫⎛⎫=-=-≤ ⎪ ⎪⎝⎭⎝⎭⨯⨯⨯⨯≤==⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭许可载荷:[P ]=3.75 kN 。
6.27. 在图中,梁的总长度为l ,受均布载荷q 作用。
若支座可对称地向中点移动,试问移动距离为若干时,最为合理?AD解:(1) 约束反力2B C ql R R ==(2) 截面上的最大正弯矩和最大负弯矩22,max2,max 228822ql l ql ql qla M a qa M +-⎛⎫=--=- ⎪⎝⎭=-(3) 二者数值相等时最为合理222282244010.2072ql qla qa a la l a l l-=+-=-+===。